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Preface

The fourth edition differs significantly from the third edition, in that it has

undergone considerable expansion and revision.
The major expansion involves a more complete coverage of basic aspects

of mathematics that have continued to play an increasingly significant role

in the literature of econometrics. Thus, the chapter on difference equations

has been expanded to include enhanced treatment of lag operators (backward
shift operators in the statistical literature) that are important not only in

the context of the dynamic simultaneous equation GLSEM (general linear

structural econometric model), but also time series analysis.

In addition, a chapter on the basic mathematics underlying the analytics of

probability theory has been added, as well as a chapter on laws of large num-
bers and central limit theorems that form the probabilistic basis of classical

econometrics. Moreover, there is an informative but not exhaustive discussion

of stationary time series analysis, including discussions of the taxonomy of time

series, issues of causality and invertibility, with a limited treatment of certain
non-linearities such as those found in the popular ARCH (autoregressive con-

ditional heteroskedasticity) model, which together with its many variants has

found extensive applications in the literature of financial econometrics. How-

ever, there is no discussion of non-stationary time series, which is the subject

of the author’s Time Series Unit Roots and Cointegration, Academic Press,
1998.

Finally, this edition contains two fairly extensive chapters on applications to

the GLM (general linear model), GLSEM and time series analysis which treat

issues relevant to their underlying theoretical bases, estimation and forecasting.

New York, USA Phoebus J. Dhrymes
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Preface to the Third
Edition

The third edition differs from the second edition in several respects. The

coverage of matrix algebra has been expanded. For example, the topic of
inverting partitioned matrices in this edition deals explicitly with a problem

that arises in estimation under (linear) constraints. Often this problem forces

us to deal with a block portioned matrix whose (1,1) and (2,2) blocks are

singular matrices. The standard method for inverting such matrices fails;

unless the problem is resolved, explicit representation of estimators and asso-
ciated Lagrange multipliers is not available. An important application is in

estimating the parameters of the general linear structural econometric model,

when the identifying restrictions are imposed by means of Lagrange multi-

pliers. This formulation permits a near effortless test of the validity of such
(overidentifying) restrictions.

This edition also contains a treatment of the vector representation of

restricted matrices such as symmetric, triangular, diagonal and the like. The

representation is in terms of restricted linear subspaces. Another new feature

is the treatment of permutation matrices and the vec operator, leading to an
explicit representation of the relationship between A⊗B and B ⊗A .

In addition, it contains three new chapters, one on asymptotic expansions

and two on applications of the material covered in this volume to the general

linear model and the general linear structural econometric model, respec-
tively. The salient features of the estimation problems in these two topics

are discussed rigorously and succinctly.

This version should be useful to students and professionals alike as a

ready reference to mathematical tools and results of general applicability
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viii Preface to the Third Edition

in econometrics. The two applications chapters should also prove useful to

noneconomist professionals who are interested in gaining some understanding
of certain topics in econometrics.

New York, USA Phoebus J. Dhrymes



Preface to the Second
Edition

The reception of this booklet has encouraged me to prepare a second edition.

The present version is essentially the original, but adds a number of very
useful results in terms of inverses and other features of partitioned matrices, a

discussion of the singular value decomposition for rectangular matrices, issues

of stability for the general linear structural econometric model, and similar

topics.

I would like to take this opportunity to express my thanks to many of my
students and others for pointing out misprints and incongruities in the first

edition.

New York, USA Phoebus J. Dhrymes
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Preface to the First Edition

This book began as an Appendix to Introductory Econometrics. As it pro-

gressed, requirements of consistency and completeness of coverage seemed to
make it inordinately long to serve merely as an Appendix, and thus it appears

as a work in its own right.

Its purpose is not to give rigorous instruction in mathematics. Rather it

aims at filling the gaps in the typical student’s or professional’s mathematical
training, to the extent relevant for the study of econometrics.

Thus, it contains a collection of mathematical results employed at various

stage of Introductory Econometrics. More generally, however, it could serve

as a useful adjunct and reference to students of econometrics, no matter what

text is being employed.
In the vast majority of cases, proofs are provided and there is a modicum

of verbal discussion of certain mathematical results, the objective being to

reinforce the student’s understanding of the formalities. In certain instances,

however, when proofs are too cumbersome, or complex, or when they are too
obvious, they are omitted.

New York, USA Phoebus J. Dhrymes
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Chapter 1

Vectors and Vector Spaces

In nearly all of the discussion in this volume, we deal with the set of real

numbers. Occasionally, however, we deal with complex numbers as well. In

order to avoid cumbersome repetition, we shall denote the set we are dealing

with by F and let the context elucidate whether we are speaking of real or
complex numbers, or both.

1.1 Complex Numbers and Vectors

For the sake of completeness, we begin with a brief review of complex numbers,

although it is assumed that the reader is at least vaguely familiar with the

subject.
A complex number, say z, is denoted by

z = x+ iy,

where x and y are real numbers and the symbol i is defined by

i2 = −1. (1.1)

All other properties of the entity denoted by i are derivable from the basic
definition in Eq. (1.1). For example,

i4 = (i2)(i2) = (−1)(−1) = 1.

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 1, © The Author 2013
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2 CHAPTER 1. VECTORS AND VECTOR SPACES

Similarly,

i3 = (i2)(i) = (−1)i = −i,
and so on.

It is important for the reader to grasp, and bear in mind, that a complex

number is describable in terms of an ordered pair of real numbers.
Let

zj = xj + iyj, j = 1, 2,

be two complex numbers. We say

z1 = z2

if and only if
x1 = x2 and y1 = y2.

Operations with complex numbers are as follows.
Addition:

z1 + z2 = (x1 + x2) + i(y1 + y2).

Multiplication by a real scalar:

cz1 = (cx1) + i(cy1).

Multiplication of two complex numbers:

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Addition and multiplication are, evidently, associative and commutative; i.e.

for complex zj , j =1,2,3

z1 + z2 + z3 = (z1 + z2) + z3 and z1z2z3 = (z1z2)z3,

z1 + z2 = z2 + z1 and z1z2 = z2z1.

and so on.

The conjugate of a complex number z is denoted by z̄ and is defined by

z̄ = x− iy.

Associated with each complex number is its modulus or length or

absolute value, which is a real number often denoted by |z| and defined by

|z| = (zz̄)1/2 = (x2 + y2)1/2.

For the purpose of carrying out multiplication and division (an operation which

we have not, as yet, defined) of complex numbers, it is convenient to express

them in polar form.
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x1

y1

q1

Figure 1.1.

1.1.1 Polar Form of Complex Numbers

Let z1, a complex number, be represented in Fig. 1.1 by the point (x1, y1),

its coordinates.

It is easily verified that the length of the line from the origin to the point

(x1, y1) represents the modulus of z1, which for convenience we denote by r1.

Let the angle described by this line and the abscissa be denoted by θ1. As is
well known from elementary trigonometry, we have

cos θ1 =
x1
r1
, sin θ1 =

y1
r1
. (1.2)

We may thus write the complex number as

z1 = x1 + iy1 = r1 cos θ1 + ir1 sin θ1 = r1(cos θ1 + i sin θ1).

Further, we may define the quantity

eiθ1 = cos θ1 + i sin θ1, (1.3)

and, consequently, write the complex number in the standard polar form

z1 = r1e
iθ1 . (1.4)

In the representation above, r1 is the modulus and θ1 the argument of the

complex number z1 . It may be shown that the quantity eiθ1 as defined in

Eq. (1.3) has all the properties of real exponentials insofar as the operations

of multiplication and division are concerned. If we confine the argument



4 CHAPTER 1. VECTORS AND VECTOR SPACES

of a complex number to the range [0, 2π), we have a unique correspondence

between the (x, y) coordinates of a complex number and the modulus and
argument needed to specify its polar form. Thus, for any complex number z,

the representations

z = x+ iy, z = reiθ ,

where

r = (x2 + y2)1/2, cos θ =
x

r
, sin θ =

y

r
,

are completely equivalent.

In polar form, multiplication and division of complex numbers are

extremely simple operations. Thus,

z1z2 = (r1r2)e
i(θ1+θ2)

z1
z2

=

(
r1
r2

)
ei(θ1−θ2),

provided z2 �= 0 .

We may extend our discussion to complex vectors, i.e. ordered n -tuples
of complex numbers. Thus

z = x+ iy

is a complex vector, where x and y are n -element (real) vectors (a concept

to be defined immediately below). As in the scalar case, two complex vectors
z1, z2 are equal if and only if

x1 = x2, y1 = y2,

where now xi, yi, i = 1, 2, are n -element (column) vectors. The complex

conjugate of the vector z is given by

z̄ = x− iy,

and the modulus of the complex vector is defined by

(z′z̄)1/2 = [(x + iy)′(x − iy)]1/2 = (x′x+ y′y)1/2,

the quantities x′x, y′y being ordinary scalar products of two vectors.

Addition and multiplication of complex vectors are defined by

z1 + z2 = (x1 + x2) + i(y1 + y2),

z′1z2 = (x′1x2 − y′1y2) + i(x′1y2 + x′2y1),

where xi, yi, i = 1, 2, are real n -element column vectors. The notation

for example x′1, or y′2 means that the vectors are written in row form,
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rather than the customary column form. Thus, x1x
′
2 is a matrix, while x′1x2

is a scalar. These concepts (vector, matrix) will be elucidated below. It is
somewhat awkward to introduce them now; still, it is best to set forth at the

beginning what we need regarding complex numbers.

1.2 Vectors

Definition 1.1. Let1 ai ∈ F , i = 1, 2, . . . , n ; then the ordered n -tuple

a =

⎛
⎜⎜⎝
a1
a2
...

an

⎞
⎟⎟⎠

is said to be an n -dimensional vector. If F is the field of real numbers, it

is termed an n -dimensional real vector.

Remark 1.1. Notice that a scalar is a trivial case of a vector whose dimension
is n = 1 .

Customarily we write vectors as columns, so strictly speaking we should
use the term column vectors. But this is cumbersome and will not be used

unless required for clarity.

If the elements of a vector, ai, i = 1, 2, . . . , n, belong to F , we denote

this by writing

a ∈ F .

Definition 1.2. If a ∈ F is an n -dimensional column vector, its transpose
is the n -dimensional row vector denoted by

a
′
= ( a1, a2, a3, . . . , an ) .

If a, b are two n -dimensional vectors and a, b ∈ F , we define their sum by

a+ b =

⎛
⎜⎝
a1 + b1

...
an + bn

⎞
⎟⎠ .

1The symbol F is, in this discussion, a primitive and simply denotes the collection

of objects we are dealing with.
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If c is a scalar and c ∈ F , we define

ca =

⎛
⎜⎜⎝
ca1
ca2
...

can

⎞
⎟⎟⎠ .

If a, b are two n -dimensional vectors with elements in F , their inner
product (which is a scalar) is defined by

a′b = a1b1 + a2b2 + · · ·+ anbn.

The inner product of two vectors is also called their scalar product, and its

square root is often referred to as the length or the modulus of the vector.

Definition 1.3. If a, b ∈ F are n -dimensional column vectors, they are said

to be orthogonal if and only if a
′
b = 0 . If, in addition, a

′
a = b

′
b = 1 , they

are said to be orthonormal.

Definition 1.4. Let a(i) , i = 1, 2, . . . , k , be n -dimensional vectors whose
elements belong to F . Let ci, i = 1, 2, . . . , k, be scalars such that ci ∈ F . If

k∑
i=1

cia(i) = 0

implies that
ci = 0, i = 1, 2, . . . , k,

the vectors {a(i): i = 1, 2, . . . , k} are said to be linearly independent or

to constitute a linearly independent set. If there exist scalars ci, i =

1, 2, . . . , k, not all of which are zero, such that
∑k

i=1 cia(i) = 0, the vectors
{a(i): i = 1, 2, . . . , k} are said to be linearly dependent or to constitute a

linearly dependent set.

Remark 1.2. Notice that if a set of vectors is linearly dependent, this

means that one or more such vectors can be expressed as a linear combi-

nation of the remaining vectors. On the other hand if the set is linearly

independent this is not possible.

Remark 1.3. Notice, further, that if a set of n -dimensional (non-null) vectors
a(i) ∈ F , i = 1, 2, . . . , k, are mutually orthogonal, i.e. for any i �= j

a
′
(i)a(j) = 0 then they are linearly independent. The proof of this is quite

straightforward.
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Suppose not; then there exist constants ci ∈ F , not all of which are zero

such that

0 =

k∑
i=1

cia(i).

Pre-multiply sequentially by a′(s) to obtain

0 = csa
′
(s)a(s), s = 1, 2, . . . , k.

Since for all s , a
′
(s)a(s) > 0 we have a contradiction.

1.3 Vector Spaces

First we give a formal definition and then apply it to the preceding discussion.

Definition 1.5. A nonempty collection of elements V is said to be a linear

space (or a vector space, or a linear vector space) over the set (of real or

complex numbers) F , if and only if there exist two functions, + , called
vector addition, and ·, called scalar multiplication, such that the following

conditions hold for all x, y, z ∈ V and c, d ∈ F :

i. x+ y = y + x, x+ y ∈ V ;

ii. (x+ y) + z = x+ (y + z);

iii. There exists a unique zero element in V denoted by 0, and termed the
zero vector, such that for all x ∈ V ,

x+ 0 = x;

iv. Scalar multiplication is distributive over vector addition, i.e. for all x, y ∈
V and c, d ∈ F ,

c · (x+ y) = c · x+ c · y, (c+ d) · x = c · x+ d · x, and c · x ∈ V ;

v. Scalar multiplication is associative, i.e. for all c, d ∈ F and x ∈ V ,

(cd) · x = c · (d · x);

vi. For the zero and unit elements of F , we have, for all x ∈ V ,

0 · x = 0 (the zero vector of iii), 1 · x = x.

The elements of V are often referred to as vectors.
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Remark 1.4. The notation · , indicating scalar multiplication, is often sup-

pressed, and one simply writes c(x + y) = cx + cy, the context making clear
that c is a scalar and x, y are vectors.

Example 1.1. Let V be the collection of ordered n -tuplets with elements
in F considered above. The reader may readily verify that over the set F
such n -tuplets satisfy conditions i through vi of Definition 1.5. Hence, they

constitute a linear vector space. If F = R, where R is the collection of

real numbers, the resulting n -dimensional vector space is denoted by Rn .

Thus, if

a = ( a1 a2 a3 . . . , an )
′
,

we may use the notation a ∈ Rn, to denote the fact that a is an element of

the n -dimensional Euclidean (vector) space. The concept, however, is much
wider than is indicated by this simple representation.

1.3.1 Basis of a Vector Space

Definition 1.6 (Span of a vector space). Let Vn denote a generic n -

dimensional vector space over F , and suppose

a(i) ∈ Vn, i = 1, 2, . . . ,m, m ≥ n.

If any vector in Vn, say b, can be written as

b =

m∑
i=1

cia(i), ci ∈ F ,

we say that the set {a(i): i = 1, 2, . . . ,m} spans the vector space Vn.

Definition 1.7. A basis for a vector space Vn is a span of the space with

minimal dimension, i.e. a minimal set of linearly independent vectors that

span Vn.

Example 1.2. For the vector space Vn = Rn above, it is evident that the set

{e·i: i = 1, 2, . . . , n}

forms a basis, where e·i is an n -dimensional (column) vector all of whose

elements are zero save the i th, which is unity. Such vectors are typically

called unit vectors. Notice further that this is an orthonormal set in the

sense that such vectors are mutually orthogonal and their length is unity.
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Remark 1.5. It is clear that if Vn is a vector space and

A = {a(i): a(i) ∈ Vn i = 1, 2, . . . ,m, m ≥ n}

is a subset that spans Vn then there exists a subset of A that forms a basis
for Vn. Moreover, if {a(i): i = 1, 2, . . . , k, k < m} is a linearly independent

subset of A we can choose a basis that contains it. This is done by noting

that since A spans Vn then, if it is linearly independent, it is a basis and we

have the result. If it is not, then we simply eliminate some of its vectors that

can be expressed as linear combinations of the remaining vectors. Because the
remaining subset is linearly independent, it can be made part of the basis.

A basis is not unique, but all bases for a given vector space contain the

same number of vectors. This number is called the dimension of the vector

space Vn and is denoted by

dim(Vn).

Suppose dim(Vn) = n. Then, it may be shown that any n+ i vectors in Vn
are linearly dependent for i ≥ 1, and that no set containing less than n

vectors can span Vn.

1.4 Subspaces of a Vector Space

Let Vn be a vector space and Pn a subset of Vn in the sense that b ∈
Pn implies that b ∈ Vn. If Pn is also a vector space, then it is said to be

a subspace of Vn, and all discussion regarding spanning, basis sets, and

dimension applies to Pn as well.

Finally, notice that if {a(i): i = 1, 2, . . . , n} is a basis for a vector space
Vn, every vector in Vn, say b, is uniquely expressible in terms of this basis.

Thus, suppose we have two representations, say

b =

n∑
i=1

b
(1)
i a(i) =

n∑
i=1

b
(2)
i a(i),

where b
(1)
i , b

(2)
i , i = 1, 2, . . . ,m are appropriate sets of scalars. This implies

0 =

n∑
i=1

(
b
(1)
i − b

(2)
i

)
a(i).

But a basis is a linearly independent set; hence, we conclude

b
(1)
i = b

(2)
i , i = 1, 2, . . . , n,

which shows uniqueness of representation.
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Example 1.3. In the next chapter, we introduce matrices more formally. For

the moment, let us deal with the rectangular array

A =

[
a11 a12
a21 a22

]
,

with elements aij ∈ F , which we shall call a matrix. If we agree to look upon

this matrix as the vector2

a =

⎛
⎜⎜⎝
a11
a21
a12
a22

⎞
⎟⎟⎠ ,

we may consider the matrix A to be an element of the vector space R4, for

the case where F = R. Evidently, the collection of unit vectors

e·1 = (1, 0, 0, 0)
′
, e·2 = (0, 1, 0, 0)

′
, e·3 = (0, 0, 1, 0)

′
, e·4 = (0, 0, 0, 1)

′

is a basis for this space because for arbitrary aij we can always write

a = a11e·1 + a21e·2 + a12e·3 + a22e·4,

which is equivalent to the display of A above.

Now, what if we were to specify that, in the matrix above, we must always

have a12 = a21? Any such matrix is still representable by the 4-dimensional

vector a, except that now the elements of a have to satisfy the condition

a12 = a21, i.e. the second and third elements must be the same. Thus,
a satisfies a ∈ R4, with the additional restriction that its third and second

elements are identical, and it is clear that this must be a subset of R4. Is this

subset a subspace? Clearly, if a, b satisfy the condition that their second and

third elements are the same, the same is true of a+ b , as well as c ·a, for any
c ∈ R.

What is the basis of this subspace? A little reflection will show that it is

e·1 = (1, 0, 0, 0)
′
, e·4 = (0, 0, 0, 1)

′
, e∗ = (0, 1, 1, 0)

′
.

These three vectors are mutually orthogonal, but not orthonormal; more-

over, if A is the special matrix

A =

[
a11 α
α a22

]
,

2This is an instance of the vectorization of a matrix, a topic we shall discuss at

length at a later chapter.
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the corresponding vector is a = (a11, α, α, a22)
′

and we have the unique

representation

a = a11e·1 + αe∗ + a22e·4.

Because the basis for this vector space has three elements, the dimension of

the space is three. Thus, these special matrices constitute a 3-dimensional

subspace of R4.



Chapter 2

Matrix Algebra

2.1 Basic Definitions

Definition 2.1. Let aij ∈ F , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, where F
is a suitable space, such as the one-dimensional Euclidean or complex space.

Then, the ordered rectangular array

A =

⎡
⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎦ = [aij ]

is said to be a matrix of dimension m× n.

Remark 2.1. Note that the first subscript locates the row in which the typical

element lies, whereas the second subscript locates the column. For example,
aks denotes the element lying in the k th row and s th column of the matrix

A. When writing a matrix, we usually write its typical element as well as its

dimension. Thus,

A = (aij), i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

denotes a matrix whose typical element is aij and which has m rows and n

columns.

Convention 2.1. Occasionally, we have reason to refer to the columns or rows

of the matrix individually. If A is a matrix we shall denote its j th column

by a·j , i.e.

a·j =

⎛
⎜⎜⎜⎝
a1j
a2j
...

amj

⎞
⎟⎟⎟⎠ ,

P.J. Dhrymes, Mathematics for Econometrics,
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and its i th row by

ai· = (ai1, ai2, . . . , ain).

Definition 2.2. Let A be a matrix as in Definition 2.1. Its transpose, denoted

by A′, is defined to be the n×m matrix

A′ = [aji], j = 1, 2, . . . , n, i = 1, 2, . . . ,m,

i.e. it is obtained by interchanging rows and columns.

Definition 2.3. Let A be as in Definition 2.1. If m = n, A is said to be a

square matrix.

Definition 2.4. If A is a square matrix, it is said to be symmetric if and

only if

A′ = A.

If A is a square matrix with, say, n rows and n columns, it is said to be a

diagonal matrix if and only if

aij = 0, i �= j.

In this case, it is denoted by

A = diag(a11, a22, . . . , ann).

Remark 2.2. If A is square matrix, then, evidently, it is not necessary to
refer to the number of its rows and columns separately. If it has, say n rows

and n columns, we say that A is of dimension (or order) n.

Definition 2.5. Let A be a square matrix of order n. It is said to be an

upper triangular matrix if and only if

aij = 0, i > j.

It is said to be a lower triangular matrix if and only if

aij = 0, i < j.

Remark 2.3. As the terms imply, for a lower triangular matrix all ele-
ments above the main diagonal must be zero, while for an upper triangular

matrix all elements below the main diagonal must be zero.

Definition 2.6. The identity matrix of order n, denoted by In ,
1 is a diagonal

matrix all of whose non-null elements are unity.

1In most of the literature, the subscript is typically omitted. In this volume we shall

include it more often than not for the greater clarity it brings to the discussion.
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Definition 2.7. The null matrix of dimension m×n is a matrix all of whose

elements are null (zeros).

Definition 2.8. Let A be a square matrix of order n. It is said to be an

idempotent matrix if and only if

AA = A.

Usually, but not necessarily, idempotent matrices encountered in econometrics

are also symmetric.

2.2 Basic Operations

Let A,B be two m× n matrices with elements in F , and let c be a scalar

in F . Then, we have:

i. Scalar multiplication:

cA = [caij ].

ii. Matrix addition:

A+B = [aij + bij ].

Remark 2.4. Note that while scalar multiplication is defined for every matrix,

matrix addition for A and B is not defined unless both have the same

dimensions.

Let A be m × n and B be q × r, both with elements in F ; then, we

have:

iii. Matrix multiplication:

AB =

[
n∑
s=1

aisbsj

]
provided n = q;

BA=

[
r∑

k=1

bikakj

]
provided r = m.

Remark 2.5. Notice that matrix multiplication is not defined for any

arbitrary two matrices A, B. They must satisfy certain conditions of
dimensional conformability. Notice further that if the product

AB
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is defined, the product

BA

need not be defined, and if it is, it is not generally true that

AB = BA.

Remark 2.6. If two matrices are such that a given operation between them

is defined, we say that they are conformable with respect to that operation.

Thus, for example, if A is m × n and B is n × r we say that A and B

are conformable with respect to the operation of right multiplication, i.e.
multiplying A on the right by B. If A is m× n and B is q ×m we shall

say that A and B are conformable with respect to the operation of left

multiplication, i.e. multiplying A on the left by B. Or if A and B are both

m× n we shall say that A and B are conformable with respect to matrix

addition. Because being precise is rather cumbersome, we often merely say
that two matrices are conformable, and we let the context define precisely the

sense in which conformability is to be understood.

An immediate consequence of the preceding definitions is

Proposition 2.1. Let A be m× n, and B be n× r. The j th column of

C = AB

is given by

c·j =
n∑
s=1

a·sbsj , j = 1, 2, . . . , r.

Proof: Obvious from the definition of matrix multiplication.

Proposition 2.2. Let A be m× n, B be n× r. The i th row of

C = AB

is given by

ci· =
n∑
q=1

aiqbq·, i = 1, 2, . . . ,m.

Proof: Obvious from the definition of matrix multiplication.

Proposition 2.3. Let A, B be m× n, and n× r, respectively. Then,

C′ = B′A′,

where

C = AB.



2.3. RANK AND INVERSE OF A MATRIX 17

Proof: The typical element of C is given by

cij =
n∑
s=1

aisbsj .

By definition, the typical (i, j) element of C′, say c′ij , is given by

c′ij = cji =

n∑
s=1

ajsbsi.

But

ajs = a′sj , bsi = b′is,

i.e. ajs is the (s, j) element of A′, say a′sj , and bsi is the (i, s) element of
B′, say b′is. Consequently,

c′ij = cji =

n∑
s=1

ajsbsi =

n∑
s=1

b′isa
′
sj ,

which shows that the (i, j) element of C′ is the (i, j) element of B′A′.
q.e.d.

2.3 Rank and Inverse of a Matrix

Definition 2.9. Let A be m×n. The column rank of A is the maximum

number of linearly independent columns it contains. The row rank of A is

the maximum number of linearly independent rows it contains.

Remark 2.7. It may be shown—but not here—that the row rank of A is
equal to its column rank. Hence, the concept of rank is unambiguous, and we

denote by

r(A)

the rank of A . Thus, if we are told that A is m× n we can immediately

conclude that

r(A) ≤ min(m,n).

Definition 2.10. Let A be m× n, m ≤ n. We say that A is of full rank

if and only if
r(A) = m.

Definition 2.11. Let A be a square matrix of order m. We say that A is

nonsingular if and only if

r(A) = m.
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Remark 2.8. An example of a nonsingular matrix is the diagonal matrix

A = diag(a11, a22, . . . , amm)

for which
aii �= 0, i = 1, 2, . . . ,m.

We are now in a position to define a matrix operation that corresponds to

division for scalars. For example, if c ∈ F and c �= 0, we know that for any

a ∈ F
a

c

means the operation of defining

1

c

(the “inverse” of c ) and multiplying that by a. The “inverse” of a scalar, say

c, is another scalar, say b, such that

bc = cb = 1.

We have a similar operation for square matrices.

2.3.1 Matrix Inversion

Let A be a square matrix of order m. Its inverse, say B, is another square

matrix of order m such that B, if it exists, is defined by the property

AB = BA = Im

Definition 2.12. Let A be a square matrix of order m. If its inverse exists

it is denoted by A−1, and the matrix A is said to be invertible.

Remark 2.9. The terms invertible, nonsingular, and of full rank are
synonymous for square matrices. This is made clear below.

Proposition 2.4. Let A be a square matrix of order m. Then A is invertible
if and only if

r(A) = m.

Proof: Necessity: Suppose A is invertible; then there exists a square matrix

B (of order m ) such that

AB = Im. (2.1)

Let c �= 0 be any m -element vector and note that Eq. (2.1) implies

ABc = c.
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Since c �= 0 we must have that

Ad = c, d = Bc �= 0.

But this means that if c is any m -dimensional vector it can be expressed as a

linear combination of the columns of A, which in turn means that the columns

of A span the vector space Vm consisting of all m -dimensional vectors with

elements in F . Because the dimension of this space is m, it follows that the
(m) columns of A are linearly independent; hence, its rank is m.

Sufficiency: Conversely, suppose that

r(A) = m.

Then, its columns form a basis for Vm. The unit vectors (see Chap. 1) {e·i: i =
1, 2, . . . ,m} all belong to Vm. Thus, we can write

e·i = Ab·i =
m∑
s=1

a·sbsi, i = 1, 2, . . . ,m.

The matrix
B = [bsi]

has the property2

AB = Im.

q.e.d.

Corollary 2.1. Let A be a square matrix of order m. If A is invertible then

the following is true for its inverse B : B is of rank m and thus B also is

invertible; the inverse of B is A.

Proof: Obvious from the definition of the inverse and the proposition.

It is useful here to introduce the following definition

Definition 2.13. Let A be m × n. The column space of A, denoted by

C(A), is the set of m -dimensional (column) vectors

C(A) = {ξ: ξ = Ax},

where x is n -dimensional with elements in F . Similarly, the row space of

A, R(A), is the set of n -dimensional(row) vectors

R(A) = {ζ: ζ = yA},

where y is a row vector of dimension m with elements in F .
2Strictly speaking, we should also provide an argument based on the rows of A and

on BA = Im, but this is repetitious and is omitted for the sake of simplicity.
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Remark 2.10. It is clear that the column space of A is a vector space and

that it is spanned by the columns of A. Moreover, the dimension of this
vector space is simply the rank of A, i.e. dimC(A) = r (A). Similarly, the

row space of A is a vector space spanned by its rows, and the dimension of

this space is also equal to the rank of A because the row rank of A is equal

to its column rank.

Definition 2.14. Let A be m×n. The (column) null space of A, denoted

by N(A), is the set

N(A) = {x: Ax = 0}.

Remark 2.11. A similar definition can be made for the (row) null space of A.

Definition 2.15. Let A be m× n, and consider its null space N(A). This

is a vector space; its dimension is termed the nullity of A and is denoted by

n(A).

We now have an important relation between the column space and column

null space of any matrix.

Proposition 2.5. Let A be p× q. Then,

r(A) + n(A) = q.

Proof: Suppose the nullity of A is n(A) = n ≤ q, and let {ξi : i = 1, 2, . . . , n}
be a basis for N(A). Note that each ξi is a q -dimensional (column) vector

with elements in F . We can extend this to a basis for Vq, the vector space

containing all q -dimensional vectors with elements in F ; thus, let

{ξ1, ξ2, . . . , ξn, ζ1, ζ2, . . . , ζq−n}

be such a basis. If x is any q -dimensional vector, we can write, uniquely,

x =

n∑
i=1

ciξi +

q−n∑
j=1

fjζj .

Now, define
y = Ax ∈ C(A)

and note that

y =
n∑
i=1

ciAξi +

q−n∑
j=1

fjAζj =

q−n∑
j=1

fj(Aζj). (2.2)



2.3. RANK AND INVERSE OF A MATRIX 21

This is so since

Aξi = 0, i = 1, 2, . . . , n,

owing to the fact that the ξ ’s are a basis for the null space of A.
But Eq. (2.2) means that the vectors

{Aζj : j = 1, 2, . . . , q − n}

span C(A), since x and (hence) y are arbitrary. We show that these vectors

are linearly independent, and hence a basis for C(A). Suppose not. Then,

there exist scalars, gj, j = 1, 2, . . . , q−n, not all of which are zero, such that

0 =

q−n∑
j=1

(Aζj)gj = A

⎛
⎝q−n∑
j=1

ζjgj

⎞
⎠ . (2.3)

Equation (2.3) implies that

ζ =

q−n∑
j=1

ζjgj (2.4)

lies in the null space of A, because it states Aζ = 0. As such, ζ ∈ Vq and
has a unique representation in terms of the basis of that vector space, say

ζ =

n∑
i=1

diξi +

q−n∑
j=1

kjζj . (2.5)

Moreover, since ζ ∈ N(A), we know that in Eq. (2.5)

kj = 0, j = 1, 2, . . . , q − n.

But Eqs. (2.5) and (2.4) give two dissimilar representations of ζ in terms of a

single basis for Vq, which is a contradiction, unless

gj = 0, j = 1, 2, . . . , q − n,

di = 0, i = 1, 2, . . . , n.

This shows that Eq. (2.3) can be satisfied only by null gj , j = 1, 2, . . . , q −
n ; hence, the set {Aζj : j = 1, 2, . . . , q − n} is linearly independent and,
consequently, a basis for C(A). Therefore, since the dimension of C(A) =

r (A), by Remark 2.10, we have

dim[C(A)] = r(A) = q − n.

q.e.d.

Another useful result is the following.
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Proposition 2.6. Let A be p× q, let B be a nonsingular matrix of order

q, and put D = AB. Then

r(D) = r(A).

Proof: We shall show that C(A) = C(D), which, by the discussion in the

proof of Proposition 2.5, is equivalent to the claim of the proposition.

Suppose y ∈ C(A). Then, there exists a vector x ∈ Vq such that y =

Ax. Since B is nonsingular, define the vector ξ = B−1x. We note Dξ =
ABB−1x = y, which shows that

C(A) ⊂ C(D). (2.6)

Conversely, suppose z ∈ C(D). This means there exists a vector ξ ∈ Vq such

that z = Dξ. Define the vector x = Bξ and note that

Ax = ABξ = Dξ = z;

this means that z ∈ C(A), which shows

C(D) ⊂ C(A). (2.7)

But Eqs. (2.6) and (2.7) together imply C(A) = C(D).

q.e.d.

Finally, we have

Proposition 2.7. Let A be p× q and B q × r, and put

D = AB.

Then
r(D) ≤ min[r(A), r(B)].

Proof: Since D = AB, we note that if x ∈ N(B) then x ∈ N(D); hence, we
conclude

N(B) ⊂ N(D),

and thus that

n(B) ≤ n(D). (2.8)

But from

r(D) + n(D) = r,

r(B) + n(B) = r,
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we find, in view of Eq. (2.8),

r(D) ≤ r(B). (2.9)

Next, suppose that y ∈ C(D). This means that there exists a vector, say,

x ∈ Vr, such that y = Dx or y = ABx = A(Bx), so that y ∈ C(A). But
this means that

C(D) ⊂ C(A),

or that
r(D) ≤ r(A). (2.10)

Together Eqs. (2.9) and (2.10) imply

r(D) ≤ min[r(A), r(B)].

q.e.d.

Remark 2.12. The preceding results can be stated in the following useful

form: multiplying two (and therefore any finite number of) matrices results

in a matrix whose rank cannot exceed the rank of the lowest ranked factor.
The product of nonsingular matrices is nonsingular. Multiplying a matrix by

a nonsingular matrix does not change its rank.

2.4 Hermite Forms and Rank Factorization

We begin with a few elementary aspects of matrix operations.

Definition 2.16. Let A be m × n; any one of the following operations is

said to be an elementary transformation of A :

i. Interchanging two rows (or columns);

ii. Multiplying the elements of a row (or column) by a (nonzero) scalar c;

iii. Multiplying the elements of a row (or column) by a (nonzero) scalar c
and adding the result to another row (or column).

The operations above are said to be elementary row (or column) opera-
tions.

Remark 2.13. The matrix performing operation i is the matrix obtained from

the identity matrix by interchanging the two rows (or columns) in question.

The matrix performing operation ii is obtained from the identity matrix

by multiplying the corresponding row (or column) by the scalar c.
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Finally, the matrix performing operation iii is obtained from the identity

matrix as follows: if it is desired to add c times the k th row to the i th row
of a given matrix A, simply insert the scalar c in the (i, k) position of the

appropriate identity matrix and use the resulting matrix to multiply A on

the left.

Such matrices are termed elementary matrices. An elementary row

operation is performed on A by multiplying A on the left by the correspond-
ing elementary matrix, E, i.e. EA.

An elementary column operation is performed (mutatis mutandis) by AE.

Example 2.1. Let

A =

⎡
⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

and suppose we want to interchange the position of the first and third rows

(columns). Define

E1 =

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ .

Then,

E1A =

⎡
⎣ a31 a32 a33
a21 a22 a23
a11 a12 a13

⎤
⎦ ; AE1 =

⎡
⎣ a13 a12 a11
a23 a22 a21
a33 a32 a31

⎤
⎦ .

Suppose we wish to multiply the second row (column) of A by the scalar c.

Define

E2 =

⎡
⎣ 1 0 0

0 c 0
0 0 1

⎤
⎦ .

Then,

E2A =

⎡
⎣ a11 a12 a13
ca21 ca22 ca23
a31 a32 a33

⎤
⎦ , AE2 =

⎡
⎣ a11 ca12 a13
a21 ca22 a23
a31 ca32 a33

⎤
⎦ .

Finally, suppose we wish to add c times the first row (column) to the third

row (column). Define

E3 =

⎡
⎣ 1 0 0

0 1 0

c 0 1

⎤
⎦ , and note that
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E3A=

⎡
⎣ a11 a12 a13

a21 a22 a23
ca11 + a31 ca12 + a32 ca13 + a33

⎤
⎦

AE3 =

⎡
⎣ a11 + ca13 a12 a13
a21 + ca23 a22 a23
a31 + ca33 a32 a33

⎤
⎦ .

The result below follows immediately.

Proposition 2.8. Every elementary transformation matrix is nonsingular,

and its inverse is a matrix of the same type.

Proof: For matrices of type E1 it is clear that E1E1 = I. The inverse of a

matrix of type E2 is of the same form but with c replaced by 1/c. Similarly,
the inverse of a matrix of type E3 is of the same form but with c replaced

by −c.
q.e.d.

Definition 2.17. An m × n matrix C is said to be an (upper) echelon

matrix if:

i. It can be partitioned:

C =

(
C1

0

)
,

where C1 is r×n (r ≤ n) and there is no row in C1 consisting entirely

of zeros;

ii. The first nonzero element appearing in each row of C1 is unity and, if the

first nonzero element in row i is cij then all other elements in column

j are zero, i.e. cij = 0 for j > i;

iii. When the first nonzero element in the k th row of C1 is ckjk , then
j1 < j2 < j3 < · · · < jk.

An immediate consequence of the definition is

Proposition 2.9. Let A be m × n ; there exists a nonsingular (m × m)

matrix B such that
BA = C

and C is an (upper) echelon matrix.

Proof: Consider the first column of A, and suppose it contains a nonzero ele-

ment (if not, consider the second column, etc.). Without loss of generality, we
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suppose this to be a11 (if not, simply interchange rows so that it does become

the first element). Multiply the first row by 1/a11. This is accomplished
through multiplication on the left by a matrix of type E2. Next, multiply the

first row of the resulting matrix by −as1 and add to the s th row. This is

accomplished through multiplication on the left by a matrix of type E3. Con-

tinuing in this fashion, we make all elements in the first column zero except

the first, which is unity. Repeat this for the second column, third column,
and, in general, for all other columns of A. In the end some rows may con-

sist entirely of zeros. If they do not all occur at the end (of the rows of the

matrix) interchange rows so that all zero rows occur at the end. This can be

done through multiplication on the left by a matrix of type E1. The resulting
matrix is, thus, in upper echelon form, and has been obtained through multi-

plication on the left by a number of elementary matrices. Because the latter

are nonsingular, we have

BA = C,

where B is nonsingular and C is in upper echelon form.

q.e.d.

Proposition 2.10. Let A be m × n, and suppose it can be reduced to an

upper echelon matrix

BA =

(
C1

0

)
= C

such that C1 is r × n. Then,

r(A) = r.

Proof: By construction, the rows of C1 are linearly independent; thus,

r(C1) = r(C) = r and r(C) ≤ r(A).

We also have A = B−1C. Hence

r(A) ≤ r(C),

which shows
r(A) = r(C) = r.

q.e.d.

Definition 2.18. An n × n matrix H∗ is said to be in (upper) Hermite

form if and only if:

i. H∗ is (upper) triangular;

ii. The elements along the main diagonal of H∗ are either zero or one;
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iii. If a main diagonal element of H∗ is zero, all elements in the row in

which the null diagonal element occurs are zero;

iv. If a main diagonal element of H∗ is unity then all other elements in the

column in which the unit element occurs are zero.

Definition 2.19. An n ×m matrix H is said to be in (upper) Hermite

canonical form if and only if

H =

[
I H1

0 0

]
.

Proposition 2.11. Every matrix in Hermite form can be put in Hermite

canonical form by elementary row and column operations.

Proof: Let H∗ be a matrix in Hermite form; by interchanging rows we can

put all zero rows at the end so that for some nonsingular matrix B1 we have

B1H
∗ =

(
H∗

1

0

)
,

where the first nonzero element in each row of H∗
1 is unity and H∗

1 contains

no zero rows. By interchanging columns, we can place the (unit) first nonzero

elements of the rows of H∗
1 along the main diagonal, so that there exists a

nonsingular matrix B2 for which

B1H
∗B2 =

[
I H1

0 0

]
.

q.e.d.

Proposition 2.12. The rank of a matrix H∗, in Hermite form, is equal to

the dimension of the identity block in its Hermite canonical form.

Proof: Obvious.

Proposition 2.13. Every (square) matrix H∗ in Hermite form is idempotent,

although it is obviously not necessarily symmetric.

Proof: We have to show that

H∗H∗ = H∗.
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Because H∗ is upper triangular, we know that H∗H∗ is also upper tri-

angular, and thus we need only determine its (i, j) element for i ≤ j. Now,
the (i, j) element of H∗H∗ is

(H∗H∗)ij =
n∑
k=1

h∗ikh
∗
kj =

j∑
k=i

h∗ikh
∗
kj .

If h∗ii = 0 then h∗ij = 0 for all j ; hence (H∗H∗)ij = 0 for all j. If h∗ii = 1

then

(H∗H∗)ij = h∗ij + h∗i,i+1h
∗
i+1,j + · · ·+ h∗ijh

∗
jj .

Now, h∗i+1,i+1 is either zero or one; if zero then h∗i+1,j = 0 for all j, and

hence the second term on the right side in the equation above is zero. If
h∗i+1,i+1 = 1 then h∗i,i+1 = 0, so that again the second term is null. Similarly,

if h∗i+2,i+2 = 0, then the third term is null; if h∗i+2,i+2 = 1 then h∗i,i+2 = 0, so

that again the third term on the right side of the equation defining (H∗H∗)ij
is zero. Finally, if h∗jj = 1 then h∗ij = 0, and if h∗jj = 0 then again h∗ij = 0.
Consequently, it is always the case that

(H∗H∗)ij = h∗ij

and thus

H∗H∗ = H∗.

q.e.d.

2.4.1 Rank Factorization

Proposition 2.14. Let A be n× n of rank r ≤ n. There exist nonsingular

matrices Q1, Q2 such that

Q−1
1 AQ−1

2 =

[
Ir 0

0 0

]
.

Proof: By Proposition 2.9, there exists a nonsingular matrix Q1 such that

Q−1
1 A =

(
A∗

1

0

)
,

i.e. Q−1
1 A is an (upper) echelon matrix. By transposition of columns, we

obtain (
A∗

1

0

)
B1 =

[
Ir A1

0 0

]
,

which in upper Hermite canonical form.
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By elementary column operations, we can eliminate A1, i.e.[
Ir A1

0 0

]
B2 =

[
Ir 0
0 0

]
.

Take Q−1
2 = B1B2, and note that we have

Q−1
1 AQ−1

2 =

[
Ir 0

0 0

]
.

q.e.d.

Proposition 2.15 (Rank Factorization). Let A be m× n (m ≤ n) of rank

r ≤ m. There exists an m × r matrix C1 of rank r and an r × n matrix

C2 of rank r such that

A = C1C2.

Proof: Let

A0 =

(
A
0

)
,

where A0 is n × n of rank r. By Proposition 2.14, there exist nonsingular

matrices Q1, Q2 such that

A0 = Q1

[
Ir 0

0 0

]
Q2.

Partition

Q1 =

[
C1 C11

C21 C22

]
, Q2 =

(
C2

C∗

)

so that C1 is m× r and C2 is r × n (of rank r ). Thus,

A0 =

(
C1C2

C21C2

)
;

hence,

A = C1C2.

Since

r = r(A) ≤ min[r(C1), r(C2)] = min[r(C1), r],

we must have that

r(C1) = r.

q.e.d.

Remark 2.14. Proposition 2.15 is the so-called rank factorization

theorem.
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2.5 Trace and Determinants

Associated with square matrices are two important scalar functions, the trace

and the determinant.

Definition 2.20. Let A be a square matrix of order m. Its trace is denoted

by tr(A) and is defined by

tr(A) =

m∑
i=1

aii.

An immediate consequence of the definition is

Proposition 2.16. Let A,B be two square matrices of order m. Then,

tr(A+B) = tr(A) + tr(B),

tr(AB) = tr(BA).

Proof: By definition, the typical element of A+B is aij + bij . Hence,

tr(A+B) =

m∑
i=1

(aii + bii) =

m∑
i=1

aii +

m∑
i=1

bii = tr(A) + tr(B).

Similarly, the typical element of AB is

m∑
k=1

aikbkj .

Hence,

tr(AB) =
m∑
i=1

m∑
k=1

aikbki.

The typical element of BA is

m∑
i=1

bkiaij .

Thus,

tr(BA) =

m∑
k=1

m∑
i=1

bkiaik =

m∑
i=1

m∑
k=1

aikbki,

which shows

tr(AB) = tr(BA).

q.e.d.
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Definition 2.21. Let A be a square matrix of order m ; its determinant,

denoted by |A| or by det A, is given by

|A| =
∑

(−1)sa1j1a2j2 · · ·amjm ,

where j1, j2, . . . , jm is a permutation of the numbers 1, 2, . . . ,m, and s is
zero or one depending on whether the number of transpositions required to

restore j1, j2, . . . , jm to the natural sequence 1, 2, 3, . . . ,m is even or odd; the

sum is taken over all possible such permutations.

Example 2.2. Consider the matrix

A =

⎡
⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ .

According to the definition, its determinant is given by

|A| = (−1)s1a11a22a33 + (−1)s2a11a23a32

+ (−1)s3a12a21a33 + (−1)s4a12a23a31

+ (−1)s5a13a21a32 + (−1)s6a13a22a31.

To determine s1, we note that the second subscripts in the corresponding

term are in natural order; hence s1 = 0. For the second term, we note that

one transposition restores the second subscripts to the natural order; hence
s2 = 1. For the third term, s3 = 1. For the fourth term two transpositions

are required; hence, s4 = 0. For the fifth term two transpositions are required;

hence, s5 = 0. For the sixth term one transposition is required; hence, s6 = 1.

Remark 2.15. It should be noted that although Definition 2.21 is stated with

the rows in natural order, a completely equivalent definition is one in which

the columns are in natural order. Thus, for example, we could just as well
have defined

|A| =
∑

(−1)dai11ai22 · · ·aimm
where d is zero or one, according as the number of transpositions required to
restore i1, i2, . . . , im to the natural order 1, 2, 3, . . . ,m is even or odd.

Example 2.3. Consider the matrix A of Example 2.2 and obtain the

determinant in accordance with Remark 2.15. Thus

|A|= (−1)d1a11a22a33 + (−1)d2a11a32a23

=+(−1)d3a21a12a33 + (−1)d4a21a32a13

(−1)d5a31a12a23 + (−1)d6a31a22a13.
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It is easily determined that d1 = 0, d2 = 1, d3 = 1, d4 = 0, d5 = 0, d6 = 1.

Noting, in comparison with Example 2.2, that s1 = d1, s2 = d2, s3 = d3,
s4 = d5, s5 = d4, s6 = d6, we see that we have exactly the same terms.

An immediate consequence of the definition is the following proposition.

Proposition 2.17. Let A be a square matrix of order m. Then

|A′| = |A|.

Proof: Obvious from Definition 2.21 and Remark 2.15.

Proposition 2.18. Let A be a square matrix of order m, and consider the

matrix B that is obtained by interchanging the k th and r th rows of A
(k ≤ r). Then,

|B| = −|A|.

Proof: By definition,

|B|=
∑

(−1)sb1j1b2j2 · · · bmjm ,

|A|=
∑

(−1)sa1j1a2j2 · · ·amjm . (2.11)

However, each term in |B| (except possibly for sign) is exactly the same as in
|A| but for the interchange of the k th and r th rows. Thus, for example, we

can write

|B|=
∑

(−1)sa1j1 · · · ak−1jk−1
arjkak+1jk+1

· · · ar−1jr−1akrrar+1jr+1 · · · amjm . (2.12)

Now, if we restore to their natural order the first subscripts in Eq. (2.12),

we will have an expression like the one for |A| in Eq. (2.11), except that in

Eq. (2.12) we would require an odd number of additional transpositions to
restore the second subscripts to the natural order 1, 2, . . . ,m. Hence, the sign

of each term in Eq. (2.12) is exactly the opposite of the corresponding term in

Eq. (2.11). Consequently,

|B| = −|A|.

q.e.d.

Proposition 2.19. Let A be a square matrix of order m , and suppose it

has two identical rows. Then

|A| = 0.
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Proof: Let B be the matrix obtained by interchanging the two identical rows.

Then by Proposition 2.18,
|B| = −|A|. (2.13)

Since these two rows are identical B = A, and thus

|B| = |A|. (2.14)

But Eqs. (2.13) and (2.14) imply

|A| = 0.

q.e.d.

Proposition 2.20. Let A be a square matrix of order m, and suppose all

elements in its r th row are zero. Then,

|A| = 0.

Proof: By the definition of a determinant, we have

|A| =
∑

(−1)sa1j1a2j2a3j3 · · · amjm ,

and it is clear that every term above contains an element from the i th row,

say aiji . Hence, all terms vanish and thus

|A| = 0.

q.e.d.

Remark 2.16. It is clear that, in any of the propositions regarding deter-

minants, we may substitute “column” for “row” without disturbing the
conclusion. This is clearly demonstrated by Remark 2.15 and the example

following. Thus, while most of the propositions are framed in terms of rows,

an equivalent result would hold in terms of columns.

Proposition 2.21. Let A be a square matrix of order m. Let B be the

matrix obtained when we multiply the i th row by a scalar k. Then

|B| = k|A|.

Proof: By Definition 2.21,

|B|=
∑

(−1)sb1jb2j1 · · · bmjm
= k

∑
(−1)sa1jma2jm · · ·amjm = k|A|.
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This is so because

bsjs = asjs for s �= i,

= kasjs for s = i.

q.e.d.

Proposition 2.22. Let A be a square matrix of order m. Let B be the
matrix obtained when to the r th row of A we add k times its s th row.

Then,

|B| = |A|.

Proof: By Definition 2.21,

|B|=
∑

(−1)sb1j1b2j2 · · · bmjm
=

∑
(−1)sa1j1 · · ·ar−1jr−1(arjr + kasjr ) · · ·amjm

=
∑

(−1)sa1j1 · · ·ar−1jr−1arjr · · ·amjn + k
∑

(−1)sa1j1

· · · ar−1jr−1asjr · · · amjm .

The first term on the rightmost member of the equation above gives |A|, and
the second term represents k times the determinant of a matrix having two
identical rows. By Proposition 2.19, that determinant is zero. Hence,

|B| = |A|.

q.e.d.

Remark 2.17. It is evident, by a simple extension of the argument above,

that if we add a linear combination of any number of the remaining rows (or

columns) to the r th row (or column) of A, we do not affect the determinant

of A.

Remark 2.18. While Definition 2.21 is intuitively illuminating and, indeed,

leads rather easily to the derivation of certain important properties of the
determinant, it is not particularly convenient for computational purposes. We

give below a number of useful alternatives for evaluating determinants.

Definition 2.22. Let A be a square matrix of order m and let Bij be

the matrix obtained by deleting from A its i th row and j th column. The

quantity

Aij = (−1)i+j |Bij |
is said to be the cofactor of the element aij of A. The matrix Bij is said

to be an (m− 1) -order minor of A.
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Proposition 2.23. (Expansion by cofactors) Let A be a square matrix of

order m. Then,

|A| =
m∑
j=1

aijAij , |A| =
m∑
i=1

aijAij .

Proof: For definiteness, we shall prove this for a specific value of i (for the

expansion by cofactors in a given row). By the definition of a determinant,

|A| =
∑

(−1)sa1j1a2j2 · · · amjm . This can also be written more suggestively as

follows:

|A|= a11
∑

(−1)sa2j2 · · · amjm + a12
∑

(−1)sa2j2 · · · amjm

+ · · ·+ a1m
∑

(−1)sa2j2 · · · amjm

= a11f11 + a12f12 + a1mf1m, (2.15)

where, for example, f1r =
∑

(−1)sa2j2 · · ·amjm , and the numbers
j2, j3, . . . , jm represent some arrangement (permutation) of the integers

1, 2, . . . ,m, excluding the integer r ≤ m. But it is clear that, except (pos-

sibly) for sign, f1r is simply the determinant of an (m − 1) -order minor of

A obtained by deleting its first row and r th column. In that determinant,
s would be zero or one depending on whether the number of transposi-

tions required to restore j2, j3, . . . , jm to the natural order 1, 2, . . . , r − 1,

r+1, . . . ,m is even or odd. In Eq. (2.15), however, the corresponding s would

be zero or one depending on whether the number of transpositions required to

restore r, j2, j3, . . . , jm to the natural order 1, 2, . . . , r − 1, r, r + 1, . . . ,m
is even or odd. But for r > 1, this would be exactly r− 1 more than before,

and would be exactly the same if r = 1. Thus,

f11 = |B11|, f12 = (−1)|B12|, f13 = (−1)2|B13|, . . . , f1m = (−1)m−1|B1m|.

Noting that A1j = (−1)j+1|B1j |, and (−1)j+1 = (−1)j−1, we conclude that
f1j = A1j . A similar argument can be made for the expansion along any

row—and not merely the first—as well as expansion along any column.

q.e.d.

Remark 2.19. Expansion by cofactors is a very useful way of evaluating a

determinant; it is also the one most commonly used in actual computations.

For certain instances, however, another method—the Laplace expansion—is
preferable. Its proof, however, is cumbersome and will be omitted.
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Definition 2.23. Let A be a square matrix of order m. Let P be an n -order

(n < m) minor formed by the rows i1, i2, . . . , in and the columns j1, j2, . . . , jn
of A, and let Q be the (m−n) -order minor formed by taking the remaining

rows and columns. Then Q is said to be the complementary minor of P

(and conversely P is said to be the complementary minor of Q. ) Moreover,

M = [(−1)
∑n

i=1(ir+jr)]|Q|

is said to be the complementary cofactor of P.

Proposition 2.24 (Laplace expansion). Let A be a square matrix of order

m. Let P (i1, i2, . . . , in | j1, j2, . . . , jn) be an n -order minor of A formed

by rows i1, i2, . . . , in and columns j1, j2, . . . , jn, n < m. Let M be its

associated complementary cofactor. Then

|A| =
∑

j1<j2<···<jn
|P (i1, i2, . . . , in | j1, j2, . . . , jn)|M,

where the sum is taken over all possible choices of n columns of P, the number

of which is in fact (
m

n

)
;

similarly,

|A| =
∑

i1<i2<···<in
|P (i1, i2, . . . , in | j1, j2, . . . , jn)|M,

the sum now chosen over all
(
m
n

)
ways in which n of the rows of P may be

chosen.

Proof: The proof, while conceptually simple, is rather cumbersome and not

particularly instructive. The interested reader is referred to Hadley (1961).

Remark 2.20. The first representation in Proposition 2.24 refers to an expan-
sion by n columns, the second to an expansion by n rows. It is simple to

see that this method is a generalization of the method of expansion by cofac-

tors. The usefulness of the Laplace expansion lies chiefly in the evaluation of

determinants of partitioned matrices, a fact that will become apparent in later

discussion.
In dealing with determinants, it is useful to establish rules for evaluating

such quantities for sums or products of matrices. We have

Proposition 2.25. Let A,B be two square matrices of order m. Then, in

general,

|A+B| �= |A|+ |B|,
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in the sense that any of the following three relations is possible:

|A+B|= |A|+ |B|,
|A+B|> |A|+ |B|,
|A+B|< |A|+ |B|.

Proof: We establish the validity of the proposition by a number of examples.

Thus, for

A =

[
2 0
0 3

]
, B =

[
− 2

3 0
0 1

]
,

we have |A| = 6, |B| = − 2
3 , |A+B| = 5 1

3 , and we see that

|A+B| = |A|+ |B|.

For the matrices

A =

[
1 0

0 1

]
, B =

[
1 0

0 1

]
,

we find |A| = 1, |B| = 1, |A+B| = 4. Thus, |A+B| > |A|+ |B|.
For the matrices

A =

[
1 0
0 1

]
, B =

[
−1 0
0 −1

]
,

we find |A| = 1, |B| = 1, |A+B| = 0. Thus, |A+B| < |A|+ |B|.
q.e.d.

Proposition 2.26. Let A,B be two square matrices of order m. Then,

|AB| = |A| |B|.

Proof: Define the 2m× 2m matrix

C =

[
A 0

−I B

]
.

Multiply the last m rows of C on the left by A (i.e. take m linear

combinations of such rows) and add them to the first rows. The resulting

matrix is

C∗ =

[
0 AB

−I B

]
.

By Proposition 2.22 and Remark 2.17, we have

|C| = |C∗|. (2.16)
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Expand |C∗| by the method of Proposition 2.24 and note that, using m -order

minors involving the last m rows, their associated complementary cofactors
will vanish (since they involve the determinant of a matrix containing a zero

column), except for the one corresponding to −I. The complementary cofactor

for that minor is

[(−1)
∑m

i=1(i+m+i)]|AB| = (−1)m
2+m2+m|AB|.

Moreover,
| − I| = (−1)m.

Hence,

|C∗| = (−1)2m
2+2m|AB| = |AB|. (2.17)

Similarly, expand |C| by the same method using m -order minors involving

the first m rows. Notice now that all m -order minors involving the first m
rows of C have a zero determinant except for the one corresponding to A,

whose determinant is, evidently, |A|. Its associated complementary cofactor is

[(−1)
∑m

i=1(i+i)]|B| = (−1)2[m(m+1)/2]|B| = |B|.

Hence, we have |C| = |A| |B|. But this result, together with Eqs. (2.16)

and (2.17), implies |AB| = |A| |B|.
q.e.d.

Corollary 2.2. Let A be an invertible matrix of order m. Then,

|A−1| = 1

|A| .

Proof: By definition, |AA−1| = |I| = 1—the last equality following immedi-

ately from the fundamental definition of the determinant. Since |AA−1| =
|A| |A−1|, we have |A−1| = |A|−1.

q.e.d.

We conclude this section by introducing

Definition 2.24. Let A be a square matrix of order m. Let Aij be the

cofactor of the (i, j) element of A, aij , and define

B = (Aij), i, j = 1, 2, . . . ,m.

The adjoint of A, denoted by adj A, is defined by

adj A = B′.
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2.6 Computation of the Inverse

We defined earlier the inverse of a matrix, say A, to be another matrix, say

B, having the properties AB = BA = I.

Although this describes the essential property of the inverse, it does not
provide a useful way to determine the elements of B . In the preceding section,

we have laid the foundation for providing a practicable method for determining

the elements of the inverse of a given matrix. To this end we have the following

proposition.

Proposition 2.27. Let A be an invertible square matrix of order m. Its

inverse, denoted by A−1, is given by

A−1 =
adj A

|A| .

Proof: In the standard notation for the inverse, denote the (i, j) element of

A−1 by aij ; then, the proposition asserts that

aij =
Aji
|A| ,

where Aji is the cofactor of the element in the j th row and i th column of

A. Let us now verify the validity of the assertion by determining the typical

element of AA−1. It is given by

m∑
k=1

aika
kj =

1

|A|

m∑
k=1

aikAjk. (2.18)

Now for i = j we have the expansion by cofactors along the i th row of

A. Hence all diagonal elements of AA−1 are unity. For i �= j, we may

evaluate the quantity in Eq. (2.18) as follows. Strike out the j th row of A

and replace it by the i th row. The resulting matrix has two identical rows
and as such its determinant is zero. Now, expand by cofactors along the

j th row. The cofactors of such elements are plainly Ajk because the other

rows of A have not been disturbed. Thus, expanding by cofactors along the

j th row we conclude
∑m

k=1 aikAjk = 0. This is so because above we have a

representation of the determinant of a matrix with two identical rows. Thus,
AA−1 = I. Similarly, consider the typical element of A−1A, namely

m∑
k=1

aikakj =
1

|A|

m∑
k=1

akjAki. (2.19)

Again for j = i we have, in the right-hand summation, the determinant of A

evaluated by an expansion along the i th column. Hence, all diagonal elements
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of A−1A are unity. For i �= j, consider the matrix obtained when we strike

out the i th column of A and replace it by its j th column. The resulting
matrix has two identical columns and hence its determinant is zero. Evaluating

its determinant by expansion along the i th column, we note that the cofactors

are given by Aki because the other columns of A have not been disturbed.

But then we have
m∑
k=1

akjAki = 0, i �= j,

and thus we conclude that A−1A = Im.
q.e.d.

Proposition 2.28. Let A,B be two invertible matrices of order m. Then,
(AB)−1 = B−1A−1.

Proof: We verify

(AB)(B−1A−1) =A(BB−1)A−1 = AA−1 = Im,

(B−1A−1)(AB) =B−1A−1AB = B−1B = Im.

q.e.d.

Remark 2.21. For any two conformable and invertible matrices, A,B, we

have

(A+B)−1 �= A−1 +B−1,

and, indeed, A + B need not be invertible. For example, suppose B = −A.
Then, even though A−1, B−1 exist, A + B = 0, which is evidently not

invertible since its determinant is zero.

2.7 Partitioned Matrices

Frequently, we find it convenient to deal with partitioned matrices. In this

section, we derive certain useful results that will facilitate operations with
such matrices. Let A be m× n and write

A =

[
A11 A12

A21 A22

]
,

where A11 is m1×n1, A22 is m2×n2, A12 is m1×n2, and A21 is m2×n1,

where (m1+m2 = m, and n1+n2 = n). The above is said to be a partition
of the matrix A.
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Now, let B be m× n, and partition it conformably with A, i.e. put

B =

[
B11 B12

B21 B22

]
,

where B11 is m1 × n1, B22 is m2 × n2, and so on.

Addition of (conformably) partitioned matrices is defined by

A+B =

[
A11 +B11 A12 +B12

A21 +B21 A22 +B22

]
.

If A is m× n, C is n× q, and A is partitioned as above, let

C =

[
C11 C12

C21 C22

]
,

where C11 is n1 × q1, C22 is n2 × q2, and so on.

Multiplication of two (conformably) partitioned matrices is defined by

AC =

[
A11 A12

A21 A22

] [
C11 C12

C21 C22

]

=

[
A11C11 +A12C21 A11C12 +A12C22

A21C11 +A22C21 A21C12 +A22C22

]
.

In general, and for either matrix addition or matrix multiplication, readers will

not commit an error if, upon (conformably) partitioning two matrices, they

proceed to regard the partition blocks as ordinary (scalar) elements and apply
the usual rules except for division. Thus, for example, consider

A =

⎡
⎢⎢⎣
A11 A12 · · · A1s

A21 A22 · · · A2s
...

...
...

As1 As2 · · · Ass

⎤
⎥⎥⎦ ,

where Aij is mi × nj , the matrix A is m× n, and

s∑
i=1

mi = m,

s∑
j=1

nj = n.

Similarly, consider

B =

⎡
⎢⎢⎣
B11 B12 · · · B1s

B21 B22 · · · B2s
...

...
...

Bs1 Bs2 · · · Bss

⎤
⎥⎥⎦ ,



42 CHAPTER 2. MATRIX ALGEBRA

where Bij is mi×nj as above. Then A and B are conformably partitioned

with respect to matrix addition and their sum is simply

A+B =

⎡
⎢⎢⎣
A11 +B11 · · · A1s +B1s

A21 +B21 · · · A2s +B2s
...

...
As1 +Bs1 · · · Ass +Bss

⎤
⎥⎥⎦ ,

If, instead of being m× n, B is n × q and its partition blocks Bij are

ni × qj matrices such that

s∑
i=1

ni = n,
s∑
j=1

qj = q,

then A and B are conformably partitioned with respect to multiplication,
and their product is given by

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s∑
r=1

A1rBr1 · · ·
s∑
r=1

A1rBrs

s∑
r=1

A2rBr1 · · ·
s∑
r=1

A2rBrs

...
...

s∑
r=1

AsrBr1 · · ·
s∑
r=1

AsrBrs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the (i, j) block of AB, namely

s∑
r=1

AirBrj ,

is a matrix of dimension mi × qj .
For inverses and determinants of partitioned matrices, we may prove certain

useful results.

Proposition 2.29. Let A be a square matrix of order m. Partition

A =

[
A11 A12

A21 A22

]

and let Aij be mi ×mj , i, j = 1, 2, m1 +m2 = m. Also, let

A21 = 0.

Then

|A| = |A11| |A22|.
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Proof: This follows immediately from the Laplace expansion by noting that if

we expand along the last m2 rows the only m2×m2 minor with non-vanishing
determinant is A22. Its complementary cofactor is

[(−1)
∑m1+m2

i=m1+1(i+i)]|A11| = |A11|.

Consequently,

|A| = |A11| |A22|.
q.e.d.

Corollary 2.3. If, instead, we had assumed

A12 = 0,

then
|A| = |A11| |A22|.

Proof: Obvious from the preceding.

Definition 2.25. A matrix of the form

A =

[
A11 A12

0 A22

]

(as in Proposition 2.29) is said to be an upper block triangular matrix.

A matrix of the form

A =

[
A11 0

A21 A22

]

is said to be a lower block triangular matrix.

Definition 2.26. Let A be as in Proposition 2.29, but suppose

A12 = 0, A21 = 0,

i.e. A is of the form

A =

[
A11 0
0 A22

]
.

Then, A is said to be a block diagonal matrix and is denoted by

A = diag(A11, A22).

Corollary 2.4. Let A be a block diagonal matrix as above. Then,

|A| = |A11| |A22|.

Proof: Obvious.
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Remark 2.22. Note that, in the definition of block triangular (or block diag-

onal) matrices, the blocks A11, A22 need not be triangular (or diagonal)
matrices.

Proposition 2.30. Let A be a partitioned square matrix of order m,

A =

[
A11 A12

A21 A22

]
,

where the Aii are nonsingular square matrices of order mi, i = 1, 2, , m1 +

m2 = m. Then,

|A| = |A22| |A11 −A12A
−1
22 A21|, and |A| = |A11| |A22 −A21A

−1
11 A12|.

Proof: Consider the matrix

A∗ =

[
Im1 −A12A

−1
22

0 Im2

]
A =

[
A11 −A12A

−1
22 A21 0

A21 A22

]
.

By Proposition 2.29 and Corollary 2.3,

det

[
Im1 −A12A

−1
22

0 Im2

]
= 1;

thus, we conclude |A∗| = |A|. Again by Proposition 2.29, the determinant of
A∗ may be evaluated as

|A∗| = |A22| |A11 −A12A
−1
22 A21|.

Hence, we conclude

|A| = |A22| |A11 −A12A
−1
22 A21|.

Similarly, consider

A∗ =

[
Im1 0

−A21A
−1
11 Im2

]
A =

[
A11 A12

0 A22 −A21A
−1
11 A12

]

and thus conclude

|A| = |A11| |A22 −A21A
−1
11 A12|.

q.e.d.

Next, we turn to the determination of inverses of partitioned matrices. We

have
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Proposition 2.31. Let A be a square nonsingular matrix of order m, and

partition

A =

[
A11 A12

A21 A22

]

such that the Aii, i = 1, 2, are nonsingular matrices of order mi, i = 1, 2,

respectively (m1 +m2 = m). Then,

B = A−1 =

[
B11 B12

B21 B22

]

where

B11 = (A11 −A12A
−1
22 A21)

−1, B12 = −A−1
11 A12(A22 −A21A

−1
11 A12)

−1,

B21 =−A−1
22 A21(A11 −A12A

−1
22 A21)

−1, B22 = (A22 −A21A
−1
11 A12)

−1.

Proof: By definition of the inverse B, we have

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
=

[
I 0

0 I

]
,

which implies

A11B11 +A12B21 = Im1 , A11B12 +A12B22 = 0,

A21B11 +A22B21 = 0, A21B12 +A22B22 = Im2 .

Solving these equations by substitution, we have the proposition.
q.e.d.

The result above may be utilized to obtain the inverse of certain types of

matrices that occur frequently in econometrics.

Proposition 2.32. Let A be m × n, B be n × m, and suppose Im +

AB, In +BA are nonsingular matrices. Then,

(Im +AB)−1 = Im −A(In +BA)−1B.

Proof: Observe that[
In −B
0 Im

] [
In B

−A Im

]
=

[
In +BA 0

−A Im

]
.

Consequently,

[
(In +BA)−1 0
A(In +BA)−1 Im

]
=

[
(In +BA)−1 −(In +BA)−1B
A(In +BA)−1 (Im +AB)−1

] [
In B
0 Im

]
,
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which implies, in particular, (Im + AB)−1 + A(In + BA)−1B = Im, which

further implies (Im +AB)−1 = Im −A(In +BA)−1B.
q.e.d.

Corollary 2.5. Let C,D be square nonsingular matrices of order m and n,
respectively; let X be m× n, Y be n×m, and suppose the nonsingularity

conditions of Proposition 2.32 hold. Then,

(C +XDY )−1 = C−1 − C−1X(D−1 + Y C−1X)−1Y C−1.

Proof: Note that

(C +XDY )−1 = [C(Im + C−1XDY )]−1 = (Im + C−1XDY )−1C−1.

Let C−1X, DY be, respectively, the matrices A, B of Proposition 2.32.

Then,

(Im + C−1XDY )−1 = Im − C−1X(In +DY C−1X)−1DY

= Im − C−1X(D−1 + Y C−1X)−1Y.

Consequently,

(C +XDY )−1 = (Im + C−1XDY )−1C−1

= C−1 − C−1X(D−1 + Y C−1X)−1Y C−1.

q.e.d.

Remark 2.23. A certain special case occurs sufficiently frequently in econo-

metrics to deserve special notice. Precisely, let n = 1 so that D is now a

scalar, say d. Let x, y be two m -element column vectors, so that with

n = 1, X = x, Y = y′, D = d,

the result of the corollary becomes

[C + dxy′]−1 = C−1 − αC−1xy′C−1, α =
d

1 + dy′C−1x
.

The determinant of such matrices may also be expressed in relatively simple

form. In order to do so we present a very useful result on determinants, which

we will rederive later as a by-product of more general considerations.

Proposition 2.33. Let A be m× n, and B be n×m; then,

|Im +AB| = |In +BA|.
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Proof: Note that[
Im A

−B In

] [
Im 0

B In

]
=

[
Im +AB A

0 In

]
,

[
Im 0
B In

] [
Im A
−B In

]
=

[
Im A
0 In +BA

]
.

Using Proposition 2.29, and the results above, we conclude

|In +BA| = det

[
Im A

−B In

]
= |Im +AB|.

q.e.d.

We immediately have

Corollary 2.6. Let C, D, X, and Y be as in Corollary 2.5. Then,

|C +XDY | = |C| |D| |D−1 + Y C−1X |.

Proof: Since C +XDY = C(Im + C−1XDY ), we find, by Proposition 2.26,

|C +XDY | = |C| |Im + C−1XDY |. By Proposition 2.33,

|Im + C−1XDY | = |Im +DY C−1X | = |D| |D−1 + Y C−1X |

and consequently |C +XDY | = |C| |D| |D−1 + Y C−1X |.
q.e.d.

Remark 2.24. Again, the special case when n = 1 and thus D is a scalar,

say, d, deserves special mention. Thus, let x, y be m -element column

vectors and

D = d, X = x, Y = y′.

The result of Corollary 2.6, for the special case n = 1, is rendered as

|C + dxy′| = |C|(1 + dy′C−1x).

Remark 2.25. In view of Proposition 2.33, we see that in the statement of

Proposition 2.32, it is not necessary to explicitly assume that both

Im +AB and In +BA

are nonsingular, because if one is, the other must be as well.

In the discussion above we examined the question of obtaining the inverse of

a partitioned matrix

A =

[
A11 A12

A21 A22

]
,

where A11 and A22 were assumed to be nonsingular.
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In many instances, the situation arises that such matrices are singular,

while A is nonsingular. In this context Proposition 2.31 is inapplicable;
instead, the following proposition is applicable.

Proposition 2.31a. Let A be a nonsingular matrix, and partition it as

A =

[
A11 A12

A21 A22

]
.

Let A11, A22 be singular, and suppose the inverses

V11 = (A11 +A12A21)
−1,

V22 = (A22 −A21V11A12 −A21V11A12A22)
−1

exist. Then,

A−1 =

[
B11 B12

B21 B22

]
,

where

B11 = V11 + V11A12(I +A22)V22A21V11,

B12 = V11A12 + V11A12(I +A22)V22A21V11A12 − V11A12(I +A22)V22

B21 =−V22A21V11,

B22 = V22 − V22A21V11A12.

Proof: Obvious by direct verification.

Remark 2.26. One arrives at the result of Proposition 2.31a by multiplying

A, on the left, first by the matrix

C1 =

[
I A12

0 I

]

and then, also on the left, by

C2 =

[
I 0

−A21V11 I

]

to obtain the block triangular matrix[
V −1
11 A12(I +A22)

0 V −1
22

]
.

Inverting this matrix and multiplying on the right by C2C1 gives the desired

result.
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Some simplification of the representation of the inverse may be possible,

but it hardly seems worthwhile without additional assumptions on the nature
of the matrix A.

In the case of symmetric matrices, we have the following very useful result.

Corollary 2.7. Let A be as in Proposition 2.31a, and suppose, in addition,

that:

i. A is symmetric;

ii. The matrices (I +A22), I −A21V11A12 are nonsingular.

Then,

A−1 =

[
B11 B12

B21 B22

]
,

where

B11 = V11 + V11A12(I +A22)V22A21V11,

B12 =−V11A12V
′
22,

B21 =−V22A21V11,

B22 = V22 − V22A21V11A12.

Proof: We note that since A is symmetric A′
21 = A12. Moreover,

(I +A22)V22 = (V −1
22 (I +A22)

−1)−1,

A22(I +A22)
−1 = I − (I +A22)

−1.

Hence,

(I +A22)V22 = (I −A21V11A12 − (I + A22)
−1)−1,

which shows first that

(I +A22)V22 = V ′
22(I +A22)

i.e. that the matrix above is symmetric, and second, since V11 is evidently a
symmetric matrix, that B11 is also symmetric, as required.

We note further the identity

(I −A21V11A12)V
′
22 = (V

′−1
22 (I −A21V11A12)

−1)−1

= (I + A22 − (I −A21V11A12)
−1)−1,
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which shows that the matrix

B22 = V22 − V22A21V11A12

is symmetric, as is also required. To complete the proof, we need only show

that, in this case, the representation of B12 in Proposition 2.31a reduces to

that given in this corollary.

Regrouping the elements in B12 of Proposition 2.31a, we find

B12 = V11A12 − V11A12(I +A22)V22(I −A21V11A12)

and, using the identity above, we conclude

(I +A22)V22(I −A21V11A12) = (I − (I −A21V11A12)
−1(I +A22)

−1)−1.

Finally, using the identity in Corollary 2.5, with

C = I, D = I, X = −(I −A21V11A12)
−1, Y = (I +A22)

−1,

we conclude that

(I +A22)V22(I −A21V11A12) = I + V ′
22.

Consequently,
B12 = −V11A12V

′
22.

q.e.d.

Remark 2.27. In some econometric problems, namely those involving con-

sumer expenditure systems, we need to minimize a certain function subject to
a set of constraints, involving a matrix of restrictions, R, which is of full row

rank.

In order to solve the system, and thus obtain estimators for the parameters

and the relevant Lagrange multipliers, we would need to invert the matrix

A =

[
A11 A12

A21 A22

]

with A12 = R′, A21 = R, A22 = 0 and singular (positive semidefinite)

A11.
Since R is of full row rank, and A is nonsingular, it follows that the

matrices

V −1
11 = A11 +R′R, RV11R

′

are nonsingular. Moreover, in this case

I +A22 = I, V22 = −(RV11R
′)−1
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and, consequently, we have that the required inverse is

⎡
⎢⎢⎣
V11 − V11R

′(RV11R′)−1RV11 V11R
′(RV11R′)−1

(RV11R
′)−1RV11 I − (RV11R

′)−1

⎤
⎥⎥⎦ .

2.8 Kronecker Products of Matrices

Definition 2.27. Let A be m × n, and B be p × q. The Kronecker

product of the two matrices, denoted by

A⊗B,

is defined by

A⊗B =

⎡
⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · ammB

⎤
⎥⎥⎦ .

Often, it is written more compactly as

A⊗B = [aijB]

and is a matrix of dimension (mp)× (nq).

One operates with Kronecker products as follows.

Matrix addition. Let A1, A2 be matrices of dimension m × n and B1,

B2, be matrices of dimension p× q, and put

Di = (Ai ⊗B1), i = 1, 2.

Then,

D1 +D2 = (A1 +A2)⊗B1.

Similarly, if

Ei = (A1 ⊗Bi), i = 1, 2

then

E1 + E2 = A1 ⊗ (B1 +B2).

Scalar multiplication. Let

Ci = (Ai ⊗Bi), i = 1, 2,
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with the Ai, Bi as previously defined, and let α be a scalar. Then,

αCi = (αAi ⊗Bi) = (Ai ⊗ αBi).

Matrix multiplication. Let Ci, i = 1, 2, be two Kronecker product
matrices,

Ci = Ai ⊗Bi, i = 1, 2,

and suppose A1 is m×n, A2 is n×r, B1 is p×q, and B2 is q×s. Then,

C1C2 = A1A2 ⊗B1B2.

Matrix inversion. Let C be a Kronecker product

C = A⊗B

and suppose A, B are invertible matrices of order m and n, respectively.

Then,
C−1 = A−1 ⊗B−1.

All of the above can be verified directly either from the rules for operating

with partitioned matrices or from other appropriate definitions.

We have

Proposition 2.34. Let A,B be square matrices of orders m, and n,
respectively. Then,

tr(A⊗B) = tr(A)tr(B).

Proof: Since A ⊗ B is a block matrix, its trace is the sum of the traces of

the diagonal blocks. Hence,

tr(A⊗B) =

m∑
i=1

(traiiB) =

(
m∑
i=1

aii

)
tr(B) = tr(A)tr(B).

q.e.d.

Proposition 2.35. Let A, and B be nonsingular matrices of orders m,

and n, respectively. Then,

|A⊗B| = |A|n|B|m.

Proof: Denote by Ai+1 the matrix obtained when we suppress the first i rows
and columns of A. Similarly, denote by aii· the i th row of A after its first

i elements are suppressed, and by a
(i)
·i the i th column of A after its first i

elements have been suppressed.
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Now, partition

A =

[
a11 a

(1)
1·

a
(1)
·1 A2

]

and write the Kronecker product in the partitioned form

A⊗B =

[
a11B a1· ⊗B

a·1 ⊗B A2 ⊗B

]
.

Apply Proposition 2.30 to the partitioned matrix above to obtain

|A⊗B| = |a11B − (a1· ⊗B)(A2 ⊗B)−1(a·1 ⊗B)| |A2 ⊗B|.

Because A is nonsingular, we assume that A2 is also nonsingular,3 as well as

A3, A4, . . . , etc. Thus, we may evaluate

(a1· ⊗B)(A2 ⊗B)−1(a·1 ⊗B) = a1·A−1
2 a·1 ⊗B,

where, evidently, a
(1)
1· A

−1
2 a

(1)
·1 is a scalar. Consequently,

|a11B −
(
a
(1)
1· ⊗B

)
(A2 ⊗B)−1

(
a
(1)
·1 ⊗B

)
|= |

(
a11 − a

(1)
1· A

−1
2 a

(1)
·1

)
⊗B|

= (a11 − a
(1)
1· A

−1
2 a

(1)
·1 )n|B|.

Applying Proposition 2.30 to the partition of A above, we note that

|A| =
(
a11 − a

(1)
1· A

−1
2 a

(1)
·1

)
|A2|,

and so we find

|A⊗B| = |A|n|A2|−n|B| |A2 ⊗B|.

Applying the same procedure, we also find

|A2 ⊗B| = |A2|n|A3|−n|B| |A3 ⊗B|,

and thus

|A⊗B| = |A|n|A3|−n|B|2|A3 ⊗B|.

Continuing in this fashion m− 1 times, we have

|A⊗B| = |A|n|Am|−n|B|m−1|Am−1 ⊗B|.

But

Am = amm
3This involves some loss of generality but makes a proof by elementary methods

possible. The results stated in the proposition are valid without these restrictive

assumptions.
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and

|Am ⊗B| = |ammB| = anmm|B|.

Since

|Am| = amm,

we conclude

|A⊗B| = |A|n|B|m.

q.e.d.

2.9 Characteristic Roots and Vectors

Definition 2.28. Let A be a square matrix of order m ; let λ, x be,
respectively, a scalar and an m -element non-null vector. If

Ax = λx,

λ is said to be a characteristic root of A and x its associated character-
istic vector.

Remark 2.28. Characteristic vectors are evidently not unique. If x is a

characteristic vector and c a non-null scalar, cx is also a characteristic vec-

tor. We render characteristic vectors unique by imposing the requirement, or

convention, that their length be unity, i.e. that x
′
x = 1.

Proposition 2.36. Let A be a square matrix of order m and let Q be an

invertible matrix of order m. Then,

B = Q−1AQ

has the same characteristic roots as A, and if x is a characteristic vector of

A then Q−1x is a characteristic vector of B.

Proof: Let (λ, x) be any pair of characteristic root and associated character-

istic vector of A. They satisfy

Ax = λx.

Pre-multiply by Q−1 to obtain

Q−1Ax = λQ−1x.

But we may also write

Q−1A = Q−1AQQ−1.
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Thus, we obtain

Q−1AQ(Q−1x) = λ(Q−1x),

which shows that the pair (λ,Q−1x) is a characteristic root and associated

characteristic vector of B.

q.e.d.

Remark 2.29. If A and Q are as above, and

B = Q−1AQ,

B and A are said to be similar matrices.

Moreover, it is clear that if there exists a matrix P such that

P−1AP = D,

where D is a diagonal matrix, then P must be the matrix of the character-

istic vectors of A, and D the matrix of its characteristic roots, provided the

columns of P have unit length. This is so because the equation above implies

AP = PD

and the columns of this relation read

Ap·i = dip·i, i = 1, 2, . . . ,m,

thus defining the pair (di, p·i) as a characteristic root and its associated

characteristic vector.

We now investigate the conditions under which a matrix A is similar to a
diagonal matrix.

Proposition 2.37. Let A be a square matrix of order m, and suppose

ri, i = 1, 2, . . . , n, n ≤ m,

are the distinct characteristic roots of A. If

{x·i: i = 1, 2, . . . , n}

is the set of associated characteristic vectors, then it is a linearly indepen-

dent set.

Proof: Put
X = (x·1, x·2, . . . , x·n)
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and note that X is m× n, and n ≤ m. Suppose the columns of X are not

linearly independent. Then, there exists a non-null vector

b = (b1, b2, . . . , bn)
′

such that

Xb = 0. (2.20)

Let

R = diag(r1, r2, . . . , rn)

and note that, since

AX = XR,

multiplying Eq. (2.20) (on the left) by A we have

0 = AXb = XRb.

Repeating this j times, we find

XRjb = 0, j = 1, 2, . . . , n− 1, (2.21)

where

Rj = diag(rj1, r
j
2, . . . , r

j
n).

Consider now the matrix whose j th column is XRjb, with the under-
standing that for j = 0 we have Eq. (2.20). In view of Eq. (2.21) this is the

null matrix. But note also that

0 = (Xb,XRb, . . . , XRn−1b) = XBV, (2.22)

where
B = diag(b1, b2, . . . , bn)

and V is the so-called Vandermonde matrix

V =

⎡
⎢⎢⎢⎣
1 r1 r21 · · · rn−1

1

1 r2 r22 · · · rn+1
2

...
...

...

1 rn r2n · · · rn−1
n

⎤
⎥⎥⎥⎦ .

It may be shown (see Proposition 2.38) that if the ri are distinct, V is

nonsingular. Hence, from Eq. (2.22) we conclude

XB = 0.

But this means

bix·i = 0, i = 1, 2, . . . , n.
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Thus, unless

bi = 0, i = 1, 2, . . . , n,

we must have, for some i, say i0,

x·i0 = 0.

This is a contradiction and shows that Eq. (2.20) cannot hold for non-null b ;

hence, the characteristic vectors corresponding to distinct characteristic roots
are linearly independent.

q.e.d.

Proposition 2.38. Let

V =

⎡
⎢⎢⎢⎣
1 r1 r21 · · · rn−1

1

1 r2 r22 · · · rn−1
2

...
...

...
...

1 rn r2n · · · rn−1
n

⎤
⎥⎥⎥⎦

and suppose the ri, i = 1, 2, . . . , n, are distinct. Then

|V | �= 0.

Proof: Expand |V | by cofactors along the first row to obtain

|V | = a0 + a1r1 + a2r
2
1 + · · ·+ an−1r

n−1
1 ,

where ai is the cofactor of ri1. This shows |V | to be a polynomial of degree

n−1 in r1; it is immediately evident that r2, r3, . . . , rn are its roots since if
for r1 we substitute ri, i ≥ 2, we have the determinant of a matrix with two

identical rows. From the fundamental theorem of algebra, we can thus write

|V | = an−1

n∏
j=2

(r1 − rj).

But

an−1 = (−1)n+1|V1|,
where V1 is the matrix obtained by striking out the first row and n th column
of V. Hence, we can also write

|V | = |V1|
n∏
j=2

(rj − r1).

But V1 is of exactly the same form as V except that it is of dimension n− 1

and does not contain r1.
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Applying a similar procedure to V1, we find

|V1| = |V2|
n∏
j=3

(rj − r2),

where V2 is evidently the matrix obtained when we strike out the first and

second rows as well as columns n and n− 1 of V. Continuing in this fashion

we find

|V | =
n−1∑
i=1

n∏
ji=i+1

(rji − ri).

Since rji �= ri it is evident that

|V | �= 0.

q.e.d.

An immediate consequence of Proposition 2.37 is

Proposition 2.39. Let A be a square matrix of order m, and suppose all
its roots are distinct. Then, A is similar to a diagonal matrix.

Proof: Let (λi, x·i), i = 1, 2, . . . ,m, be the characteristic roots and associated
characteristic vectors of A. Let

Λ = diag(λ1, λ2, . . . , λm), X = (x·1, x·2, . . . , x·m),

and note that the relationship

Ax·i = λix·i, i = 1, 2, . . . ,m,

between A and its characteristic roots and vectors may be written com-
pactly as

AX = XΛ.

By Proposition 2.37, X is nonsingular; hence,

X−1AX = Λ.

q.e.d.

The usefulness of this proposition is enhanced by the following approxima-
tion result.
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Proposition 2.40. Let A be a square matrix of order m. Then, there exists

a square matrix of order m, say B, such that B has distinct roots and

m∑
i,j=1

|aij − bij | < ε,

where ε is any arbitrary preassigned positive quantity however small.

Proof: The proof of this result lies entirely outside the scope of this volume.

The interested reader is referred to Bellman (1960), pp. 199 ff.

In the preceding, we have established a number of properties regarding the

characteristic roots and their associated characteristic vectors without explain-

ing how such quantities may be obtained. It is thus useful to deal with these

aspects of the problem before we proceed.

By the definition of characteristic roots and vectors of a square matrix A,
we have

Ax = λx,

or more revealingly

(λI −A)x = 0, (2.23)

where λ is a characteristic root and x the associated characteristic vector.

We recall that, for a characteristic vector, we require

x �= 0, x
′
x = 1. (2.24)

Clearly, Eq. (2.23) together with Eq. (2.24) implies that the columns of λI −A

are linearly dependent. Hence, we can find all λ ’s for which Eqs. (2.23)

and (2.24) are satisfied for appropriate x ’s, by finding the λ ’s for which

|λI −A| = 0. (2.25)

Definition 2.29. Let A be a square matrix of order m. The relation in
Eq. (2.25) regarded as an equation in λ is said to be the characteristic

equation of the matrix A.

From the basic definition of a determinant, we easily see that Eq. (2.25) rep-

resents a polynomial of degree m in λ. This is so because in evaluating a

determinant we take the sum of all possible products involving the choice of

one element from each row and column. In this case, the largest power of λ
occurs in the term involving the choice of the diagonal elements of λI − A.

This term is

(λ− a11)(λ − a22) · · · (λ− amm),
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and we easily see that the highest power of λ occurring in the characteris-

tic equation is λm, and its coefficient is unity. Moreover, collecting terms
involving λj , j = 0, 1, 2, . . . ,m, we can write the characeristic equation as

0 = |λI −A| = λm + bm−1λ
m−1 + bm−2λ

m−2 + · · ·+ b0. (2.26)

It is also clear from this discussion that

b0 = | −A| = (−1)m|A|. (2.27)

The fundamental theorem of algebra assures us that, over the field of complex
numbers, the polynomial of degree m in Eq. (2.26) has m roots. These may

be numbered, say, in order of decreasing magnitude: λ1, λ2, λ3, . . . , λm.

The characteristic equation of Eq. (2.26) can also be written as

0 = |λI −A| =
m∏
i=1

(λ− λi). (2.28)

The roots of the characteristic equation of A, as exhibited Eq. (2.26) or

Eq. (2.28) are said to be the characteristic roots of A. If λi is one of

the characteristic roots of A, the columns of λiI −A are linearly dependent;

it follows, therefore, that there exists at least one non-null vector, say x·i,
such that

(λiI −A)x·i = 0.

But this means that the pair (λi, x·i) represents a characteristic root and its
associated characteristic vector, provided the latter is normalized so that its

length is unity.

Thus, obtaining the characteristic roots of a matrix involves solving a poly-

nomial equation of degree m ; obtaining the characteristic vectors involves
solving a system of m linear equations. An immediate consequence of the

preceding discussion is

Proposition 2.41. Let A be a square matrix of order m. Let λ1, λ2, . . . , λm
be its characteristic roots. Then,

|A| =
m∏
i=1

λi.

Proof: If in Eq. (2.28) we compute the constant term of the polynomial in the

right member, we find

m∏
i=1

(−λi) = (−1)m
m∏
i=1

λi.
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From Eq. (2.27), we see that

b0 = | −A| = (−1)m|A|.

Because Eqs. (2.28) and (2.26) are two representations of the same polynomial,

we conclude

|A| =
m∏
i=1

λi.

q.e.d.

Remark 2.30. The preceding proposition implies that if A is a singular

matrix, then at least one of its roots is zero. It also makes clear the terminology

distinct and repeated characteristic roots. In particular, let s < m and
suppose Eq. (2.28) turns out to be of the form

|λI −A| =
s∏
j=1

(λ− λ(j))
mj ,

where
s∑
j=1

mj = m, λ(j) �= λ(i) for i �= j.

Then, we say that A has s distinct roots, viz. the roots λ(1), λ(2), . . . , λ(s),
and that the root λ(i) is repeated mi times, since the factor corresponding

to it in the factorization of the characteristic equation is raised to the mi

power.

Remark 2.31. It may further be shown, but will not be shown here, that

if A is a square matrix of order m and rank r ≤ m then it has r nonzero

roots and m − r zero roots, i.e. the zero root is repeated m − r times or,
alternatively, its characteristic equation is of the form

|λI −A| = λm−rf(λ), (2.29)

where
f(λi) = 0, i = 1, 2, . . . , r,

and

λi �= 0, i = 1, 2, . . . , r.

From the method for obtaining characteristic roots, we easily deduce

Proposition 2.42. Let A be a square matrix of order m and let

λi, i = 1, 2, . . . ,m,
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be its characteristic roots. Then,

i. The characteristic roots of A′ are exactly those of A, and

ii. If A is nonsingular, the characteristic roots of A−1 are given by

μi =
1

λi
, i = 1, 2, . . . ,m.

Proof: The characteristic roots of A are simply the solution of |λI − A| =
0. The characteristic roots of A′ are obtained by solving |vI − A′| = 0.

Since vI − A′ = (vI − A)′, Proposition 2.17 implies that the determinant of

(vI −A)′ is exactly the same as the determinant of vI −A. Hence, if by vi,
i = 1, 2, . . . ,m, we denote the characteristic roots of A′, we conclude

vi = λi, i = 1, 2, . . . ,m,

which proves part i.

For part ii,

|μI −A−1| = 0

is the characteristic equation for A−1, and moreover

μI −A−1 = A−1(μA− I) = −μA−1

(
1

μ
I −A

)
.

Thus,

|μI −A−1| = (−1)mμm|A−1| |λI −A|, λ =
1

μ
,

and we see that since μ = 0 is not a root,

|μI −A−1| = 0

if and only if

|λI −A| = 0,

where

λ =
1

μ
.

Hence, if μi are the roots of A−1, we must have

μi =
1

λi
, i = 1, 2, . . . ,m.

q.e.d.

Another important result that may be derived by using the characteristic

equation is
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Proposition 2.43. Let A,B be two square matrices of order m. Then, the

characteristic roots of AB are exactly the characteristic roots of BA.

Proof: The characteristic roots of AB and BA are, respectively, the solu-

tions of
|λI −AB| = 0, |λI −BA| = 0.

We show that

|λI −AB| = |λI −BA|,

thus providing the desired result. For some square matrix C of order m,

consider

ψ(t) = |λI + tC|,

where t is an indeterminate. Quite clearly, ψ(t) is a polynomial of degree
m. As such it may be represented by a Taylor series expansion about t = 0.

If the expansion contains m + 1 terms, the resulting representation will be

exact. Expanding, we find

ψ(t) = ψ(0) + ψ′(0)t+ 1
2ψ

′′(0)t2 + · · ·+ 1

m!
ψ(m)(0)tm.

By the usual rules for differentiating determinants (see Sect. 4.3), we easily
find that

ψ(0) = λm, ψ′(0) = λm−1 tr C

and, in general,
1

j!
ψ(j)(0) = λm−jhj(C),

where hj(C) depends only on tr C, tr C2, . . . , tr Cj . Evaluating ψ at
t = −1, gives the characteristic equation for C as

0 = ψ(−1) = |λI − C| = λm − λm−1 tr C + λm−2h2(C)

−λm−3h3(C) + · · ·+ (−1)mhm(C).

Let
C1 = AB, C2 = BA

and note that

tr C1 = tr C2, tr C2
1 = tr C2

2 ,

and, in general,

tr Cj1 = tr Cj2 .
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This is so because

Cj1 = (AB)(AB) · · · (AB),

Cj2 = (BA)(BA) · · · (BA) =
j−1 terms︷ ︸︸ ︷

B(AB)(AB) · · · (AB)A = BCj−1
1 A.

Thus,

tr Cj2 = tr BCj−1
1 A = tr Cj−1

1 AB = tr Cj1 .

Consequently, we see that

hj(C1) = hj(C2)

and, moreover,
|λI −AB| = |λI −BA|.

q.e.d.

Corollary 2.8. Let A and B be, respectively, m× n and n×m matrices,

where m ≤ n. Then, the characteristic roots of BA, an n×n matrix, consist

of n−m zeros and the m characteristic roots of AB, an m×m matrix.

Proof: Define the matrices

A∗ =

(
A
0

)
, B∗ = (B, 0)

such that A∗ and B∗ are n × n matrices. By Proposition 2.43, the

characteristic roots of A∗B∗ are exactly those of B∗A∗. But

A∗B∗ =

[
AB 0

0 0

]
, B∗A∗ = BA.

Thus,

λI −A∗B∗ =

[
λI −AB 0

0 λI

]

and, consequently, |λI−BA| = |λI−B∗A∗| = |λI−A∗B∗| = λn−m|λI−AB|.

q.e.d.

Corollary 2.9. Let A be a square matrix of order m, and let λi, i =

1, 2, . . . ,m, be its characteristic roots. Then,

tr A =
m∑
i=1

λi.
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Proof: From the proof of Proposition 2.43, we have that

|λI −A| = λm − λm−1 tr A+ λm−2h2(A) + · · ·+ (−1)mhm(A).

From the factorization of polynomials, we have

|λI −A| =
m∏
i=1

(λ− λi) = λm − λm−1

(
m∑
i=1

λi

)
+ · · ·+ (−1)m

m∏
i=1

λi.

Equating the coefficients for λm−1, we find tr A =
∑m
i=1 λi.

q.e.d.

Proposition 2.44. Let A be a square matrix of order m. Then A is diag-

onalizable, i.e. it is similar to a diagonal matrix, if and only if for each

characteristic root λ of A the multiplicity of λ is equal to the nullity of

λI −A.

Proof: Suppose A is diagonalizable. Then, we can write

Q−1AQ = Λ, Λ = diag(λ1, λ2, . . . , λm).

Now, suppose the distinct roots are λ(i), i = 1, 2, . . . , s, s ≤ m. Let the

multiplicity of λ(i) be mi, where

s∑
i=1

mi = m.

It is clear that λ(i)I − Λ has mi zeros on its diagonal and hence is of rank

r[λ(i)I − Λ] = m−mi =
∑
j �=i

mj .

Since

λ(i)I −A = λ(i)I −QΛQ−1 = Q(λ(i)I − Λ)Q−1,

it follows that

r(λ(i)I −A) = r(λ(i)I − Λ) =
∑
j �=i

mj.

But λ(i)I −A is an m×m matrix, and by Proposition 2.5 its nullity obeys

n[λ(i)I −A] = m− r[λ(i)I −A] = mi,

which is the multiplicity of λ(i).
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Conversely, suppose that the nullity of λ(i)I−A is mi and
∑s
i=1mi = m.

Choose the basis
ξ·1, ξ·2, . . . , ξ·m1

for the null space of λ(1)I −A,

ξ·m1+1, . . . , ξ·m1+m2

for the null space of λ(2)I −A, and so on until the null space of λ(s)I −A.

Thus, we have m, m -element, vectors

ξ·1, ξ·2, . . . , ξ·m,

and each (appropriate) subset of mi vectors, i = 1, 2, . . . , s, is linearly inde-
pendent. We claim that the entire set of m vectors is linearly independent.

Suppose not. Then, we can find a set of scalars ai, not all of which are zero,

such that
m∑
k=1

ξ·kak = 0.

We can also write the equation above as

s∑
i=1

ζ·i = 0, ζ·i =
m1+···+mi∑

j=m1+···+mi−1+1

ξ·jaj, i = 1, 2, . . . , s, (2.30)

it being understood that m0 = 0. Because of the way in which we have chosen

the ξ·k, k = 1, 2, . . . ,m, the second equation of Eq. (2.30) implies that the
ζ·i obey

(λ(i)I −A)ζ·i = 0,

i.e. that they are characteristic vectors of A corresponding to the distinct

roots λ(i), i = 1, 2, . . . , s. The first equation in Eq. (2.30) then implies that

the ζ·i are linearly dependent. By Proposition 2.37, this is a contradiction.

Hence,

ak = 0, k = 1, 2, . . . ,m,

and the ξ·i, i = 1, 2, . . . ,m are a linearly independent set. Let

X = (ξ·1, ξ·2, . . . , ξ·m)

and arrange the (distinct) roots

|λ(1)| > |λ(2)| > · · · > |λ(s)|.

Putting

Λ = diag
(
λ(1)Im1 , λ(2)Im2 , . . . , λ(s)Ims

)
,
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we must have

AX = XΛ.

Because X is nonsingular, we conclude

X−1AX = Λ.

q.e.d.

2.9.1 Kronecker Product Matrices

Although Kronecker product matrices were examined in an earlier section,

and their characteristic roots and vectors may be determined by the preceding

discussion, it is very useful here to explain and make explicit their connection

to the corresponding entities of their constituent matrices.

Proposition 2.45. Let D = A ⊗ B, where A is m ×m and B is n × n,

with characteristic roots and vectors, respectively,

{(λi, x·i) : i = 1, 2, . . . ,m}, {(μj , y·j) : j = 1, 2, . . . , n}.

The following statements are true:

i. The characteristic roots and associated characteristic vectors of D are

given by
{(νij , z·ij) : νij = λiμj , z·ij = x·i ⊗ y·j},

for i = 1, 2, . . . ,m, j = 1, 2, . . . n.

ii. r (D) = r (A) r (B).

Proof: Since by hypothesis

Ax·i = λix·i, By·j = μjy·j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

we have

Dzij = Ax·i ⊗By·j = λix·i ⊗ μjy·j = (λi ⊗ μj)(x·i ⊗ y·j) = νijzij ,

which proves part i.

To prove part ii, we shall also assume that A,B are diagonalizable4 and

let Q1, Q2 be nonsingular matrices of order m, n, respectively, such that

Q−1
1 AQ1 = Λ, Q−1

2 BQ2 =M,

4This is an assumption that simplifies the proof considerably. Strictly speaking, it

is not necessary. The cost it imposes on the generality of the result is, in any event,

miniscule in view of Proposition 2.40.
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where Λ and M are the diagonal matrices containing the characteristic roots

of A and B, respectively. Consequently,

(Q−1
1 ⊗Q−1

2 )D(Q1 ⊗Q2) = Λ⊗M.

Since, evidently, r(A )= r( Λ ), r(B )= r(M ), i.e. they are equal to the

nonzero characteristic roots of A and B, respectively and, moreover, the
number of nonzero roots of D is equal to the product of the nonzero roots of

A and the nonzero roots of B, we conclude that

r(D) = r(A)r(B).

q.e.d.

2.10 Orthogonal Matrices

Although the term orthogonal was informally defined in Chap. 1, we repeat

the formal definition for completeness.

Definition 2.30. Let a, b be two m -element vectors. They are said to be

(mutually) orthogonal if and only if

a′b = 0. (2.31)

They are said to be orthonormal if Eq. (2.31) holds and, in addition, a′a =

1, b′b = 1.

Definition 2.31. Let Q be a square matrix of order m. It is said to be

orthogonal if and only if its columns are orthonormal.

An immediate consequence of the definition is the proposition below.

Proposition 2.46. Let Q be an orthogonal matrix of order m. Then, it is

nonsingular.

Proof: It will suffice to shall show that its columns are linearly independent.

Suppose there exist scalars ci, i = 1, 2, . . . ,m, such that

m∑
i=1

ciq·i = 0, (2.32)

the q·i being the (orthonormal) columns of Q. Pre-multiply Eq. (2.32) by
q′·j , j = 1, 2, 3, . . . ,m , and note that we obtain

cjq
′
·jq·j = 0, j = 1, 2, 3, . . . ,m.
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But since

q′·jq·j = 1

we conclude that Eq. (2.32) implies

cj = 0, j = 1, 2, . . . ,m.

q.e.d.

A further consequence is

Proposition 2.47. Let Q be an orthogonal matrix of order m. Then,

Q′ = Q−1.

Proof: By the definition of an orthogonal matrix,

Q′Q = Im.

By Proposition 2.46, its inverse exists. Multiplying on the right by Q−1 we

find

Q′ = Q−1.

q.e.d.

Proposition 2.48. Let Q be an orthogonal matrix of order m. The following

statements are true:

i. |Q| = 1 or |Q| = −1;

ii. If λi, i = 1, 2, . . . ,m, are the characteristic roots of Q, λi = ±1, i =
1, 2, . . . ,m.

Proof: The validity of i follows immediately from Q′Q = Im, which implies

|Q|2 = 1, |Q| = ±1.

For ii, we note that, by Proposition 2.42, the characteristic roots of Q′

are exactly those of Q, and the characteristic roots of Q−1 are 1/λi, i =
1, 2, . . . ,m, where the λi are the characteristic roots of Q. Because for an

orthogonal matrix Q′ = Q−1, we conclude λi = 1/λi, which implies

λi = ±1.

q.e.d.

It is interesting that given a set of linearly independent vectors we can trans-

form them into an orthonormal set. This procedure, known as Gram-Schmidt

orthogonalization, is explained below.
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Proposition 2.49 (Gram-Schmidt orthogonalization). If ξ·i, i = 1, 2, . . . ,m,

is a set of m linearly independent, m -element column vectors, they can be
transformed into a set of orthonormal vectors.

Proof: First, we transform the ξ·i into an orthogonal set, and then divide
each resulting vector by its modulus to produce the desired orthonormal set.

To this end, define

y·1 = ξ·1

y·2 = a12ξ·1 + ξ·2

y·3 = a13ξ·1 + a23ξ·2 + ξ·3

...

y·m = a1mξ·1 + a2mξ·2 · · ·+ am−1,mξ·m−1 + ξ·m.

The condition for defining the aij is that

y′·iy·j = 0, i = 1, 2, . . . , j − 1. (2.33)

But since y·i depends only on ξ·1, ξ·2, . . . , ξ·i, a condition equivalent to

Eq. (2.33) is

ξ′·iy·j = 0, i = 1, 2, . . . , j − 1.

To make the notation compact, put

Xj = (ξ·1, ξ·2, . . . , ξ·j−1), a·j = (a1j , a2j , . . . , aj−1,j)
′,

and note that the y ’s may be written compactly as

y·1 = ξ·1

y·j =Xja·j + ξ·j , j = 2, . . . ,m.

We wish the y·j to satisfy the condition

X ′
jy·j = X ′

jXja·j +X ′
jξ·j = 0. (2.34)

The matrix X ′
jXj is nonsingular because the columns of Xj are linearly

independent.5 Hence,

a·j = −(X ′
jXj)

−1X ′
jξ·j , j = 2, 3, . . . ,m, (2.35)

5A simple proof of this is as follows. Suppose there exists a non-null vector c such

that X′
jXjc = 0. But c′XjXjc = 0, implies Xjc = 0, which is a contradiction.
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and we can define the desired orthogonal set by y·1 = ξ·1
y·i = ξ·i −Xi(X

′
iXi)

−1X ′
iξ·i, i ≥ 2. Put

ζ·i =
y·i

(y′·iy·i)1/2
, i = 1, 2, . . . ,m,

and note that ζ′·iζ·i = 1, i = 1, 2, . . . ,m. The set

{ζ·i: i = 1, 2, . . . ,m}

is the desired orthonormal set.

q.e.d.

A simple consequence is

Proposition 2.50. Let a be an m -element non-null column vector with

unit length (modulus). Then, there exists an orthogonal matrix with a as the

first column.

Proof: Given a, there certainly exist m -element vectors ξ·2, ξ·3, . . . , ξ·m
such that the set

{a, ξ·2, . . . , ξ·m}
is linearly independent. The desired matrix is then obtained by applying

Gram-Schmidt orthogonalization to this set.

q.e.d.

Remark 2.32. Evidently, Propositions 2.49 and 2.50 are applicable to row

vectors.

2.11 Symmetric Matrices

In this section, we shall establish certain useful properties of symmetric

matrices.

Proposition 2.51. Let S be a symmetric matrix of order m whose elements

are real. Then, its characteristic roots are also real.

Proof: Let λ be any characteristic root of S and let z be its associated

characteristic vector. Put

λ = λ1 + iλ2, z = x+ iy,

so that we allow that λ, z may be complex. Since they form a pair of
characteristic root and its associated characteristic vector, they satisfy

Sz = λz. (2.36)
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Pre-multiply by z̄′, z̄ being the complex conjugate of z. We find

z̄′Sz = λz̄′z. (2.37)

We note that since z is a characteristic vector

z̄′z = x′x+ y′y > 0.

In Eq. (2.36) take the complex conjugate to obtain

Sz̄ = λ̄ z̄, (2.38)

because the elements of S are real. Pre-multiply Eq. (2.38) by z′ to find

z′Sz̄ = λ̄z′z̄. (2.39)

Since z̄′Sz is a scalar (a 1× 1 “matrix”),

(z′Sz̄) = (z′Sz̄)′ = z̄′Sz

and, moreover, z̄′z = z′z̄. Subtracting Eq. (2.39) from Eq. (2.37), we find

0 = (λ − λ̄)z̄′z. Since z̄′z > 0, we conclude λ = λ̄. But

λ = λ1 + iλ2, λ̄ = λ1 − iλ2,

which implies λ2 = −λ2 or λ2 = 0. Hence, λ = λ1, and the characteristic

root is real.

q.e.d.

Another important property is

Proposition 2.52. Let S be a symmetric matrix of order m. Let its distinct

roots be λ(i), i = 1, 2, . . . , s, s ≤ m, and let the multiplicity of λ(i) be mi,∑s
i=1mi = m. Then, corresponding to the root λ(i) there exist mi linearly

independent orthonormal characteristic vectors.

Proof: Since λ(i) is a characteristic root of S, let q·1 be its associated
characteristic vector (of unit length). By Proposition 2.49, there exist vectors

p
(i)
·j , j = 2, 3, . . . ,m,

such that

Q1 =
(
q·1, p

(1)
·2 , p

(1)
·3 , . . . , p

(1)
·m

)

is an orthogonal matrix. Consider

S1 = Q′
1SQ1 =

[
λ(i) 0
0 A1

]
,
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where A1 is a matrix whose i, j element is

p
(1)′

·i Sp
(1)
·j , i, j = 2, 3, . . . ,m.

But S and S1 have exactly the same roots. Hence, if mi ≥ 2,

|λI − S| = |λI − S1| =

∣∣∣∣λ− λ(i) 0

0 λIm−1 −A1

∣∣∣∣
= (λ− λ(i))|λIm−1 −A1| = 0

implies that λ(i) is also a root of

|λIm−1 −A1| = 0.

Hence, the nullity of λ(i)I − S is at least two, i.e.,

n(λ(i)I − S) ≥ 2,

and we can thus find another vector, say, q·2, satisfying

(λ(i)I − S)q·2 = 0

and such that q·1, q·2 are linearly independent and of unit length, and such

that the matrix

Q2 =
[
q·1, q·2, p

(2)
·3 , p

(2)
·4 , . . . , p

(2)
·m

]
is orthogonal.

Define

S2 = Q′
2SQ2

and note that S2 has exactly the same roots as S. Note further that

|λI − S| = |λI − S2|=

∣∣∣∣∣∣
λ− λ(i) 0

0 λ− λ(i) 0

0 λIm−2 −A2

∣∣∣∣∣∣
= (λ− λ(i))

2|λIm−2 −A2| = 0

and mi > 2 implies

|λ(i)Im−2 −A2| = 0.

Hence, n(λ(i)I−S) ≥ 3 and consequently we can choose another characteristic

vector, q·3, of unit length orthogonal to q·1, q·2 and such that

Q3 =
[
q·1, q·2, q·3, p

(3)
·4 , p

(3)
·5 , . . . , p

(3)
·m

]

is an orthogonal matrix.
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Continuing in this fashion, we can choose mi orthonormal vectors

q·1, q·2, . . . , q·mi

corresponding to λ(i) whose multiplicity is mi. It is clear that we cannot
choose more than mi such vectors since, after the choice of q·mi , we will be

dealing with

|λI − S| = |λI − Smi |=
∣∣∣∣ (λ− λ(i))Imi 0

0 λIm∗
i
−Ami

∣∣∣∣
= (λ − λ(i))

mi |λIm∗
i
−Ami | = 0,

where m∗
i = m−mi. It is evident that

|λI − S| = (λ − λ(i))
mi |λIm∗

i
−Ami | = 0

implies

|λ(i)Im∗
i
−Ami | �= 0, (2.40)

for, if not, the multiplicity of λ(i) would exceed mi. In turn Eq. (2.40) means

that
r(λ(i)I − S) = m−mi

and thus

n(λ(i)I − S) = mi.

Because we have chosen mi linearly independent characteristic vectors corre-

sponding to λ(i), they form a basis for the null space of λ(i)I − S and thus

a larger number of such vectors would form a linearly dependent set.
q.e.d.

Corollary 2.10. If S is as in Proposition 2.51, the multiplicity of the root
λ(i) is equal to the nullity of

λ(i)I − S.

Proof: Obvious from the proof of the proposition above.

q.e.d.

An important consequence of the preceding is

Proposition 2.53. Let S be a symmetric matrix of order m. Then, the

characteristic vectors of S can be chosen to be an orthonormal set, i.e. there

exists an orthogonal matrix Q such that

Q′SQ = Λ,

or equivalently S is orthogonally similar to a diagonal matrix.
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Proof: Let the distinct characteristic roots of S be λ(i), i = 1, 2, . . . , s,

s ≤ m, where λ(i) is of multiplicity mi, and
∑s
i=1mi = m. By Corol-

lary 2.10, the nullity of λ(i)I − S is equal to the multiplicity mi of the

root λ(i). By Proposition 2.52, there exist mi orthonormal characteristic

vectors corresponding to λ(i). By Proposition 2.37, characteristic vectors cor-

responding to distinct characteristic roots are linearly independent. Hence,

the matrix
Q = (q·1, q·2, . . . , q·m),

where the first m1 columns are the characteristic vectors corresponding to

λ(1), the next m2 columns are those corresponding to λ(2), and so on, is an

orthogonal matrix. Define

Λ = diag(λ(1)Im1 , λ(2)Im2 , . . . , λ(s)Ims)

and note that we have

SQ = QΛ.

Consequently, Q′SQ = Λ.

q.e.d.

Proposition 2.54 (Simultaneous diagonalization). Let A,B be two sym-

metric matrices of order m ; Then, there exists an orthogonal matrix Q such

that

Q′AQ = D1, Q′BQ = D2,

where the Di, i = 1, 2, are diagonal matrices if and only if

AB = BA.

Proof: Sufficiency: This part is trivial since if such an orthogonal matrix exists,

Q′AQQ′BQ=D1D2,

Q′BQQ′AQ=D2D1.

But the two equations above imply

AB =QD1D2Q
′,

BA=QD2D1Q
′,

which shows that

AB = BA (2.41)

because the diagonal matrices D1, D2 commute.
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Necessity: Suppose Eq. (2.41) holds. Since A is symmetric, let Λ be the

diagonal matrix containing its (real) characteristic roots and let Q1 be
the matrix of associated characteristic vectors. Thus,

Q′
1AQ1 = Λ.

Define

C = Q′
1BQ1

and note that

ΛC =Q′
1AQ1Q

′
1BQ1

=Q′
1ABQ1

=Q′
1BAQ1 = Q′

1BQ1Q
′
1AQ1 = CΛ. (2.42)

If all the roots of A are distinct, we immediately conclude from Eq. (2.42)

that

C = Q′
1BQ1

is a diagonal matrix. Thus, taking

D1 = Λ, D2 = C,

the proof is completed. If not, let

λ(i), i = 1, 2, . . . , s,

be the distinct roots of A and let λ(i) be of multiplicity mi, where∑s
i=1mi = m. We may write

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ(1)Im1 0 · · · 0

. . . · · ·
0 λ(2)Im2

...
. . . 0

0 · · · 0 λ(s)Ims

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Partition C conformably with Λ, i.e.

C =

⎡
⎢⎢⎣
C11 C12 · · · C1s

C21 C22 · · · C2s
...

...
...

Cs1 Cs2 · · · Css

⎤
⎥⎥⎦ ,
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so that Cij is a matrix of dimension mi × mj . From Eq. (2.42), we thus

conclude

λ(i)Cij = λ(j)Cij . (2.43)

But for i �= j we have

λ(i) �= λ(j),

and Eq. (2.43) implies

Cij = 0, i �= j. (2.44)

Thus, C is the block diagonal matrix

C = diag(C11, C22, . . . , Css).

Clearly, the Cii, i = 1, 2, . . . , s, are symmetric matrices. Thus, there exist
orthogonal matrices, say,

Q∗
i , i = 1, 2, 3, . . . , s,

that diagonalize them, i.e.

Q∗′
i CiiQ

∗
i = D∗

i , i = 1, 2, . . . ,m,

the D∗
i being diagonal matrices. Define

Q2 = diag(Q∗
1, Q

∗
2, . . . , Q

∗
s)

and note that Q2 is an orthogonal matrix such that

D2 = Q′
2CQ2 = Q′

2Q
′
1BQ1Q2

with

D2 = diag(D∗
1 , D

∗
2 , . . . , D

∗
s).

Evidently, D2 is a diagonal matrix. Define Q = Q1Q2 and note:

i. Q′Q = Q′
2Q

′
1Q1Q2 = Q′

2Q2 = Im, so that Q is an orthogonal matrix;

ii. Q′AQ = Q′
2ΛQ2 = Λ, which follows from the construction of Q2 ;

iii. Q′BQ = D2.

Taking D1 = Λ, we see that

Q′AQ = D1, Q′BQ = D2.

q.e.d.
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Corollary 2.11. Let A,B be two symmetric matrices of order m such that

AB = 0.

Then, there exists an orthogonal matrix Q such that Q′AQ = D1, Q′BQ =
D2, and, moreover, D1D2 = 0.

Proof: Since A,B are symmetric and AB = 0, we see that 0 = (AB)′ =
B′A′ = BA = AB.

By Proposition 2.54, there exists an orthogonal matrix Q such that

Q′AQ = D1, Q′BQ = D2.

Moreover,
D1D2 = Q′AQQ′BQ = Q′ABQ = 0.

q.e.d.

We close this section by stating an interesting result that connects the rank of

a matrix to the number of the latter’s nonzero characteristic roots. This result

holds for all matrices, as implied by Proposition 2.14; however, the discussion

and proof are greatly simplified in the case of symmetric matrices. Thus, we
have

Corollary 2.12. Let S be as in Proposition 2.53; then,

r(S) = r ≤ m

if and only if the number of nonzero characteristic roots of S is r.

Proof: From Proposition 2.53, there exists an orthogonal matrix Q such that

S = QΛQ′, Λ = Q′SQ, Λ = diag(λ1, λ2, . . . , λm),

the λi, i = 1, 2, . . . ,m, being the characteristic roots of S. But the first two

relations above imply
r(S) = r(Λ).

Now, suppose

r(S) = r.

Then, (m − r) of the diagonal elements of Λ must be zero; hence, only r

of the characteristic roots of S are nonzero. Conversely, if only r of the

characteristic roots of S are nonzero, then

r(Λ) = r

and, consequently,

r(S) = r.

q.e.d.
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2.12 Idempotent Matrices

We recall from Definition 2.8 that a square matrix A is said to be idempotent

if and only if

AA = A.

An easy consequence of the definition is

Proposition 2.55. Let A be a square matrix of order m ; suppose further

that A is idempotent. Then, its characteristic roots are either zero or one.

Proof: Let λ, x be a pair consisting of a characteristic root and its associated

(normalized) characteristic vector. Thus,

Ax = λx. (2.45)

Pre-multiplying by A, we find

Ax = AAx = λAx = λ2x. (2.46)

But Eqs. (2.45) and (2.46) imply, after pre-multiplication by x′,

λ = λ2.

This condition is satisfied only by

λ = 0, or λ = 1.

q.e.d.

Remark 2.33. In idempotent matrices, we have a non-obvious example of a

matrix with repeated roots. If A is a symmetric idempotent matrix it is
diagonalizable, i.e. it is similar to a diagonal matrix. The result above is to

be understood in the context of Propositions 2.37, 2.39, 2.40, and 2.44.

Example 2.4. An example of a (non-symmetric) matrix whose characteristic

vectors are not linearly independent is

A =

[
1 1

0 1

]
, |λI2 −A| = (λ− 1)2,

which has a repeated root, namely λ = 1, of multiplicity 2. The nullity of the
matrix λI − A for λ = 1 is defined by the dimension of the (null) space of

this matrix, i.e. by the dimension of the collection of vectors
(
x :

[
0 1
0 0

]
x = 0

)
.
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This (null) space is generated (spanned) by the vector (1, 0)
′
and is thus of

dimension 1; since the repeated root is of multiplicity 2, the characteristic
vectors of A cannot be linearly independent. In fact, the equations for

the characteristic vectors associated with the unit root (of multiplicity 2) are

given by

x1 + x2 = x1, x2 = x2,

which implies that x2 = 0, and x1 is arbitrary. Thus, the characteristic
vectors corresponding to the repeated root 1 are (1, 0)

′
and (c, 0)

′
, where c

is an arbitrary constant, and the matrix of characteristic vectors is singular.

Consequently, A is non-diagonalizable.

Proposition 2.56. Let A be an idempotent matrix of order m and rank r.

Then,

tr A = r(A).

Proof: From Corollary 2.9, we have

tr A =

m∑
i=1

λi.

By Proposition 2.55,
λi = 0 or λi = 1.

Hence,

tr A = number of nonzero roots

or
tr A = r(A).

q.e.d.

2.13 Semi-definite and Definite Matrices

Definition 2.32. Let A be a square matrix of order m and let x be an
m -element vector. Then, A is said to be positive semi-definite if and only

if for all vectors x

x′Ax ≥ 0.

The matrix A is said to be positive definite if and only if for non-null x

x′Ax > 0.

Definition 2.33. Let A be a square matrix of order m. Then, A is said to

be negative (semi)definite if and only if −A is positive (semi)definite.
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Remark 2.34. It is clear that we need only study the properties of positive

(semi)definite matrices, since the properties of negative (semi)definite matrices
can easily be derived from the latter.

Remark 2.35. A definite or semi-definite matrix B need not be symmet-
ric. However, because the defining property of such matrices involves the

quadratic form x′Bx, we see that if we put

A = 1
2 (B +B′)

we have x′Ax = x′Bx, with A symmetric. Thus, whatever properties may
be ascribed to B, by virtue of the fact that for any x, say

x′Bx ≥ 0,

can also be ascribed to A. Thus, we sacrifice no generality if we always take
definite or semi-definite matrices to be symmetric. In subsequent discussion,

it should be understood that if we say that A is positive (semi) definite we

also mean that A is symmetric as well.

Certain properties follow immediately from the definition of definite and

semi-definite matrices.

Proposition 2.57. Let A be a square matrix of order m. If A is positive

definite, it is also positive semi-definite. The converse, however, is not true.

Proof: The first part is obvious from the definition since if x is any m -
element vector and A is positive definite, x′Ax ≥ 0, so that A is also positive

semi-definite.

That the converse is not true is established by an example. Take

A =

[
1 1

1 1

]
.

For any vector x = (x1, x2)
′, x′Ax = (x1 + x2)

2 ≥ 0, so that A is positive

semi-definite. For the choice of x1 = −x2, x2 �= 0, we have x′Ax = 0, which

shows that A is not positive definite.

q.e.d.

Proposition 2.58. Let A be a square matrix of order m. Then,

i. If A is positive definite,

aii > 0, i = 1, 2, . . . ,m

ii. If A is only positive semi-definite,

aii ≥ 0, i = 1, 2, . . . ,m.
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Proof: Let e·i be the m -element unit vector (all of whose elements are zero

except the i th, which is unity). If A is positive definite, since e·i is not the
null vector, we must have

e′·iAe·i > 0, i = 1, 2, . . . ,m.

But

e′·iAe·i = aii, i = 1, 2, . . . ,m.

If A is positive semi-definite but not positive definite, then, repeating the

argument above we find

aii = e′·iAe·i ≥ 0, i = 1, 2, . . . ,m.

q.e.d.

Another interesting property is the following.

Proposition 2.59 (Triangular decomposition theorem). Let A be a positive

definite matrix of order m. Then, there exists a lower triangular matrix T
such that

A = TT ′.

Proof: Let

T =

⎡
⎢⎢⎢⎢⎢⎣

t11 0 · · · 0

t21 t22
. . .

...
t31 t32 t33

. . . 0

tm1 tm2 tm3 · · · tmm

⎤
⎥⎥⎥⎥⎥⎦
.

Setting

A = TT ′

we obtain the equations (by equating the (i, j) elements of A and TT ′ )

t211 = a11, t11t21 = a12, t11t31 = a13, . . . , t11tm1 = a1m

t21t11 = a21, t221 + t222 = a22, t21t31 + t22t32 = a23, . . . ,

t21tm1 + t22tm2 = a2m
...

tm1t11 = am1, tm1t21 + tm2t22 = am2, . . . ,
m∑
i=1

t2mi = amm.

In solving the equations as they are arranged, line by line, we see that we are
dealing with a recursive system. From the first line, we have

t11 = ±√
a11, t21 =

a12
t11

, t31 =
a13
t11

, . . . , tm1 =
a1m
t11

.
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From the second line, we have

t21 =
a21
t11

, t22 = ±
(
a22a11 − a221

a11

)1/2

,

and in general

ti2 =
a2i − t21ti1

t22
, i = 3, 4, . . . ,m.

Similarly, in the third line, we find

t33 =±
(
a33 −

a231
t231

− (a23 − t21t31)
2

t222

)1/2

,

ti3 =
a3i − t31ti1 − t32ti2

t33
, i = 4, 5, . . . ,m,

and so on.

q.e.d.

Remark 2.36. Evidently, the lower triangular matrix above is not unique. In

particular, we see that for t11 we have the choice

t11 =
√
a11 or t11 = −√

a11.

Similarly, for t22 we have the choice

t22 =

(
a22a11 − a221

a11

)1/2

or t22 = −
(
a22a11 − a221

a11

)1/2

,

and so on. The matrix T can be rendered unique if we specify, say, that all

diagonal elements must be positive.

Notice further that the same argument as in Proposition 2.59 can establish

the existence of a unique upper triangularmatrix T ∗ such that A = T ∗T ∗′
.

In the literature of econometrics, the triangular decomposition of Proposi-
tion 2.59 is occasionally referred to as the Choleski decomposition.

The properties of characteristic roots of (semi)definite matrices are estab-

lished in

Proposition 2.60. Let A be a symmetric matrix of order m and let λi,

i = 1, 2, . . . ,m, be its (real) characteristic roots. If A is positive definite,

λi > 0, i = 1, 2, . . . ,m.

If it is only positive semi-definite,

λi ≥ 0, i = 1, 2, . . . ,m.
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Proof: Let x·i be the normalized characteristic vector corresponding to the

root λi of A. If A is positive definite,

x′·iAx·i = λi > 0, i = 1, 2, . . . ,m.

If A is merely positive semi-definite, we can only assert

x′·iAx·i = λi ≥ 0, i = 1, 2, . . . ,m.

q.e.d.

By now, the reader should have surmised that positive definite matrices are

nonsingular, and positive semi-definite matrices (which are not also positive

definite) are singular matrices. This is formalized in

Proposition 2.61. Let A be a symmetric matrix of order m. If A is positive

definite then
r(A) = m.

If A is merely positive semi-definite, i.e. it is not also positive definite, then

r(A) < m.

Proof: Since A is symmetric, let Λ denote the diagonal matrix of its (real)
characteristic roots and Q the associated (orthogonal) matrix of characteristic

vectors. We have

AQ = QΛ.

By Propositions 2.51 and 2.44, Q is nonsingular so that A is similar to the

diagonal matrix Λ, which is evidently of rank m. Thus r(A) = m and its

inverse exists and is given by

A−1 = QΛ−1Q′,

which also shows that the characteristic roots of A−1 are the diagonal elements
of Λ−1, as exhibited below

Λ−1 = diag

(
1

λ1
,
1

λ2
, . . . ,

1

λm

)
.

This establishes the first part of the proposition.

For the second part suppose A is only positive semi-definite. From

Proposition 2.60, we merely know that λi ≥ 0, i = 1, 2, . . . ,m. We now
establish that at least one root must be zero, thus completing the proof of the

proposition.
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We have the representation

Q′AQ = Λ.

Consequently, for any vector y,

y′Q′AQy =

m∑
i=1

λiy
2
i .

Now, if x is any non-null vector by the semi-definiteness of A we have

0 ≤ x′Ax = x′QQ′AQQ′x = x′QΛQ′x =

m∑
i=1

λiy
2
i , (2.47)

where now we have put

y = Q′x.

Since x is non-null, y is also non-null.

If none of the λi is zero, Eq. (2.47) implies that for any non-null x x′Ax >
0, thus showing A to be positive definite. Consequently, at least one of the

λi, i = 1, 2, . . . ,m, must be zero, and there must exist at least one non-null

x such that x′Ax =
∑m
i=1 λiy

2
i = 0. But this shows that r(A) < m.

q.e.d.

Remark 2.37. Roughly speaking, positive definite and semi-definite matrices

correspond to positive and nonnegative numbers in the usual number system.
The reader’s intuitive comprehension would be aided if he thinks of them

as a sort of matrix generalization of positive and nonnegative real numbers.

Just as a nonnegative number can always be written as the square of some

other number, the same holds mutatis mutandis for definite and semi-definite

matrices. In fact, this conceptualization leads to the concept of the square
root for such matrices.

Proposition 2.62. Let A be a symmetric matrix of order m. Then A is

positive definite if and only if there exists a matrix S of dimension n × m

and rank m (n ≥ m) such that

A = S′S.

It is positive semi-definite if and only if

r(S) < m.

Proof: Sufficiency: If A is positive (semi)definite then, as in the proof of
Proposition 2.61, we have the representation

A = QΛQ′.
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Taking

S = Λ1/2Q′,

we have A = S′S. If A is positive definite, Λ is nonsingular, and thus

r(S) = m.

If A is merely positive semi-definite, r (Λ) < m, and hence

r(S) < m.

Necessity: Suppose A = S′S, where S is n ×m (n ≥ m) of rank m.

Let x be any non-null vector and note x′Ax = x′S′Sx. The right member of

the equation above is a sum of squares and thus is zero if and only if

Sx = 0. (2.48)

If A is positive definite, Eq. (2.48) can be satisfied only with null x. Hence

the rank of S is m.

Evidently, for any x, x′Ax = x′S′Sx ≥ 0, and if A is positive semi-

definite (but not positive definite) there exists at least one non-null x such
that x′Ax = 0 ; hence, for that x, Sx = 0 thus S is of rank less than m.

q.e.d.

An obvious consequence of the previous discussion is

Corollary 2.13. If A is a positive definite matrix, |A| > 0, tr(A) > 0.

Proof: Let λi, i = 1, 2, . . . ,m, be the characteristic roots of A. Since

|A| =
m∏
i=1

λi, tr(A) =

m∑
i=1

λi,

the result follows immediately from Proposition 2.60.

q.e.d.

Corollary 2.14. Let A be a positive semi-definite, but not a positive definite,

matrix. Then |A| = 0, tr(A) ≥ 0 ; tr(A) = 0 if and only if A is the null
matrix.

Proof: From the representation

|A| =
m∏
i=1

λi

we conclude that |A| = 0 by Proposition 2.61.
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For the second part, we note that

A = QΛQ′ (2.49)

and
tr(A) = 0

if and only if

tr(Λ) = 0.

But

tr(Λ) =

m∑
i=1

λi = 0, λi ≥ 0 all i

implies
λi = 0, i = 1, 2, . . . ,m.

If this holds, then Eq. (2.49) implies

A = 0.

Consequently, if A is not a null matrix,

tr(A) > 0.

q.e.d.

Corollary 2.15 (Square root of a positive definite matrix). Let A be a

positive definite matrix of order m. Then, there exists a nonsingular matrix

W such that

A =W ′W.

Proof: Obvious from Propositions 2.59, 2.61, and 2.62. A particular choice

of W may be W = QΛ1/2Q′ , which is the usual expression for defining the
square root of a positive definite matrix A .

q.e.d.

In previous discussions, when considering characteristic roots and charac-

teristic vectors, we did so in the context of the characteristic equation

|λI −A| = 0.

Often it is more convenient to broaden the definition of characteristic roots

and vectors as follows.
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Definition 2.34. Let A,B be two matrices of order m, where B is non-

singular. The characteristic roots of A in the metric of B , and their
associated characteristic vectors, are connected by the relation

Ax = λBx,

where λ is a characteristic root and x is the associated (non-null) character-

istic vector.

Remark 2.38. It is evident that the characteristic roots of A in the

metric of B are found by solving the polynomial equation

|λB −A| = 0.

It is also clear that this is a simple generalization of the ordinary definition of

characteristic roots where the role of B is played by the identity matrix.

Definition 2.34 is quite useful in dealing with differences of positive

(semi)definite matrices, and particularly in determining whether such differ-
ences are positive (semi)definite or not. This is intimately connected with the

question of relative efficiency in comparing two estimators. We have

Proposition 2.63. Let B be a positive definite matrix and let A be positive

(semi)definite, both of order m. Then, the characteristic roots of A in the

metric of B, say λi, obey

λi > 0, i = 1, 2, . . . ,m,

if A is positive definite, and

λi ≥ 0, i = 1, 2, . . . ,m,

if A is positive semi-definite.

Proof: Consider
|λB −A| = 0.

Since B is positive definite, by Corollary 2.15 there exists a nonsingular matrix

P such that

B = P
′−1P−1.

Consequently, by Proposition 2.26,

0 = |λB −A| = |λP
′−1P−1 −A| = |λI − P ′AP | |P |−2.

Thus, the characteristic roots of A in the metric of B are simply the

usual characteristic roots of P ′AP, i.e. the solution of

|λI − P ′AP | = 0.
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If A is positive definite, P ′AP is also positive definite; if A is only positive

semi-definite, P ′AP is only positive semi-definite. Hence, in the former case

λi > 0, i = 1, 2, . . . ,m,

whereas in the latter case

λi ≥ 0, i = 1, 2, . . . ,m.

q.e.d.

A very useful result in this context is

Proposition 2.64 (Simultaneous decomposition). Let B be a positive

definite matrix and A positive (semi)definite, both of order m. Let

Λ = diag(λ1, λ2, . . . , λm)

be the diagonal matrix of the characteristic roots of A in the metric of B.
Then, there exists a nonsingular matrix W such that

B =W ′W, A =W ′ΛW.

Proof: From Proposition 2.63, we have that the λi are also the (ordinary)

characteristic roots of P ′AP, where P is such that

B = P
′−1P−1.

Let Q be the (orthogonal) matrix of (ordinary) characteristic vectors of P ′AP.
Thus, we have

P ′APQ = QΛ. (2.50)

From Eq. (2.50), we easily establish

A = P
′−1QΛQ′P−1.

Putting W = Q′P−1, we have

A =W ′ΛW, B =W ′W.

q.e.d.

From the preceding two propositions flow a number of useful results regarding

differences of positive (semi)definite matrices. Thus,
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Proposition 2.65. Let B be a positive definite matrix and A be positive

(semi)definite. Then B −A is positive (semi)definite if and only if

λi < 1 (λi ≤ 1),

respectively, where the λi are the characteristic roots of A in the metric of B,

i = 1, 2, . . . ,m.

Proof: From Proposition 2.64, there exists a nonsingular matrix W such that

B =W ′W, A =W ′ΛW.

Hence,
B −A =W ′(I − Λ)W.

Let x be any m -element vector, and note

x′(B −A)x = y′(I − Λ)y =
m∑
i=1

(1− λi)y
2
i , (2.51)

where y = Wx. If, for arbitrary non-null x, x′(B −A)x > 0, we must have

1− λi > 0, or
λi < 1, i = 1, 2, . . . ,m, (2.52)

thus concluding the if part of the proof; conversely, if Eq. (2.52) holds, then y is

non-null, for arbitrary non-null x ; consequently, it follows from Eq. (2.51)

that B − A is positive definite, thus concluding the only if part for positive

definite matrices.
If, on the other hand, B−A is only positive semi-definite, then for at least

one index i we must have

λi = 1,

and conversely.

q.e.d.

Another useful result easily obtained from the simultaneous decomposition of

matrices is given in

Proposition 2.66. Let A, B be two positive definite matrices, both of order

m. If B−A is positive definite, A−1−B−1 is also positive definite. If B−A
is positive semidefinite, so is A−1 −B−1.

Proof: We may write B = W ′W, A = W ′ΛW ; by Proposition 2.65, the

diagonal elements of Λ (i.e., the roots of A in the metric of B ) are less than

unity. Hence, B−1 =W−1W
′−1, A−1 =W−1Λ−1W

′−1. Thus,

A−1 −B−1 =W−1(Λ−1 − Im)W
′−1.
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The diagonal elements of Λ−1 − I are given by

1

λi
− 1 > 0, i = 1, 2, . . . ,m,

and thus

A−1 −B−1

is positive definite by Proposition 2.61.

If B − A is only positive semi-definite, then for at least one of the roots
we have λi0 = 1. Hence,

A−1 −B−1 =W−1(Λ−1 − Im)W
′−1 ≥ 0,

owing to the fact that at least one of the diagonal elements of Λ−1 − Im is
zero.

q.e.d.

Finally, we have

Proposition 2.67. Let B be positive definite, and A be positive

(semi)definite. If B −A is positive (semi)definite then

|B| > |A|, (|B| ≥ |A|), tr(B) > tr(A), (tr(B) ≥ tr(A)).

Proof: As in Proposition 2.66, we can write B = W ′W, A = W ′ΛW, and

by Proposition 2.65 we know that the diagonal elements of Λ, viz., the λi,

obey λi < 1, for all i. Consequently, by Proposition 2.26,

|B| = |W |2, |A| = |W |2|Λ|.

Moreover, by Proposition 2.65, if B −A is positive definite, |λi| < 1, for all

i, and hence |B| > |A|.
Evidently, the inequality above is automatically satisfied if A itself is

merely positive semi-definite. Moreover,

tr(B)− tr(A) = tr(B −A) > 0.

On the other hand, if B−A is merely positive semi-definite then we can only

assert |Λ| ≤ 1, and hence we conclude that

|B| ≥ |A|, tr(B) ≥ tr(A).

q.e.d.

Corollary 2.16. In Proposition 2.67, the strict inequalities hold unless

B = A.
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Proof: Since

|A|
|B| = |Λ| =

m∏
i=1

λi,

we see that |A| = |B| implies λi = 1, i = 1, 2, . . . ,m. Hence, B = A.

Moreover, from the proof of Proposition 2.65,

tr(B) = tr(A)

implies

0 = tr(B −A) = tr[W ′(I − Λ)W ].

But this means

W ′(I − Λ)W = 0,

which in turn implies

Λ = Im,

and consequently

B = A.

q.e.d.

We now present the very useful singular value decomposition theorem for

an arbitrary matrix A.

In Sect. 2.5 we examined the rank factorization theorem and showed

that if A is m × n of rank r ≤ n ≤ m, then there exist matrices C1, C2,
respectively, of dimension m× r, r × n and both of rank r, such that

A = C1C2.

The matrices C1, C2 are, of course, non-unique. The construction given in

that section proceeds from first principles and essentially utilizes elementary
row and column operations. Although conceptually simple and straightfor-

ward, that construction is not particularly useful for applied work. In view

of the ready availability of computer software for obtaining the characteristic

roots and vectors of symmetric matrices, the following result is perhaps more
convenient.

Proposition 2.68 (Singular value decomposition theorem). Let A be m×n
of rank r, r ≤ n ≤ m. Then, there exist matrices B1, B2 and a diagonal

matrix, D, with positive diagonal elements, such that

A = B1DB2.
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Proof: Consider the matrices AA′, A′A ; both are of rank r and of dimension

m×m, n× n, respectively.
By Proposition 2.52, we have the representation

AA′ = QΛQ′,

where Q is the (orthogonal) matrix of characteristic vectors and Λ is the

(diagonal) matrix of the corresponding characteristic roots. Similarly,

A′A = RMR′

where again R, M are, respectively, the matrices of characteristic vectors

and corresponding characteristic roots of A′A.
By Corollary 2.11, we conclude that since AA′ and A′A are both of rank

r, only r of their characteristic roots are positive, the remaining being zero.
Hence, we can write

Λ =

[
Λr 0

0 0

]
, M =

[
Mr 0

0 0

]
.

Partition Q, R conformably with Λ and M, respectively, i.e.

Q = (Qr, Q∗), R = (Rr, R∗)

such that Qr is m × r, Rr is n × r and correspond, respectively, to the

non-zero characteristic roots of AA′ and A′A.
Take

B1 = Qr, B2 = R′
r, Λr = D = diag(λ1, λ2, . . . , λr),

where λi, i = 1, 2, . . . , r are the positive characteristic roots of AA′ and
hence, by Corollary 2.8, those of A′A as well.

Now, define

S = QrΛ
1/2
r R′

r = B1DB2.

We show that S = A, thus completing the proof. We easily verify that

S′S = A′A, SS′ = AA′.

From the first relation above we conclude that for an arbitrary orthogonal

matrix, say P1,

S = P1A

whereas from the second we conclude that for an arbitrary orthogonal matrix

P2 we must have

S = AP2.
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The preceding, however, implies that for arbitrary orthogonal matrices P1, P2

the matrix A satisfies

AA′ = P1AA
′P ′

1, A′A = P ′
2A

′AP2,

which in turn implies that

P1 = Im, P2 = In.

Thus,

A = S = QrΛ
1/2
r R′

r = B1DB2.

q.e.d.

We close this chapter by formally defining the “square root” of a positive

(semi)definite matrix.

Definition 2.35. Let A be a positive (semi)definite matrix, Λ the diago-

nal matrix of its (nonnegative) characteristic roots, and Q the matrix of its
associated characteristic vectors. The square root of A , denoted by A1/2,

is defined by

A1/2 = QΛ1/2Q
′
, Λ = diag(λ

1/2
1 , λ

1/2
2 , . . . , λ1/2m )



Chapter 3

Systems of Linear Equations

3.1 Introduction

Consider the system of linear equations

Ax = b, (3.1)

where A is m× n and b is an m -element vector. The meaning of Eq. (3.1),

as a system of equations, is that we seek an n -element vector x satisfying

that system. If m = n and if A is nonsingular, the equation system above
has the unique solution

x∗ = A−1b. (3.2)

If A is singular, i.e. if r (A) < m or if n > m, it is clear that more than one

solution may exist.
Moreover, if A is m × n but m > n, the system may be inconsistent,

i.e. there may not exist a vector x satisfying all the conditions (equations)

specified in Eq. (3.1). In such a case, we may wish to derive “approximate”

solutions. In doing so, we are in effect defining “pseudoinverses” (literally fake
inverses) that mimic some or all of the properties of the proper inverse.

By way of motivation, note that in the context of the general linear model

(GLM) we may characterize estimation in the following terms. Find a vector

b such that

y = Xb (3.3)

is satisfied approximately, where X is a T × (n + 1) matrix of observations

on the explanatory variables and y is a T -element vector of observations on

the dependent variable. Typically

T > n+ 1,

and the system in Eq. (3.3) is inconsistent, since no vector b exists strictly

satisfying Eq. (3.3). It is such considerations that prompt us to study various

types of pseudoinverses.

P.J. Dhrymes, Mathematics for Econometrics,
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3.2 The c-, s-, and g-Inverses

Definition 3.1. Let A be m × n (m ≤ n); the n×m matrix Ac is said

to be the conditional inverse, generally also referred to as the c-inverse of

A, if and only if

AAcA = A.

Remark 3.1. Note that if A is a nonsingular matrix then clearly

AA−1A = A,

so that the c-inverse satisfies only this property of the proper inverse. Evi-

dently, the latter satisfies other conditions as well. For example, it requires
that

A−1A, AA−1,

be symmetric matrices and, in fact, equal to the identity matrix. But this is

not necessarily satisfied by the conditional inverse.
We now show that the c-inverse is not a vacuous concept.

Proposition 3.1. Let A be m ×m and let B be a nonsingular, m ×m ,
matrix such that

BA = H,

where H is in (upper) Hermite form. Then, B is a c-inverse of A. Moreover,
B′ is the c-inverse of A′, and we write B = Ac , B

′ = (A′)c = A′
c .

Proof: It is clear, by Proposition 2.9, that such a nonsingular matrix B exists,
because for square matrices an upper echelon form is in fact an upper

Hermite form. From Proposition 2.13, H is an idempotent matrix. Hence,

H = HH = BABA.

Pre-multiplying by B−1, we find

ABA = B−1H = A, or ÅcA = A.

We further note that H ′H ′ = (HH)′ = H ′, due to the fact that H is

idempotent. Consequently, A′B′A′ = H ′B′−1 = A′, thus completing the

proof.

q.e.d.
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For rectangular (non-square) matrices, we have

Proposition 3.2. Let A be m× n (m ≤ n) and

A0 =

(
A

0

)
,

where A0 is n× n. Let B0 be a nonsingular matrix of order n such that

B0A0 = H0,

and H0 is in (upper) Hermite form. Partition

B0 = (B,B1),

where B is n×m. Then, B is a c-inverse of A, denoted Ac .

Proof: By Proposition 3.1, B0 is a c-inverse of A0. Hence, we have

A0B0A0 = A0.

But (
A

0

)
= A0 = A0B0A0 =

[
AB AB1

0 0

](
A

0

)
=

(
ABA

0

)
,

which shows that

A = ABA, or AAcA = A.

q.e.d.

Remark 3.2. A similar result is obtained if m ≥ n. One has only to deal
with the transpose of A in Proposition 3.2 and note that if Ac is the c-inverse

of A,A′
c is the c-inverse of A′, which was proved in Proposition 3.1.

Evidently, c-inverses are not unique, since the matrix B reducing a given

matrix A to Hermite form is not unique. This is perhaps best made clear by
an example.

Example 3.1. Let

A =

⎡
⎣ 2 3 1

4 5 1

1 1 0

⎤
⎦

and observe that

B1 =

⎡
⎣−2 1 1

0 1 −4
−1 1 −2

⎤
⎦ , B2 =

⎡
⎣−3 2 −1

−1 2 −6
−2 2 −4

⎤
⎦ ,
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have the property of reducing A to Hermite form, i.e.

B1A = B2A =

⎡
⎣ 1 0 −1

0 1 1
0 0 0

⎤
⎦ .

A somewhat more stringent set of requirements defines the so-called least

squares inverse.

Definition 3.2. Let A be m× n (m ≤ n). The n×m matrix As is said

to be a least squares inverse, generally referred to as the s-inverse of A,

if and only if

i. AAsA = A,

ii. AAs is symmetric.

Remark 3.3. Evidently, if As is an s-inverse, it is also a c-inverse. The

converse, however, is not true.

That the class of s-inverses is not a vacuous one is shown by

Proposition 3.3. Let A be m× n (m ≤ n). Then,

i.

As = (A′A)cA′

is an s-inverse of A.

ii. If As is an s-inverse of A , A′
s is not necessarily an s-inverse of A′.

Proof: To prove part i, we need to show that

AAsA = A(A′A)cA′A = A, and that AAs = A(A′A)cA′

is symmetric. To this end, we note that since (A′A)c is a c-inverse it satisfies

(A′A)(A′A)cA′A = A′A. (3.4)

Let A have rank r ≤ m. From Proposition 2.15, there exist matrices C1,

C2 of rank r and dimensions m × r, r × n, respectively, such that (rank

factorization)

A = C1C2.
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Thus we can write Eq. (3.4) as

C′
2C

′
1C1C2(A

′A)cC′
2C

′
1C1C2 = C′

2C
′
1C1C2.

Pre-multiply by

C1(C
′
1C1)

−1(C2C
′
2)

−1C2

to obtain
C1C2(A

′A)cC′
2C

′
1C1C2 = C1C2. (3.5)

Bearing in mind the definition of As and the rank factorization of A, we

see that Eq. (3.5) can also be written as

AAsA = A.

Moreover,

AAs = A(A′A)cA′

is evidently symmetric because (A′A)c is a symmetric matrix.

To prove part ii, we note that if As is an s-inverse of A , A′
s = A(A′A)c .

Thus,

A′A′
sA

′ = (AAsA)
′ = A′,

so that it satisfies the first component of the definition for an s-inverse.1

However, it need not satisfy the second component because

A′A′
s = (A′A)(A′A)c

is the product of two symmetric matrices. However, the product of two

symmetric matrices is not necessarily symmetric unless they commute!

q.e.d.

Remark 3.4. Evidently, since the c-inverse is not unique, the s-inverse is also

not unique.

A unique pseudoinverse is defined in the following manner.

Definition 3.3. Let A be m × n; the n × m matrix Ag is said to be a
generalized inverse, generally referred to as the g-inverse of A, if and only

if it satisfies

i. AAgA = A,

ii. AAg is symmetric,

1This is to be expected since an s-inverse is also a c-inverse, and the latter has this

property.



100 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

iii. AgA is symmetric,

iv. AgAAg = Ag.

Remark 3.5. Note that the g-inverse mimics the corresponding conditions

satisfied by a proper inverse, for if A is nonsingular and A−1 is its inverse,

AA−1A = A,
AA−1 = I is symmetric,

A−1A = I is symmetric,

A−1AA−1 = A−1.

Finally, we note that c-inverses, s-inverses and g-inverses are more generally

referred to as pseudoinverses.

3.3 Properties of the Generalized Inverse

In this section, we examine a number of useful properties of the g-inverse. We

begin with the existence and uniqueness properties.

Proposition 3.4. Let A be any m × n matrix. Then, the following state-

ments are true:

i. There exists a unique matrix Ag satisfying the conditions of Defini-

tion 3.3;

ii. AgA, AAg are idempotent matrices;

iii. The g-inverse of A′ is A′
g.

Proof: It is clear that if A is the null matrix, the n ×m null matrix is the

g-inverse of A. Thus, suppose rank(A) = r > 0. By Proposition 2.15, there

exist two matrices, namely C1, which is m× r of rank r, and C2, which is

r × n of rank r, such that A = C1C2. Define

Ag = C′
2(C2C

′
2)

−1(C′
1C1)

−1C′
1

and observe that

AAg =C1C2C
′
2(C2C

′
2)

−1(C′
1C1)

−1C′
1 = C1(C

′
1C1)

−1C′
1,

AgA=C′
2(C2C

′
2)

−1(C′
1C1)

−1C′
1C1C2 = C′

2(C2C
′
2)

−1C2.

This shows AAg and AgA to be symmetric idempotent matrices, thus

satisfying ii and iii of Definition 3.3, and proving part ii of the proposition.
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Moreover,

AAgA=C1C2C
′
2(C2C

′
2)

−1C2 = C1C2 = A,

AgAAg =C′
2(C2C

′
2)

−1(C′
1C1)

−1C′
1C1(C

′
1C1)

−1C′
1 = Ag,

which shows the existence of the g-inverse. To show uniqueness, suppose Bg

is another g-inverse of A. We show Ag = Bg, thus completing the proof of

part i of the proposition.

Now, AAgA = A. Postmultiplying by Bg, we have AAgABg = ABg.

Because ABg and AAg are both symmetric, we obtain

ABg = (ABg)
′(AAg)

′ = ABgAAg = AAg.

Similarly, BgA = BgAAgA = AgABgA = AgA. Premultiplying the relation
ABg = AAg by Bg, we have

Bg = BgABg = BgAAg = AgAAg = Ag.

To show the validity of part iii, we simply note that if Ag is a g-inverse of

A, then transposing the four conditions of Definition 3.3 yields the conclusion

that A′
g is the g-inverse of A′, which completes the proof of the proposition.

q.e.d.

Let us now establish some other useful properties of the g-inverse.

Proposition 3.5. Let A be an m×m symmetric matrix of rank r (r ≤ m).

Let Dr be the diagonal matrix containing its nonzero characteristic roots (in

decreasing order of magnitude), and let Pr be the m×r matrix whose columns

are the (orthonormal) characteristic vectors corresponding to the nonzero roots

of A. Then
Ag = PrD

−1
r Pr.

Proof: By the definition of characteristic roots and vectors,

AP = PD,

where P is the orthogonal matrix of characteristic vectors of A, and D is

the diagonal matrix of the latter’s characteristic roots arranged in decreasing

order of magnitude. Because A is of rank r, D can be written as

D =

[
Dr 0
0 0

]
.

Partition P by

P = (Pr, P∗),
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where Pr is m× r, and note

A = PDP ′ = (Pr, P∗)
[
Dr 0
0 0

](
P ′
r

P ′
∗

)
= PrDrP

′
r .

We verify

i. AAgA = (PrDrP
′
r)(PrD

−1
r P ′

r)(PrDrP
′
r) = PrDrP

′
r = A;

ii. AAg = (PrDrP
′
r)(PrD

−1
r P ′

r) = PrP
′
r , which is symmetric;

iii. AgA = (PrD
−1
r P ′

r)(PrDrP
′
r) = PrP

′
r ;

iv. AgAAg = PrP
′
rPrD

−1
r P ′

r = PrD
−1
r P ′

r = Ag.

This shows that Ag, above, is the g-inverse of A.

q.e.d.

Corollary 3.1. If A is symmetric and idempotent, then

Ag = A.

Proof: If A is symmetric and idempotent, its characteristic roots are either

zero or one. Hence, in the representation above Dr = Ir. Thus,

A = PrP
′
r , Ag = PrP

′
r .

q.e.d.

We have already seen that if Ag is the g-inverse of A, (Ag)
′ is the g-

inverse of A′. We now examine a number of other properties of the g-inverse
that reveal it to be analogous to the ordinary (proper) inverse of a nonsingular

matrix.

Proposition 3.6. Let A be m× n. The following statements are true:

i. (Ag)g = A;

ii. r(Ag) = r(A);

iii. (A′A)g = AgA
′
g;

iv. (AAg)g = AAg;

v. If m = n and A is nonsingular, A−1 = Ag.
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Proof: The proof of i is simple since Ag is the g-inverse of A, and thus it

satisfies:

i. AgAAg = Ag;

ii. AgA is symmetric;

iii. AAg is symmetric;

iv. AAgA = A.

But Definition 3.3 indicates that the above define A as the g-inverse of Ag.

To prove ii, we note that AAgA = A implies r(A) ≤ r(Ag), whereas

AgAAg = Ag implies r(Ag) ≤ r(A). Together, these relations imply

r(A) = r(Ag).

To prove iii, we verify that AgA
′
g is the g-inverse of A′A. Since

i. (A′A)AgA
′
g(A

′A) = (A′A′
gA

′)(AAgA) = A′A;

ii. (A′A)AgA
′
g = A′A′

gA
′A′

g = (AgA)
′ is symmetric;

iii. AgA
′
g(A

′A) = (AgA) is symmetric;

iv. AgA
′
g(A

′A)AgA
′
g = (AgAAg)(A

′
gA

′A′
g) = AgA

′
g,

AgA
′
g is indeed the g-inverse of A′A.

Part iv may be proved by noting that AAg is a symmetric idempotent

matrix, and that Corollary 3.1 states that (AAg)g = AAg.

To prove v, we note that AA−1A = A, AA−1 = A−1A = I is symmetric,

and A−1AA−1 = A−1, which completes the proof.

q.e.d.

Corollary 3.2. Let A be an m × n matrix; let P be m ×m and Q be

n× n, and let both be orthogonal. Then,

(PAQ)g = Q′AgP
′.

Proof: We have

(PAQ)(PAQ)g = PAQQ′AgP
′ = PAAgP

′,

(PAQ)g(PAQ) =Q′AgP
′PAQ = Q′AgAQ.
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The symmetry of the matrices above follows from the symmetry of AAg and

AgA, respectively. Moreover,

(PAQ)g(PAQ)(PAQ)g =Q′AgP
′PAQQ′AgP

′ = Q′AgAAgP
′ = (PAQ)g,

(PAQ)(PAQ)g(PAQ) = PAQQ′AgP
′PAQ = PAAgAQ = PAQ.

q.e.d.

Remark 3.6. It is worth entering a note of caution here. It is well known

that if A,B are conformable nonsingular matrices, then (AB)−1 = B−1A−1.

The results in iii and iv of the preceding proposition may suggest that the
same is true of g-inverses. Unfortunately, it is not generally true that if A,B

are m × n and n × q, respectively, then (AB)g = BgAg. This is true for

the matrices in iii and iv of the preceding proposition, as well as for those in

Corollary 3.2.

In the following discussion we consider a number of other instances where

the relation above is valid.

Proposition 3.7. Let D be a diagonal matrix,

D =

[
C 0

0 0

]
. Then Dg =

[
C−1 0

0 0

]
,

where the diagonal elements of C are nonzero.

Proof: Obvious.

Corollary 3.3. Let D,E be two diagonal matrices and put F = DE. Then,

Fg = EgDg.

Proof: If either E or D is the zero matrix, the result holds; thus, let us

assume that neither D nor E are null. Without loss of generality, put

D =

⎡
⎣C1 0 0

0 0 0

0 0 0

⎤
⎦ , E =

⎡
⎣E1 0 0

0 E2 0

0 0 0

⎤
⎦ ,

where it is implicitly assumed that E contains more non-null elements than
D, and note that

F =

⎡
⎣C1E1 0 0

0 0 0

0 0 0

⎤
⎦ .
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By Proposition 3.7,

Fg =

⎡
⎣E

−1
1 C−1

1 0 0

0 0 0
0 0 0

⎤
⎦

=

⎡
⎣E

−1
1 0 0

0 E−1
2 0

0 0 0

⎤
⎦
⎡
⎣C

−1
1 0 0

0 0 0
0 0 0

⎤
⎦ = EgDg.

q.e.d.

Proposition 3.8. Let A be m× n (m ≤ n) of rank m. Then,

Ag = A′(AA′)−1, AAg = I.

Proof: We verify that Ag is the g-inverse of A. To this end, we note that

AA′ is m×m of rank m; hence, the inverse exists. Moreover,

i. AAgA = AA′(AA′)−1A = A;

ii. AAg = AA′(AA′)−1 = I is symmetric (and idempotent);

iii. AgA = A′(AA′)−1A is symmetric (and idempotent);

iv. AgAAg = Ag,

which completes the proof.

q.e.d.

Corollary 3.4. Let A be m× n (m ≥ n) of rank n. Then,

Ag = (A′A)−1A′, AgA = I.

Proof: Obvious.

Proposition 3.9. Let B be m× r, C be r×n, and let both be of rank r.
Then,

(BC)g = CgBg.

Proof: By Proposition 3.8,

Bg = (B′B)−1B′, Cg = C′(CC′)−1.
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Putting A = BC, we may verify that

Ag = CgBg.

q.e.d.

A further useful result is

Proposition 3.10. Let A be m × n. Then, the following statements are

true:

i. I −AAg, I −AgA are symmetric, idempotent;

ii. (I − AAg)A = 0, Ag(I −AAg) = 0;

iii. (I − AAg)AAg = AAg(I −AAg) = 0;

iv. (I − AgA)AgA = AgA(I −AgA) = 0.

Proof: Proposition 3.4 states that AAg, AgA are both symmetric and

idempotent. Hence,

(I −AAg)(I −AAg) = I −AAg −AAg +AAgAAg = I −AAg.

Similarly,

(I −AgA)(I −AgA) = I −AgA−AgA+AgAAgA = I −AgA,

which proves i.

Since

AAgA = A, AgAAg = Ag,

the proof of ii is obvious.

The proofs of iii and iv follow easily from that of ii.

q.e.d.

To conclude this section, we give some additional results for certain special

types of matrices.

Proposition 3.11. Let B,C be, respectively, m × s, n × s, such that

BC′ = 0 and

A =

(
B

C

)
.

Then,

Ag = (Bg, Cg).
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Proof: We verify that Ag is the g-inverse of A. We have to show that

AgA = BgB + CgC

is symmetric. Now, Bg, Cg are, respectively, the g-inverses of B, C. Thus

BgB, CgC are both symmetric matrices, and consequently so is AgA. Also

AAg =

[
BBg BCg

CBg CCg

]
.

From Proposition 3.6, we note that

BCg = BCgCCg = BC′C′
gCg = 0;

the last equality is valid because of the condition BC′ = 0. Similarly,

CBg = CBgBBg = CB′B′
gB = 0,

which shows that

AAg =

[
BBg 0

0 CCg

]
,

which is, clearly, a symmetric matrix. Moreover,

AAgA=

[
BBg 0

0 CCg

](
B

C

)
=

(
BBgB

CCgC

)
=

(
B

C

)
= A,

AgAAg = (Bg, Cg)

[
BBg 0
0 CCg

]

= (BgBBg, CgCCg) = (Bg, Cg) = Ag,

thus completing the proof.

q.e.d.

Proposition 3.12. If B,C are any matrices, and

A =

[
B 0

0 C

]
,

then

Ag =

[
Bg 0

0 Cg

]
.

Alternatively, if we put

A = B ⊗ C,

then

Ag = Bg ⊗ Cg.

Proof: Obvious by direct verification.
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3.4 Linear Equations and Pseudoinverses

What motivated our exploration of the theory of pseudoinverses was the desire

to characterize the class of solutions to the linear system

Ax = b,

where A is m×n and, generally, m �= n. When A is not a square matrix, the

question that naturally arises is whether the system is consistent, i.e. whether

there exists at least one vector, x∗, that satisfies the system, and, if consistent,

how many solutions there are and how they may be characterized.
The first question is answered by

Proposition 3.13. Let A be m× n; then, the system of equations

Ax = b

is consistent if and only if for some c-inverse of A,

AAcb = b.

Proof: Necessity: Suppose the system is consistent, and x0 is a solution, i.e.

b = Ax0.

Premultiply by AAc to obtain

AAcb = AAcAx0 = Ax0 = b,

which establishes necessity.

Sufficiency: Assume that for some c-inverse,

AAcb = b.

Take

x = Acb,

and observe that this is a solution, thus completing the proof.

q.e.d.

The question now arises as to how many solutions there are, given that

there is at least one solution (i.e. the system is consistent). This is answered by

Proposition 3.14. Let A be m× n, (m ≥ n) and suppose

Ax = b.
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This is a consistent system if and only if there exists an arbitrary vector d,

such that
x = Acb+ (In −AcA)d

is a solution.

Proof: Necessity: Suppose the system is consistent; by Proposition 3.13, there

exists a c-inverse such that

AAcb = b.

Let

x = Acb+ (In −AcA)d,

where d is arbitrary, and observe

Ax = AAcb = b,

which shows x to be a solution, thus establishing necessity.

Sufficiency: Suppose x is any solution, i.e. it satisfies b−Ax = 0, so that

the system is consistent. Pre-multiply by Ac to obtain

Acb−AcAx = 0.

Adding x to both sides of the equation, we have

x = Acb+ (In − AcA)x,

which shows that the solution is of the desired form with d = x, thus

completing the proof.

q.e.d.

Corollary 3.5. The statements of the proposition are true if Ac is replaced
by Ag.

Proof: Clearly, for a consistent system,

x = Agb+ (In −AgA)d

is a solution, where d is arbitrary.

Conversely, if x is any solution, so is x = Agb + (In − AgA)x, which

completes the proof.

q.e.d.
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Corollary 3.6. The solution to the system Ax = b , as above, is unique if

and only if
AgA = In.

Proof: If
AgA = In,

then the general solution of the preceding corollary

x = Agb+ (In −AgA)d,

becomes

x = Agb,

which is unique, because the generalized inverse is unique.

Conversely, if the general solution above is unique for every vector d,

then we must have AgA = In.

q.e.d.

Corollary 3.7. The solution of the consistent system above is unique if and

only if

r(A) = n.

Proof: From Corollary 3.4, if rank(A) = n, then AgA = In. Corollary 3.5

then shows that the solution is unique.

Conversely, suppose the solution is unique. Then,

AgA = In,

which shows that

n ≤ r(A).

But the rank of A cannot possibly exceed n. Thus,

r(A) = n.

q.e.d.

It is clear from the preceding discussion that there are, in general, infinitely

many solutions to the system considered above. Thus, for example, if x·i is a

solution, i = 1, 2, . . . , k, then

x =

k∑
i=1

γix·i

is also a solution, provided
∑k
i=1 γi = 1.
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This prompts us to inquire how many linearly independent solutions there

are; if we determine this, then all solutions can be expressed in terms of this
linearly independent set. We have

Proposition 3.15. Let the (consistent) system

Ax = b

be such that A is m × n (m ≥ n) of rank 0 < r ≤ n, b �= 0. Then, there

are n− r + 1 linearly independent solutions.

Proof: Recall that since

AgAAg = Ag, AAgA = A,

we have

r(AgA) = r(A) = r.

Now, the general solution of the system can be written as

x = Agb+ (In −AgA)d

for arbitrary d.

Consider, in particular, the vectors

x·i = Agb+ (In −AgA)d·i, i = 0, 1, 2, . . . , n,

where the d·i are n -element vectors such that for i = 0, d·i = 0, while for

i �= 0 all the elements of d·i are zero save the i th, which is unity. Write

X = (x·0, x·1, . . . , x·n) = (Agb, In −AgA)

[
1 e′

0 I

]
,

where e is an n -element column vector all of whose elements are unity. Since
the upper triangular matrix in the right member above is nonsingular, we

conclude

r(X) = r(Agb, In −AgA) = 1 + n− r.

The last equality follows since Agb is orthogonal to In − AgA, and thus the

two are linearly independent. In addition,

r(In −AgA) = n− r(AgA) = n− r.

Thus, we see that the number of linearly independent solutions cannot exceed
n (since we deal with the case r > 0 ) – and at any rate it is exactly n− r+1.

q.e.d.
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Remark 3.7. It should be pointed out that the n−r+1 linearly independent

solutions above do not constitute a vector space since the vector 0 is not a
solution in view of the condition b �= 0.

Because there are many solutions to the typical system considered here,

the question arises whether there are (linear) functions of solutions that are

invariant to the particular choice of solution. This is answered by

Proposition 3.16. Let A be m× n; the linear transformation

Gx,

where x is a solution of the consistent system

Ax = b,

is unique if and only if G lies in the space spanned by the rows of A.

Proof: The general form of the solution is

x = Agb+ (In −AgA)d

for arbitrary d. Thus,

Gx = GAgb+G(In −AgA)d

is unique if and only if

G = GAgA.

But, if the equation above is satisfied, G lies in the row space of A. Con-

versely, suppose G lies in the row space of A. Then, there exists a matrix C

such that

G = CA.

Consequently,

GAgA = CAAgA = CA = G.

q.e.d.

3.5 Approximate Solutions

In the previous section, we examined systems of linear equations and gave

necessary and sufficient conditions for their consistency, i.e. for the existence

of solutions. Moreover, we gave a characterization of such solutions. Here, we

shall examine inconsistent systems. Thus, a system

Ax = b
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may have no solution, and thus it may be better expressed as

r(x) = Ax− b.

Nonetheless, we may wish to determine a vector x∗ that is an approximate

solution in the sense that

r(x∗)

is “small.” The precise meaning of this terminology will be made clear below.

Definition 3.4. Let A be m× n, and consider the system

r(x) = Ax− b.

A solution x∗ is said to be a least squares (LS) approximate solution if

and only if for all n -element vectors x

r(x)′r(x) ≥ r(x∗)′r(x∗).

Remark 3.8. If the system r(x) = Ax − b of Definition 3.4 is consistent,

then any LS approximate solution corresponds to a solution in the usual sense

of the previous section.

The question of when an LS approximate solution exists, and how it may

be arrived at, is answered by

Proposition 3.17. Consider the system

r(x) = Ax− b.

The vector

x∗ = Bb

is an LS solution to the system above if B is an s-inverse of A, i.e. it obeys

i. ABA = A,

ii. AB is symmetric.

Proof: We observe that for any n -element vector x,

(b−Ax)′(b −Ax)

= [(b −ABb) + (ABb−Ax)]′[(b−ABb) + (ABb −Ax)]

= b′(I −AB)′(I −AB)b + (Bb− x)′A′A(Bb− x)

= b′(I −AB)b + (Bb− x)′A′A(Bb − x).
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This is so because B obeys i and ii and the cross terms vanish, i.e.

(b−ABb)′(ABb−Ax) = b′(A−B′A′A)(Bb−x) = b′(A−ABA)(Bb−x) = 0.

Because A′A is (at least) positive semidefinite, the quantity

(b−Ax)′(b −Ax) is minimized only if we take x = Bb.

q.e.d.

Corollary 3.8. The quantity

b′(I −AB)b

is a lower bound for

(b −Ax)′(b−Ax).

Proof: Obvious.

Corollary 3.9. If B is a matrix that defines an LS solution,

AB = AAg.

Proof: We have

AB = AAgAB = A′
gA

′B′A′ = A′
gA

′ = AAg.

q.e.d.

We may now ask: what is the connection between g-inverses, LS solutions
to inconsistent systems, and our discussion in the previous section? In part,

this is answered by

Proposition 3.18. An n -element (column) vector x∗ is an LS solution to

an inconsistent system

r(x) = Ax− b,

where A is m× n, if and only if x∗ is a solution to the consistent system

Ax = AAgb.

Proof: First, we note that since Ag is also a c-inverse of A, Proposition 3.13
shows that

Ax = AAgb

is, indeed, a consistent system. Because it is a consistent system, Corollary 3.5

shows that the general form of the solution is

x∗ = Ag(AAgb) + (In −AgA)d = Agb+ (In −AgA)d

for any arbitrary vector d.
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With x∗ as just defined, we have b−Ax∗ = b−AAgb and, consequently,

(b −Ax∗)′(b−Ax∗) = b′(In −AAg)b.

Proposition 3.17 shows that x∗, as above, is an LS solution to the (inconsis-

tent) system r(x) = Ax− b. Conversely, suppose that x∗ is any LS solution

to the system above. Then it must satisfy the condition (Ax∗−b)′(Ax∗−b) =
b′(In −AAg)b, because Ag is also an s -inverse. Put

q = x∗ −Agb or x∗ = q +Agb.

Substitute in the equation above to obtain

b′(I −AAg)b= (Ax∗ − b)′(Ax∗ − b)

= (Aq +AAgb− b)′(Aq +AAgb− b)

= b′(I −AAg)b+ q′A′Aq,

which immediately implies
Aq = 0.

Thus,

Ax∗ = Aq +AAgb = AAgb,

which completes the proof.

q.e.d.

Remark 3.9. The import of Proposition 3.18 is that an LS solution to a
(possibly) inconsistent system

r(x) = Ax− b

can be found by solving the associated (consistent) system

Ax = AAgb.

The general class of solutions to this system was determined in Proposi-
tion 3.15. Thus, we see that there may be multiple (or infinitely many) LS

solutions. If uniqueness is desired, it is clear that the solution must be made

to satisfy additional conditions. This leads to

Definition 3.5. Consider the (possibly) inconsistent system

r(x) = Ax− b,

where A is m×n. An n -element vector x∗ is said to be a minimum norm

least squares (MNLS) approximate solution if and only if
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i. For all n -element vectors x

(b−Ax)′(b−Ax) ≥ (b−Ax∗)′(b−Ax∗),

ii. For those x for which

(b−Ax)′(b −Ax) = (b −Ax∗)′(b −Ax∗)

we have

x′x > x′∗x∗.

This leads to the important

Proposition 3.19. Let
r(x) = Ax− b

be a (possibly) inconsistent system, where A is m × n. The MNLS
(approximate) solution is given by

x∗ = Agb,

and it is unique.

Proof: First, we note that

(b−AAgb)
′(b −AAgb) = b′(I −AAg)b,

which shows x∗ to be an LS solution–because it attains the lower bound of

(b −Ax)′(b−Ax).

We must now show that this solution has minimum norm and that it is

unique. Now, if x is any LS solution, it must satisfy

Ax = AAgb.

Premultiply by Ag to obtain

AgAx = AgAAgb = Agb.

Thus, any LS solution x also satisfies

x = Agb−AgAx+ x = Agb+ (In −AgA)x.

Consequently, for any LS solution we have

x′x = b′A′
gAgb+ (x−AgAx)

′(x−AgAx).
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But if x is any LS solution,

AgAx = Agb.

Consequently,

x′x = b′A′
gAgb+ (x−Agb)

′(x−Agb) = x′∗x∗ + (x− x∗)′(x− x∗)

which shows that if

x �= x∗ = Agb

then

x′x > x′∗x∗.

Uniqueness is an immediate consequence of the argument above. Thus, let

x0 be another MNLS solution and suppose x0 �= x∗. But x0 must satisfy

x′0x0 = b′A′
gAgb+ (x0 −Agb)

′(x0 −Agb).

Since we assume x0 �= x∗ we have x′0x0 > x′∗x∗, which is a contradiction.

Moreover, Ag is unique, which thus completes the proof of the proposition.

q.e.d.

Remark 3.10. It is now possible to give a summary description of the role of
the various pseudoinverses. Thus, the c-inverse is useful in broadly describing

the class of solutions to the (consistent) system

Ax = b,

where A is m× n.

The s-inverse is useful in describing the class of LS solutions to the possibly
inconsistent system

r(x) = Ax− b,

i.e. in the case where no vector x may exist such that r(x) = 0. Neither the

c-inverse nor the s-inverse of a matrix A is necessarily unique.
The g-inverse serves to characterize the solutions to both types of problems.

Particularly, however, it serves to define the MNLS (approximate) solution to

the inconsistent system

r(x) = Ax− b.
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This means that of all possible least squares solutions to the inconsistent

system above the g-inverse chooses a unique vector by imposing the
additional requirement that the solution vector exhibit minimal

norm.

This aspect should always be borne in mind in dealing with econometric

applications of the g-inverse, since there is no particular economic reason

to believe that the estimator of a vector exhibiting minimal norm is of any
extraordinary significance.



Chapter 4

Matrix Vectorization

4.1 Introduction

It is frequently more convenient to write a matrix in vector form. For lack of a

suitable term, we have coined for this operation the phrase “vectorization of a

matrix.” For example, if A is a matrix of parameters and Ã the corresponding

matrix of estimators, it is often necessary to consider the distribution of

Ã−A.

We have a convention to handle what we wish to mean by the expectation of a

random matrix, but there is no convention regarding the “covariance matrix”

of a matrix. Similarly, there is a literature regarding aspects of the (limiting)

distribution of sequences of vectors, but not for matrices.
In differentiation with a view to obtaining the conditions that define a wide

variety of estimators, vectorization of matrices offers great convenience as well.

To give a different example, when dealing with special matrices such as

symmetric, triangular, diagonal, or Toeplitz, the corresponding elements are
not all free but obey a number of restrictions. It would thus be convenient to

have a means of displaying the “free” or unrestricted elements in a vector to

facilitate discussion and avoid redundant differentiation.

In this chapter, we establish the proper conventions for vectorization, give

a number of results that enable us to vectorize products of matrices, and use
these tools to establish more convenient representations, for example, of the

trace of a product of matrices; moreover, such conventions enable us to examine

more precisely and efficiently the vector subspace(s) containing matrices whose

elements are (linearly) restricted and various other ancillary topics.

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 4, © The Author 2013
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4.2 Vectorization of Matrices

We begin with

Convention 4.1. Let A be an n×m matrix; the notation vec(A) will mean

the nm -element column vector whose first n elements are of those of the

first column of A , a·1, the second n elements, those of the second column

of A , a·2, and so on. Thus,

vec(A) = (a′·1, a
′
·2, . . . , a

′
·m)′.

The notation rvec(A) will mean the mn -element row vector, whose first m
elements are those of the first row of A , a1· , the second m elements are

those of the second row, a2· , and so on. Thus,

rvec(A) = (a1·, a2·, . . . , an·).

Evidently, vec(A) and rvec(A) contain precisely the same elements, but

they are arranged in different order. An immediate consequence of Conven-

tion 4.1 is

Proposition 4.1. Let A,B be n×m, and m× q, respectively. Then,

vec(AB) = (Iq ⊗A) vec(B), or

= (B′ ⊗ In) vec(A).

Proof: For the first representation, we note that the j th column AB is simply

Ab·j.

When AB is vectorized we find

vec(AB) = (Iq ⊗A) vec(B),

whose j th sub-vector is Ab·j . To show the validity of the second representa-

tion, we note that the j th column of AB can also be written as

m∑
i=1

a·ibij =
m∑
i=1

b′jia·i = (b′·j ⊗ In)vec(A),

where b′·j is the transpose of the j th column of B (or the j th row of B′ );
consequently

vec(AB) = (B′ ⊗ In) vec(A).

q.e.d.
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Vectorization of products involving more than two matrices is easily

obtained by repeated application of Proposition 4.1. We give a few such results
explicitly. Thus,

Corollary 4.1. Let A1, A2, A3 be suitably dimensioned matrices. Then

vec(A1A2A3) = (I ⊗A1A2) vec(A3)

= (A′
3 ⊗A1) vec(A2)

= (A′
3A

′
2 ⊗ I) vec(A1).

Proof: By Proposition 4.1, taking

A = A1A2, B = A3,

we have

vec(A1A2A3) = (I ⊗A1A2) vec(A3).

Taking A1 = A, A2A3 = B, we have

vec(A1A2A3) = (A′
3A

′
2 ⊗ I) vec(A1),

as well as

vec(A1A2A3) = (I ⊗A1) vec(A2A3).

Applying Proposition 4.1 again, we find

vec(A2A3) = (A′
3 ⊗ I) vec(A2),

and hence vec(A1A2A3) = (A′
3 ⊗A1)vec(A2).

q.e.d.

Corollary 4.2. Let A1, A2, A3, A4 be suitably dimensioned matrices.

Then,

vec(A1A2A3A4) = (I ⊗A1A2A3) vec(A4)

= (A′
4 ⊗A1A2) vec(A3)

= (A′
4A

′
3 ⊗A1) vec(A2)

= (A′
4A

′
3A

′
2 ⊗ I) vec(A1).

Proof: The first representation follows if we apply Proposition 4.1, with A =
A1A2A3, B = A4. The second and third representations are obtained by

taking A = A1A2, B = A3A4 and then applying Proposition 4.1.

The fourth is obtained by taking A = A1, B = A2A3A4 and then applying

Proposition 4.1.

q.e.d.
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Remark 4.1. The reader should note the pattern involved in these relations;

thus, if we wish to vectorize the product of the n conformable matrices

A1A2A3 · · ·An

by vectorizing Ai, we obtain

(A′
nA

′
n−1 · · ·A′

i+1 ⊗A1A2 · · ·Ai−1) vec(Ai),

so that the matrices appearing to the right of Ai appear on the left of the

Kronecker product sign (⊗ ) in transposed form and order, whereas those

appearing on the left of Ai appear on the right of the Kronecker product sign

in the original form and order.

We further have

Proposition 4.2. Let A,B be m×n. Then, vec(A+B) = vec(A)+vec(B).

Proof: Obvious from Convention 4.1.

Corollary 4.3. Let A, B, C, D be suitably dimensioned matrices. Then,

vec[(A+B)(C +D)] = [(I ⊗A) + (I ⊗B)][vec(C) + vec(D)] or

= [(C ′ ⊗ I) + (D′ ⊗ I)][vec(A) + vec(B)].

Proof: By Proposition 4.1,

vec[(A+B)(C +D)]

= [(I ⊗ (A+B)] vec(C +D)

= [(C +D)′ ⊗ I] vec(A+B)

= [(C
′
⊗ I) + (D

′
⊗ I)][vec(A) + vec(B)].

q.e.d.

We now turn our attention to the representation of the trace of products

of matrices in terms of various functions of vectorized matrices. Thus,

Proposition 4.3. Let A,B be suitably dimensioned matrices. Then,

tr(AB) = vec(A′)′ vec(B)

= vec(B′)′ vec(A).

Proof: By definition, assuming A is m× n and B is n× q ,

tr(AB) =

m∑
i=1

ai·b·i, (4.1)
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where ai· is the i th row of A and b·i is the i th column of B. But ai· is

simply the i th column of A′ written in row form, and Eq. (4.1) then shows
that tr(AB) = vec(A′)′ vec(B). Moreover, since

tr(AB) = tr(BA) =

q∑
j=1

bj·a·j , (4.2)

we see that tr(AB) = vec(B′)′ vec(A).

q.e.d.

It is an easy consequence of Propositions 4.1 and 4.3 to establish a
“vectorized representation” of the trace of the product of more than two

matrices.

Proposition 4.4. Let A1, A2, A3 be suitably dimensioned matrices. Then,

tr(A1A2A3) = vec(A′
1)

′(A′
3 ⊗ I) vec(A2)

= vec(A′
1)

′(I ⊗A2) vec(A3)

= vec(A′
2)

′(I ⊗A3) vec(A1)

= vec(A′
2)

′(A′
1 ⊗ I) vec(A3)

= vec(A′
3)

′(A′
2 ⊗ I) vec(A1)

= vec(A′
3)

′(I ⊗A1) vec(A2).

Proof: From Proposition 4.3, taking

A = A1, B = A2A3,

we have

tr(A1A2A3) = vec(A′
1)

′ vec(A2A3). (4.3)

Using Proposition 4.1 we have

vec(A2A3) = (I ⊗A2) vec(A3)

= (A′
3 ⊗ I) vec(A2).

This together with Eq. (4.3) establishes

tr(A1A2A3) = vec(A′
1)

′ (A′
3 ⊗ I) vec(A2)

= vec(A′
1)

′(I ⊗A2) vec(A3).

Noting that

tr(A1A2A3) = tr(A2A3A1)
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and using exactly the same procedure as above shows

tr(A1A2A3) = vec(A′
2)

′(I ⊗A3) vec(A1)

= vec(A′
2)

′(A′
1 ⊗ I) vec(A3).

Finally, since

tr(A1A2A3) = tr(A3A1A2),

we find by the same argument

tr(A1A2A3) = vec(A′
3)

′(A′
2 ⊗ I) vec(A1)

= vec(A′
3)

′(I ⊗A1) vec(A2).

q.e.d.

Remark 4.2. The representation of the trace of the product of more than

three matrices is easily established by using the methods employed in the

proof of Proposition 4.4. For example,

tr(A1A2A3A4) = vec(A′
1)

′(A′
4A

′
3 ⊗ I) vec(A2)

= vec(A′
1)

′(A′
4 ⊗A2) vec(A3)

= vec(A′
1)

′(I ⊗A2A3) vec(A4)

= vec(A′
2)

′(I ⊗A3A4) vec(A1)

= vec(A′
2)

′(A′
1A

′
4 ⊗ I) vec(A3)

= vec(A′
2)

′(A′
1 ⊗A3) vec(A4)

= vec(A′
3)

′(A′
2 ⊗A4) vec(A1)

= vec(A′
3)

′(I ⊗A4A1) vec(A2)

= vec(A′
3)

′(A′
2A

′
1 ⊗ I) vec(A4)

= vec(A′
4)

′(A′
3A

′
2 ⊗ I) vec(A1)

= vec(A′
4)

′(A′
3 ⊗A1) vec(A2)

= vec(I ′4)
′(I ⊗A1A2) vec(A3).

This example also shows why it is not possible to give all conceivable
representations of the trace of the product of an arbitrary number of matrices.

4.3 Linearly Restricted Matrices

As we have seen above, if A is a real n×m matrix we define the vec operator as

vec(A) =

⎛
⎜⎜⎝
a·1
a·2
...

a·m

⎞
⎟⎟⎠ ,
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where a·j is the ( n -element) j th column of A. In this discussion we adopt

the convention that n ≥ m, which entails no loss of generality since if the
condition is not satisfied for A, it is surely satisfied for A

′
.

Let Vnm be the space of real n×m matrices. If n = m we may define1

a basis for this space, say

{e·ie
′
·j : i, j = 1, 2, . . . n},

where e·j is an n -element column vector all of whose elements are zero,
except the j th, j ≤ n, which is unity. Henceforth e·j , will always have the

meaning just indicated, and ej· will denote the corresponding row entity,

unless otherwise indicated. Often, we may refer to such entities as unit

vectors.

Any real n× n matrix may thus be written in terms of this basis as

A =

n∑
i=1

n∑
j=1

aije·ie
′
·j,

where the aij are arbitrary elements in R.
For many purposes in econometrics, it is not convenient to think of matrices

in terms of the space Vnm, but rather in terms of Rnm, the nm -dimensional

real Euclidean space. To do so, we need to represent an n×m matrix A in the

form of a (column) vector; this facility is made possible by the vec operator

defined earlier in this chapter. From Chap. 1, we know that we may define a
basis for this vector space; the basis in question may be chosen as the set of

vectors

{e·j : j = 1, 2, . . . ,mn}.

Thus, if a = vec(A), the elements of a may be written in the form

standard for vector spaces, namely

a =

mn∑
j=1

aje·j, aj ∈ R, for all j,

where aj for j = 1, 2, . . . , n consists of the elements of the first column of A;

for j = n+ 1, n+ 2, . . . , 2n consists of the elements in the second column of

A; for j = 2n+ 1, 2n+ 2, . . . , 3n consists of the elements in the third column

of A; . . . , . . . , and for j = 2(m− 1) + 1, 2(m− 1) + 2, . . . ,mn consists of the
m th (last) column of A.

1Even if n > m, the procedure given below will produce a basis as well, except

that the unit vectors e·j will then be m -element column vectors.
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What if the matrix A were to be symmetric, or strictly upper (lower)

triangular, or just upper (lower) triangular, or diagonal? Would we be able
to write such a matrix in terms of the basis above? The answer, in princi-

ple, is yes, but we would have to specify that the elements aij obey certain

restrictions, namely

aij = aji, for i �= j if A is a symmetric matrix
aij = 0, for j ≥ i if A is strictly lower triangular

aij = 0, for j > i if A is lower triangular

aij = 0, for i ≥ j if A is strictly upper triangular

aij = 0, for i > j if A is upper triangular
aij = 0, for i �= j if A is diagonal

Remark 4.3. What all these (square) matrices have in common is that their

elements are subject to a set of linear restrictions. This means that the num-

ber of “free” elements is not n2 but something less. Notice that among the

matrices we examined earlier we had not considered orthogonal matrices,

although their elements, too, are subject to restrictions. Specifically, if A is
an orthogonal matrix,

a
′
·ia·j = 1, if i = j, and zero otherwise.

These restrictions, however, are not linear!

Finally, before we proceed with the main topic of this section, we introduce

another type of matrix.

Definition 4.1. Let A = (aij) be an n× n matrix.

i. It is said to be a Toeplitz matrix if ai,j = ai+s,j+s, for all i, j, s;

ii. It is termed a symmetric Toeplitz matrix if, in addition to i, it satisfies

the condition aij = aji, for i �= j.

Remark 4.4. Notice that a symmetric Toeplitz matrix has, at most, n free

elements, say αi, i = 1, 2, . . . , n, and, moreover, its diagonal contains only
α1, its j th supra-diagonal contains only the element αj , j > 1, as does its

j th sub-diagonal. In a non-symmetric Toeplitz matrix corresponding supra-

and sub-diagonals need not contain the same element, so that for such matrices

there are at most 2n− 1 free elements.
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A well known example of a symmetric Toeplitz matrix, from elementary

econometrics, is the covariance matrix of the AR(1) process

ut = ρut−1 + εt, t = 1, 2, . . . , n,

for a sample of size n, where the εt are independent, identically distributed

(i.i.d.) random variables with mean zero and variance σ2.

Precisely, the covariance matrix of the vector u = (u1, u2, . . . , un)
′

is

given by

Cov(u) = Σ =
σ2

1− ρ2
V, V =

⎡
⎢⎢⎣

1 ρ ρ2 . . . . . . ρn−1

ρ 1 ρ . . . . . . ρn−2

...
...

... . . . . . .
...

ρn−1 ρn−2 ρn−3 . . . . . . 1

⎤
⎥⎥⎦ .

For this particular example, it appears that we have only two distinct elements,

namely σ2 and ρ. Note, however, that in any given supra- or sub-diagonal all

elements are the same, and moreover, corresponding supra- and sub-diagonals
contain the same element.

Another example of a Toeplitz matrix, from a somewhat more advanced

level of econometrics, is the covariance matrix of {ut : t = 1, 2, . . . , n}, which is

a vector containing n observations on a covariance stationary process, i.e. one

for which Cov(ut+τ , ut) = κ(|τ |). This covariance matrix is easily determined
to be

Cov(u) = K =

⎡
⎢⎢⎢⎣

κ(0) κ(1) κ(2) . . . . . . κ(n− 1)

κ(1) κ(0) κ(1) . . . . . . κ(n− 2)
...

...
... . . . . . .

...
κ(n− 1) κ(n− 2) κ(n− 3) . . . . . . κ(0)

⎤
⎥⎥⎥⎦ .

It is clearly seen that K is a symmetric Toeplitz matrix and has at most n

free elements, in this case the variance κ(0), and the auto-covariances κ(τ),
τ = 1, 2, . . . , n− 1.

When the free elements of a symmetric Toeplitz matrix, say αi, i =

1, 2, . . . n, obey ai = 0, for i > k, we are led to the special definition

Definition 4.2. Let A = (aij) be a symmetric Toeplitz matrix, with free

elements αi, i = 1, 2, . . . , n; if αi = 0 for i > k, A is said to be a k -

symmetric Toeplitz matrix.
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Remark 4.5. An example of a k -symmetric Toeplitz matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3 . . . αk 0 . . . . . . . . . . . . 0

α2 α1 α2 . . . . . . αk 0 . . . . . . . . . 0
...

...
...

...
...

...
...

...
...

...
...

αk
...

...
...

...
...

...
...

...
...

...

0
...

...
...

...
...

...
...

...
... 0

...
...

...
...

...
...

...
...

...
... αk

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 αk αk−1 αk−2 . . . . . . . . . . . . α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It may be verified that this is the covariance matrix of an MA(k−1) (moving

average of order k − 1 ) process,

ut =

k−1∑
i=0

θiεt−i,

where {εt : t = 0,±1,±2, . . .} is a white noise sequence2 with mean zero,
and variance σ2 , denoted by WN(0, σ2) ; for identification of parameters we

must set θ0 = 1.

This becomes evident in the scalar case if we make the identification, in

terms of the matrix K above, α1 = κ(0), α2 = κ(1), . . . , αk = κ(k − 1)

and note that E(ut+sut) = 0 for s ≥ k ; moreover, we can express the κ ’s in
terms of the theta ’s.

4.3.1 Restricted Subspaces

In this subsection, we explore the implication of Remark 4.3 that the class of

matrices whose elements are subject to linear restrictions lie in a particular

subspace of Rn
2

and determine its structure.

In examining any n×n matrix A, we shall adopt the convention that such
a matrix is represented, for the purposes of our discussion, by vec(A), and is

thus an element of Rn
2

. When the discussion (of any problem involving such

matrix) is completed, we shall employ the inverse operation3 to get back to

A from vec (A).
In this framework A becomes an n2 -element column vector, with distinct

n -element sub-vectors. If the elements of A are subject to restrictions, the

2This term will be formally defined in a later chapter; for the moment the reader may

think of white noise as a sequence of zero mean uncorrelated random variables

with finite variance.
3For lack of established terminology, we term such operation rematricizing.
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elements of vec(A) are subject to the same restrictions, and it is evident that

vec(A) must lie in a restricted subspace (RS) of Rn
2

.
We examine the nature of such subspaces and determine their bases in the

discussion below.

The RS for Symmetric Matrices

Before we proceed with our discussion, it is convenient to introduce the
following definition, which will greatly facilitate exposition.

Definition 4.3. Let P be an m × n matrix, and let p = vec(P ). The
operator mat denotes the operation of rematricising p, i.e. it is defined by

P = mat(p).

Remark 4.6. Strictly speaking, we have defined the mat operator only in

reference to a vectorized representation of a givenmatrix. Otherwise its mean-

ing is ambiguous. For example, if we are given an arbirary q -element vector,
say d, the operation mat(d) could have several meanings, including no mean-

ing at all. In particular, if q is a prime number, it cannot be represented

as the product of two integers (other than itself and one), and in this case

the operation mat(d) has no useful meaning because it is sort of an identity,
except that it may be a row or a column. If q has more than one factor-

ization of the form q = mn, where m,n are integers, the operation mat(d)

could have several plausible meanings; even if the factorization is unique, the

ambiguity still remains since mat(d) may denote either an m× n matrix or

an n×m matrix, for specic integers n and m. However, the context in which
we have defined this operator gives us an unambiguous interpretation, namely

if a = vec(A), then mat(a) = A. This notational device offers considerable

expository convenience.

The restrictions on a symmetric matrix are of the form aij = aji for
i �= j. Thus, for an n×n matrix there are n(n−1)/2 such (linear) restrictions,

and we conjecture that the restricted space is of dimension n(n+ 1)/2.

Assuming this is the case, we now establish a basis for this restricted

space so that all its elements can be expressed in terms of the basis. More

precisely, we need to determine a (minimal) set of linearly independent vectors
in terms of which we may describe symmetric matrices. A little reflection will

convince us that such matrices have, at most, only s = n(n+ 1)/2 distinct

elements. What we need then is a matrix, say Bsm, such that given the

distinct elements of a symmetric matrix, a linear transformation of these
distinct elements will produce the desired symmetric matrix, according to the

conventions established above.
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Let the distinct elements be denoted by the vector

α = (a11, a21, . . . , an1, a22, . . . , an2, a33, . . . , an3, . . . , ann)
′
, (4.4)

and note that

vec(A) = a = Bsmα, (4.5)

so that when we rematricize, i.e. we mat Bsmα, we obtain A. In Eq. (4.5)

Bsm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0 0 0 . . . . . . 0 0

e2·(n) 0 0 0 . . . . . . 0 0

0 In−1 0 0 . . . . . . 0 0

e3·(n) 0 0 0 . . . . . . 0 0
0 e2·(n−1) 0 0 . . . . . . 0 0

0 0 In−2 0 . . . . . . 0 0

e4·(n) 0 0 0 . . . . . . 0 0

0 e3·(n−1) 0 0 . . . . . . 0 0

0 0 e2·(n−2) 0 . . . . . . 0 0
0 0 0 In−3 . . . . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

en·(n) 0 0 0 . . . . . . 0 0

0 en−1·(n−1) 0 0 . . . . . . 0 0

0 0 en−2·(n−2) 0 . . . . . . 0 0
0 0 0 en−3·(n−3) . . . . . . 0 0
...

...
...

...
...

...
...

...

0 0 0 0 . . . . . . e2·(2) 0

0 0 0 0 . . . . . . 0 I1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.6)

and the notation ei·(r) indicates an r -element row vector all of whose ele-

ments are zero except the i th, i ≤ r, which is unity. It is easily verified
that the matrix Bsm of Eq. (4.6) has s = n(n + 1)/2 linearly independent

columns, and it is of dimension n2 × s; hence, it is a basis for the restricted

subspace of Rn
2

. The dimension of this subspace is s, and it contains the

class of symmetric matrices with real elements.
What the transformation in Eq. (4.5) does is to take any vector in Rs and,

according to our convention, transform it into the symmetric matrix that has

the elements of this vector as its distinct elements.
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If we denote the restricted subspace of symmetric matrices by Vsm, then

from a formal point of view the matrix Bsm effects the transformation:

Bsm : Rs → Vsm,

i.e. any element of Rs, through Bsm, creates a unique element of Vsm.

In applications, we often need the opposite operation, i.e. given any sym-
metric matrix A, we need to extract, in vector form, its distinct elements.

The matrix that performs this operation for symmetric matrices is

Csm = diag(In, I
∗
n−1, I

∗
n−2, ·, I∗1 ), I∗n−i = (0, In−i), i = 1, 2, . . . n− 1, (4.7)

where the zero matrix is of dimension n− i × i. Thus, Csm is of dimension

s×n2 and, evidently, of rank s. Precisely, given any symmetric matrix A we

obtain

α = Csma, a = vec(A). (4.8)

It follows, therefore, from Eqs. (4.5) and (4.8) that

α = Csma = CsmBsmα, a = Bsmα = BsmCsma, (4.9)

and Eq. (4.9) suggests that the matrices CsmBsm and BsmCsm behave more

or less like identity operators. We examine this topic in the next section.

Remark 4.7. The matrices Csm, Bsm, and analogous matrices we shall

define below for other types of restricted matrices, are termed, respectively, the

selection and restoration matrices. The selection matrix is also occasionally

termed the elimination matrix. The terms are self explanatory and justified
in that the elimination matrix eliminates from A the redundant elements (or

alternatively selects the distinct elements) to give us the vector of distinct or

unrestricted elements, α, whereas the restoration matrix takes the vector of

distinct elements and restores the original vector a, such that mat (a) = A.

Notice that Bsm, the restoration matrix, is also a basis of the RS of Rn
2

which contains the class of symmetric matrices. As a basis of this vector

subspace Bsm is not unique since if H is any nonsingular ( s×s ) matrix,

B∗
sm = BsmH is also a basis, but it is not a restoration matrix for a.

Properties of the Matrices Bsm, Csm

It is evident from Eq. (4.9) that Csm is a left inverse of Bsm and that

CsmBsm = Is because α contains distinct elements, or at least because
no linear dependence is known to exist among its elements. The matrix

BsmCsm, however, which is n2 × n2, cannot be of full rank (i.e. the identity

matrix) due to the fact that the rank of Bsm, Csm is s < n2 or, equivalently,

because the elements of a exhibit linear dependencies.
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Example 4.1. Let n = 3, and note that

Bsm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Csm =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Consequently,

CsmBsm = I6, BsmCsm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that BsmCsm is essentially the matrix Bsm, with three extra columns

of zeros, and transforms the orginal vector a into itself utilizing the

restrictions aij = aji for i �= j.

RS for Lower Triangular Matrices

In discussing lower triangular (or other types of restricted) matrices we shall

be considerably more brief than in the previous discussion; the framework and

considerations explained in the case of symmetric matrices broadly apply to

the cases we consider below.

Thus, let A = (aij) be a lower triangular matrix; the restrictions on the
elements aij are of the form

aij = 0, for j > i.

The nonzero elements of A are given by

α = CLTa, a = vec(A), (4.10)

where CLT is as in the right member of Eq. (4.7). However, in the restoration

operation, i.e. in

a = BLTα,
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the matrix BLT is not as defined in the right member of Eq. (4.6); rather it

is defined by BLT = C
′
LT , i.e.

a = BLTα = C
′
LTCLTa

so that C
′
LTCLT is a diagonal matrix, and its diagonal contains n(n+ 1)/2

nonzero elements and n(n− 1)/2 zero elements.

RS for Strictly Lower Triangular Matrices

Strictly lower diagonal matrices are defined by the restrictions

A = (aij), aij = 0, for j ≥ i.

The selection matrix, Cslt, is given by

Cslt = diag(I∗n−1, I
∗
n−2, . . . , I

∗
1 , 0), I∗n−i = (0, In−i), i = 1, 2, . . . , n− 1.

(4.11)

where the last element of the (block) diagonal matrix above, 0, is of dimension

1×n. We note that Cslt is s+1×n2 of rank s = n(n−1)/2, and its distinct
elements are given by

α = Cslta, (4.12)

where the last element of α is zero.

Example 4.2. Let A be a 3×3 strictly lower triangular matrix. Its distinct

elements are α = (a21, a31, a32, 0)
′
, adopting the convention of putting the

diagonal element last. The matrices Cslt and CsltC
′
slt are given by

Cslt =

⎡
⎢⎢⎣
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ , CsltC

′
slt =

⎡
⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎦ ,

(4.13)

and one may easily verify that

a = vec(A), α = Cslta, a = C
′
sltα = C

′
sltCslta. (4.14)

Remark 4.8. The case with upper triangular, and strictly upper triangular

matrices may be handled in one of two ways: first, if A is (strictly) upper

triangular then A
′
is (strictly) lower triangular, in which case the discussion

above will suffice; second, the matrices CUT , Csut may be defined appropri-
ately. The application of the first approach is self evident. As for the second,
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the matrix CUT is a block matrix, with diagonal blocks Ii, i = 1, 2, 3, . . . , n ,

i.e.
CUT = diag(I1, I2, I3, · · · , In), (4.15)

the remaining blocks being suitably dimensioned zero matrices; for the strictly

upper triangular case we have

Csut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e1· 0 0 . . . 0

0 0 e1· 0 . . . 0

0 0 e2· 0 . . . 0

0 0 0 e1· . . . 0
0 0 0 e2· . . . 0

0 0 0 e3· . . . 0
...

...
...

...
...

...

0 0 0 0 . . . e1·
0 0 0 0 . . . e2·
0 0 0 0 . . . e3·
0 0 0 0 . . . e4·
0 0 0 0 . . . e5·
...

...
...

...
...

...
0 0 0 0 . . . en−2·
0 0 0 0 . . . en−1·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.16)

Otherwise the situation remains as before; notice, in addition, that Csut is

very similar to CUT . We chose this more extensive representation to minimize

confusion that may arise because of the missing diagonal elements; the later

would necessitate striking out columns from the diagonal blocks of CUT . Evi-
dently CUT is a matrix of dimension n(n+1)/2×n2 and Csut is of dimension

n(n− 1)/2× n2 .

Remark 4.9. A strictly lower (or upper) triangular matrix is a special case

of a class of matrices termed nilpotent.

Definition 4.4. An n× n matrix A is said to be nilpotent if and only if

Ar = 0, for some integer r.

The smallest integer, say ν, such that Aν = 0, is said to be the nilpotency

index of the matrix A; notice that if Aν = 0, then Ar = 0, for all r ≥ ν.
If A is a nilpotent matrix, with nilpotency index r < n, it has the

canonical representation

A = PQP−1, Q = (qij), such that
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qij = 0, if j ≥ i− n+ r + 1

= 1, otherwise. (4.17)

RS for Diagonal Matrices

Let Cd and C
′
d be, respectively, the selection and restoration matrices for

the diagonal matrix A. If α = (a11, a22, . . . , ann)
′
are the diagonal elements

of A, then

a = vec(A), α = Cda, a = C
′
dCda, Cd = diag(e1·, e2·, . . . , en·). (4.18)

It may thus be verified that Cd is n× n2, of rank n, and that C
′
dCd is an

n2×n2 diagonal matrix, n of whose diagonal elements are one and the rest,

n(n− 1), are zero.

RS for Toepltiz Matrices

We recall that a Toeplitz matrix A is defined by the restrictions

aij = ai+r,j+r, for all i, j, r.

It is then easy to verify that A has at most 2n − 1 unrestricted ele-

ments, namely those that are in its first row and column. The restoration
matrix, BT ,

BT : R2n−1 → Rn
2

,

maps the unrestricted space R2n−1 into a subspace of Rn
2

, such that if
α ∈ R2n−1, then

a = BTα, mat(a) = A, (4.19)

and A is a Toeplitz matrix. The matrix BT , which is n2×2n−1, is given by

B
′
T =

[
In 0 I◦

′
n−1 0 0 . . . . . . 0 0 . . . 0 I◦1

0 e
′
1· 0 e

′
2· e

′
1· . . . . . . e

′
n−1· e

′
n−2· . . . e

′
1· 0

]
,

I◦n−i = (In−i, 0), i = 1, 2, . . . n− 1, (4.20)

where ei· is in this case an n − 1 -element row vector all of whose elements
are zero except the i th, which is one, and the zero matrix in I◦n−i is n− i× i.

The selection (or elimination) matrix CT is evidently given by

CT = diag(In, In−1 ⊗ e1·), (4.21)

where e1· is an n -element row vector all of whose elements are zero, except

the first, which is unity and thus CT is seen to be a (2n− 1)× n2 matrix of

rank 2n− 1.
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RS for Symmetric and k -Symmetric Toeplitz Matrices

We have seen in the discussion above that it is rather difficult and cumbersome

to produce, from first principles, the selection and restoration matrices for

Toeplitz matrices. It is even more cumbersome to do so for symmetric and

k -symmetric Toeplitz matrices. Thus, we need to introduce more structure
into our discussion. To this end, let

Hr =

n−r∑
i=1

e·ie
′
·i+r, r = 0, 1, 2, . . . , n− 1, (4.22)

and note that

H0 = In, HkHs = Hk+s, k + s ≤ n. (4.23)

Using the set {Hr : r = 0, 1, 2, . . . , n−1}, it is easy to show that the symmetric
Toeplitz matrix A, with distinct elements α = (a1, a2, . . . , an)

′
, is given by

A = a1H0 +

n−1∑
r=1

ar+1H
∗
r , H∗

r = Hr +H
′
r. (4.24)

Since

vec(A) =

n−1∑
r=0

vec(H∗
r )ar+1, H∗

0 = In,

we see that the restoration matrix, BST , is given by

vec(A) = a = BSTα, BST = (vec(H∗
0 ), vec(H

∗
1 ), . . . , vec(H

∗
n−1)). (4.25)

The elimination matrix is of course easily determined, as for any other
symmetric matrix, as

CST = (In, 0, 0, . . . , 0). (4.26)

For k -symmetric Toeplitz matrices, the restoration matrix is obtained by

redefining
H∗
r = 0, r ≥ k, (4.27)

so that

a = BkSTα, BkST = [vec(H∗
0 ), vec(H

∗
1 ), . . . , vec(H

∗
k−1)], α = (a1, a2, . . . , ak)

′
.

(4.28)
The elimination matrix is similarly obtained as

CkST = (I∗k , 0, . . . , 0), I∗k = (Ik, 0), (4.29)

where the zero matrix is of dimension k × n− k.
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4.3.2 The Structure of Restricted Subspaces

In the previous section, we examined a number of restricted subspaces and

obtained explicitly the restoration (basis) and elimination matrices from first

principles. In this section, we discuss more abstractly several aspects of such

(linearly) restricted subspaces in terms of certain properties of the restoration
matrix. We will discover that the restoration and elimination matrices are

closely connected and that the latter may be derived from the former. Thus,

most of the ensuing discussion will be in the context of restoration matrices.

If we examine the restoration (and elimination) matrices of the previous

section, we easily determine that they all share the following properties:

i. Their elements are either zero or one;

ii. The restoration matrices are q × p, ( q > p, ) and of rank p;

iii. The elimination matrices are q × p, ( q < p, ) and of rank q.

We denote the restoration matrix, generically, by B and set q = n2; we

denote the elimination matrix, generically, by C and set p = n2. Thus, B is

n2×p of rank p, and C is q×n2 of rank q. From Chap. 3, we determine that

their (unique) generalized inverse is given, respectively, by Bg = (B
′
B)−1B

′
,

Cg = C
′
(CC

′
)−1. To verify this assertion, we observe that

BBgB = B(B
′
B)−1B

′
B = B, CCgC = CC

′
(CC

′
)−1C = C

BBg = B(B
′
B)−1B

′
, CCg = CC

′
(CC

′
)−1 = Iq

BgB = (B
′
B)−1B

′
B = Ip, CgC = C

′
(C

′
C)−1C

BgBBg = Bg, CgCCg = Cg,

which confirms that Bg and Cg, as defined above, are indeed the generalized
inverse of B and C, respectively.

As we pointed out in the earlier discussion, the RS of the special matrices

examined above is described by the (dimension expanding) transformation

B : Rp → Rq, p < q,

so that it defines a subspace of Rq; since B may be taken to be a basis

for this subspace, any element of the RS, say a = vec(A), may be expressed

uniquely as

a = Bα, α ∈ Rp, α = h(a), a = vec(A), (4.30)

for some (vector) function h(·). We should emphasize that uniqueness is to

be understood in terms of the basis matrix B. Evidently, if another basis
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is employed, say B∗ = BQ, for some p × p nonsingular matrix Q, then we

can write
a = B∗α∗, where B∗ = BQ, α∗ = Q−1α.

Thus, fixing the basis B, we have the following useful characterization of the

(linearly) restricted subspace induced by B, which we shall denote by RS(B).

Lemma 4.1. Let RS(B) be the restricted subspace induced by the transfor-

mation

B : Rp → Rq, p < q.

Then, the following statements are equivalent:

i. A ∈ RS(B);

ii. vec(A) = a = Bα, α ∈ Rp, with α = h(a), for some vector valued

function h;

iii. (Iq −BBg)a = 0.

Proof: By definition, if A ∈ RS(B), there exists a vector α ∈ Rp such that
a = Bα. From the properties of the generalized inverse, we obtain

Bga = BgBα = α,

which defines the function h(a) = Bga, thus completing the proof that i

implies ii.

If ii is given, then, by definition, mat (a) = A, so that A ∈ RS(B), thus
showing that ii implies i. Moreover, from ii we deduce that

α = Bga, Bα = BBga, or (Iq −BBg)a = 0,

thus showing that ii implies iii.

Finally, given iii, we have

a = BBga;

putting α = Bga, we note that α ∈ Rp, and we find

a = Bα, for α ∈ Rp, such that α = h(a),

thus showing that iii implies ii.

q.e.d.
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Corollary 4.4. In the context of RS(B), the elimination matrix is given by

C = Bg. (4.31)

Proof: From Lemma 4.1, if A ∈ RS(B) and a = vec(A), then a = Bα,
for α ∈ Rp; moreover, α = Bga, so that Bg extracts from A its distinct

elements and is thus the elimination matrix.

q.e.d.

We may summarize the conclusions above in the following proposition.

Proposition 4.5. Let RS(B) be the restricted subspace of Rn
2

induced by

the transformation

B : Rp → Rn
2

,

where B is an n2 × p matrix of rank p, whose elements are either zero or

one. The following statements are true:

i. The restoration matrices for symmetric, lower triangular, strictly lower

triangular, diagonal, Toeplitz, symmetric Toeplitz, and k -symmetric

Toeplitz matrices are of the type B, as above, with the correspondence

Lower Triangle (LT) p = n(n+ 1)/2

Strictly LT p = n(n− 1)/2 Toeplitz (T) 2n-1
Symmetric p = n(n+ 1)/2 Symmetric T p = n

Diagonal p = n k-Symmetric T p = k;

ii. The corresponding selection, or elimination matrix, generically denoted

by C, is given by

C = Bg

and, moreover,

Bg = (B
′
B)−1B

′

0 = (In2 −BBg)a.

4.3.3 Permutation Matrices and the vec Operator

The discussion in this section may be motivated inter alia by the following

consideration. Suppose the elements of a matrix, say M, of dimension n×m ,

are a function of a vector γ, of considerably smaller dimension, and it is desired
to differentiate the matrix M

′
M , whose dimension is m×m . Whatever the
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convention may be for differentiating a matrix with respect to a vector, a

subject we examine in the next chapter, we may begin by vectorizing

vec(M
′
M) = (Im ⊗M

′
)vec(M), or (M

′
⊗ Im)vec(M

′
).

The first representation is suitable for differentiating M
′
M “with respect to its

second factor”, whereas the second is suitable for differentiating it with respect
to the first factor. It is evident that vec (M) and vec (M

′
) are both nm -

element column vectors that contain the same elements but in different

order; thus, it would be very convenient if we can determine the nature of a

matrix, say P, such that vec(M
′
) = Pvec(M). Evidently, P does nothing

more than rearrange (permute) the elements of vec (M) so that their order
corresponds to that of the elements of vec (M

′
).

Definition 4.5. A square matrix of order n, denoted by Pn, is said to be

a permutation matrix if and only if it can be obtained by permuting the

columns (or rows) of the identity matrix In.

A partial list of the properties of the permutation matrix is given in the

discussion below.

Lemma 4.2. Let Pn be a permutation matrix; the following statements are
true:

i. Pn is a product of elementary matrices (see Sect. 2.4);

ii. Pn is an orthogonal matrix, i.e. P
′
nPn = In, or P

′
n = P−1

n .

Proof: The proof of i is evident from the discussion of Sect. 2.4.
The proof of ii is as follows. Since Pn consists of permutations of the

identity matrix In, let Ei be the elementary matrices of type one, i.e. those

that interchange two columns (or rows). By construction, Pn contains a

number of such interchanges, say r in number. Thus Pn =
∏r
i=1Ei; since

the elementary matrices are orthogonal, it follows that Pn is also orthogonal;

more precisely, by construction, the columns of Pn contain one unit element

and all others are zero, whence it follows that P
′
n = P−1

n .

q.e.d.

Lemma 4.3. Let A be a real n × m matrix; there exists a unique

permutation matrix Pmn such that

vec(A
′
) = Pmna, a = vec(A).

Proof: Define the matrix

Pmn = (Im ⊗ e
′
1·, Im ⊗ e

′
2·, . . . , Im ⊗ e

′
n·)

′
,
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where ei· is an n -element row vector all of whose elements are zero except

the i th, i ≤ n, which is unity; notice also that the dimension of Pmn is
nm× nm and, moreover, that the first block, viz. Im ⊗ e1· operating on a,

extracts the first element, then the (n+1), then the (2n+1), and so on until

the (m − 1)n + 1 element. Thus, the first m -element sub-vector of Pmn a

consists of (a11, a12, a13, . . . , a1m)
′
, which is simply the first m -element sub-

vector of vec (A
′
). Similarly, for the second, third and so on until the n th

block component of Pmn. Notice further that, by construction, the latter is

indeed a permutation matrix.

As for uniqueness, suppose there exists another matrix, say P ∗
mn, that

produces the result

vec(A
′
) = P ∗

mna, a = vec(A).

Subtracting, we find (Pmn−P ∗
mn)a = 0, and, since a is arbitrary, we conclude

Pmn = P ∗
mn, thus proving uniqueness.

q.e.d.

Remark 4.10. The order mn of the subscript of the permutation matrix

above is not arbitrary. In fact, we have the following convention: if Pij is the
permutation matrix that transforms vec (A) into vec (A

′
) and A is n ×m,

Pij consists of blocks of the form Im ⊗ ei·. Notice that the dimension of

the identity matrix (m ) is equal to the number of columns of the matrix

A, whereas the dimension of the unit vectors ei·, ( n, ) corresponds to the
number of rows, and there are as many unit vectors as their dimension, i.e.

if the row vectors contain say 5 elements there are five unit vectors each

of dimension 5. A consequence of that is that the number of the identity

matrices in this representation is equal to the number of unit vectors

involved. The convention then is to write Pij as Pmn, so that the first
subscript corresponds to the dimension of the identity matrix contained therein

and the second subscript corresponds to the dimension of the unit vectors.

In light of this convention, Pmn �= Pnm; more precisely, Pnm transforms

b = vec(B), where B is m× n, into vec (B
′
) and, according to Lemma 4.3,

has typical block element of the form In ⊗ ei·, where now the dimension of

the unit vectors is m. We have the immediate corollary.

Corollary 4.5. If Pmn is a permutation matrix,

Pmn = P
′
nm.

Moreover, when n = m, the permutation matrix Pnn is its own inverse, and

it is symmetric.
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Proof: Let A be n × m and Pmn be defined by the representation a∗ =

Pmna, a∗ = vec(A
′
) = rvec(A)

′
. Since A

′
is m × n, we also have the

representation

a = Pnma
∗, which implies a∗ = Pmna = PmnPnma

∗.

Because a, and hence a∗, are arbitrary, we conclude that

PmnPnm = Inm, or Pmn = P−1
nm = P

′
nm,

Finally, if n = m, the last equation above implies

Pnn = P−1
nn , as well as Pnn = P

′
nn,

which shows Pnn to be symmetric and its own inverse.

q.e.d.

Remark 4.11. Perhaps the reader will gain greater insight into the properties
of permutation matrices by a more explicit representation of Pmn. A close look

at the form of Pmn given in Lemma 4.3, and a little reflection, shows that the

successive rows and columns of that matrix are given by

Successive rows Successive columns

e1· em+1· e2m+1· . . . e(n−1)m+1· e·1 e·m+1 e·2m+1 . . . e·(n−1)m+1

e2· em+2· e2m+2· . . . e(n−1)m+2· e·2 e·m+2 e·2m+2 . . . e·(n−1)m+2

e3· em+3· e2m+3· . . . e(n−1)m+3· e·3 e·m+3 e·2m+3 . . . e·(n−1)m+3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

em· e2m· e3m· . . . enm· e·m e·2m e·3m . . . e·nm,

where all unit vectors (rows as well as columns) have nm elements.

Viewed in light of the representation above, the result that Pmn is
orthogonal becomes quite transparent, as does the fact that when n = m,

Pnn = P
′
nn = P−1

nn .

The fact that P
′
mn = Pnm when n �= m is best illustrated with an

example.

Example 4.3. Let A be 3× 2; the corresponding P23 permutation matrix

is given by

P23 = =

⎡
⎣ I2 ⊗ e1·
I2 ⊗ e2·
I2 ⊗ e3·

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

e1· 0
0 e1·
e2· 0

0 e2·
e3· 0

0 e3·

⎤
⎥⎥⎥⎥⎥⎥⎦
, P

′
23 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

e1· 0 0

0 e1· 0

0 0 e1·
e2· 0 0
0 e2· 0

0 0 e2·

⎤
⎥⎥⎥⎥⎥⎥⎦
=

(
I3 ⊗ e1·
I3 ⊗ e2·

)
= P32,

where in the representation of P23 the ei· for i = 1, 2, 3 denote 3-element

unit (row) vectors, and in the representation of P32, for i = 1, 2 they denote
2-element unit (row) vectors.

Before we leave this topic we give three additional results. We produce an

“analytic” representation of Pmn, and determine its trace and characteristic

roots.

To produce an analytic expression we proceed through the Lemma below.

Lemma 4.4. The permutation matrix Pmn has an analytic expression as

Pmn =

m∑
i=1

n∑
j=1

(S
′
ij ⊗ Sij), (4.32)

where Sij = e∗·ie
′
·j , e∗·i is an m -element unit (column) vector and e·j is,

according to our notational convention, an n -element (column) unit vector.

Proof: Let A be an arbitrary real n×m matrix; then,

A
′
= ImA

′
In =

(
m∑
i=1

e∗·ie
∗′
·i

)
A

′

⎛
⎝ n∑
j=1

e·je
′
·j

⎞
⎠

=
m∑
i=1

n∑
j=1

e∗·i(e
∗′
·iA

′
e·j)e

′
·j =

m∑
i=1

n∑
j=1

e∗·i(e
′
·jAe

∗
·i)e

′
·j

=

m∑
i=1

n∑
j=1

SijASij .

It follows from Corollary 4.1 that

vec(A
′
) =

m∑
i=1

n∑
j=1

(S
′
ij ⊗ Sij)vec(A).
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Because Pmn is the (permutation) matrix that transforms vec (A) into

vec (A
′
), we conclude that

Pmn =

m∑
i=1

n∑
j=1

(S
′
ij ⊗ Sij).

q.e.d.

The next lemma establishes the trace of the permutation matrix Pmn.

Lemma 4.5. Let Pmn be the permutation matrix of Lemma 4.4. Then,

trPmn = 1+ d,

where d is the greatest common divisor of m− 1 and n− 1.

Proof: We may write

Sij = e∗·ie
′
·j, so that (4.33)

∑
i,j

(S
′
ij ⊗ Sij) =

n∑
j=1

(
m∑
i=1

e·j ⊗ (e∗
′

·i ⊗ e∗·i)⊗ e
′
·j

)

=

n∑
j=1

[
e·j ⊗

m∑
i=1

(
e∗

′
·i ⊗ e∗·i

)
⊗ e

′
·j

]

=

n∑
j=1

(
e·j ⊗ Im ⊗ e

′
·j
)
.

It may be verified that the rightmost member of the last equation in the

equation system Eq. (4.33) is a matrix all of whose elements are zero, except
for the elements in positions

{((j − 1)m+ s, (s− 1)n+ j) : s = 1, 2, . . . ,m, j = 1, 2, . . . n},

which are unity. The question is: how many of these are diagonal elements?
For such elements, we must have

(j − 1)m+ s = (s− 1)n+ j,

and the summation over s and j will produce the trace of Pmn. We note

that the choice j = s = 1 gives us a diagonal element, so that the trace is at
least one. To determine how many other terms we have, rewrite the equation

above as

(j − 1)(m− 1) = (s− 1)(n− 1),

and introduce the Kronecker delta, such that δ(a, b) = 1 if a = b, and zero

otherwise.
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In this notation, we can write

trPmn = 1 +

m∑
s=2

n∑
j=2

δ[(j − 1)(m− 1), (s− 1)(n− 1)]

= 1 +

m−1∑
s=1

n−1∑
j=1

δ[j(m− 1), s(n− 1)].

Let d be the greatest common divisor of m− 1 and n− 1, so that

m− 1 = c1d, n− 1 = c2d,

where c1 and c2 are integers and d is an integer equal to or greater

than one. The condition

j(m− 1) = s(n− 1), or jc1 = sc2,

is evidently satisfied by the pairs j = kc2, s = kc1, k = 1, 2, 3, . . . d. To

verify this, note that j = kc2 has range {c2, 2c2, 3c2, . . . , dc2 = n− 1}, which
is contained in the range of summation over j. Similarly s = kc1 has range

{c1, 2c1, 3c1, . . . , dc1 = m− 1}, which is contained in the range of summation
over s. Consequently,

trPmn = 1+

m−1∑
s=1

n−1∑
j=1

δ[j(m− 1), s(n− 1)] = 1 + d.

q.e.d.

The following inference is immediately available.

Corollary 4.6. Let Pmn be the permutation matrix of Lemma 4.5, and

suppose that n = m. Then,

trPnn = n, |Pnn| = (−1)n(n−1)/2. (4.34)

Proof: The proof of the first assertion is immediate from Lemma 4.5 since the
greatest common divisor of n− 1 and n− 1 is, evidently, d = n− 1.

For the second part, we note that since Pnn is a symmetric orthogonal

matrix, its characteristic roots are real; hence, they are either plus or minus

1.4 Because the total number of roots is n2, let k be the number of positive
unit roots. Then, using the first part, we have

n = k − (n2 − k), or k =
n(n+ 1)

2
,

4For an explicit derivation, see Sect. 2.7.
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so that the number of negative unit roots is

n2 − n(n+ 1)

2
=
n(n− 1)

2
, and thus |Pnn| = (−1)n(n−1)/2.

q.e.d.

Remark 4.12. If we are dealing with Pmn, n > m, the determinant is not

easily found, because Pmn is not symmetric. This means that some of
its roots may be complex. However, for all orthogonal matrices, whether

symmetric or not, their roots obey

λ2 = 1, which is satisfied by λ = ±1, or λ = ±i,

where i is the imaginary unit, obeying i2 = −1 and remembering that

complex roots appear as pairs of complex conjugates, the absolute value of i
being (i)(−i) = 1 .

We summarize the preceding discussion in

Proposition 4.6. Let Pmn be a permutation matrix, i.e. a matrix resulting
from permuting the columns (or rows) of the identity matrix Imn, and let A

be a real n×m matrix, n ≥ m.

The following statements are true:

i. There exists a unique permutation matrix, say Pmn, such that

vec(A
′
) = Pmnvec(A);

ii. The matrix Pmn is orthogonal, i.e.

P
′
mn = P−1

mn;

iii. If Pnm is the permutation matrix that, for any real m × n matrix B,

produces vec (B
′
) = Pnmvec(B),

P
′
nm = Pmn;

iv. The permutation matrix Pmn has the analytic expression

Pnm =
m∑
i=1

n∑
j=1

(S
′
ij ⊗ Sij), Sij = e∗·ie

′
·j ;

v. tr Pnm = 1 + d, where d is the greatest common divisor of n− 1 and

m− 1;
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vi. If A is a square matrix, i.e. n = m, then, P
′
nn = P−1

nn = Pnn.

vii. Since Pnn is a symmetric orthogonal matrix, its characteristic roots are
±1, and it has n(n+1)/2 positive unit roots, and n(n− 1)/2 negative

unit roots;

viii. The determinant of Pnn is given by

|Pnn| = (−1)n(n−1)/2.

4.3.4 Permutation and the vec Operator

We begin with the following proposition.

Proposition 4.7. Let A be n×m, B be r×s, and Prn be a permutation

matrix. The following statement is true:

Prn(A⊗B) = (B ⊗A)Psm. (4.35)

Proof: Let X be an arbitrary (s ×m) matrix such that vec (X) is an sm -

element vector, and note that

BXA′ is a matrix of dimension r × n, so that Prnvec(BXA
′) = vec(AX ′B′).

Expanding the two sides above by the methods developed above, we find

Prn(A⊗B)vec(X) = Prnvec(BXA
′
) = vec(AX

′
B

′
)

= (B ⊗A)vec(X
′
) = (B ⊗A)Psmvec(X).

Since vec(X) is arbitrary, the conclusion follows.

q.e.d.

Corollary 4.7. Let A, B, Prn, Psm be as in Proposition 4.7, and further

suppose that rank(A ) = r ≤ m. The following statements are true:

i. Prn(A⊗B)P ′
sm = (B ⊗A).

ii. The mn×mn (square) matrix S = Pnm(A
′ ⊗A) has the properties:

1. It is symmetric;

2. rank( S ) = r2, rank(A) = r ;

3. tr( S ) =tr(A
′
A );
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4. S2 = AA
′ ⊗A

′
A.

Proof: To prove i, we note from Proposition 4.7 that

Prn(A⊗B) = (B ⊗A)Psm.

Post-multiplying by P ′
sm, we obtain the desired result.

To prove part ii.1, observe that

S
′
= {[Pnm(A

′
⊗A)Pmn]P

′
mn}′ = [(A⊗A

′
)Pmn]

′
= Pnm(A

′
⊗A).

To prove ii.2, we note that Pnm is nonsingular and hence that

rank(S) = rank(A
′
⊗A).

From Proposition 2.68 (singular value decomposition), we deduce that
rank(A ) = rank (A

′
A). From the properties of Kronecker matrices we know

that if (λ, x) is a pair of characteristic root and vector for a (square) matrix

A1, and if (μ, y) is a similar entity with respect to another (square) matrix

A2, then (λ ⊗ μ, x ⊗ y) is a pair of characteristic root and vector for the
Kronecker product A1 ⊗ A2. Hence, putting C = (A

′ ⊗ A), we have, for

CC
′
,

(A
′
A⊗AA

′
)(x⊗ y) = λx⊗ μy.

By Corollary 2.8, the nonzero characteristic roots of A
′
A and AA

′
are

identical; since the characteristic roots of A
′
A⊗AA′ are

{(λiμj) : i = 1, 2, . . .m, j = 1, 2, . . . , n},

and rank(A) = rank(A ′ ) = r, we conclude that the number of nonzero roots

of A
′
A⊗AA

′
is r2, and hence that the rank of CC

′
is r2. But this implies

rank (S) = r2, which completes the proof of ii.2.

To prove ii.3, we note, from the construction of the matrix Pnm in the
proof of Lemma 4.3, that the diagonal blocks of the matrix S are given by

a
′
i· ⊗ ai· = a

′
i·ai·, so that

trS =
n∑
i=1

(
tra

′
i·ai·

)
=

⎛
⎝ n∑
i=1

m∑
j=1

a2ij

⎞
⎠ = trA

′
A,

which completes the proof of ii.3.

The proof of ii.4 is straightforward in view of Proposition 4.7; this is so

because

S2 = Pnm(A
′
⊗A)Pnm(A

′
⊗A) = (A⊗A

′
)(A

′
⊗A) = (AA

′
⊗A

′
A).

q.e.d.



Chapter 5

Vector and Matrix

Differentiation

5.1 Introduction

Frequently, we need to differentiate quantities like tr(AX) with respect to the

elements of X, or quantities like Ax, z′Ax with respect to the elements of

(the vectors) x and/or z.

Although no new concept is involved in carrying out such operations, they
involve cumbersome manipulations, and thus it is desirable to derive such

results in vector and/or matrix notation and have them easily available for

reference.

Throughout this chapter, and in applications, we employ the following

convention.

Convention 5.1. Let
y = ψ(x),

where y, x are, respectively, m - and n -element column vectors. The symbol

∂y

∂x
=

[
∂yi
∂xj

]
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

will denote the matrix of first-order partial derivatives (Jacobian matrix) of

the transformation from x to y such that the i th row contains the (parial)

derivatives of the i th element of y with respect to the elements of x, namely

∂yi
∂x1

,
∂yi
∂x2

, . . . ,
∂yi
∂xn

.

Remark 5.1. Notice that if y, above, is a scalar, then Convention 5.1 implies

that ∂y/∂x is a row vector. If we wish to represent it as a column vector

P.J. Dhrymes, Mathematics for Econometrics,
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we do so by writing ∂y/∂x′, or (∂y/∂x)′. Many authors prefer the first alter-

native; in this volume, however, we always write the partial derivative of a
scalar with respect to a vector as a row, and if we need to represent it as a

column we write (∂y/∂x)′.

5.2 Derivatives of Functions of the Form

y = Ax

We begin with the simple proposition.

Proposition 5.1. If

y = Ax,

where A is m×n that does not depend on x, and the latter is an n-element

column vector
∂y

∂x
= A.

Proof: Since the i th element of y is given by

yi =
n∑
k=1

aikxk,

it follows that

∂yi
∂xj

= aij ,

and hence that

∂y

∂x
= A.

q.e.d.

If the vector x above is a function of another set of variables, say those

contained in the r -element column vector α, then we have

Proposition 5.2. Let

y = Ax

be as in Proposition 5.1, but suppose that x is a function of the r -element
vector α, while A is independent of α and x. Then

∂y

∂α
=
∂y

∂x

∂x

∂α
= A

∂x

∂α
.
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Proof: Since yi =
∑n

k=1 aikxk,

∂yi
∂αj

=

n∑
k=1

aik
∂xk
∂αj

.

But the right member of the equation above is simply the (i, j) element of

A(∂x/∂α). Hence,
∂y

∂α
= A

∂x

∂α
.

q.e.d.

Remark 5.2. Convention 5.1 enables us to define routinely the first-order
derivative of one vector with respect to another, but it is not sufficient to enable

us to obtain second-order derivatives. This is so because it is not clear what

is meant by the derivative of a matrix with respect to a vector. In particular

the entity ∂y/∂α is a matrix and Convention 5.1 gives no guidance on this
issue. To help us derive an appropriate convention, consider the structure of

second order derivative matrices (Hessians) and note that for a scalar function

z = φ(γ) , where γ is an r-element vector, we obtain

∂2z

∂γ∂γ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2z
∂γ1∂γ1

∂2z
∂γ1∂γ2

∂2z
∂γ1∂γ3

. . . . . . ∂2z
∂γ1∂γr

∂2z
∂γ2∂γ1

∂2z
∂γ2∂γ2

∂2z
∂γ2∂γ3

. . . . . . ∂2z
∂γ2∂γr

...
...

...
...

...
...

...
...

...
...

...
...

∂2z
∂γr∂γ1

∂2z
∂γr∂γ2

∂2z
∂γr∂γ3

. . . . . . ∂2z
∂γr∂γr

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It would seem then appropriate, in the case where z is an m-element column

vector (i.e. φ is an m-element vector function), to define

∂2z

∂γ∂γ
=

⎛
⎜⎜⎜⎜⎝

∂2z1
∂γ∂γ
∂2z2
∂γ∂γ

...
∂2zm
∂γ∂γ

⎞
⎟⎟⎟⎟⎠ .

Each of the sub-matrices above are of dimension r × r , so the matrix ∂2z
∂γ∂γ

is of dimension mr× r . From Convention 5.1 we see that the rows of ∂z/∂γ
are of the form ∂zi/∂γ. Hence, the columns of (∂z/∂γ)′ can be written as

(∂zi/∂γ)
′ which is what we need to deal with. This suggests

Convention 5.2. Let

y = ψ(x)
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be as in Convention 5.1. The symbol

∂2y

∂x∂x

means

∂2y

∂x∂x
=

∂

∂x
vec

[(
∂y

∂x

)′]
,

so that it is a matrix of dimension (mn)× n.

It is also convenient, and as part of this convention, to introduce the

notation

∂Y

∂γ
,

where Y is a matrix of dimension m× n and γ an r-element column vector,

to be defined by

∂Y

∂γ
=

∂

∂γ
vec(Y ),

where the right member above is a matrix of dimension mn× r .

With this in mind Convention 5.2 is also useful in handling the case where

A depends on the vector α.

An easy consequence of Convention 5.2 are the two propositions below.

Proposition 5.3. Let

y = Ax

be as in Proposition 5.2. Then,

∂2y

∂α∂α
=

∂

∂α
vec

[(
∂y

∂α

)′]
= (A⊗ Ir)

∂2x

∂α∂α
.

Proof: By Proposition 5.2,
∂y

∂α
= A

∂x

∂α
.

By Convention 5.2 and Proposition 4.1,

∂2y

∂α∂α
=

∂

∂α
vec

[(
A
∂x

∂α

)′]

=
∂

∂α
vec

[(
∂x

∂α

)′
A′

]
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=
∂

∂α
(A⊗ Ir) vec

[(
∂x

∂α

)′]

= (A⊗ Ir)
∂

∂α
vec

[(
∂x

∂α

)′]
= (A⊗ Ir)

∂2x

∂α∂α
.

q.e.d.

Proposition 5.4. Let

y = Ax,

where y is m× 1, A is m× n, x is n× 1, and both A and x depend on
the r -element vector α. Then,

∂y

∂α
= (x′ ⊗ Im)

∂A

∂α
+A

∂x

∂α
.

Proof: We may write

y =

n∑
i=1

a·ixi,

where a·i is the i th column of A. Hence,

∂y

∂α
=

n∑
i=1

∂a·i
∂α

xi +

n∑
i=1

a·i
∂xi
∂α

= (x′ ⊗ Im)
∂A

∂α
+A

∂x

∂α
.

q.e.d.

5.3 Derivatives of Functions of the Form

y = z
′
Ax

In this section, we consider the differentiation of bilinear and quadratic forms.

Proposition 5.5. Let

y = z′Ax,

where z is m × 1, A is m × n, x is n × 1, and A is independent of z

and x. Then,

∂y

∂z
= x′A′,

∂y

∂x
= z′A.
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Proof: Define

z′A = c′

and note that y = c′x. Hence, by Proposition 5.1, we have

∂y

∂x
= c′ = z′A.

Similarly, we can write

y = x′A′z,

and employing the same device, we obtain

∂y

∂z
= x′A′.

q.e.d.

For the special case where y is given by the quadratic form

y = x′Ax,

we have

Proposition 5.6. Let
y = x′Ax,

where x is n× 1, and A is n× n and independent of x. Then,

∂y

∂x
= x′(A+A′).

Proof: By definition,

y =

n∑
j=1

n∑
i=1

aijxixj .

Differentiating with respect to the k th element of x, we have

∂y

∂xk
=

n∑
j=1

akjxj +

n∑
i=1

aikxi, k = 1, 2, . . . , n,

and consequently

∂y

∂x
= x′A′ + x′A = x′(A′ +A).

q.e.d.
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Corollary 5.1. For the special case where A is a symmetric matrix and

y = x′Ax,

we have
∂y

∂x
= 2x′A.

Proof: Obvious from Proposition 5.6.

Corollary 5.2. Let A, y, and x be as in Proposition 5.6; then,

∂2y

∂x∂x′
= A′ +A,

and, for the special case where A is symmetric,

∂2y

∂x∂x
= 2A.

Proof: Obvious, if we use Convention 5.2 and note that

∂y

∂x
= x′(A′ +A).

q.e.d.

For the case where z and/or x are functions of another set of variables,

we have

Proposition 5.7. Let

y = z′Ax,

where z is m×1, A is m×n, x is n×1, and both z and x are functions
of the r -element vector α, whereas A is independent of α , x and z. Then,

∂y

∂α
= x′A′ ∂z

∂α
+ z′A

∂x

∂α
,

∂2y

∂α∂α
=

(
∂z

∂α

)′
A

(
∂x

∂α

)
+

(
∂x

∂α

)′
A′

(
∂z

∂α

)
+ (x′A′ ⊗ Ir)

∂2z

∂α∂α

+ (z′A⊗ Ir)
∂2x

∂α∂α
.

Proof: We have

∂y

∂α
=
∂y

∂z

∂z

∂α
+
∂y

∂x

∂x

∂α
= x′A′ ∂z

∂α
+ z′A

∂x

∂α
,
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which proves the first part. For the second, note that

∂2y

∂α∂α
=

∂

∂α

(
∂y

∂α

)′
=

∂

∂α

(
∂y

∂α

)′
.

But

∂y

∂α
=

(
∂z

∂α

)′
Ax+

(
∂x

∂α

)′
A′z,

and, by the results of Proposition 5.4,

∂

∂α

(
∂z

∂α

)′
Ax= (x′A′ ⊗ Ir)

∂2z

∂α∂α′ +
(
∂z

∂α

)′
A

(
∂x

∂α

)

∂

∂α

(
∂x

∂α

)′
A′z = (z′A⊗ Ir)

∂2x

∂α∂α
+

(
∂x

∂α

)′
A′

(
∂z

∂α

)
,

which proves the validity of the proposition.

q.e.d.

Remark 5.3. Note that, despite appearances, the matrix ∂2y/∂α∂α is

symmetric, as required. This is so because (x′A′ ⊗ Ir) ∂
2z/∂α∂α is of the

form
m∑
i=1

∂2zi
∂α∂α

ci,

where ci is the i th element of x′A′; evidently, the matrices

∂2zi
∂α∂α

, i = 1, 2, . . . ,m,

are all symmetric.

Corollary 5.3. Consider the quadratic form

y = x′Ax,

where x is n× 1, A is n× n, and x is a function of the r -element vector

α, whereas A is independent of α. Then

∂y

∂α
= x′(A′ +A)

∂x

∂α
,

∂2y

∂α∂α
=

(
∂x

∂α

)′
(A′ +A)

(
∂x

∂α

)
+ (x′(A′ +A)⊗ Ir)

∂2x

∂α∂α
.
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Proof: Since

∂y

∂α
=
∂y

∂x

∂x

∂α
,

Proposition 5.6 guarantees the validity of the first part. For the second part,

applying the arguments of Proposition 5.7, we see that

∂2y

∂α∂α′ =
∂

∂α

(
∂y

∂α

)
=

∂

∂α

(
∂y

∂α

)′
.

(
∂y

∂α

)′
=

(
∂x

∂α

)′
(A′ +A)x.

∂

∂α

(
∂y

∂α

)′
=

(
∂x

∂α

)′
(A′ +A)

(
∂x

∂α

)
+ (x′(A′ +A)⊗ Ir)

∂2x

∂α∂α′ .

q.e.d.

Corollary 5.4. Consider the same situation as in Corollary 5.2, but suppose

in addition that A is symmetric. Then,

∂y

∂α
= 2x′A

∂x

∂α
,

∂2y

∂α∂α
= 2

(
∂x

∂α

)′
A

(
∂x

∂α

)
+ (2x′A⊗ I)

∂2x

∂α∂α
.

Proof: Obvious from Corollary 5.1.

5.4 Differentiation of the Trace

Let us now turn our attention to the differentiation of the trace of matrices. In

fact, the preceding discussion has anticipated most of the results to be derived

below. We begin with another convention.

Convention 5.3. If it is desired to differentiate, say, tr(AB) with respect

to the elements of A, the operation involved will be interpreted as the
“rematricization” of the vector

∂ tr(AB)

∂ vec(A)
,

i.e. we first obtain the vector

φ =
∂ tr(AB)

∂ vec(A)
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and then put the resulting (column) vector in matrix form, using the operator

mat defined in Chap. 4. Doing so yields

mat(φ
′
) =

∂ tr(AB)

∂A
.

With this in mind, we establish

Proposition 5.8. Let A be a square matrix of order m. Then,

∂ tr(A)

∂A
= Im.

If the elements of A are functions of the r -element vector α, then

∂ tr(A)

∂α
=

∂ tr(A)

∂ vec(A)

∂ vec(A)

∂α
= vec(I)′

∂ vec(A)

∂α
.

Proof: We note that tr(A) = tr(A · Im). From Proposition 4.3, we have

tr(A) = vec(Im)′ vec(A). Thus,

∂ tr(A)

∂ vec(A)
= vec(Im)′.

Rematricizing this vector we obtain

∂ tr(A)

∂A
= mat[vec(Im)] = Im,

which proves the first part. For the second part, we note that Proposition 5.2
implies

∂ tr(A)

∂α
=

∂ tr(A)

∂ vec(A)

∂ vec(A)

∂ vec(α)
= vec(I)′

∂ vec(A)

∂α
.

q.e.d.

We shall now establish results regarding differentiation of the trace of

products of a number of matrices. We have

Proposition 5.9. Let A be m× n, and X be n×m; then

∂ tr(AX)

∂X
= A′.

If X is a function of the elements of the vector α, then

∂ tr(AX)

∂α
=
∂ tr(AX)

∂ vec(X)

∂ vec(X)

∂α
= vec(A′)′

∂ vec(X)

∂α
.
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Proof: By Proposition 4.3,

tr(AX) = vec(A′)′ vec(X).

Thus, by Proposition 5.1,

∂ tr(AX)

∂ vec(X)
= vec(A′)′.

Rematricizing this result, we have

∂ tr(AX)

∂X
= A′,

which proves the first part. For the second part, we have, by Proposition 5.2,

∂ tr(AX)

∂α
= vec(A′)′

∂ vec(X)

∂α
.

q.e.d.

Proposition 5.10. Let A be m×n, X be n×m, and B be m×m; then

∂ tr(AXB)

∂X
= A′B′.

If X is a function of the r -element vector α, then

∂ tr(AXB)

∂α
= vec(A′B′)′

∂vec(X)

∂α
.

Proof: We note that
tr(AXB) = tr(BAX).

But Proposition 5.9 implies

∂ tr(AXB)

∂ vec(X)
= vec(A′B′)′,

and thus
∂ tr(AXB)

∂X
= A′B′.

For the second part, it easily follows that

∂ tr(AXB)

∂α
=
∂ tr(AXB)

∂vec(X)

∂ vec(X)

∂α
= vec(A′B′)′

∂ vec(X)

∂α
.

q.e.d.
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Proposition 5.11. Let A be m× n, X be n× q, B be q× r, and Z be

r ×m; then

∂ tr(AXBZ)

∂X
=A′Z ′B′,

∂ tr(AXBZ)

∂Z
=B′X ′A′.

If X and Z are functions of the r -element vector α, then

∂ tr(AXBZ)

∂α
= vec(A′Z ′B′)′

∂ vec(X)

∂α
+ vec(B′X ′A′)′

∂ vec(Z)

∂α
.

Proof: Since

tr(AXBZ) = tr(BZAX),

Proposition 5.9 implies

∂ tr(AXBZ)

∂X
=A′Z ′B′,

∂ tr(AXBZ)

∂Z
=B′X ′A′.

For the second part, we note

∂ tr(AXBZ)

∂α
=
∂ tr(AXBZ)

∂ vec(X)

∂ vec(X)

∂α
+
∂ tr(AXBZ)

∂ vec(Z)

∂ vec(Z)

∂α
,

and it further implies that

∂ tr(AXBZ)

∂α
= vec(A′Z ′B′)′

∂ vec(X)

∂α
+ vec(B′X ′A′)′

∂ vec(Z)

∂α
.

q.e.d.

Finally, we have

Proposition 5.12. Let A be m×m, X be q×m, and B be q× q; then

∂ tr(AX ′BX)

∂X
= B′XA′ +BXA.

If X is a function of the r -element vector α, then

∂ tr(AX ′BX)

∂α
= vec(X)′[(A′ ⊗ B) + (A⊗B′)]

∂ vec(X)

∂α
.



5.5. DIFFERENTIATION OF DETERMINANTS 161

Proof: From Remark 4.2, we see that tr(AX ′BX) = vec(X)′(A′ ⊗B) vec(X),

and from Proposition 5.6 we conclude

∂ tr(AX ′BX)

∂ vec(X)
= vec(X)′[(A′ ⊗B) + (A⊗B′)].

Matricizing this vector we have, from Corollary 4.1 and Proposition 4.2,

∂ tr(AX ′BX)

∂X
= B′XA′ +BXA.

The second part of the proposition follows immediately from Corollary 5.3 and

the result above.

q.e.d.

Remark 5.4. The preceding results indicate that differentiating the trace of
products of matrices with respect to the elements of one of the matrix factors

is a special case of differentiation of linear, bilinear, and quadratic forms. For

this reason, it is not necessary to derive second-order derivatives, because

the latter are easily derivable from the corresponding results regarding linear,

bilinear, and quadratic forms, i.e. quantities of the form

Ax, z′Ax, x′Ax,

where A is a matrix, and z , x are appropriately dimensioned vectors.

5.5 Differentiation of Determinants

We now consider certain other aspects of differentiation of functions of matrices

that are also important in econometrics.

Proposition 5.13. Let A be a square matrix of order m; then

∂|A|
∂A

= A∗,

where A∗ is the matrix of cofactors ( of the elements of A). If the elements

of A are functions of the r elements of the vector α, then

∂|A|
∂α

= vec(A∗)′
∂ vec(A)

∂α
.

Proof: To prove the first part of the proposition, it is sufficient to obtain the

typical (i, j) element of the matrix ∂|A|/∂A. The latter is given by

∂|A|
∂aij

.



162 CHAPTER 5. VECTOR AND MATRIX DIFFERENTIATION

Expand the determinant by the elements of the i th row and find, by Propo-

sition 2.23, |A| =
∑m
k=1 aikAik, where Aik is the cofactor of aik. Evidently,

Aik does not contain aik. Consequently,

∂|A|
∂aij

= Aij ,

and thus
∂|A|
∂A

= A∗,

as was to be proved. For the second part, we note that

∂|A|
∂α

=
∂|A|

∂ vec(A)

∂ vec(A)

∂α
.

But it is easy to see, from Convention 5.2, that

∂|A|
∂ vec(A)

= vec

(
∂|A|
∂A

)′
= vec(A∗)′.

Hence,
∂|A|
∂α

= vec(A∗)′
∂ vec(A)

∂α
.

q.e.d.

Corollary 5.5. Assume, in addition to the conditions of Proposition 5.13,

that A is nonsingular, and let B = A−1 = A∗′/|A|. Then,

∂|A|
∂A

= |A|B′,
∂ ln |A|
∂A

= B′,

∂|A|
∂α

= |A| vec(B′)′
∂ vec(A)

∂α
.

Proof: In the proof of Proposition 5.13, note that Aik = |A|bki, where bki is

the (k, i) element of B, and that

1

|A| =
∂ ln |A|
∂|A| .

q.e.d.

Corollary 5.6. If in Proposition 5.13 α is assumed to be a scalar, then

∂|A|
∂α

= tr

(
A∗′ ∂A

∂α

)
,
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and if A is nonsingular, then

∂|A|
∂α

= |A| tr
(
B
∂A

∂α

)
,

∂ ln |A|
∂α

= tr

(
B
∂A

∂α

)
.

Proof: If α is a scalar, then

∂ vec(A)

∂α
= vec

(
∂A

∂α

)
,

where, obviously,
∂A

∂α
=

[
∂aij
∂α

]
.

Using Propositions 4.3 and 5.13, we see that

∂|A|
∂α

= vec(A∗)′vec
(
∂A

∂α

)
= tr

(
A∗′ ∂A

∂α

)
.

If A is nonsingular, then

A∗′
= |A|B

so that, in this case,

∂|A|
∂α

= |A| tr
(
B
∂A

∂α

)
,

∂ ln |A|
∂α

= tr

(
B
∂A

∂α

)
.

q.e.d.

Corollary 5.7. Let A of Proposition 5.13 be a symmetric matrix, and define1

α =
(
a′·1, a

∗′
·2 , a

∗′
·3 · · ·a∗

′
·m

)′
,

where

a∗
′

·j = (ajj , aj+1,j , . . . , amj), j = 2, . . . ,m.

1In fact we dealt with such issues in Chap. 4; the elimination or selection matrix

discussed in Remark 4.7, say, S, produces the distinct elements of the symmetric matrix

A in the column vector α , by the operation α = Svec(A) , while the restoration

matrix, also discussed therein, operates on α to produce (restore) vec(A). This is the

matrix H defined below, so that H α =vec(A).
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Further, define the restoration matrix discussed in Remark 4.7 (of Chap. 4)

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im 0 0 · · 0

e′·2m 0 0 · · ·
0 Im−1 0 · · ·

e′·3m 0 0 · · ·
0 e′·2m−1 0 · · ·
0 0 Im−2 · · ·
...

e′·mm 0 0 · · ·
0 e′·m−1,m−1 0 · · ·
· · · · · ·
· · · · e′·22 0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that H is m2 ×m(m + 1)/2 and e·js is an s -element column vector

(s = 2, 3, . . . ,m) all of whose elements are zero except the j th, which is unity.

Then,
∂|A|
∂α

= vec(A∗)′H

and if A is nonsingular

∂|A|
∂α

= |A| vec(B′)′H,
∂ ln |A|
∂α

= vec(B′)′H.

Proof: We note that α is m(m+1)/2×1 and contains the distinct elements

of A. Moreover, vec(A) = Hα. It is then immediate that

∂|A|
∂α

=
∂|A|

∂ vec(A)

∂ vec(A)

∂α
= vec(A∗)′H.

If A is nonsingular, then

A∗′
= |A|B;

since
∂ ln |A|
∂|A| =

1

|A| ,

we thus have

∂ ln |A|
∂α

= vec(B′)′H,
∂|A|
∂α

= |A| vec(B′)′H.

q.e.d.
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Remark 5.5. Note that the operations

vec(A∗)′H or vec(B′)′H

simply rearrange the elements of vec(A∗) or vec(B). In particular,

vec(A∗)′H =
(
A∗′

·1 +A12e
′
·2m + · · ·+A1me

′
·mm, A

∗′
·2 +A23e

′
·2m−1 + ·

+ A2me
′
·m−1,m− 1, . . . , A∗′

·m−1 +Am−1,me
′
·22, Amm

)
,

where

A∗ = (Aij), A∗
·j = (Ajj , Aj+1,j · · ·Amj), j = 1, 2, . . . ,m.

The question then is what we should mean by

∂|A|
∂A

.

We adopt the following convention.

Convention 5.4.

∂|A|
∂aij

=
∂|A|
∂αij

i ≥ j i, j = 1, 2, . . . ,m

∂|A|
∂aij

=
∂|A|
∂αji

i < j.

This enables us to write
∂|A|
∂A

= A∗,

thus preserving the generality of Proposition 5.13 without being inconsistent
with the results of the differentiation as stated in the corollary.

Another useful result is

Proposition 5.14. Let X be n×m and B be n× n, and put

A = X ′BX.

Then,
∂|A|
∂X

=

[
tr

(
A∗′ ∂A

∂xik

)]
= BXA∗′

+ B′XA∗,

where A∗ is the matrix of cofactors of A.
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Proof: We shall prove this result by simply deriving the (i, k) element of the

matrix ∂|A|/∂X. By the usual chain rule for differentiation, we have

∂|A|
∂xik

=

m∑
r,s=1

∂|A|
∂ars

∂ars
∂xik

.

But
∂|A|
∂ars

= Ars

so that
∂|A|
∂xik

=

m∑
r,s=1

Ars
∂ars
∂xik

= tr

(
A∗′ ∂A

∂xik

)
,

which proves the first part of the representation. Next, we note that, formally,

we can put
∂A

∂xik
=
∂X ′

∂xik
BX +X ′B

∂X

∂xik
.

But
∂X ′

∂xik
= e·ke′·i,

∂X

∂xik
= e·ie′·k,

where e·k is an m -element (column) vector all of whose elements are zero

except the k th, which is unity, and e·i is an n -element (column) vector all
of whose elements are zero except the i th, which is unity. For simplicity of

notation only, put

A∗′
= |A|A−1

and note that

tr

(
A∗′ ∂A

∂xik

)
= |A| tr A−1(e·ke′·iBX +X ′Be·ie′·k)

= |A|[tr(a·kbi·X) + tr(X ′b·iak·)] = |A|(bi·Xa·k + b′·iXa
k·′),

where b·i is the i th column of B, bi· is the i th row of B, a·k is the k th
column of A−1 and ak· its k th row. Thus, the (i, k) element of

∂|A|/∂X

is given by

|A|(bi·Xa·k + b′·iXa
k·′).

But this is, of course, the (i, k) element of

|A|(BXA−1 +B′XA
′−1) = BXA∗′

+B′XA∗.
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Consequently,

∂|A|
∂X

= BXA∗′
+B′XA∗.

q.e.d.

Corollary 5.8. If in Proposition 5.14 A is nonsingular, then

∂|A|
∂X

= |A|(BXA−1 +B′XA
′−1).

Proof: Evident from Proposition 5.14.

Corollary 5.9. If in Proposition 5.14 A is nonsingular, then

∂ ln |A|
∂X

= BXA−1 +B′XA
′−1.

Proof: We have
∂ ln |A|
∂X

=
∂ ln |A|
∂|A|

∂|A|
∂X

=
1

|A|
∂|A|
∂X

,

and the conclusion follows from Corollary 5.7.

q.e.d.

Corollary 5.10. If in Proposition 5.14 B is symmetric, then

∂|A|
∂X

= 2BXA∗.

Proof: Obvious since if B is symmetric so is A, and thus

A∗′
= A∗.

q.e.d.

Proposition 5.15. Let X be m× n and B be m×m, and suppose that

the elements of X are functions of the elements of the vector α. Put

A = X ′BX.

Then
∂|A|
∂α

= vec(X)′[(A∗′
⊗B′) + (A∗ ⊗B)]

∂ vec(X)

∂α
.

Proof: By the usual chain rule of differentiation, we have

∂|A|
∂α

=
∂|A|

∂ vec(X)

∂ vec(X)

∂α
.
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But
∂|A|

∂ vec(X)
=

[
vec

(
∂|A|
∂X

)]′
.

From Corollary 4.1 and Proposition 5.14, we obtain

vec

(
∂|A|
∂X

)
= [(A∗ ⊗B) + (A∗′ ⊗B′)] vec(X).

Thus, we conclude

∂|A|
∂α

= vec(X)′[(A∗ ⊗B) + (A∗′
⊗ B′)]

∂ vec(X)

∂α
.

q.e.d.

Corollary 5.11. If in Proposition 5.15 A is nonsingular, then

∂|A|
∂α

= |A| vec(X)′[(A
′−1 ⊗B) + (A−1 ⊗B′)]

∂ vec(X)

∂α
.

Proof: Obvious if we note that

|A|A−1 = A∗′
.

Corollary 5.12. If in Proposition 5.15 A is nonsingular, then

∂ ln |A|
∂α

= vec(X)′[(A
′−1 ⊗B) + (A−1 ⊗B′)]

∂ vec(X)

∂α
.

Proof: Obvious.

Corollary 5.13. If in Proposition 5.15 B is symmetric, then

∂|A|
∂α

= 2 vec(X ′)′[A∗ ⊗B]
∂ vec(X)

∂α
.

Proof: Obvious since if B is symmetric so is A, and thus

A∗′
= A∗.

q.e.d.

The results above exhaust those aspects of differentiation of determinants
that are commonly found useful in econometrics.
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5.6 Differentiation of Inverse of a Matrix

We begin with

Proposition 5.16. Let A be m×m and nonsingular. Then, the “derivative

of the inverse” ∂A−1/∂A is given by

∂ vec(A−1)

∂ vec(A)
= −(A

′−1 ⊗A−1).

If the elements of A are functions of the elements of the vector α, then

∂ vec(A−1)

∂α
= −(A

′−1 ⊗ A−1)
∂ vec(A)

∂α
.

Proof: We begin by taking the derivative of A−1 with respect to an element

of A. From the relation

A−1A = I

we easily see that

0 =
∂A−1

∂ars
A+A−1 ∂A

∂ars
, (5.1)

from which we obtain

∂A−1

∂ars
= −A−1 ∂A

∂ars
A−1. (5.2)

But ∂A/∂ars is a matrix all of whose elements are zero except the (r, s)

element, which is unity. Consequently,

∂A

∂ars
= e·re′·s, (5.3)

where e·j is an m -element vector all of whose elements are zero except the

j th, which is unity. Using Eq. (5.3) in Eq. (5.2), we find

∂A−1

∂ars
= −a·ras·, r, s = 1, 2, . . . ,m, (5.4)

where a·r is the r th column and as· is the s th row of A−1. Vectorizing

Eq. (5.4) yields, by Proposition 4.1,

∂ vec(A−1)

∂ars
= −(as·

′ ⊗ a·r), r, s = 1, 2, . . . ,m. (5.5)

From Eq. (5.5) we see, for example, that

∂ vec(A−1)

∂a11
= −(a1·

′ ⊗ a·1),
∂ vec(A−1)

∂a21
= −(a1·′ ⊗ a·2)
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and so on; thus,

∂ vec(A−1)

∂a·1
= −(a1·′ ⊗A−1)

or, in general,

∂ vec(A−1)

∂a·s
= −(as·′ ⊗ A−1), s = 1, 2, . . . ,m. (5.6)

But Eq. (5.6) implies

∂ vec(A−1)

∂ vec(A)
= −(A

′−1 ⊗A−1), (5.7)

which proves the first part of the proposition. For the second part, we note

that by the chain rule of differentiation

∂ vec(A−1)

∂α
=
∂ vec(A−1)

∂ vec(A)

∂ vec(A)

∂α
,

and the desired result follows immediately from Eq. (5.7).

q.e.d.

Since the result of the proposition above may not be easily digestible, let

us at least verify that it holds for a simple case. To this end we have the
following corollary.

Corollary 5.14. Suppose in Proposition 5.16 α is a scalar; then

∂A−1

∂α
= −A−1 ∂A

∂α
A−1.

Proof: From Proposition 5.16 we have, formally,

∂ vec(A−1)

∂α
= −(A

′−1 ⊗ A−1)
∂ vec(A)

∂α
.

Matricizing the vector above, using Corollary 4.1, yields

∂A−1

∂α
= −A−1 ∂A

∂α
A−1.

q.e.d.



Chapter 6

DE Lag Operators GLSEM

and Time Series

6.1 The Scalar Second-Order Equation

In this chapter we deal with econometric applications of (vector)

difference equations with constant coefficients, as well as with aspects of

the statistical theory of time series and their application in econometrics.

Definition 6.1. The second order non-stochastic difference equation (DE) is

given by

a0yt + a1yt−1 + a2yt−2 = g(t), (6.1)

where yt is the scalar dependent variable, the ai, i = 0, 1, 2, are the

(constant) coefficients, and g(t) is the (non-random) real-valued “forcing

function”; in such models usually we normalize by setting a0 = 1.

If the function g is a random variable, then yt is also a random variable

and the equation above is said to be a stochastic DE.
A solution to the non-stochastic DE of Eq. (6.1) is a real valued func-

tion y∗(t), t = 1, 2, 3, . . . , which, given ai, i = 0, 1, 2 , and g(t) satisfies that

equation.

The relation

a0yt + a1yt−1 + a2yt−2 = 0

is said to be the homogeneous part of the DE in Eq. (6.1).

In elementary discussions, the solution to a DE as in Eq. (6.1) is obtained

in two steps. First, we consider the homogeneous part

a0yt + a1yt−1 + a2yt−2 = 0, (6.2)

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 6, © The Author 2013
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and find the most general form of its solution, called the general solution to

the homogeneous part. Then, we find just one solution to Eq. (6.1), called
the particular solution. The sum of the general solution to the homogeneous

part and the particular solution is said to be the general solution to the

equation. What is meant by the “general solution”, denoted, say, by y∗t , is

that y∗t satisfies Eq. (6.1) and it can be made to satisfy any pre-specified set

of “initial conditions”. If g(t) and the coefficients are specified and if, further,
we are given the values assumed by yt for t = 0, t = −1, (initial conditions)

we can compute y1 from Eq. (6.1); then, given y1, y0, y−1 we can compute y2
and so on. Thus, given the coefficients and the function g(·), the behavior (of
the homogeneous part) of yt depends solely on the “initial conditions”, and
if these are also specified then the behavior of yt is completely determined.

Thus, for a solution of Eq. (6.1) to be a “general solution” it must be capable

of accommodating any pre-specified set of initial conditions.

From the results above it is evident that the general solution to the homoge-

neous part simply carries forward the influence of initial conditions. Generally,
in economics, we would not want to say that initial conditions are very cru-

cial to the development of a system, but rather that it is the external forces

impinging on the system that, in the long run, are ultimately responsible

for its development. This introduces the concept of the stability of a (non-
stochastic) difference equation. A DE as in Eq. (6.1) is said to be stable if

and only if the general solution to its homogeneous part obeys1

lim
t→∞ yHt = 0. (6.3)

As we mentioned earlier, we also need to find a particular solution in order to

obtain the general solution to Eq. (6.1). But a routine way of doing so is not

easily obtained in this elementary context. In view of the fact that most, if
not all, of the discussion in this chapter will involve stochastic DE and we

are not particularly interested in their short term behavior, this elementary

line of inquiry will not be pursued further.

It will facilitate matters if we introduce the notion of the lag operator L.2

1The superscript H in Eq. (5.3) indicates that it is the the solution to the

homogeneous part.
2In the statistical and, more generally, the mathematical literature this operator is

termed the backward operator and is denoted by B . But lag operator is a more

convenient term and has a long tradition in the econometrics literature, so we retain

it and shall use it exclusively wherever appropriate.
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6.2 The Lag Operator L and Its Algebra

If x(t) is a function of “time”, the lag operator L is defined by

Lx(t) = x(t− 1). (6.4)

Powers of the operator are defined as successive applications, i.e.

L2x(t) = L[Lx(t)] = Lx(t− 1) = x(t− 2),

and in general

Lkx(t) = x(t− k), k > 0. (6.5)

For k = 0, we have the identity operator

L0 ≡ I, L0x(t) = x(t). (6.6)

It is apparent that

LkLs = LsLk = Ls+k. (6.7)

Moreover,

(c1L
s1 + c2L

s2)x(t) = c1L
s1x(t) + c2L

s2x(t) (6.8)

= c1x(t− s1) + c2x(t− s2).

One can further show that the set

{I, L, L2, . . .}

over the field of real (or complex) numbers, together with the operations above,
induces a vector space. But what is of importance to us is that the set of

polynomial operators, whose typical element is

n∑
i=0

ciL
i,

induces an algebra that is isomorphic to the algebra of polynomials in a

real or complex indeterminate. This means that to determine the outcome of
a set of operations on polynomials in the lag operator one need only carry out

such operations with respect to an ordinary polynomial in the real or complex

indeterminate, ψ, and then substitute for ψ and its powers L and its powers.

Perhaps a few examples will make this clear.

Example 6.1. Let

P1(L) = c01I + c11L+ c21L
2,

P2(L) = c02I + c12L+ c22L
2 + c32L

3,
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and suppose we desire the product P1(L) · P2(L). We consider, by the usual

rules of multiplying polynomials,

P1(ψ)P2(ψ) = (c01c02) + (c11c02 + c12c01)ψ

+ (c11c12 + c22c01 + c21c02)ψ
2

+ (c01c32 + c11c22 + c12c21)ψ
3

+ (c11c32 + c22c21)ψ
4 + c32c21ψ

5,

and consequently

P1(L)P2(L) = c01c02I + (c11c02 + c12c01)L+ (c11c12 + c22c01 + c21c02)L
2

+(c01c32 + c11c22 + c12c21)L
3 + (c11c32 + c22c21)L

4 + c32c21L
5.

Example 6.2. Let

P1(L) = I − λL,

and suppose we wish to find its inverse I/P1(L). To do so, we consider the

inverse of 1− λψ; if |ψ| ≤ 1 and |λ| < 1, then we know that

1

1− λψ
=

∞∑
i=0

λiψi.

Hence, under the condition |λ| < 1,

1

P1(L)
=

∞∑
i=0

λiLi.

Although the discussion above is heuristic, and rather sketchy at that, it

is sufficient for the purposes we have in mind. The reader interested in more

detail is referred to Dhrymes (1971, 1982).
If we use the apparatus of polynomial lag operators, we see that we can

write Eq. (6.1) as

[a0L
0 + a1L+ a2L

2]yt = g(t) (6.9)

Consequently, we may write the solution formally as

yt = [A(L)]−1g(t), (6.10)

where

A(L) = a0I + a1L+ a2L
2. (6.11)

The question then arises as to the meaning and definition of the inverse of

this polynomial operator. In view of the isomorphism referred to earlier, we
consider the polynomial equation

a0 + a1ψ + a2ψ
2 = 0 (6.12)
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and its roots ψ1, ψ2. By the fundamental theorem of algebra, we can write

A(ψ) = a2(ψ − ψ1)(ψ − ψ2) = a2(ψ1ψ2)

(
1− ψ

ψ1

)(
1− ψ

ψ2

)
, (6.13)

where ψi, i = 1, 2, are the roots of the polynomial equation ψ2 + (a1/a2)ψ +
(a0/a2) = 0 .

Putting

λ1 =
1

ψ1
, λ2 =

1

ψ2
, (6.14)

we thus write

A(L) = (I − λ1L)(I − λ2L), (6.15)

and for A(L) to be invertible we require that |λi| < 1, i = 1, 2. If these

conditions hold then the solution exhibited in Eq. (6.10) can be given a concrete

meaning and, thus, can be written as

yt =

t∑
i=−∞

t∑
j=−∞

λi1λ
j
2L

i+jg(t) =

t∑
k=−∞

⎛
⎝ k∑
j=−∞

λk−j1 λj2

⎞
⎠ g(t− k). (6.16)

Remark 6.1. Connecting the development above with the discussion of this

non-stochastic DE in Eq. (6.1), the following observations are valid:

i. It may be shown that the roots λi, i = 1, 2, (which are assumed to be

real) can form the basis of the (general) solution to the homogeneous part

yHt = c1λ
t
1 + c2λ

t
2, if distinct, or y

H
t = c1λ

t
1 + c2tλ

t
2, (6.17)

if not, i.e. they are repeated.

ii. The solution exhibited in Eq. (6.16) is the particular solution, referred

to in the discussion of the previous section.

The undetermined coefficients, c1, c2 , can be used to impose any desired ini-

tial conditions for y0, y−1 . Notice also that because |λi| < 1, i = 1, 2, the

(general) solution to the homogeneous part converges to zero with t, i.e. it

vanishes. This explains why initial conditions do not appear in the (particular)
solution exhibited in Eq. (6.16) because, in that context, the process (DE) has

“been in existence since the indefinite past”.

Notice also that this interpretation makes sense, i.e. if g(·) is a bounded

function, then yt is also a bounded function, which is guaranteed by the

stability condition one would normally impose on Eq. (6.1).
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6.3 Vector Difference Equations

In this section, we will be considerably more formal than earlier because the

results of this section are directly relevant to the analysis of time series and

simultaneous equations models.

Definition 6.2. The equation

A0yt +A1yt−1 +A2yt−2 + · · ·+ . . . ,+Aryt−r = g(t), (6.18)

where Ai, i = 0, 1, . . . , r, are m × m matrices of constants and yt and

g(t) are m -element (column) vectors, is said to be an r th-order vector

difference equation with constant coefficients (VDECC), provided the

matrix A0 is nonsingular.

If g(t) is not random, the VDECC is said to be non-stochastic, while if

it is random the VDECC is said to be stochastic.

Convention 6.1. Since the matrix A0 in the VDECC is nonsingular, no

loss of generality is entailed by taking A0 = Im, which we shall do in the
discussion to follow. This convention is indeed required because of identifi-

cation restrictions when we are dealing with stochastic VDECC in the

context of time series analysis, or even in the non-stochastic case unless g(t)

is more precisely specified. In particular, note that if all we say about it is

that it is even a continuous bounded function, then Hg(t) , where H is a
non-singular matrix, is also a continuous bounded function. By imposing

the normalization above we preclude this eventuality.

In discussing the characterization of the solution of Eq. (6.18), it is useful

to note that we can always transform it to an equivalent system that

is a first-order VDECC. This is done as follows. Define

ζt = (y′t, y
′
t−1, . . . , y

′
t−r+1)

′,

A∗ =

⎡
⎢⎢⎣
−A1 −A2 · · · −Ar
Im 0 · · · 0

0 Im · · · 0

0 0 · · · Im 0

⎤
⎥⎥⎦ ,

and notice that the homogeneous part can be written as3

ζt = A∗ζt−1.

3The dimension of A∗ is mr ×mr , and that of ζt is mr × 1 .
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Indeed, Eq. (6.18) can be written as

ζt = A∗ζt−1 + e·1 ⊗ g(t), (6.19)

where e·1 is an r -element (column) vector all of whose elements are zero

except the first, which is unity. Thus, in the following discussions we only deal
with the first-order VDECC

yt = Ayt−1 + g(t), (6.20)

where yt, g(t) are m -element column vectors and A is an m ×m matrix

of constants. We shall further impose

Condition 6.1. The matrix A in Eq. (6.20) is diagonalizable, i.e. we can

write

A = SΛS−1,

which suggests that its characteristic roots are distinct, where S , Λ are,
respectively, the matrices of characteristic vectors and roots of A .

Remark 6.2. The need for Condition 6.1 will be fully appreciated below.

For the moment let us note that in view of Propositions 2.39, 2.40 and 2.44,

Condition 6.1 is only mildly restrictive.

Definition 6.3. A solution to the VDECC in Eq. (6.20) is a vector y∗t such

that y∗t satisfies Eq. (6.20) together with a properly specified set of initial

conditions, say
y0 = ȳ0.

6.3.1 Factorization of High Order Polynomials

To examine the nature of solutions to systems like those of Eq. (6.18) or

Eq. (6.20) the discussions of previous sections are inadequate. We recall from
a previous section that

I, L, L2, . . . Ln, . . . , where I = L0,

is a basis for a vector space defined over the field of real or complex indetermi-

nates. Moreover, the space of polynomials in the lag operator L (of the form

P (L) =
∑n

0 piL
i ) is isomorphic to the space of real (or complex) polyno-

mials in the generic real variable t. The practical implication of this is that if
we wish to perform any operations, such as additions, subtractions, multipli-

cations and inversions on a polynomial in the lag operator, we first replace L

and its powers by t and its powers, perform the operations in question, replace

t and its power by L and its powers and this yields the desired result.
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In the previous section we discussed such issues in the context of Eqs. (6.9)

and (6.10) which involved scalar DE. To find the solution to the VDECC in
Eqs. (6.18) and/or (6.20) we need to deal with

(I −AL)yt = g(t), whose formal solution is yt = [I −AL]−1g(t),

and it involves not scalar polynomials, but matrix polynomials in the
lag operator L.

Naturally, this requires further discussion. It will turn out, however, that

there is no fundamental difference between the two issues.

In this section we generalize the result above to the case of matrix

polynomials in the lag operator L, say

P (L) = I −
n∑
i=1

piL
i, where the pi are m×m matrices.

and establish its relevance in the representation of the solution to the VDECC

of Eq. (6.20), as well as to the representation of autoregressions of order

n, AR(n) , and autoregressive-moving average processes of order (m,n) ,
ARMA(m,n) .

Since P(L) is a matrix whose elements are polynomials of degree n, by

definition, its inverse is the transpose of the matrix of cofactors divided by the

determinant |P (L)| . To this end, consider the (matrix) polynomial isomorphic
to the one above, i.e.

P (t) = 1−
n∑
i=1

pit
i, (6.21)

whose (s,k) element is

P (t)(s,k) = δ(s,k) −
n∑
i=1

pi(s,k)t
i,

δ(s,k) being the Kronecker δ , i.e. δij = 1 , if i= j and zero otherwise.
Moreover each such element is a polynomial of degree n in the real inde-

terminate t. By definition the cofactor of P (t)(s,k) is the determinant of

the matrix obtained from P (t) by striking out its s th row and k th column.

Hence its determinant is a polynomial of degree (m−1)n , generically denoted
by c(t) . Finally, the determinant of P (t) is a polynomial of degree mn ,

denoted by d(t) . Consequently, the inverse of P(t), if it exists, has elements

which are ratios of polynomials of the form (c(t)/d(t)) . Since c(t) is evidently

well defined, the existence of [P (t)]−1 is solely determined by whether or not

1/d(t) is well defined. But, since d(t) is a polynomial of degree mn , we have

d(t) = 1 +

mn∑
j=1

djt
j = dmn

⎛
⎝ 1

dmn
+

mn∑
j=1

dj
dmn

tj

⎞
⎠ .
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By the fundamental theorem of algebra, if ts, s = 1, 2, . . . ,mn are the roots

of the polynomial equation

⎛
⎝ 1

dmn
+

mn∑
j=1

dj
dmn

tj

⎞
⎠ = 0,

we have

d(t) =
mn∏
s=1

(
1− 1

ts
t

)
, because

1

dmn
=

mn∏
s=1

(−ts). (6.22)

Putting

λs =
1

ts
, s = 1, 2, . . . ,mr (6.23)

we have

[P (L)]−1 =

(
mr∏
s=1

I

I − λsL

)
C(L), C(L) = [cji(L)].

Let us now apply these results to the solution of Eq. (6.20). What corresponds

to P (L) in this case is (I −AL) . Thus, d(t) = 0 corresponds to

a(t) = |I −At| = tm
∣∣∣∣1t I −A

∣∣∣∣ = 0

whose roots are exactly those of

|λI −A| = 0, because t=0 is not a root, and where λ =
1

t
. (6.24)

But Eq. (6.24) gives the characteristic equation of the matrix A and

thus the roots of a(t) = 0 are simply the characteristic roots of that
matrix!

It follows then that

[I −AL]−1 =

(
I∏m

s=1(I − λsL)

)
C(L), C(L) = [cij(L)], (6.25)

where cij(L) is a (scalar) polynomial of degree m− 1 and is the cofactor of

the (j, i) elements of I −AL .

Remark 6.3. The need for Condition 6.1 now becomes evident, since if we

had repeated roots we would not have been able to write in Eq. (6.25) the
determinant of I − AL as the product of the polynomials (I − λsL), s =

1, 2, . . . ,m .
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It may be shown that, as in the scalar case, the general solution to the

homogeneous part of the VDECC in Eq. (6.20) is given by

yHt =

m∑
s=1

csλ
t
s, (6.26)

where the cs, s = 1, 2, . . . ,m are the undetermined constants, that can accom-

modate any desired initial condition, say y0 = ȳ0 . The condition for stability,

as in the scalar case, is that |λs| < 1, s = 1, 2, . . . ,m (or, equivalently, that
the roots of the polynomial |Im −At| = 0 obey |ts| > 1 .

Since A is diagonalizable as required by Condition 6.1, and its characteristic

roots are less than one in absolute value

lim
t→∞At = S( lim

t→∞Λt)S−1 = 0,

which implies

lim
t→∞ yHt = 0. (6.27)

Finally, the particular solution to Eq. (6.20) is given by

yt =

(
m∏
s=1

I

(I − λsL)

)
C(L)g(t), (6.28)

and the inverse of each of the polynomials I − λsL has the valid expansion

I

I − λsL
=

∞∑
k=0

λksL
k.

6.4 Applications

6.4.1 Preliminaries

In dealing with applications below we will effect a slight change in notation;
the dependent variables, the y′s of the previous discussions, will no longer

be written as columns but as rows and will be denoted by yt· as would

other random vectors. For example, in the new notation, we would write the

stochastic version of Eq. (6.18) as

yt·A0 + yt−1·A1 + yt−2·A2 + · · ·+ . . . ,+yt−r·Ar = ut·,

where yt· is an m-element row vector, the Aj , j = 0, 2, . . . , r are m × m

matrices and ut· an m-element row vector of random variables. This

has a great advantage over the “usual” notation in that it allows us to use
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exactly the same notation both when we discuss theoretical issues and when

we are engaged in estimation of unknown parameters. Thus, if we have a set of
observations on a random vector of interest, say ut· , we can write the matrix

of, say, T observations on that vector as

U = (ut·), which is of dimension T ×m;

if we specify that u′t· ∼ N(0,Σ) , we can estimate, in the usual fashion, by

maximum likelihood methods or otherwise,

Σ̂ =
U ′U
T

.

6.4.2 GLSEM

The GLSEM (General Linear Structural Econometric Model) is a vector

difference equation of the general form

yt·B∗
0 = −

r∑
i=1

yt−i·Bi +
s∑
j=1

pt−j·Cj + pt·C0 + ut·, (6.29)

where yt· is an m -element row vector containing the model’s jointly

dependent or endogenous variables, i.e. those variables whose values

are determined by the economic system modeled, at time t, and ut· is an
m -element row vector of random variables. Typically, it is assumed that

{u′t·: t = 0,±1,±2, . . .}

is a sequence of independent identically distributed (i.i.d.) random vectors

with mean zero and positive definite covariance matrix Σ.

The variables in the k -element row vector pt· , and their lags, pt−j· ,
j = 1, 2, . . . , s , are the exogenous variables of the system, i.e. those

variables whose behavior is determined outside the system modeled. In par-

ticular, they are taken to be independent (in a probabilistic sense) of the

error process {u′t·: t = 0,±1,±2, . . .}. The basic exogenous variables (and
their lags), together with the lagged endogenous variables, are termed the

predetermined variables of the system.

The basic specification of the GLSEM requires, in addition, that the matrix

B∗
0 be nonsingular and that certain elements of {B∗

0 , Bi: i = 1, 2, . . . , r},
{Cj : j = 0, 1, 2, . . . , s} be known a priori to be zero or normalized to unity, or
otherwise known. There are certain other requirements that are irrelevant to

this discussion and, thus, need not be considered.

The so called final form of the system in Eq. (6.29), is simply the particular

solution to this VDECC and is given formally (in column vector form) by

y′t· =
A(L)

b(L)
p′t· +

G(L)

b(L)
u′t·, (6.30)
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where

A(L)

b(L)
= [B∗′(L)]−1C′(L), [B∗′(L)]−1 =

G(L)

b(L)
, b(L) = |B∗(L)|

B∗(L) =B∗
0 + LB1 + L2B2 + . . .+ LrBr, C(L) = C0 + LC1 + L2C2 + . . .

+LsCs

A(L) =G′(L)C′(L).

We arrive at Eq. (6.30) as follows: first we write Eq. (6.29) in the more compact

form

yt·B∗(L) = pt·C(L) + ut·;

then we invert B∗(L) to obtain

yt· = pt·C(L)[B∗(L)]−1 + u·[B∗(L)]−1,

and finally we transpose yt· so it becomes a column vector, to obtain the

representation in Eq. (6.30), bearing in mind that [B∗′(L)]−1 = G(L)
b(L) .

In this context, stability conditions are customarily expressed by the

requirement that the roots of

b(ξ) = 0, b(ξ) = |B∗
0 +B1ξ +B2ξ

2 + . . .+Brξ
r|, (6.31)

be greater than unity in absolute value.

Remark 6.4. This is an opportune time to clarify the requirements for sta-

bility. In the discussion of Sect. 6.3, particularly the equation appearing just

above Eq. (6.22), we required for stability that the roots of that polynomial

equation should be greater than one in absolute value. However for the
expansion of the inverse of (I − λL) we required that λ be less than one

in absolute value. While the discussion in that context provided sufficient

explanation so these two statements were neither contradictory nor ambigu-

ous, it would be desirable to have a more formal relationship between the two

requirements. This is provided in the discussion of the r th order VDECC,
Eq. (6.18), and its transformation to a first order VDECC system in Eq. (6.19).

The polynomial equation corresponding to the discussion in Sect. 6.3.1, involv-

ing the equation just before Eq. (6.22) through Eq. (6.24), leads to the following

considerations:

|I −At|= 0; since t = 0 is not a root, this is equivalent to (6.32)

|λI −A|= 0, where λ =
1

t
. (6.33)
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Hence the characteristic roots of the matrix A are the inverses of

the roots of the polynomial equation |I −At| = 0 . In point of fact this
relationship is an instance of the following result from the theory of polynomial

equations.

Assertion 1. If xi is a root of the polynomial equation
∑n

j=0 ajx
j = 0 , then

yj = 1/xj is a root of the polynomial equation
∑n

j=0 ajy
n−j = 0 .

This is exactly the situation with the polynomial equations |I − At| = 0

and |λI −A| = 0 , the latter being also the characteristic equation of

the matrix A .

We conclude this section by addressing another issue that is often confusing,

namely whether the presence of identities makes the routine application of the

stability conditions developed above inappropriate. While identities introduce
singularities in GLSEM, they do not essentially complicate the determination

of issues regarding the stability of the GLSEM. Identities, which are exact,

non-stochastic relationships, are frequently encountered in GLSEM modeling.

Thus, suppose that the last m∗ of the m equations of the GLSEM represent
identities. Specifically, the identities are of the form

y
(1)
t· H12 + y

(2)
t· =

k∑
j=1

p′t−j·Dj + pt·D0, (6.34)

thus expressing the m∗ elements of y
(2)
t· , i.e. the “last” m∗ endogenous

variables as exact functions of the remaining m−m∗ endogenous and all the
exogenous variables of the system, contained in pt· . Note that, in this model,

the covariance matrix of u∗
′
t· is

Cov(u∗
′
t· ) =

[
Σ11 0
0 0

]
, Σ11 > 0.

The evident singularity of the covariance matrix of the system creates no

difficulties in the present context. In general, exogenous variables are not

involved in identities, which most often simply refer to renamed variables. For

example if we have one equation determining consumer durables, another
determining consumer non-durables and in another part of the system we

use total consumption as an explanatory variable, it is evident that that

total consumption is simply that sum of the first two, i.e. the sum

of consumer durables and consumer non-durables. So substituting out

the identities means that where the third variable occurs, whether in current
or lagged form, we substitute (in the appropriate form) the sum of the first
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two variables. In the discussion below it is assumed that no exogenous

variables are involved in the identities so that we have in, Eq. (6.34),
Dj = 0 for all j . Partitioning the matrices of coefficients conformably, we

can rewrite the system with the identities in Eq. (6.34) as

(y
(1)
t· , y

(2)
t· )

[
B∗

0(11) H12

B∗
0(21) Im∗

]
= −

r∑
i=1

(y
(1)
t−i·, y

(2)
t−i·)

[
Bi(11) H12

Bi(21) Im∗

]

+

k∑
j=1

pt−j·

[
Cj(11) 0

Cj(21) 0

]
++pt·

[
C0(11) 0

C0(21) 0

]
+ (u

(1)
t· , 0), (6.35)

where B∗
0(11), Bi(11) are m−m∗×m−m∗ , H12 is m−m∗×m∗ , B∗

0(21), Bi(21)
are m∗ × m − m∗, i = 1, 2, . . . , r and Cj(11), Cj(21), j = 0, 1, 2, . . . , k are
m−m∗ ×m−m∗, m∗ ×m−m∗ , respectively.

Making the substitutions y
(2)
t−i· = −y(1)t−i·H12, i = 0, 1, . . . , r , and clearing

of redundant equations we can write the GLSEM without the identities as

y
(1)
t· [B∗

0(11) −H12B
∗
0(21)] =−

r∑
i=1

y
(1)
t−i·[Bi(11) −H12Bi(21)]

+

k∑
j=0

pt−j·

[
Cj(11)
Cj(21)

]
+ u

(1)
t· . (6.36)

The question we have raised has the more specific formulation: would we
get the same results whether we proceed with the system in Eq. (6.35) or in

Eq. (6.36)? The answer is yes, except that the system in Eq. (6.35) exhibits a

number of zero roots, due to the singularities induced by the identities. But

its non-zero roots are precisely those obtained from the system in Eq. (6.36).

In dealing with this issue it is convenient to introduce the matrix

M =

[
Im−m∗ −H12

0 Im∗

]
, (6.37)

so that, with x a (scalar) real or complex indeterminate, we obtain

M

(
B∗

0 +
r∑
i=1

Bix
i

)

=

[
B∗

0(11) −H12B
∗
0(21) +

∑r
i=1(Bi(11) −H21Bi(21))x

i 0

B∗
0(21 +B∗

0(21) +
∑r
i=1 Bi(21)x

i
(∑r

i=0 x
i
)
Im∗

]
.

(6.38)
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Consequently, since the determinant of M is unity

∣∣∣∣∣B∗
0 +

r∑
i=1

Bix
i

∣∣∣∣∣
=

∣∣∣∣
[
B∗

0(11) −H12B∗
0(21) +

∑r
i=1(Bi(11 −H21Bi(21))x

i 0

B∗
0(21 +

∑r
i=1Bi(21)x

i
(∑r

i=0 x
i
)
Im∗

]∣∣∣∣ = 0.

(6.39)

But Eq. (6.39) shows that the non-zero roots of

∣∣∣∣∣B∗
0 +

r∑
i=1

Bix
i

∣∣∣∣∣ = 0, (6.40)

are precisely the roots of

∣∣∣∣∣(B∗
0(11 −H21B

∗
0(21)) +

r∑
i=1

(Bi(11 −H21Bi(21))x
i

∣∣∣∣∣ = 0, (6.41)

which, for stability of the system, are required to be greater than one in
absolute value. Consequently, one can obtain or verify the stability condition

either from Eq. (6.35) or Eq. (6.36). When using Eq. (6.35) one should bear

in mind that, due to singularities induced by the identities, this polynomial

equation has m∗r zero roots.

6.4.3 Applications to Time Series Models

Our objective here is not to undertake a general review of time series, but

rather to examine those aspects of time series that have found reasonably

extensive applications in econometrics. In the process we shall provide the

basic definitions and concepts that underlie these applications,

Definition 6.4. A time series is a collection of random variables indexed on

a linear set T , i.e. {xt: t ∈ T } . The set in question is ordered in the sense

there is a “before” and “after”. If the set T is discrete we shall refer to

such time series as stochastic sequences, while if it is continuous we shall

refer to them as stochastic processes. An example of the latter is Brownian
motion which refers to the position of a particle suspended in a liquid.

Example 6.3. The series giving consumption of durables by quarter in the US

is a time series (stochastic sequence) in the sense above in that consumption

is recorded discretely (quarterly) and consumption of durables in the third

quarter of 1999 precedes consumption of durables in the fourth quarter of
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2001 and conversely consumption of durables in the second quarter of 2012

succeeds (follows) consumption of durables in the first quarter of 2010. Some
entities in economics, such as those dealing with activities of individuals at

a specific time cannot be so ordered, as e.g. households’ adjusted gross

income as defined by the internal revenue service. Samples (observations) on

such entities are referred to as cross section samples, and we shall not deal

with them in this discussion.
The typical set we shall use in our discussion below is given by

{T : if t ∈ T, t = 0,±1,±2,±3, . . .} (6.42)

Convention 6.2. The probability distribution of a stochastic sequence is

considered to have been specified if for arbitrary n we can specify the joint

distribution of the collection {xti : ti ∈ T, i = 1, 2, . . . , n.}

Definition 6.5. A stochastic sequence {xt: t ∈ T } is said to be strictly

(or strongly) stationary if and only if for arbitrary n, k ∈ T the joint

distributions of

{xti : i = 1, 2, . . . , n} and {xti+k : i = 1, 2, . . . , n}

are identical.

Definition 6.6. A stochastic sequence {xt: t ∈ T } is said to be covariance

(or weakly) stationary if and only if, for all t, h ∈ T

Ext = μ, Cov(xt+h, xt) = c(|h|), (6.43)

provided the two moments above exist.4

Evidently, if a strictly stationary sequence possesses at least a

second moment, it is also covariance stationary.
The function

{c(t+ h, t) = c(|h|): h = 0,±1,±2, . . . , . . .}

is said to be the auto-covariance function, and the function

{ρ(h) = c(|h|)/c(0): h = 0,±1,±2, . . . , . . .}

is said to be the auto-correlation function. Evidently, c(|h|) ≤ c(0) , c(0)
being the variance. We also have

4By convention Cov(xt+h, xt) = E(xt+h − μ)(xt − μ) = c([t + h] − t) = c(h) .

But since E(xt+h − μ)(xt − μ) = E(xt − μ)(xt+h − μ) = c(t − [t+ h]) = c(−h) the

definition is justified.
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Proposition 6.1. The auto-covariance function is at least a positive

semidefnite sequence.

Proof: Let x = {xt: t = 1, 2, . . . n} be elements of a zero mean covariance

stationary sequence. Then, for an arbitrary real vector a ,

0≤var(a′x)=
n∑
i=0

n∑
j=0

aic(i, j)aj=

n∑
i=0

n∑
j=0

aic(i−j)aj , with c(i−j)=c(j−i).

Thus, the matrix C = [c(i − j)] is symmetric and obeys, for arbitrary a

a′Ca ≥ 0,

i.e. it is positive semidefinite and so is the sequence.

Definition 6.7. A stochastic sequence {εt: t ∈ T } is said to be a white

noise sequence if it is a sequence of uncorrelated random variables with

mean 0 and variance σ2 , and is denoted by WN(0, σ2) .

Moving Average Sequences

Definition 6.8. A stochastic sequence {Xt: t ∈ T } is said to be a moving
average sequence of order n if and only if

Xt =

n∑
j=0

ajut−j, a0 = 1, ut ∼WN(0, σ2). (6.44)

The condition a0 = 1 is an identification condition and is imposed

solely in order to enable the unique identification of the parameters aj , σ
2 .

Alternatively, we could have imposed the condition σ2 = 1 .

This is an opportune time to introduce the terminology of time invari-

ant filter, very common in this literature. The reader would find useful the
communications engineering simile between an input which is transformed

through the filter to produce an output. Thus,

Definition 6.9. A linear time invariant filter (LTIF) is a function which is

linear and time invariant and when applied to an input, gt , produces as output

yt = f(gt) , where t ∈ T . Linearity means that f(gt + ht) = f(gt) + f(ht)

and time invariance means that f(·) does not depend on t directly.

Remark 6.5. Notice that all lag polynomials we utilized in our discussion are

indeed linear time invariant filters.

An important property of LTIF which we shall not prove here is,
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Assertion 2. Let yt = f(ut) be the output ( yt ) of a LTIF, f , with input

ut . If {ut: t ∈ T } is a stationary sequence, then so is {yt: t ∈ T } ,
the output sequence. This holds for strict stationarity as well as for weak

stationarity.

Definition 6.10. A stochastic sequence Xt is said to be a linear process

(or sequence) if and only if

Xt =
∞∑

j=−∞
cjut−j ,

∞∑
j=−∞

|cj | <∞, ut ∼WN(0, 1), t ∈ T. (6.45)

Taking the variance of the WN to be one is solely done so that the requisite

identification condition is simply stated. We could also have put c0 = 1 .

Finally, in connection to moving average sequences, we have

Definition 6.11. Let Xt be a sequence as in Eq. (6.44); such a sequence is

said to be n−dependent meaning that Xt and Xs are correlated if |t−s| ≤ n

and otherwise they are not correlated. Note that if, in Definition 6.8, the u -
sequence is not merely WN(0, σ2) but rather iid(0, σ2) , then for |t−s| > n ,

Xt and Xs are mutually independent.

Autoregressive Sequences

Definition 6.12. Let {Xt: t ∈ T } , be a (scalar) stochastic sequence

obeying

Xt =

m∑
i=1

aiXt−i + ut, t ∈ T, (6.46)

ai ∈ R , for all i , and ut ∼WN(0, σ2) 5 Then, the sequence is said to be an

autoregression of order m and denoted by AR(m) .

Example 6.4. A common application of the first order autoregression is in

the context of the general linear model (GLM), (regression model), to be
considered extensively in a later chapter. There one writes, in its simplest

form,

yt = α+ βxt + ut,

where yt is (in the econometric terminology) the dependent variable (the

regressand in the statistical terminology), xt is the independent or explana-

5Here R is the real line. Although the coefficients can be allowed to be complex

as well, this is very uncommon in economics. The notation ∼ generally means “is

equivalent”; in this particular use it is best for the reader to read it as “behaves like”

or “has the distribution of”.
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tory variable (in the econometric terminology) or the regressor (in the

statistical terminology)6 and ut is the error term of the model. The stan-
dard assumption is that the error sequence is either an i.i.d.- or at least a

WN-sequence. But since a great many economic data exhibit autoregressive

properties it is very common to test the alternative that the error sequence is

an AR(1) sequence,

ut = ρut−1 + εt,

where εt is at least WN(0, σ2) , although most of the testing procedures

typically used by econometricians require that the sequence be i.i.d. and/or
N(0, σ2) , i.e. normal with mean zero and variance σ2 .

Other forms of extensive use are the numerous “dynamic” models where at
least one lag of the dependent variable, yt , typically the first, yt−1 , is used

as an explanatory variable.

If in the error term case discussed above we bring to bear the analysis

provided earlier in the chapter we may write

(I − ρL)ut = εt. (6.47)

The condition for “stability”, here better thought of as invertibility, requires

that the root of 1−ρψ = 0 , say ψ∗ obey |ψ∗| > 1 . It is clear that ψ∗ = 1/ρ ,

satisfies this condition if |ρ| < 1 . Consequently, we may express7

ut =

∞∑
j=0

ρjεt−j . (6.48)

A similar discussion regarding the general AR(m) sequence of Definition 6.12,

Eq. (6.46), using the same concept of stability, i.e. the requirement that the
roots of

1−
m∑
i=1

aiψ
i = 0, obey ψ∗

i > 1, i = 1, 2, . . . ,m, (6.49)

suggests, in view of a previous section of this chapter, that we have the
representation

Xt =

(
m∏
i=1

[
I

I − λiL

])
ut =

∞∑
j=0

φjut−j ,

6In the future we shall use exclusively the econometric terminology.
7The convergence in the right member of the equation below is, depending on the

assumptions made, either absolute convergence of the sequence of the coefficients of

the errors and finiteness of their first absolute moment, E|εt| , for all t ∈ T , or is con-

vergence in mean square, or quadratic mean a concept that will be introduced

at a later chapter dealing with the underlying probability foundations of econometrics.
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where convergence of the right member is in quadratic mean, as amplified

in Footnote 6, λi = (1/ψ∗
i ) , and the φj are complicated functions of the

λi . In the literature of time series this phenomenon is not termed “stability”.

Instead, we have the following

Definition 6.13. Let Xt be the stochastic sequence of Definition 6.12,

Eq. (6.46), and suppose (the roots of) its characteristic polynomial equation

1−
m∑
i=1

aiψ
i = 0, obey ψ∗

i > 1, i = 1, 2, . . . ,m, (6.50)

so that it has the representation

Xt =

(
m∏
i=1

[
I

I − λiL

])
ut =

∞∑
j=0

φjut−j ; (6.51)

then the AR(m) is said to be causal.

Remark 6.6. When time series methods entered fully into the mainstream
of the econometric literature (late 1970s, early 1980s) the use of the term

“causal”, to describe econometric models framed as autoregressions caused a

great deal of confusion and a flurry of papers arguing that such models are not

intrinsically, or in a philosophical sense, dealing with causality. While perhaps

the term “causal” to describe the AR(m) of Definition 6.12 is inopportune,
we remind the reader that in mathematics a definition means neither more

nor less than what it states. Any other attribution to the term defined is both

harmful to the reader’s comprehension as well as irrelevant. Thus, a “causal”

AR(m) means nothing more than it may be expressed totally and solely in
terms of its constituent WN sequence as in Eq. (6.51).

Autoregressive Moving Average Sequences

Definition 6.14. Let {Xt: t ∈ T } , be a (scalar) stochastic sequence

obeying

m∑
j=0

bjXt−j =
n∑
i=1

aiut−i, t ∈ T, or B(L)Xt = A(L)ut, (6.52)

ai, bj ∈ R , for all i, j , ut ∼ WN(0, σ2) , the polynomials A(L), B(L) have
no common factors and a0 = b0 = 1 (identification conditions). Then, the

sequence is said to be an Autoregressive Moving Average sequence of

order (m,n) and is denoted by ARMA(m,n) .
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If the characteristic polynomial equation of the (autoregressive) lag

polynomial B(L) has roots greater than one, i.e. the roots, ψ∗
j , of

B(ξ) = 1 +

m∑
j=1

bjξ
j = 0, obey |ξ∗j | > 1,

the sequence ARMA(m,n) is said to be causal.

If the roots, φ∗i , of the polynomial equation

A(φ) = 1 +

n∑
i=1

aiφ
i = 0, obey |φ∗i | > 1,

the sequence ARMA(m,n) is said to be invertible.
Most of the issues related to ARMA(m,n) have already been examined

in the previous two sections dealing with moving average and autoregressive

sequences, as well as in the discussion of the GLSEM.

Thus, observe that what we called the “final form” of the GLSEM,8 in this
case is given by

y′t· =
G(L)

b(L)
u′t·, (6.53)

where the symbols are as defined in Eqs. (6.29) and (6.30). It should be noted,

however, that in the GLSEM B∗(L), C(L) represent matrix polynomials

in the lag operator L , while in the ARMA(m,n) case we were dealing above

they represent scalar polynomials. However, since b(L) = |B∗(L)|| , it is a
scalar polynomial of degree mr . Its inverse lag polynomial

I

b(L)
=

mr∏
i=1

(
I

I − λiL

)
(6.54)

is well defined provided the autoregressive part of the GLSEM is causal, or in

the terminology of econometrics stable. The representation of yt· solely in

terms of the WN(0, σ2) u -sequence is given thus by

y′t· = Ψ(L)u′t·, or y′t· =
∞∑
k=0

Ψku
′
t−k·, (6.55)

where the Ψk are appropriate m×m matrices. This (matrix) representation,

as well as in the case of the scalar AR(m) considered earlier, is often referred

to as a moving average of infinite extent, denoted by MA(∞) .

8In the interest of simplicity of presentation we have omitted or ignored the exoge-

nous variable component, containing pt·C0 , and lags thereof; the latter, however, can

be easily added at the cost of a bit more complexity in the presentation.
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Returning now to the ARMA(m,n) sequence of Eq. (6.52), which we

repeat below

m∑
j=0

bjXt−j =
n∑
i=1

aiut−i, t ∈ T, or Xt =
A(L)

B(L)
ut =

∞∑
k=0

ψkut−k

we need to determine whether we could estimate the coefficients ψk if we

estimated or knew the coefficients of the lag polynomials A(L), B(L) . This is

easily accomplished if we note that A(L) = B(L)ψ(L) and match coefficients

of equal powers of L on both sides of the equation, thus obtaining

as =

min(s,m)∑
j=0

bjψs−j , for 0 ≤ s ≤ n

0 =

min(s,m)∑
j=0

bs−jψs−j , for s > n. (6.56)

Example 6.5. For practice, we compute recursively a few coefficients to find,

a0 = b0ψ0 , which implies ψ0 = 1 in view of the normalizations; a1 = b0ψ1 +

ψ0b1 , or ψ1 = a1 − b1 ; a2 = ψ2b0 + c1b1 + ψ0b2 , or ψ2 = a2 − b2 − ψ1b1
and so on. Finally (assuming n ≥ m ) an =

∑m
j=0 bjψn−j , or ψn = an −∑m

j=1 bjψn−j . For s > n the term an will disappear and the summation will

be adjusted accordingly.

6.4.4 An AR(m) with Nonlinearities; ARCH Models

The purpose of this section is to provide an accessible discussion of the

ARCH model (Autoregressive Conditional Heteroskedasticity), which,
together with its many variants has found extensive applications in modeling

the rates of return of risky assets. We shall routinely refer to such models as

ARCH(m) , rather than AR(m) with nonlinearities. Our chief focus will be

the scalar ARCH(m).

Definition 6.15. Let {Xt: t ∈ T } be a stochastic sequence obeying

B(L)Xt=ut, B(L)=

m∑
j=0

bjL
j , ut=f

1/2
t εt, ft=α0+α1u

2
t−1, |α1|<1,

(6.57)

where {εt: t ∈ T } is an iid(0, 1) sequence, and the usual identification

condition b0 = 1 holds. Such a sequence is termed ARCH(m) .
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Remark 6.7. As is evident from Eq. (6.57) the difference between ARCH(m)

and the standard AR(m) model lies in the specification of the stochastic
sequence ut . In the standard case, ut is a white noise sequence WN(0, σ2) ,

while in the ARCH case it is defined by

ut = f
1/2
t εt, ft = α0 + α1u

2
t−1, |α1| < 1, (6.58)

and εt is an iid(0,1) sequence. Thus, the ARCH specification of the basic

sequence ( ut ) generating Xt involves nonlinearities, which is what sep-
arates the ARCH model from the standard AR models discussed

earlier.

The properties of the basic sequence, ut , are not specified directly and

thus must be deduced from the properties assigned to the function

ft and the sequence εt . We shall now determine these properties.9 First,

we determine the mean and variance and then determine whether the sequence
ut is also weakly stationary.

E(ut|ut−1) = 0, and thus Eut = 0;

σ2(t) = var(ut) = Eu2t = EuE[u2t |ut−1] = Eu[α0 + α1u
2
t−1]

= α0 + α1σ
2(t− 1), (6.59)

because Eε2t = 1 .

Given the second equation above we may use a heuristic approach to find

the variance of the ut sequence. Thus,

σ2(t) = α0 + α1σ
2(t− 1), or (I − α1L)σ

2(t) = α0I, or σ
2(t) =

∞∑
j=0

αj1L
jα0

=
α0

1− α1
<∞. (6.60)

Remark 6.8. While this is the correct answer to the question of what the
“long term” variance of ut is, the method used to obtain it is not rigorous, in

that for fixed t we took a conditional expectation and subject to that we made

a limiting argument without showing that this transposition of operations, in

that context, is allowed. We shall return to this issue below.

9The notation Eu[E[ut|ut−1] means that, because u2t is both a function of u2t−1

and ε2t , in taking the expectation E(u2t ) we first take the expectation conditional

on ut−1 and then take the expectation with respect to ut .
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Another property of the u-sequence is that it is uncorrelated. Specifically,

for t, h ∈ T , consider

E(ut+hut) = EuE(ut+hut|ut+h−1ut−1) = Eu(ft+hft)
1/2E[εt+hεt] = Eu0 = 0,

(6.61)

because for h �= 0 , εt+h, εt are mutually independent with mean zero and at

least εt+h is not related to ut+h−1 or ut−1 . When h = 0 the equation

above reduces to the second equation of Eq. (6.59). To recapitulate, we have

established above:

i. The ut sequence has mean zero;

ii. The ut sequence is uncorrelated;

iii. The conditional variance of ut given ut−1 is E[u2t |ut−1] = α0 +

α1u
2
t−1

10;

iv. The unconditional variance of ut is given by Eu2t = α0/(1− α1) .

We shall now provide a more rigorous solution approach to the determination

of what we called the “long term” variance of the u -sequence. From the

definition of the u -sequence we have

u2t = α0ε
2
t + α1u

2
t−1ε

2
t . (6.62)

Because the term u2t−1ε
2
t in the equation above is non-linear, there is no

simple way of finding a solution, as we did in earlier discussions;

one possible approach is to recursively substitute for u2t−1 so as to make u2t
depend on more and more remote lags, whose influence on the determination

of u2t is progressively weakened because |α1| < 1 . Doing so we obtain

u2t = α0ε
2
t + α1u

2
t−1ε

2
t (6.63)

= α0ε
2
t + α1[α0ε

2
t−1 + α1u

2
t−2ε

2
t−1]ε

2
t

= α0[ε
2
t + α1ε

2
t−1ε

2
t ] + α2

1u
2
t−2ε

2
t−1ε

2
t

= α0[ε
2
t + α1ε

2
t−1ε

2
t ] + α2

1[α0ε
2
t−2 + α1u

2
t−3ε

2
t−2]ε

2
t−1ε

2
t = . . . , . . .

= α0

⎡
⎣N−1∑
j=0

αj1

(
j∏

k=0

ε2t−k

)⎤
⎦+ αN1 u

2
t−N

(
N−1∏
s=0

ε2t−s

)
. (6.64)

10This feature is responsible for the name of the model ARCH, which stands for

autoregressive conditional heteroskedasticity.
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We must now deal with the remainder (last term) which we rename

wN = αN1 u
2
t−N

(
N−1∏
s=0

ε2t−s

)
. (6.65)

We will show that it converges in probability to zero with N, using Chebyshev’s

inequality, a fact expressed in the notation plimN→∞ wN = 0 . We begin by

showing11 that plimN→∞ w
1/2
N = 0 , define wN = g(w

1/2
N ) = (w

1/2
N )2 , which

is evidently a continuous function, and argue that plimN→∞ wN = 0 . Now

w
1/2
N = α

N/2
1 ut−N

N−1∏
s=0

εt−s. (6.66)

Clearly,

Ew
1/2
N = α

N/2
1 Eut−N

(
N−1∏
s=0

εt−s

)
= 0,

var(w1/2
n ) = αN1 var(ut−N ), because, E

(
N−1∏
s=0

εt−s

)2

= 1, (6.67)

and ut−N is independent of the εt−s . Since var(ut−N ) is bounded, i.e.

less than some finite number K , we have, by Chebyshev’s inequality, that for
any pre-assigned positive number δ , however small,

Pr(|w1/2
N | > δ) ≤ αN1 K

δ2
(6.68)

whose right member converges to zero with N , even if the variance is not

bounded, so long as it increases at a rate less that (1/α1) . Thus,

plim
N→∞

u2t = α0

⎡
⎣ ∞∑
j=0

αj1

(
j∏

k=0

ε2t−k

)⎤
⎦ , whose expectation is

11The property in question is that if ξn is a sequence of random variables converging

in probability to ξ , written plimn→∞ ξn = ξ , and if g is a continuous (or even a

measurable) function then plimn→∞ g(ξn) = g(ξ) , provided the latter is defined. For

a proof of this see Dhrymes (1989), p. 144 ff. These issues will also discussed in a later

chapter.
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var(u2t ) = Eu2t = α0

∞∑
j=0

αj1 =
α0

1− α1
. (6.69)

This confirms the result we obtained above regarding the unconditional vari-
ance of the u-sequence, and also it shows the Xt -sequence to be explicitly

causal, i.e. it is basically expressible in terms of the fundamental

iid(0, 1) ε -sequence, albeit nonlinearly.



Chapter 7

Mathematical Underpinnings

of Probability Theory

The purpose of this chapter is to provide a background on the results from

probability and inference theory required for the study of several of the topics

of contemporary econometrics.

An attempt will be made to give proofs for as many propositions as is
consistent with the objectives of this chapter which are to provide the tools

deemed necessary for the exposition of several topics in econometric theory; it

is clearly not our objective to provide a substitute to a mathematical

textbook of modern probability theory.

7.1 Sets and Set Operations

Let Ω be a (nonempty) collection of objects (our universe of discourse); the

nature of such objects need not be specified. In most applications, the set Ω

would be either the set of all possible outcomes of an experiment, the sample

space of probability theory, the real line, or the Cartesian product of a finite

number of copies of the real line; for the moment, however, we treat Ω as an
abstract collection of objects and we shall refer to it as a space in this and

subsequent sections. We denote its elements by ω and as a matter of notation

we write

ω ∈ Ω.

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 7, © The Author 2013
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A subset of Ω , say A , is simply a collection of elements of Ω ; we denote it,

as a matter of notation, by
A ⊂ Ω,

which is to be read: A is contained in Ω , or A is a subset of Ω . For

completeness we also define the null set, ∅ , which has no elements; by con-

vention, the null set is a subset of every set. As a matter of notation
we have that for every set, A ⊂ Ω ,

∅ ⊂ A.

A subset may be described either by enumeration, i.e. by enumerating its

elements, or by some property. For example, suppose

Ω = {1, 2, 3, . . .}

One of its subsets might be A = {1, 2, 3, 4, 5} ; or we may simply describe

membership in a set, say B , by some property; for example

B = {n : n = 2k , k = 1, 2, 3 . . .}.

In this case, B is the set of all even integers; it can also be easily specified by

enumeration; thus, B = {2, 4, 6, 8, . . .} . In most instances the specification of

subsets is done by the specification of the properties of their element(s) rather

than by enumeration, since the latter is, typically, very difficult to accomplish.
We now begin our formal discussion.

Definition 7.1. Let A , B ⊂ Ω ; then, their union is defined by

A ∪B = {ω : ω ∈ A or ω ∈ B}

which is read: the set of all points, which belong either to A or to B , (or

both).

Definition 7.2. Let A , B be as in Definition 7.1; then, their intersection

is defined by

A ∩B = {ω : ω ∈ A and ω ∈ B}
which is read: the set of all points, which belong to both A and B .

Definition 7.3. Let A ⊂ Ω , then the complement of A (relative to Ω ) is
given by

Ā = {ω : ω ∈ Ω and ω /∈ A}.

In what follows we shall drop repetitive and redundant statements, such as,

for example, A ⊂ Ω ; any sets we consider will be understood to be subsets

of Ω , which is the universe of discourse.
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A consequence of the definitions above is

Proposition 7.1. Let A , B , be any two sets; then

i. (A ∪B) = Ā ∩ B̄

ii. (A ∩B) = Ā ∪ B̄

Proof: If ω ∈ (A ∪B) , then ω /∈ A and ω /∈ B ; hence, ω ∈ Ā∩B̄ ; conversely,

if ω ∈ Ā ∩ B̄ , then ω /∈ A and ω /∈ B , i.e. ω ∈ (A ∪B) ; this proves i.

To prove ii we note that if ω ∈ (A ∩B) , then either ω ∈ Ā or ω ∈ B̄ ;
consequently, ω ∈ (Ā ∪ B̄) . Conversely, if ω ∈ (Ā ∪ B̄) , then either ω ∈ Ā

or else ω ∈ B̄ ; hence, ω /∈ (A ∩B) , or ω ∈ (A ∩B) .

q.e.d.

Remark 7.1. The results above obviously extend by iteration to finite unions

and intersections, i.e. the complement of a finite union is the intersection of

the corresponding complements and the complement of finite intersections is
the union of the corresponding complements.

It is simple to demonstrate that the results of Proposition 7.1 extend to

countable unions and intersections, i.e. if

{An : n = 1, 2, . . .}

is a sequence of sets (subsets of Ω ), then

i.
⋃∞
n=1An =

⋂∞
n=1 Ān ,

ii.
⋂∞
n=1An =

⋃∞
n=1 Ān .

7.2 Limits of Sequences

Let {an : n = 1, 2, 3, . . .} be a sequence of, say, real numbers; we recall from

calculus that the limit of the sequence, if one exists, is a real number, say a ,
such that given any ε ≥ 0 there exists some n0 such that for all n ≥ n0

| an − a | ≤ ε.

We would like to express this concept in a way that would easily enable us to

generalize it to the case where the sequence in question is not a sequence of

real numbers but, say, a sequence of sets (subsets of Ω ).
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Definition 7.4. Let {an : n ≥ 1} be a sequence of real numbers; then the

supremum of the sequence, denoted by

sup
n→∞

an,

is the least upper bound (l.u.b.) of the sequence, i.e. the smallest number,

say α , such that
an ≤ α , ∀ n.

The infimum of the sequence, denoted by

inf
n→∞ an,

is the greatest lower bound (g.l.b.) of the sequence, i.e. the largest

number, say, α , such that
an ≥ α , ∀ n.

Remark 7.2. When dealing with a finite sequence, say {an : n = 1, 2, . . . , N}
the supremum and infimum of a sequence coincide with the latter’s maximum

and minimum, respectively. This is so since it is possible to find the largest

(maximum) and the smallest (minimum) elements of the sequence and these

will obey the requirements, respectively, for the supremum and the infimum.
Contrast this to the case where the sequence is infinite and the supremum and

infimum need not be members of the sequence.

Example 7.1. Consider the sequence

{an : an = 1− 1

n
, n ≥ 1}.

It is easily shown that

sup
n→∞

an = 1.

Notice also that 1 is not a member of the sequence; on the other hand

inf
n→∞ an = 0

and here 0 is a member of the sequence. If we truncate the sequence at n = N

and consider the sequence to consist only of the first N elements, then both
inf and sup are members of the sequence and correspond, respectively, to

min an = 0, max an = 1− 1

N
.

Consider further the sequence {an : an = 1 + (1/n), n ≥ 1} . In this case we
find

inf
n→∞ an = 1 , sup

n→∞
an = 2



7.2. LIMITS OF SEQUENCES 201

and note that the infimum is not a member of the sequence, while the

supremum is.

Definition 7.5. The sequence {an : n ≥ 1} is said to be a monotone

nonincreasing sequence if

an+1 ≤ an, for all n,

and is said to be a monotone nondecreasing sequence if

an+1 ≥ an, for all n.

Monotone nonincreasing or nondecreasing sequences are said to be monotone

sequences.

Remark 7.3. It is clear that if we consider limits of sequences in the extended

number system, [−∞, ∞] , then all monotone sequences have a limit; this is so
since, in the case of monotone nonincreasing sequence either there is a (finite)

greatest lower bound, or the sequence decreases to −∞ , while in the case of a

monotone nondecreasing sequence either there is a (finite) least upper bound

or the sequence increases to +∞ .

Monotone sequences offer an important tool in studying the limiting behavior

of general sequences. This is so, since for a general sequence a limit, i.e. a
point within a neighborhood of which are located all but a finite number of

the elements of the sequence, may not exist. A simple example is the sequence

{an : an = (−1)n + (−1)n
1

n
, n ≥ 1}.

Here, if we confine our attention to even numbered values of the index we have

a sequence with a limit at one; on the other hand if we confine our attention

to odd numbered values of the index then we have a sequence with a limit

at minus one. This sequence, then, has no limit in the sense that there is no
point around which are located all but a finite number of the elements of the

sequence; instead, there are two such points, each corresponding, however, to

distinct subsequences of the original sequence. Occasionally, such points are

called limit, or cluster points of the sequence. Now, if we had a way in which
we could determine more or less routinely the “largest” and “smallest” such

point, then we would have a routine way of establishing whether the limit of

a given sequence exists and, if it does, of identifying it.

Definition 7.6. Let {an : n ≥ 1} be a sequence of real numbers and put

bn = sup
k≥n

ak, cn = inf
k≥n

ak.
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Then, the sequences {bn : n ≥ 1} , {cn : n ≥ 1} are, respectively, mono-

tone nonincreasing and nondecreasing and their limits are said to be the
limit superior and limit inferior of the original sequence and are denoted,

respectively, by

limsup, liminf or lim , lim.

Thus, we write

lim
n→∞ bn = lim

n→∞ sup
k≥n

ak,

lim
n→∞ cn = lim

n→∞ inf
k≥n

ak.

We immediately have

Proposition 7.2. Let {an : n ≥ 1} be a sequence of real numbers; then,

limsup an ≥ liminf an.

Proof: Let

bn = sup
k≥n

ak, cn = inf
k≥n

ak.

It is evident, by construction, that

bn ≥ cn, for all n. (7.1)

Consequently,
limsup an = lim bn ≥ lim cn = liminf an

The validity of the preceding rests on the validity of the middle inequality;

the latter in turn is implied by Eq. (7.1). For, suppose not; then we can find

ε ≥ 0 , such that

b+ ε ≤ c− ε

where, of course,
b = lim bn, c = lim cn.

We may now select subsequences, say,

{bn1 : bn1 < b+ ε, for all n1 ≥ N1},

{cn2 : cn2 > c− ε, for all n2 ≥ N2},

and note that for all n ≥ N , where N ≥ max(N1 , N2) we have, for the

elements of the subsequences above,

bn < b+ ε ≤ c− ε < cn.

But this states that there are infinitely many elements for which

bn < cn.

This is a contradiction. q.e.d.
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Definition 7.7. Let {an : n ≥ 1} be a sequence of real numbers; then its

limit exists, if and only if

limsup an = liminf an,

and it (the limit) is defined to be their common value.

Let us now consider sequences whose elements are sets, i.e. subsets of Ω .

Definition 7.8. Let {An : n ≥ 1, An ⊂ Ω} ; define

Bn =
∞⋃
k=n

Ak, Cn =
∞⋂
k=n

Ak

and note that {Bn : n ≥ 1} , {Cn : n ≥ 1} are, respectively, monotone

nonincreasing and monotone nondecreasing. Let

A∗ = lim
n→∞Bn , A∗ = lim

n→∞Cn

where, for a monotone nonincreasing sequence

lim
n→∞Bn =

∞⋂
n=1

Bn

and for a monotone nondecreasing sequence

lim
n→∞Cn =

∞⋃
n=1

Cn.

Then, the limit superior of the sequence is defined to be A∗ ; the limit

inferior of the sequence is defined to be A∗ and the limit of the sequence

exists, if and only if,

A∗ = A∗ = A.

Moreover, we have the notation

lim
n→∞ sup

k≥n
Ak = A∗, or lim

n→∞An = A∗,

lim
n→∞ inf

k≥n
Ak = A∗, or limn→∞An = A∗,

and, whenever A∗ = A∗ = A ,

limAn = A.
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Remark 7.4. The intuitive meaning of A∗ is that if ω ∈ A∗ then ω belongs

to infinitely many sets, An , a fact also denoted by the notation

A∗ = {ω : ω ∈ An , i.o.},

the abbreviation, i.o. , meaning infinitely often. To see this, pick any

element ω ∈ A∗ ; evidently, ω must belong to at least one set An ; let this

occur first for n = n1 , and consider Bn , for n = n1 + 1 . Clearly, this set,

Bn , does not contain An , for n = n1 ; however, since it must contain ω ,
there must be another set, say An , for n = n2 > n1 which contains ω .

Continuing in this fashion we can show that the elements of A∗ are contained

in infinitely many sets An .

Remark 7.5. The set A∗ has the intuitive interpretation that its elements

belong to all, except possibly a finite number, of the sets of the sequence. To

see why this is so, note that if ω ∈ A∗ , then there exists an index, say, n0 ,
such that for all n ≥ n0, ω ∈ An .

We close this section with

Proposition 7.3. A∗ ⊃ A∗ .

Proof: Evidently, by construction,

Bn ⊃ Cn, for all n.

Thus,

A∗ = lim
n→∞Bn ⊃ lim

n→∞Cn = A∗.

q.e.d.

7.3 Measurable Spaces, Algebras and Sets

In previous sections we had introduced the abstract space Ω and have dealt

with operations on sets, which are subsets of Ω . Here, we wish to impart some
structure on the class of subsets under consideration. Thus, we introduce,

Definition 7.9. Let A be a nonempty class of subsets of Ω ; then A is said
to be an algebra if

i. For any A ∈ A , we also have Ā ∈ A ;

ii. For any Ai ∈ A , i = 1, 2 , A1 ∪ A2 ∈ A .
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Remark 7.6. A few implications of the definition of an algebra are worth

pointing out. Since an algebra is a nonempty class of subsets of Ω , it con-
tains at least one set, say A ; since it is closed under complementation it also

contains the complement of A , in Ω . Since it is also closed under (finite)

unions it also contains the union of A and its complement; this is of course

Ω ! But the complement of Ω , in Ω , is the null set, ∅ . Thus, any algebra

must contain the pair ( Ω , ∅ ); moreover, one can easily verify that a class
consisting solely of this pair is, indeed, an algebra.

Remark 7.7. Notice also that an algebra, A , is closed under finite intersec-
tions as well. To see this, observe that if the sets Ai , i = 1, 2, . . . , n , are in

A , then
n⋃
i=1

Ai ∈ A

and, consequently, since an algebra is closed under complementation,

n⋃
i=1

Ai =

n⋂
i=1

Āi ∈ A.

Remark 7.8. We may render the description of an algebra, verbally, as a

nonempty class of subsets of Ω which is closed under complementation, finite

unions and intersections.

Definition 7.10. A nonempty class of subsets of Ω , say A , is said to be a

σ -algebra if

i. It is an algebra and, in addition,

ii. It is closed under countable unions, i.e. if Ai ∈ A , i ≥ 1 , then⋃∞
i=1 Ai ∈ A .

Definition 7.11. Let Ω be a space and A a σ -algebra of subsets of Ω ; the

pair, ( Ω, A) , is said to be a measurable space and the sets of A are said

to be the measurable sets, or A -measurable.

Remark 7.9. If Ω is the real line (in this case it is typically denoted by R )

and A the σ -algebra generated by the open intervals (a, b) , where a , b

are real numbers, then A is said to be a Borel σ -algebra and is usually
denoted by B . The sets in B are said to be the Borel sets. The measurable

space (R, B) is typically referred to as a Borel space or a one dimensional

Borel space.
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Definition 7.12. Let Ωi , i = 1, 2 , be two spaces; a function

X : Ω1 −→ Ω2

is a relation that associates to each element ω1 ∈ Ω1 an element, say ω2 ∈ Ω2 ,

i.e. X(ω1) = ω2 .

Definition 7.13. Let X, Ωi, i = 1, 2 , be as in Definition 7.12 and A ⊂ Ω1 .

The set (in Ω2 )

B = {ω2 : ω2 = X(ω1), ω1 ∈ A}

is said to be the image of A under X . Conversely, take any set B ⊂ Ω2 .

Then the set (in Ω1 )

A = {ω1 : ω1 = X−1(ω2), ω2 ∈ B}

is said to be the inverse image of B under X , and we have the notation,

X(A) = B and X−1(B) = A,

i.e. B is the image of A under X , and A is the inverse image of

B , under X .

The following question now arises: If (Ωi, Ai), i = 1, 2 are two measurable

spaces and X is a function,

X : Ω1 −→ Ω2 ,

what can we say about the image of A1 under X and/or the inverse image

of A2 under X ? Denoting these entities by X(A1), X
−1(A2) , respectively,

we have

Proposition 7.4. Let (Ωi, Ai), i = 1, 2 , be measurable spaces and suppose

X : Ω1 −→ Ω2 .

Then, X−1(A2) is a σ -algebra, on Ω1 , while X(A1) is a σ -algebra on Ω2 ,
only if X is one to one and onto.1

Proof: Let A = {A : A = X−1(B), B ∈ A2} and suppose Ai ∈ A, i ≥ 1 ; we

shall show that the complement and countable union of such sets are also in

A , thus showing that the latter is a σ -algebra. This, however, is quite evident,

1A function f : Ω1 −→ Ω2 is said to be one-to-one if and only if, for any pair

(a, b) ∈ Ω1, f(a) = f(b) implies a = b . A function f : Ω1 −→ Ω2 , where Ωi, i =

1, 2 , are suitable spaces, is said to be onto if and only if for every ω2 ∈ Ω2 there

exists ω1 ∈ Ω1 such that f(ω1) = ω2.
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since if Ai = X−1(Bi), i ≥ 1 , for Bi ∈ A2, i ≥ 1 , then
⋃∞
i=1 Bi ∈ A2 , as

well. Consequently,
⋃∞
i=1Ai =

⋃∞
i=1X

−1(Bi) = X−1(
⋃∞
i=1 Bi) , which shows

that
⋃∞
i=1 Ai ∈ A . Moreover, since X−1(Bi) = X−1(B̄i) , the proof of the

first part of the proposition is complete.

As for the second part, to appreciate the need for the additional conditions,

consider X such that it maps Ω1 into a set B ⊂ Ω2 . In such a case B ∈
X(A1) , but B̄ /∈ X(A1) . If X , however is onto, i.e. its range is Ω2 , and
one to one, i.e. if for every B ∈ A2 there is one set, say, A ∈ A1 such that

X(A) = B and if X(A1) = X(A2) , then A1 = A2 , we may put forth the

following argument. Let

C = {B : B = X(A), A ∈ A1},

and suppose Bi ∈ C, i ≥ 1 . We show that the the countable union and

complements of such sets are also in C . For each Bi ∈ C, i ≥ 1 , there exist

Ai ∈ A1, i ≥ 1 , such that X(Ai) = Bi . Since A =
⋃∞
i=1Ai ∈ A1 , and since

X(A) =
⋃∞
i=1X(Ai) =

⋃∞
i=1Bi = B , we conclude that B ∈ C . Moreover,

since B̄i = X(Ai) = X(Āi) , we conclude that B̄i ∈ C .

q.e.d.

We now have the basic definition

Definition 7.14. Let (Ωi , Ai) , i = 1, 2 , be measurable spaces and let

X : Ω1 −→ Ω2 .

Then, X is said to be a measurable function, or A1 -measurable, if

and only if
X−1(A2) ⊂ A1.

The connection between the mathematical concepts above and econometrics

is, perhaps, most obvious in the following definition

Definition 7.15. Let (Ω, A) , (R, B) be two measurable spaces, where R

is the extended real line and B is the Borel σ -algebra. A random variable,

X , is a function,

X : Ω −→ R ,

such that X−1(B) ⊂ A , i.e. a random variable is a real valued
measurable function.

A natural question of interest is: if X is a random variable, then what sort

of “functions of X ” are random variables? For example, if X is a random

variable are functions like sinX , Xn , logX , eX etc. also random variables?

This is answered by
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Proposition 7.5. Let (Ω, A), (R, B) be measurable spaces and

X : Ω −→ R

be as in Definition 7.15; let2

φ : R −→ R

be a B -measurable function. Then,

ψ = φ ◦X : Ω −→ R

is a random variable (i.e. a measurable function), where

ψ(ω) = φ[X(ω)].

Proof: We shall show that ψ−1(B) ⊂ A . Let C be any set in B ; since φ
is B -measurable there exists a set, say B ∈ B such that φ−1(C) = B . On

the other hand since X is A -measurable, there exists a set A ∈ A such

that X−1(B) = A . Consequently, for any set C ∈ B , we have ψ−1(C) =

X−1[φ−1(C)] ∈ A . Thus, ψ−1(B) ⊂ A .

q.e.d.

The result above is applicable, also, for functions which are defined over
sequences of random variables. Since for the typical student in econometrics

these functions are unfamiliar we present an explicit discussion of them.

Proposition 7.6. Let (Ω, A), (R, B) be measurable spaces, and let

Xn : Ω −→ R, n ≥ 1

be random variables. Then, the following are random variables, i.e. they are
A -measurable functions from Ω to R :

i. X∗
N = supn≤N Xn, Y ∗ = supnXn ;

ii. X∗N = infn≤N Xn, Y∗ = infnXn ;

iii. Yn = supk≥nXk, Zn = infk≥nXk ;

2The function ψ , implicitly defined below, is said to be a composition function,

of the functions φ and X , is denoted by φ ◦X , and means that for any ω ∈ Ω , we

first evaluate X(ω) , which is an element of R and then evaluate φ[X(ω)] . Thus,

ψ is also a measurable function transforming elements ω ∈ Ω to elements in R , thus

justifying the notation ψ: Ω −→ R .
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iv. X∗ = limsupXn, X∗ = liminf Xn ;

v. X+ = max(0, X) , X− = max(0, −X) .

This proof is too complicated to produce here. However, as with other propo-

sitions presented without proof, in this and the next two chapters, proofs may
be found in Dhrymes (1989).

We close this section with two clarifications, whose meaning will become

clear in the ensuing sections—although this is the natural place to present

them.

Remark 7.10. The results of Propositions 7.5 and 7.6, although stated in

terms of (scalar) random variables, are also applicable to vector random vari-

ables. For example, if {Xn : n ≥ 1} is a sequence of random variables, and

φ is a suitably measurable vector valued function (i.e. φ has, say, k com-
ponents, (φi, i = 1, 2, . . . , k) , then φ(Zn) is also a random variable (vector),

where Zn = (X1, X2, . . . , Xn) . In the literature of probability theory, enti-

ties like random vectors are occasionally referred to as “random elements”,

although we shall nearly always use the term “random vectors”.

Remark 7.11. The following convention will be observed throughout this

volume: unless otherwise specified, a random variable will always mean an a.c.
finite random variable, to be read as: “an almost certainly finite random

variable”. Formally, what this means is that if X is a random variable and

we define

A = {ω : | X(ω) | = ∞},

then, P (A) = 0 , where P (·) is the probability measure. This means, roughly

speaking, that the “probability that the random variable will assume the values

±∞ is zero”. All random variables routinely dealt with in econo-

metrics are a.c. finite random variables and, thus, no restriction is
entailed by the adherence to the convention above.

7.4 Measures and Probability Measures

7.4.1 Measures and Measurable Functions

Definition 7.16. Let Ω be a space and A be a nonempty class of subsets

of Ω . A relation, μ , that associates with each set of A a real number is said

to be a set function; thus,



210 CHAPTER 7. MATHEMATICAL UNDERPINNINGS...

μ : A → R .

If for every A ∈ A
| μ(A) | <∞
the set function, μ , is said to be finite.

Definition 7.17. Let A ⊂ Ω and suppose there exist pairwise disjoint sets

Ai , i.e. Ai ∩ Aj = ∅ for i �= j , such that A = ∪ni=1Ai , then the collection,

Cn = {Ai : i = 1, 2, . . . , n},
is said to be a finite partition of A in A . If the collection above is countably
infinite, i.e.

C = {Ai : i ≥ 1},
the constituent sets are disjoint, and A =

⋃∞
i=1 Ai , then C is said to be a

σ -partition of A in A .

Definition 7.18. Let A and its partitions be as in Definition 7.17, and let

μ be a finite set function as in Definition 7.16. Then, μ is said to be finitely

additive if for any finite partition of A , say Cn ,

μ(A) =

n∑
i=1

μ(Ai).

If for any σ -partition of A , say C ,

μ(A) =

∞∑
i=1

μ(Ai)

the set function μ is said to be σ -additive, provided the right member above

is finite.

Definition 7.19. Let Ω, A and μ be as in Definition 7.18; the set function

μ is said to be a measure if and only if

i. μ(∅) = 0 ;

ii. μ(A) ≥ 0 , for any A ∈ A ;

iii. If C , as in Definition 7.17, is a σ -partition (inA ) of a set A ⊂ Ω , then

μ(A) =

∞∑
i=1

μ(Ai).

Moreover, if μ is a measure and in addition μ(Ω) = 1 , then μ is said to be

a probability measure, or simply a probability, and is denoted by P (·) .
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Remark 7.12. To summarize the essentials: if Ω is a space and A a

nonempty collection of its subsets containing at least ∅ and Ω , then a prob-
ability measure, or simply a probability P (·) , is a real valued nonnegative

nondecreasing set function, such that P (∅) = 0, P (Ω) = 1 .

Definition 7.20. Let Ω be a space, A a σ -algebra of subsets of Ω , and

μ a measure defined on A . Then, the triplet (Ω,A, μ) is said to be a mea-

sure space; if μ is a probability, then the triplet (Ω,A, P ) , is said to be a

probability space.

Now that we have introduced measure spaces, it is desirable to elaborate,

somewhat, on the concept of measurable functions. We have already defined
measurable functions in an earlier section, in the context of two measurable

spaces. The requirement imposed by that definition is that the inverse image of

the σ -algebra of the range space be contained in the σ -algebra of the domain

space. Thus, in order to exploit or establish the measurability of a function we

must rely on the fact that sets in the range σ -algebra have inverse images in
the domain σ -algebra. Consequently, it would be useful to establish, under

a measurable function, just what kinds of sets in the range space have inverse

images which belong to the domain σ -algebra. To this end we have

Proposition 7.7. Let f be an extended real valued function, i.e. f may

assume the values ±∞ ,

f : Ω −→ R

where the domain space is ( Ω, A ), and the range space is (R, B ). Then, the

following statements are equivalent:

i. For each a ∈ R , the set

A = {ω : f(ω) > a}

is measurable;

ii. For each a ∈ R , the set

B = {ω : f(ω) ≥ a}

is measurable;

iii. For each b ∈ R , the set

C = {ω : f(ω) < b}

is measurable;
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iv. For each b ∈ R , the set

D = {ω : f(ω) ≤ b}

is measurable.

Moreover, statements i through iv imply that for each extended real number,

c , (one allows c = ±∞ ), the set

E = {ω : f(ω) = c}

is measurable.

This proof is too complicated to reproduce here. However, as with other

propositions presented without proof, in this and the next two chapters, proofs

may be found in Dhrymes (1989).

We give below, without proof examples of functions which are measurable.

Proposition 7.8. Let ( Ω, A ), (R, B ) be measurable spaces and let

{fn: n ≥ 1} , be a sequence of measurable functions

fn: Ω −→ R .

Then the following statements are true:

i. If c ∈ R , then cfn and c+ fn are measurable;

ii. For any n,m , such that fn, fm are measurable, then fn + fm ,
fn − fm , are also measurable;

iii. The functions f+
n , f

−
n , for all n are measurable, as are | fn |= f+

n +f−
n ,

where f+
n = max(0, fn), f

−
n = max(0,−fn) ;

iv. The functions

sup
n≤N

fn, sup
n≥1

fn, limsup
n→∞

fn

are measurable;

v. The functions

inf
n≤N

fn, inf
n≥1

fn, liminf
n→∞ fn

are measurable.

Definition 7.21. Let (Ω, A), (R, B) be measurable spaces and

f : Ω → R
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be a relation. We say that f is simple if and only if there exists a finite

partition {Ai : i = 1, 2, . . . , n} of Ω in A , such that

f(ω) =

n∑
i=1

xiIi(ω), xi ∈ R,

where Ii(·) is the indicator function of the set Ai , i.e.

Ii(ω) = 1, if ω ∈ Ai, i = 1, 2, . . . , n

= 0, otherwise.

Proposition 7.9. Let (Ω, A, μ), (R, B) be, respectively, a probability space

and a (Borel) measurable space and suppose f is a function

f : Ω → R

If g is another function

g : Ω → R

which is A -measurable and such that μ(A) = 0 , where

A = {ω : f(ω) �= g(ω)}

then, f is also measurable and we have the notation, f = g a.c. 3

Proof: Since B may be generated by sets of the form (b, ∞] , it will suffice

to show that C ∈ A , for all c ∈ R , where

C = {ω : f(ω) > c, c ∈ R}.

Now, since g is measurable, then for any c ∈ R, B ∈ A , where

B = {ω : g(ω) > c, c ∈ R}.

Next, note that we can always write

C = (C ∩ Ā) ∪ (C ∩ A)

3The notation a.c. means “almost certainly”; the notations a.s. , read “almost

surely”, or a.e. , read “almost everywhere”, are also common in this connection; in

this volume, however, when dealing with probability spaces we shall use invariably the

term a.c.
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But

C ∩ Ā = (B ∩ Ā) ∈ A,

C ∩ A ⊂ A

and we conclude that for any set in B , say (c, ∞) , its inverse image under

f , consists of a set in A , viz., (B ∩ Ā) , plus a set with measure zero, viz.,
(C ∩ A) ∈ A . This is so since by the nondecreasing property of measures

μ(C ∩ A) ≤ μ(A) = 0.

q.e.d.

Another useful fact about measurable functions is worth pointing out at

this stage.

Proposition 7.10. Let (R, B, μ) , (R, B) be, respectively, a measure space

and a measurable space and let f be a measurable function

f : R→ R

such that, for A = {ω : f(ω) = ±∞} , we have μ(A) = 0 . Then

i. Given any ε > 0 , however small, there exists N > 0 such that | f | ≤ N ,
except possibly on a set of measure less than ε ;

ii. Given any ε1 > 0 , however small, there exists a simple function, g , such

that | f(ω) − g(ω) | < ε1 , except possibly on a set, say A1 , such that

A1 = {ω : | f(ω) | > N} , and μ(A1) < ε1 ;

iii. Given any ε2 > 0 , however small, there exists a continuous function, h ,

such that | f(ω)− h(ω) | < ε2 , except possibly on a set, say, A2 = {ω :

| f(ω)− h(ω) | ≥ ε2} such that μ(A2) < ε2 .

This proof is too complicated to produce here. However, as with other propo-

sitions presented without proof, in this and the next chapter, proofs may be
found in Dhrymes (1989).

Before we proceed with the theory of Lebesgue integration it is useful to

demonstrate another important property of measurable functions.

Proposition 7.11 (Egorov’s Theorem). Let (Ω, A, λ), (R, B) , be a measure

and (Borel) measurable space, respectively, and let

fn : Ω −→ R, n ≥ 1
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be a sequence of measurable functions such that

fn −→ f, a.e.

on a set A with λ(A) < ∞ . Then, given any δ > 0 , there exists a

(measurable) set C ⊂ A , with λ(C) < δ such that

fn −→ f

uniformly on A ∩ C̄ .

Proof: First note that the set

D = {ω : lim
n−→∞ | fn(ω)− f(ω) | �= 0},

obeys λ(D) = 0 , by the conditions of the Proposition; accordingly, we shall,

henceforth, interpret A as A∩D̄ . To prove the result we shall show that given

any ε > 0 , then for all ω ∈ A ∩ C̄ there exists N such that | fn(ω)− f(ω) |
< ε, for all n ≥ N . To see this define the sets

Bk,r = {ω : | fk(ω)− f(ω) | ≥ 1

r
, ω ∈ A}, k ≥ 1,

and note that

Cn,r = {ω : sup
k≥n

| fk(ω)− f(ω) | ≥ 1

r
, ω ∈ A} =

∞⋃
k=n

Bk,r.

Moreover, since the sequence converges pointwise, for any r , we have

Cr =

∞⋂
n=1

Cn,r = ∅

Consequently,
lim
n→∞λ(Cn,r) = 0

and given δ > 0 , there exists N(r) such that

λ(Cn,r) < 2−rδ.

Define

C =

∞⋃
r=1

CN(r),r

and note that

λ(C) ≤
∞∑
r=1

λ(CN(r),r) < δ.
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The construction above shows that fn −→ f , uniformly on the set

A ∩ C̄.

For suppose not; let ε > 0 be given and suppose there exists

ω ∈ A ∩ C̄

for which

| fn(ω)− f(ω) | ≥ ε, for all n > N(ε).

Now, given ε , there exists an r∗ such that (1/r∗) < ε ; consequently, for

all n ≥ N(r∗) we have that this ω is contained in CN(r∗),r∗ . This is a

contradiction.

q.e.d.

Remark 7.13. The preceding discussion may be summarized loosely as fol-

lows: any function which is closely approximated by a measurable function

is measurable; measurable functions which are almost bounded, i.e. the set

over which they assume the values, say, f(ω) = ±∞ , has measure zero, can

be closely approximated by bounded functions; measurable functions which
are bounded can be approximated, arbitrarily closely, by simple functions,

i.e. functions which are constant over the sets of a finite (or countable) par-

tition of the space; finally, bounded measurable functions defined on (R, B)
are “almost” continuous, i.e. they can be arbitrarily closely approximated by
continuous functions.

We are now in a position to deal with integration in measure spaces.

7.5 Integration

We begin with a brief review of the Riemann integral. It is assumed that

the reader is thoroughly familiar with the Riemann integral, the point of the

review being to set forth notation and the context of the discussion. Let

f : R −→ R

and let it be desired to find the integral of f over the interval [a, b] ⊂
(−∞, +∞) . To this effect, partition the interval

a = x0 < x1 < x2 < . . . < xn = b,

put

ci = inf
x∈(xi, xi+1)

f(x), Ci = sup
x∈(xi, xi+1)

f(x), i = 0, 1, 2, . . . , n− 1,
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and define the sums

sR =

n−1∑
i=0

ciΔxi+1, SR =

n−1∑
i=0

CiΔxi+1

with Δxi+1 = xi+1 − xi . Take

s̄R = sup sR, SR = inf SR,

where sup and inf are taken over all possible partitions of [a, b] . The entities
s̄R, SR always exist and, evidently, s̄R ≤ SR .

We say that the Riemann integral exists, if and only if s̄R = SR and

we denote the Riemann integral by

IR =

∫ b

a

f(x)dx.

The Riemann-Stieltjes (RS) integral is defined similarly, except that f is

weighted by another function, say G . Let it be desired to obtain the integral
of f , with respect to G over the interval [a, b] . To this effect partition the

interval as above and obtain the lower and upper sums, respectively,

sRS =

n−1∑
i=0

ci[G(xi+1)−G(xi)], SRS =

n−1∑
i=0

Ci[G(xi+1)−G(xi)].

Again, determine the sup and inf of these quantities over all possible

partitions of the interval, thus obtaining

s̄RS = sup sRS , SRS = inf SRS .

If

s̄RS = SRS ,

we say that the Riemann-Stieltjes integral exists and we denote it by

IRS =

∫ b

a

f(x) dG(x).

Remark 7.14. Note that if G is differentiable with derivative g , then the

RS integral reduces to the ordinary Riemann integral

IR =

∫ b

a

f(x)g(x)dx.

To tie the development above with the discussion to follow, let us give the RS

integral a slightly different formulation. Thus, we deal with the problem of
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defining the integral of f over [a, b] and we subdivide the interval by the

points,
a = x0 < x1 < x2 < . . . < xn = b.

On these subintervals we then define the step functions

fn(x) = ci, Fn(x) = Ci, x ∈ (xi, xi+1), i = 0, 1, 2, . . . , n− 1,

where ci and Ci , are as above, i.e. they represent, respectively, the inf

and sup of f over the subinterval (xi, xi+1) . It is easily verified that, by
construction,

fn(x) ≤ f(x), Fn(x) ≥ f(x), for all x ∈ [a, b].

Moreover, in terms of the definition of any integral it certainly makes sense

to write
n−1∑
i=0

ciΔxi+1 =

∫ b

a

fn(x)dx.

Similarly, we may put

n−1∑
i=0

CiΔxi+1 =

∫ b

a

Fn(x)dx.

Consequently, in this framework, the Riemann integral may be defined as

IR =

∫ b

a

f(x) dx = inf
Fn≥f

∫ b

a

Fn(x) dx = sup
fn≤f

∫ b

a

fn(x) dx.

A similar idea is employed in the construction of the Lebesgue integral in

measure space. To simplify matters we shall take measure to be Lebesgue
outer measure, a concept to be explained below, and we shall take Ω to

be the set of real numbers. By way of clarifying the meaning of Lebesgue

outer measure it is sufficient to note, for the moment, that in this context the

outer measure of an interval is simply its length. Thus, if μ is a measure and
(xi, xi+1) are the (sub) intervals, which we denote conveniently by Di , then

μ(Di) = xi+1 − xi.

Remark 7.15. The basic difference between the Riemann and Lebesgue

approaches to integration is the following: in the Riemann approach we look
at the domain of the function, i.e. the “ x -axis”, obtain a finite partition

of the domain and within each (disjoint) interval we ask: what are the val-

ues assumed by the function in this interval. The integral, then, is simply the

weighted sum of such values, the weights being functions of the reference (sub)
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intervals. In the Lebesgue approach we look at the range of the function, i.e.

the “ y -axis”, and obtain a finite partition of it. We then ask: what is the
inverse image of each (sub) interval in the range of the function, i.e. what

(sub) interval in the domain of the function corresponds to the reference (sub)

interval in the range. The integral is then obtained as a weighted sum of the

values assumed by the function, the weights being functions of the measure of

the (domain) subinterval corresponding to the reference (range) subinterval.

Remark 7.16. We note that Lebesgue measure may be defined on R as

follows: let A be a subset of R ; then its Lebesgue (outer) measure is given by

μ(A) = inf
A⊂∪i∈IDi

∑
i∈I

l(Di),

where I is at most a countable index set, {Di : i ∈ I} is, at most, a countable

collection of open sets that cover A , i.e. whose union contains A , and l(Di)

indicates the length of an interval, i.e. if, for example, Di = (xi, xi+1) then

l(Di) = xi+1 − xi .

Note that Lebesgue measure, defined as (essentially) the length of an inter-

val is not a finite measure, according to Definitions 7.16 through 7.19. In
particular consider the sets [−∞, a) , a ∈ (−∞, ∞) , which generate B .

The (Lebesgue) measure of such sets is unbounded. On the other hand, if we

confine our attention to, say [−N, N ], N < ∞ , measure, defined as length,

is clearly finite.

Example 7.2. This example will help clarify the similarities and differences

between the Riemann and Lebesgue approaches to integration. Consider the
function f , which is defined to be zero for x /∈ [0, 1] while for x ∈ [0, 1] is

defined by
f(x) = 1, if x is irrational

= 0, otherwise

One feels intuitively that the integral of this function over [0, 1] must be

unity since the set of rationals in [0, 1] is only countably infinite, while the

set of irrationals is far larger. If we apply the Riemann definition, obtaining,

for example, the partition a = 0, x1 = (1/n), x2 = (2/n), . . . , xn = 1 then

we find, ci = 0, Ci = 1, for all i . Thus, for all partitions sR �= SR and,
consequently, the Riemann integral does not exist. If we follow the Lebesgue

approach then we ask what is the inverse image, A , of {0} ; evidently, this
is the set of rationals in the interval [0, 1] i.e. the set of distinct elements of

the form {(p/q) : p ≤ q, p, q positive integers} . One may show that this set
has measure zero, and, consequently, that the inverse image of its complement
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in [0, 1] , B , has measure one. But its complement is precisely the inverse

image of {1} under f . Thus, by the definition of a Lebesgue integral

IL = 1, since μ(A) = 0, μ(B) = 1

where, evidently μ denotes the measure, which is here length, and A is the

set of rationals in [0, 1] while B is the set of all irrationals in that interval.

Let us now examine (Lebesgue) integration in measure space a bit more

formally. We remind the reader, however, that when using the term measure

we shall mean Lebesgue outer measure; to facilitate this recognition we

shall, in this discussion, designate measure by λ . We shall retain the use
of the symbol Ω for the space although it should be clear from the context

that when dealing with the elementary concepts of integration we shall have

in mind not an abstract space, but R , the set of real numbers.

Definition 7.22. Let (Ω, A, λ) , (R, B) be measure and measurable space,

respectively. A function

f : Ω −→ R

is said to be simple, or elementary if there exists a set A ⊂ Ω , of finite

measure, such that f(ω) = 0 , for ω /∈ A and there exists a finite partition of

A (in A) such that

f(ω) = yi, ω ∈ Ai, and yi �= 0, yi �= yj for i �= j.

Definition 7.23. Let A be a set in the context of Definition 7.22. The

function,

IA : Ω −→ R ,

such that
IA(ω) = 1, if ω ∈ A

= 0, otherwise,

is said to be an indicator function, more precisely the indicator function of

the set A .

Definition 7.24. In the context of Definition 7.22, let f be a simple function

such that

f(ω) = 0, if ω /∈ A,

where A is a set of finite measure. Let {Ai : i = 1, 2, . . . , n} be a finite

partition of A , in A , let yi be the (distinct) values assumed by f on Ai and
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let Ii be the indicator function for Ai . Then, the canonical representation

of f is given by

f(ω) =

n∑
i=1

yiIi(ω)

Remark 7.17. In terms of our earlier discussion, it is evident that the

Lebesgue integral of the simple function f , above, is
∑n

i=1 yiλ(Ai) , and we
have the notation ∫

A

f dλ, or simply

∫
A

f.

If this volume were designed to give an extensive treatment of Lebesgue inte-
gration we would have proceeded following the usual sequence (of measure

theory) outlined in Remark 7.13, which relies on Lebesgue outer measure,

which is easy to grasp and we would have dealt only with sets that have finite

Lebesgue outer measure. However none of the proofs for the properties of

Lebesgue integration make essential use of the properties of Lebesgue outer
measure except for its finiteness. Thus, we shall proceed directly to the

properties of integration in abstract spaces that have direct relevance to econo-

metrics. We recall that in the probability space (Ω, A, P ) , the probability

measure P is finite, in particular the probability of the sample space Ω , the
universe of discourse, obeys P (Ω) = 1 .

7.5.1 Miscellaneous Convergence Results

In this section we present several important results involving issues of con-

vergence of sequences of measurable functions or integrals of measurable

functions. The context is still essentially that of the previous section, so that
the underlying space, Ω , is simply R and measure, λ , is not necessarily

such that λ(Ω) < ∞ . Otherwise, we deal with measurable functions defined

on a measure space and taking values in a measurable space, specifically the

one-dimensional Borel space.

Proposition 7.12 (Bounded Convergence Theorem). Let {fn : n ≥ 1} be a

sequence of measurable functions

fn : Ω −→ R, n ≥ 1

defined on a set A , such that λ(A) < ∞ ; suppose further that they are

uniformly bounded, i.e. there exists M ∈ R such that for all n , | fn(ω) |<
M <∞ . If the seqence converges to a measurable function, f , pointwise, i.e.
for each ω ∈ A

fn(ω) −→ f(ω)
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then ∫
A

fdλ = lim
n→∞

∫
A

fndλ.

Proof: By Proposition 7.11 (Egorov’s Theorem) given ε > 0 , there exists n(ε)

and a measurable set C with λ(C) < (ε/4M) such that for all n ≥ N and
ω ∈ A ∩ C̄ , we have

| fn(ω)− f(ω) |< ε

2
λ(A).

Define A1 = A∩C̄, A2 = A∩C , and note that A1∪A2 = A, λ(A2) < (ε/4M).

Consequently,

|
∫
A
fndλ−

∫
A
fdλ | = |

∫
A
(fn − f)dλ | ≤

∫
A
| fn − f | dλ

=
∫
A1

| fn − f | dλ+
∫
A2

| fn − f | dλ

≤ ε
2 + ε

2 = ε.

q.e.d.

Proposition 7.13 (Monotone Convergence Theorem). Let {fn : n ≥ 1} be

a sequence of measurable functions,

fn : Ω −→ R, n ≥ 1 ,

which vanish outside a set A with λ(A) <∞ . Then, the following statements

are true:

i. If fn ≥ g, for all n , where g is an integrable function and {fn: n ≥ 1}
is a sequence of monotone nondecreasing functions that converge point-
wise on A , i.e. if there exists a (measurable) function, f , such

that

lim
n→∞ fn(ω) = f(ω), for ω ∈ A,

then,

lim
n→∞

∫
A

fn dλ =

∫
A

f dλ;

ii. If {fn: n ≥ 1} is a monotone nonincreasing sequence that converges
pointwise to f on a set A with λ(A) <∞ , and fn ≤ g , where g is an

integrable function, then

lim
n→∞

∫
A

fn dλ =

∫
A

f dλ.

In either case the convergence of integrals is monotone (in i.
∫
A
fn dλ ↑∫

A f dλ , while in ii.
∫
A fn dλ ↓

∫
A f dλ ).
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Proposition 7.14 (Fatou’s Lemma). Let {f, g, fn : n ≥ 1}

f, g, fn: Ω −→ R

be a sequence of measurable functions, vanishing outside4 a set A and such
that

fn −→ f, a.e., on a set A with λ(A) <∞.

Then, the following statements are true:

i. If fn ≥ g and
∫
A g dλ > −∞ , then

∫
A

liminf
n→∞ fn dλ ≤ liminf

n→∞

∫
A

fn dλ;

ii. If fn ≤ g, n ≥ 1 , and
∫
A g dλ <∞ , then

limsup
n→∞

∫
A

fn dλ ≤
∫
A

limsup
n→∞

fn dλ;

iii. If | fn |≤ g, n ≥ 1 , and
∫
A
g dλ <∞ , then

∫
A

liminf
n→∞ fndλ ≤ liminf

n→∞

∫
A

fndλ ≤ limsup
n→∞

∫
A

fndλ ≤
∫
A

limsup
n→∞

fndλ.

Proposition 7.15 (Lebesgue Dominated Convergence Theorem). Let

g, {fn : n ≥ 1} be integrable functions over a measurable set A , such that

| fn(ω) | ≤ g(ω), ω ∈ A,

and

lim
n→∞ fn(ω) = f(ω), a.e. on A.

Then, ∫
A

fdλ = lim
n→∞

∫
A

fndλ.

Proof: Consider the sequence {(g − fn) : n ≥ 1} . This is a sequence of

nonnegative measurable functions that converge pointwise to (g− f) . Hence,

by Proposition 7.14,∫
A

(g − f) dλ ≤ liminf
n→∞

∫
A

(g − fn) dλ =

∫
A

g dλ− limsup
n→∞

∫
A

fn dλ.

4The term a.e. to be read almost everywhere, is a term in measure theory

meaning in this case, for example, that the set B: x /∈ A, and fn(x) �= 0 has measure

zero, i.e. λ(B) = 0. Mutatis mutandis it has the same meaning as a.c. , a concept we

introduced when dealing with random variables in a probability space with probability

measure P .



224 CHAPTER 7. MATHEMATICAL UNDERPINNINGS...

Since f is, evidently, integrable we have

∫
A

fdλ ≥ limsup
n→∞

∫
A

fndλ.

Consider now

{g + fn : n ≥ 1}.

This is also a sequence of nonnegative functions such that

g(ω) + fn(ω) −→ g(ω) + f(ω),

pointwise, for ω ∈ A . Hence, again by Proposition 7.4,

∫
A

(g + f)dλ ≤ liminf

∫
A

(g + fn)dλ =

∫
A

gdλ+ liminf

∫
A

fndλ.

Since

liminf
n→∞

∫
A

fndλ =

∫
A

liminf
n→∞ fndλ ≤

∫
A

limsup
n→∞

fndλ = limsup
n→∞

∫
A

fndλ,

we have the result,

∫
A

fdλ ≤ liminf

∫
A

fndλ ≤ lim sup

∫
A

fndλ ≤
∫
A

fdλ,

or,

lim

∫
A

fndλ =

∫
A

fdλ.

q.e.d.

Proposition 7.16 (Continuity of Lebesgue Integral). Let f be a nonnegative

measurable function, integrable over a set A . Then, given ε > 0 , there exists

δ > 0 such that for every C ⊂ A , with λ(C) < δ , we have

∫
C

fdλ < ε.

Proof: Suppose not; then given ε > 0 we can find sets C such that

λ(C) < δ and

∫
C

fdλ ≥ ε.

In particular, choose the sets

{Cn : λ(Cn) < 2−n}.
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Define

gn(ω) = f(ω)In(ω),

where In is the indicator function of the set Cn . It is clear from the definition

of the functions gn that gn −→ 0 , a.e., except possibly for the sets liminf Cn
or limsupCn . Since

limsupCn =
∞⋂
n=1

∞⋃
k=n

Ck

λ(

∞⋃
k=n

Ck) ≤
∞∑
k=n

2−k = 2−(n−1);

it follows that

limsupλ(Cn) = 0.

Hence, by Proposition 7.14, with fn = f − gn ,∫
A

fdλ ≤ lim inf

∫
A

fndλ =

∫
A

fdλ− lim sup

∫
A

gndλ ≤
∫
A

fdλ− ε.

This, however, is a contradiction.

q.e.d.

In the next proposition we give a number of results that follow easily from

previous discussions.

Proposition 7.17. The following statements are true:

i. Let {gn: n ≥ 1} be a sequence of nonnegative measurable functions

defined on a measurable set A , with λ(A) < ∞ and let g =
∑∞

n=1 gn .

Then ∫
A

gdλ =
∞∑
n=1

∫
A

gndλ;

ii. Let f be a nonnegative measurable function, and {Ai : i ≥ 1} a

countable partition of the measurable set A . Then

∫
A

fdλ =

∞∑
i=1

∫
Ai

fdλ;

iii. Let f, g , be two nonnegative measurable functions; if f is integrable

and g < f (both statements valid on a measurable set A ), then g is

also integrable and ∫
A

(f − g)dλ =

∫
A

fdλ−
∫
A

gdλ.
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Proof: Define

hn =
n∑
k=1

gk

and note that {hn : n ≥ 1} is a sequence of nonnegative nondecreasing
measurable functions, defined on a measurable set A such that

hn −→ g, a.e., on A.

Consequently, by Proposition 7.15,

∫
A

gdλ = lim
n→∞

∫
A

hndλ =

∞∑
n=1

∫
A

gndλ

which proves i. To prove ii let In be the indicator function of An and define

gn(ω) = f(ω)In(ω).

Note that on A

f =

∞∑
n=1

gn.

Consequently, by i above, we have

∫
A

fdλ =

∞∑
n=1

∫
A

gndλ =

∞∑
n=1

∫
An

fdλ,

which proves ii. To deal with iii write f = (f − g) + g and note that both

(f − g) and g are nonnegative measurable functions defined on a measurable

set A ; moreover (f−g) ≤ f on A and thus integrable over A . Consequently,
∫
A

gdλ =

∫
A

fdλ−
∫
A

(f − g)dλ <∞,

which shows that g is integrable over A .

q.e.d.

We close this section by introducing and (partially) characterizing a form of

convergence of sequences of measurable functions that is closely related to

convergence in probability, a property widely discussed in econometrics.

Definition 7.25. Let {fn : n ≥ 1} be a sequence of measurable functions

defined on a measurable set A ; let f be a measurable function and, for given

ε > 0 , define the set

Cn,ε = {ω : | fn(ω)− f(ω) | ≥ ε}.
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The sequence is said to converge in measure, to f on the set A if

Cn,ε ⊂ A and λ(Cn,ε) < ε , for all n ≥ N(ε) . We have the following partial
characterization of convergence in measure.

Proposition 7.18. Let {fn : n ≥ 1} , be a sequence of measurable functions
defined on the measurable set A ; let f be a measurable function and suppose

that fn converges in measure to f , on the set A . Then:

i. Every subsequence of {fn : n ≥ 1} converges to f in measure;

ii. There exists a subsequence, say {fn(r) : r ≥ 1} which converges to f ,

a.e.

The proof of this is beyond the scope of this volume.

7.6 Extensions to Abstract Spaces

In the preceding section, we have essentially used the device of dealing with

bounded measurable functions and, in obtaining integrals, we have always
operated with a set A which was specified to have finite Lebesgue measure.

This has simplified the presentation considerably, but at the cost of producing

results of seemingly restricted relevance; in point of fact, however, the results

we have obtained in the preceding section remain valid under a broader set of
conditions as well. Taking the case of bounded functions, first, we recall from

Proposition 7.10 that if f is a measurable function and the set over which it

assumes the values ±∞ has measure zero, then it can be closely approximated

by a bounded measurable function, say g ; moreover, g coincides with f ,

almost everywhere, i.e. g = f, a.e. , and, consequently, the integrals of the
two functions over a set, A , of finite measure, are equal.

We shall complete the discussion of (Lebesgue) integration by extending

the definition of the Lebesgue integral to nonnegative functions, which are not

necessarily bounded, and finally to unrestricted functions. In addition, we
shall establish the necessary modifications, if any, to the integration results

presented above.

We recall that in our initial discussion of Lebesgue integration we had

dealt with measurable functions defined over a simple Borel space with mea-

sure defined as the length of the (bounded) interval in question. If we define
functions over a more general measure space, it is not apparent, from our ear-

lier discussion, under what conditions the results obtained earlier will continue

to hold in the broader context.
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We begin with the proper definition of integrability, where boundedness

is no longer assumed.

Definition 7.26. Let f be a nonnegative measurable function

f : Ω −→ R

which vanishes outside a set A , with λ(A) < ∞ ; let h be a bounded mea-

surable function obeying h(ω) ≤ f(ω) , for ω ∈ A and otherwise h(ω) = 0 .

The integral of f over A is defined by

IL =

∫
A

f dλ = sup
h≤f

∫
A

h dλ

and when IL < ∞ , the function f is said to be (Lebesgue) integrable over

the set A .

Remark 7.18. The reader might ask: what if the function is not nonnegative?
This is handled by noting that if f is an unrestricted function, then it can be

written in a form involving two nonnegative functions as follows: define

f+ = max(f, 0), f− = max(−f, 0),

note that both entities above are nonnegative and, moreover,

f = f+ − f−, | f | = f+ + f−.

A direct consequence of the remark above is

Definition 7.27. Let f be a measurable function

f : Ω −→ R

which vanishes except on a measurable set A with λ(A) <∞ . Define

f+ = max(f, 0), f− = max(−f, 0)

and note that we can write
f = f+ − f−.

The functions f+, f− are nonnegative and measurable over A . If they are,

also, integrable (over A ), then f is integrable and its integral is defined to be

∫
A

f dλ =

∫
A

f+ dλ−
∫
A

f− dλ.
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Remark 7.19. In some contexts it is convenient to extend the notion of

integrability to the case where

sup
h≤f

∫
A

h dλ = ∞.

In such a context, we can always approximate a nonnegative function f by

a nonnegative nondecreasing sequence {fn : n ≥ 1} , such that fn ≤ f ; for

example,
fn(ω) = f(ω), for f(ω) ≤ n

= 0, for f(ω) > n.

We may then define the integral by

∫
A

f dλ = lim
n→∞

∫
A

fn dλ

since the limit, in the right member, will always exist for nonnegative func-
tions. Note that this device “works” for (nonnegative) measurable functions,

f , even if they are unbounded and the set over which they are

unbounded does not have measure zero. When it does have measure

zero then, of course, the integral will be finite and there is no need for this
extension of the definition of integrability. For unrestricted functions, f , the

integral will fail to exist only if we have, simultaneously,

∫
A

f+ dλ = ∞
∫
A

f− dλ = ∞.

If only one of the equalities above holds, then the integral of f will be either

+∞ or − ∞ . As in the more restricted cases considered earlier, Lebesgue

integration, in this context, is a linear operation, a fact that is made clear

(without proof) in

Proposition 7.19. Let f, g be integrable functions over a set A with

λ(A) <∞ . Then

i. For any a, b ∈ R

∫
A

(af + bg) dλ = a

∫
A

f dλ+ b

∫
A

g dλ;

ii. If f ≤ g, a.e. , then ∫
A

f dλ ≤
∫
A

g dλ;
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iii. If A = A1 ∪A2 , and the Ai, i = 1, 2 are disjoint, then∫
A

f dλ =

∫
A1

f dλ+

∫
A2

f dλ.

Next, we ask what difference does it make, in the proofs of the results of

the previous sections, whether we are dealing with Lebesgue (outer) measure,

or with more general versions of measure as, simply, a nonnegative σ -additive

set function defined on a σ -algebra. Even though many of the proofs had
been omitted it can be shown that nowhere in these proofs does one rely on

the definition of measure being length. However, there is a technical difference

that is not so manifest. This is due to the fact that while Lebesgue measure is

complete, Lebesgue measure restricted to the σ -algebra of Borel sets is not.
The term is explained in

Definition 7.28. A measure space, ( Ω, B, μ ), is said to be complete if B
contains all subsets of sets of measure zero, i.e. if B ⊂ A , A ∈ B and

μ(A) = 0 , then B ∈ B .

Remark 7.20. It is for the reason implied in the definition above that, in

discussing integration at an earlier stage, we were somewhat vague in specifying

the precise σ -algebra involved, although we had made several references to

Borel space. The reason why the previous definition is necessary is that its
absence may create conceptual problems. Particularly, if we fail to take into

account its implications, we may negate the measurability of a function

by simply changing its values over a set of measure zero. For example,

suppose f is a measurable function on such a space and E is a measurable set
of measure zero. Let B ⊂ E and suppose the values assumed by f on B are

“changed”; suppose, further, that the values assumed by f on B are not in

the range σ -algebra. Then, the inverse image of the set in question would not

be measurable, i.e. it will not belong to the domain σ -algebra; consequently,

the measurability of the function will be negated. We can obviate this problem
by insisting that if A ∈ B , where B is the σ -algebra of the space above, and

if μ(A) = 0 , then all subsets of A are also in B . This would mean, of

course, that when we speak of a function we will really be speaking about

an equivalence class, i.e. of a collection of such functions which are identical
except possibly on sets of measure zero. In this connection we have

Proposition 7.20. Let ( Ω, A, μ ) be a measure space; then there exists a
complete measure space, say, ( Ω0, A0, μ0 ), such that

i. A ⊂ A0 ;

ii. A ∈ A, implies μ(A) = μ0(A) ;
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iii. C ∈ A0 if, and only if, C = A ∪B , where A ∈ A, B ⊂ D, D ∈ A and

μ(D) = 0 .

The proof of this Proposition is beyond the scope of this volume. The next

objective, in this discussion, is to show that although in the preceding sections
we have dealt with a specific kind of measure on R , the results obtained

are valid over a wide range of spaces and measures, provided certain minimal

conditions are satisfied. In the course of this discussion we shall need an

additional concept.

Definition 7.29. Let ( Ω, A, μ ) be a measure space, and let A ∈ A ; then

A is said to be of finite measure if μ(A) < ∞ ; it is said to be of σ -finite

measure, if there exists a partition of A ∈ A , say, {Ai: Ai ∈ A, μ(Ai) <
∞, i ≥ 1} , such that

∑∞
j=1 μ(Ai) <∞ .

Definition 7.30. Let μ be a measure, as in Definition 7.2. Then μ is said to

be finite if μ(Ω) <∞ . It is said to be σ -finite if Ω is of σ -finite measure.

Remark 7.21. Note that a probability measure is simply a normalized finite

measure. Note also that every finite measure is also σ -finite, but that the

converse is not true. In particular Lebesgue measure, λ , on R is σ -finite,

but it, clearly, is not finite since the λ -measure of the set (−∞, ∞ ) is infinite.

Proposition 7.21. Let ( Ω, A, μ ) be a measure space and f a nonnegative

measurable function

f : Ω −→ R .

Then the following statements are true:

i. A necessary condition for J =
∫
Ω
f dμ < ∞ , is that A is of σ -finite

measure and μ(B) = 0 , where A = {ω : f(ω) > 0}, B = {ω : f(ω) =

∞} .

ii. If A is of σ -finite measure, but μ(B) = 0 does not hold, then we can

only assert that ∫
Ω

f dμ = sup
g≤f

∫
Ω

g dμ,

where the sup is taken over all bounded measurable functions, g, such

that g ≤ f and g vanishes outside a set, say A , of finite measure.

The proof of this Proposition is beyond the scope of this volume.
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Remark 7.22. The preceding discussion concludes the demonstration that

the results obtained in Propositions 7.11 through 7.19, remain valid even when
dealing with abstract measure spaces.

We now turn to the discussion of another topic, which will play an impor-

tant role when we consider conditional probability and conditional expectation.

We have

Definition 7.31. Let μ, ν be measures defined on a measurable space

( Ω, A ); then ν is said to be absolutely continuous with respect to (or

relative to) μ if and only if ν(A) = 0 , for every set A ∈ A such that
μ(A) = 0 . This is denoted by ν � μ .

Definition 7.32. Let ν be a set function defined on the measurable space

( Ω, A ); then ν is said to be a signed measure if ν = ν+ − ν− and each

of the set functions ν+ and ν− is a measure. Moreover, the signed measure

is absolutely continuous with respect to the measure μ , if and only if the two

measures, ν+ and ν− , are absolutely continuous with respect to μ .

The preceding discussion immediately suggests

Proposition 7.22. Let ( Ω, A, μ ) be a measure space and f a nonnegative

A -measurable function

f : Ω −→ R

whose integral exists, and define the set function

ν(A) =

∫
A

f dμ.

Then, the following statements are true:

i. ν(A) is a measure, and

ii. It is absolutely continuous with respect to μ .

Proof: To prove i we note that, by the elementary properties of the Lebesgue

integral, ν is a nonnegative nondecreasing function, obeying ν(∅) = 0 .

Again, using the elementary properties of the Lebesgue integral, if A ∈ A
and {Ai, i ≥ 1} is a partition of A in A , then ν(A) =

∑∞
i=1 ν(Ai) ,

which proves i.

To prove ii, let A ∈ A and μ(A) = 0 ; let h be a nonnegative simple

function, h(ω) =
∑n
i=1 ciIi(ω) , where Ii are the characteristic functions of

the sets of the partition of A in A . Then,
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∫
A

h dμ =

n∑
i=1

ciμ(Ai ∩ A) = 0.

Accordingly, let {fn: fn ≤ f, i ≥ 1} be a sequence of nonnegative sim-

ple functions converging to f ; by the Monotone Convergence Theorem we
conclude

ν(A) =

∫
A

f dμ = lim
n→∞

∫
A

fn dμ = 0.

q.e.d.

Corollary 7.1. Let ( Ω, A, μ ) be a measure space and let f be a measurable

function

f : Ω −→ R

whose integral exists, in the extended sense. Then, the set function

ν(A) =

∫
A

f dμ

is a signed measure which is absolutely continuous with respect to μ .

Proof: By the conditions of the Corollary, putting f = f+ − f− , we have
that, at least, one of the integrals of the right member below

∫
A

f dμ =

∫
A

f+ dμ−
∫
A

f− dμ

is finite. Denoting the first integral, on the right, by ν+(A) and the second

by ν−(A) , we observe that each is a measure which is absolutely continuous
with respect to μ . Putting

ν(A) = ν+(A)− ν−(A)

we note that it is a well defined entity since at least one of the two right mea-

sures is finite; moreover, it is a signed measure which is absolutely continuous

with respect to μ .
q.e.d.

It is remarkable that the converse of Proposition 7.22 is also valid, a fact
that forms the basis of the abstract development of conditional probability

and conditional expectation. We state the result without proof, since its proof

will take us well beyond the objectives of this volume.
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Proposition 7.23 (Radon-Nikodym Theorem). Let ( Ω, A, μ ) be a measure

space, where μ is σ -finite, and let ν be a signed measure which is absolutely
continuous with respect to μ ; then, there exists an extended measurable func-

tion, i.e. a measurable function taking values in [−∞, ∞ ] and such that for

any A ∈ A
ν(A) =

∫
A

f dμ.

The function f is unique up to sets of μ -measure zero, i.e. if g is another

such function, then the set C = {ω : f �= g} obeys μ(C) = 0 . If ν is
a measure then the function f is nonnegative, i.e. it takes values only in

[ 0, ∞ ].

Remark 7.18. The function f , of Proposition 7.23 is said to be the Radon-

Nikodym derivative of the measure ν with respect to the measure

μ , and is denoted by
dν

dμ
.



Chapter 8

Foundations of Probability

8.1 Discrete Models

Consider the problem of constructing a model of the process (experiment) of

throwing a die and observing the outcome; in doing so, we need to impose on

the experiment a certain probabilistic framework since the same die thrown

under ostensibly identical circumstances, generally, yields different outcomes.
The framework represents, primarily, the investigator’s view of the nature of

the process, but it must also conform to certain logical rules.

Example 8.1. Suppose the “experiment” consists of throwing a single die

and recording the face showing; thus, the “outcomes” of the “experiment”

are contained in the set Ω = {1, 2, 3, 4, 5, 6} , which is the sample space or

universe. We may consider the collection of all possible subsets

(∅); (1), (2), . . . , (6);
(1, 2), (1, 3), . . . , (1, 6); (2, 3), . . . , (2, 6); (3, 4), . . . , (3, 6); . . . ; (5, 6);
(1, 2, 3), (1, 2, 4), . . . (1, 2, 6); . . . . . . ; (4, 5, 6);
...

(1, 2, 3, 4, 5, 6), etc.

say C , and note that it is finite; in general the collection of all subsets of

a space is too large to be considered a σ -algebra. In this particular case

it merely indicates the subsets relevant for various experiments involving the

tossing of the die in n trials.
If the die is only thrown once ( n = 1 ), the only relevant part of this col-

lection is the subsets of singletons {1}, {2}, {3}, {4}, {5}, {6} , which together

with the null set constitute the relevant σ -algebra. On this space we may

define the probability “measure”, P , as follows: if A = {i}, i ≤ 6 , then

P (A) = 1/6 . This reflects one’s (the investigator’s) view that all outcomes
of this experiment are equally likely. The reader can verify that P is a

P.J. Dhrymes, Mathematics for Econometrics,
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nonnegative finitely additive set function with P (∅) = 0 and P (Ω) = 1 . If the

die is thrown twice ( n = 2 ) the relevant part of the collection is the set of (dis-
tinct) pairs (1, 2), (1, 3), . . . , (1, 6); (2, 3), . . . , (2, 6); (3, 4), . . . , (3, 6); . . . ; (5, 6) .

The probability assignment now requires us to also specify the properties of the

trials (tossings); in such models it is assumed that the trials are independent,

i.e. knowing what is the outcome of any trial does not convey any information

regarding a subsequent trial. Such trials are usually termed Bernoulli trials.
This designation implies that the die is perfectly balanced, so there is no “tilt”

that tends to favor say a 4 over a 5.

The meaning of the pairs is that the first entry denotes the outcome of

the first trial and the second entry the outcome of the second trial. A similar
interpretation applies to all n -tuplets, i.e. the outcomes of n trials.

Example 8.2. Let the “experiment” now consist of throwing the die twice
and recording the “outcomes” in the order in which they have occurred. In

this case the sample space, Ω , in addition to the null set (∅) which is part of

every space, consists of the collection of pairs

Ω = (1, 1), (1, 2), . . . , (1, 6);

(2, 1), (2, 2), . . . , (2, 6);
(3, 1), (3, 2), . . . , (3, 6);
...

(6, 1), (6, 2), . . . , (6, 6).

The σ -algebra, A , may be defined as the collection of all subsets above

including the null set, their unions, intersections etc., and it may be verified

that it contains a finite number of sets. On this σ -algebra we may define the
probability “measure” P , as follows: if A is one of the elements of Ω , i.e., if

A = (i, j) with i, j = 1, 2, 3, . . . , 6 , then P (A) = 1/36 . If A is a set that is

made up of the union of, say, k disjoint sets of the type above, then P (A) =

k/36 . Note that the elements of Ω , i.e., the sets (i, j), i, j = 1, 2, . . . , 6 are
disjoint. In the language of probability these are called also, simple events,

while any member of the σ -algebra (the collection of subsets of Ω ) is said to

be an event, or sometimes a compound event. For example, if we wish to

calculate the probability of the event

A = {the sum of the faces showing is less than 10}

we may proceed as follows: first, we write A , if possible, as the union of
disjoint events, and then we write the latter as unions of simple events.

Executing the first step, we have: A =
⋃9
i=2Ai , where Ai is the com-

pound event: the sum of the faces showing is i . Executing the second

step we reason as follows: since A2 consists only of the simple event (1, 1) ,
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P (A2) = 1/36 ; A3 = (1, 2) ∪ (2, 1) , hence, P (A3) = 2/36 ; A4 = (1, 3) ∪
(2, 2) ∪ (3, 1) ; hence, P (A4) = 3/36 ; A5 = (1, 4) ∪ (2, 3) ∪ (3, 2) ∪ (4, 1) ;
hence, P (A5) = 4/36 ; A6 = (1, 5) ∪ (2, 4) ∪ (3, 3) ∪ (4, 2) ∪ (5, 1) ; hence,

P (A6) = 5/36 ; A7 = (1, 6) ∪ (2, 5) ∪ (3, 4) ∪ (4, 3) ∪ (5, 2) ∪ (6, 1) ; hence,

P (A7) = 6/36;A8 = (2, 6)∪(3, 5)∪(4, 4)∪(5, 3)∪(6, 2) ; hence, P (A8) = 5/36 ;

finally A9 = (3, 6)∪(4, 5)∪(5, 4)∪(6, 3) ; hence, P (A9) = 4/36 . Consequently,

P (A) =
∑6
i=1(i/36) + (5/36) + (4/36).

Remark 8.1. The two simple examples, above, contain a great deal of the

fundamental concepts of abstract probability theory. Let Ωi, i = 1, 2 , be
two exact copies of the space Ω of Example 8.1 and notice that the space of

Example 8.2, is simply the Cartesian (or direct) product of these spaces, i.e.,

Ω = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}.

The notation for a Cartesian product is Ω = Ω1 × Ω2 . Similarly, if we put
Ai, i = 1, 2 , for the σ -algebras of the two copies above, then

A = A1 ⊗A2

is the σ -algebra of the measurable space of Example 8.2. The notation above

is nonstandard and ⊗ usually denotes the direct product of two entities, such

as matrices, for example. In the usage above it simply denotes the smallest
σ -algebra containing the collection1 where

J = {A : A = A1 ×A2, Ai ∈ Ai, i = 1, 2}.

The reader ought to verify the claims just made; in doing so he ought to

consider the term σ -algebra to mean, just for this space, “the class of all

subsets” of the space. Nearly all of the concepts introduced through the two
examples, above, generalize easily to abstract spaces, except, obviously for the

manner in which the σ -algebra is generated. For a general space the “class of

all subsets” of Ω is too large a collection on which to define a measure. We

shall begin the discussion of such issues in the next section, beginning with
the case where Ω = R = (−∞, ∞) .

1Certain other usages are also common; thus the collection J is also denoted by

J = A1 × A2 , which is to be distinguished from A1 ⊗ A2 , the latter being equal to

σ(J ) ,
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8.2 General Probability Models

8.2.1 The Measurable Space (Rn, B(Rn) )

We consider the space Ω = R and a certain collection of subsets of R ; the

collection in question is one that consists of what we shall call the basic or

elementary sets of the space; they are of the form (a, b] , where a, b ∈ R and

others, which can be expressed as a finite union of the basic intervals, together
with the null set. As a matter of convention, we consider (b, ∞] to be the

same as (b, ∞) ; this is necessary in order to enforce the property that the

complement of a set of the form (−∞, b] is a set of the same form, i.e., open on

the left and closed on the right. Let this collection be denoted by A ; it is easy
to verify that A is an algebra. This is so since, if Ai ∈ A, i = 1, 2, . . . , n , then

A =
⋃n
i=1 Ai ∈ A , where n < ∞ and Ai = (ai, bi] , so that the collection

is closed under finite unions. Moreover, the complement of a set of the form

(ai, bi] is simply (−∞, ai] ∪ (bi, ∞] ; consequently, the complement of any

set in A is also in A , so that the latter is closed under complementation and
thus it is an algebra.

Remark 8.2. Given a collection of sets, say J , there is always a smallest

σ -algebra that contains J . This is proved as follows: clearly the set of all

subsets of the space is a σ -algebra that contains J ; consider now the collec-

tion of all σ -algebras containing J . As we have just shown this collection is

nonempty. Define the desired smallest σ -algebra to be the intersection of all
σ -algebras containing J . This σ -algebra is denoted by σ(J ) and is said to

be the σ -algebra generated by J . The elements of the set J , i.e., the set

“generating” the σ -algebra are said to be the elementary sets.

Although in general it is not possible to describe the process of construct-
ing the σ -algebra generated by any arbitrary collection of sets, we may do

so in particular cases. In point of fact, if J is an algebra, it means that

it is already closed under complementation and finite unions. Thus, if we

add to it all sets which are limits of sets in J , we shall have the desired

σ -algebra. A similar argument will describe the algebra generated by a
(nonempty) collection of subsets of Ω as, simply the smallest algebra contain-

ing the class of subsets in question. The following proposition establishes a

relation between the “size” of the collection and the “size” of the algebra or

σ -algebra it generates.

Proposition 8.1. Let C, D , be two nonempty collections of the subsets

of Ω . Denote by A(C), A(D) the algebras generated by the two collections
respectively, and let σ(C), σ(D) be the σ -algebras generated by the two

collections, respectively. If C ⊂ D , then A(C) ⊂ A(D) and σ(C) ⊂ σ(D) .
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Proof: We shall give a proof for the case of σ -algebras; the proof for algebras

is entirely similar and is left to the reader. Let

ZC = {B : B ⊃ C, B a σ − algebra}

ZD = {G : G ⊃ D, G a σ − algebra}.

It is easy2 to see that if G ∈ ZD , then G ∈ ZC , since G is a σ -algebra and
G ⊃ D ⊃ C . By definition,

σ(C) =
⋂

B∈ZC B

⊂
⋂

G∈ZD G

= σ(D).

This is so since ZD ⊂ ZC and, thus, the intersection of all the elements in ZD
contains the intersection of all the elements in ZC .

q.e.d.

Definition 8.1. Let J be the collection of intervals (a, b], with a, b ∈ R , as
above. Then, the σ -algebra, σ(J ) , generated by J , is said to be the Borel

σ -algebra and is usually denoted by B , or B(R) . The sets of this σ -algebra

are said to be the Borel sets, and the pair (R, B(R) ) is said to be the Borel

measurable space, or simply the one dimensional Borel space.
Now, suppose we are dealing with the Cartesian product of two real lines,

which we denote, for clarity, by Ri, i = 1, 2 . As a matter of notation put R2 =

R1 × R2 , and on this space we define, by analogy with the one dimensional

case, rectangles, say, T 2 = T1 × T2 , where Ti ∈ Ri , is a set of the form

(ai, bi], i = 1, 2 . If J is the collection of all such rectangles in R2 , then
the σ -algebra generated by J , i.e. σ(J ) , is also denoted by B(R2) ; this

is read: the σ -algebra generated by the (half open) rectangles of R2 . As an

alternative consider the collection J ∗ of rectangles with “Borel sides”, i.e.,

sets of the form B = B1 ×B2 , where Bi ∈ B(Ri), i = 1, 2 .

Definition 8.2. Let J ∗ = {B : B = B1 × B2, Bi ∈ B(Ri), i = 1, 2} i.e.,

the set of all (two dimensional) rectangles with Borel sides; the σ -algebra
generated by this collection, σ(J ∗) , is said to be the direct product of the

σ -algebras B(Ri), i = 1, 2 , and is often denoted by B(R1)⊗ B(R2) .

2In this argument it is assumed that the collections ZC , ZD , are nonempty; oth-

erwise there is nothing to prove. Evidently, if the collections C, D are algebras then

it is easy to see that ZC , ZD are nonempty collections.
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Remark 8.3. Note that if B, C are any two sets in J ∗ , their union is

not necessarily in J ∗ ; this is so since B ∪ C �= (B1 ∪ C1) × (B2 ∪ C2) ,
and consequently, it is not necessarily a set of the form (D1 × D2) with

Di ∈ B(Ri), i = 1, 2 . On the other hand, B∩C = (B1∩C1)×(B2∩C2) ∈ J ∗ .
Considering the complement of B , a little reflection will show that

B̄ = (B̄1 ×B2) ∪ (B1 × B̄2) ∪ (B̄1 × B̄2),

which is, evidently, the union of disjoint sets ( in J ∗ ) and as such it is in J ∗ .

The observation above leads to

Definition 8.3. Let J be a collection of subsets of a space Ω ; if Ω ∈ J ,

the complement of a set in J is the union of disjoint sets in J , and J is

closed under (finite) intersections, then J is said to be a semi-algebra.

Remark 8.4. Note first that the collection J ∗ , of Remark 8.3 is a semi-

algebra. Note, also, that if, in general, H is a semi-algebra and is augmented

by adding to it the null set and all sets which are finite disjoint unions of sets
in H , the resulting collection, H∗ , may be shown to be an algebra. This

is so since, if A ∈ H , then its complement, Ā , is the union of disjoint sets

in H , and hence Ā ∈ H∗ ; if A ∈ H∗, but A /∈ H , then it is the union

of disjoint sets in H , and by a similar argument we may establish that its

complement is also in H∗ . Evidently, the augmented set is closed under finite
unions. Moreover, σ(H∗) = σ(H) . The argument for this is quite simple.

Since H∗ ⊃ H it follows, by Proposition 8.1, that σ(H∗) ⊃ σ(H) . Let A(H)

be the algebra generated by H . If A ∈ H∗ , then it is the union of disjoint

sets in H and, hence, A ∈ A(H) ; this shows that H∗ ⊂ A(H) . Thus, again
by Proposition 8.1, σ(H∗) ⊂ σ(A(H)) ; but σ(A(H)) = σ(H) . We, thus,

conclude that σ(H)∗ = σ(H) .

Referring the contents of Remark 8.4 to the earlier discussion, we note that

the two collections of elementary sets, say,

J1 = {T 2 : T 2 = T1 × T2, Ti = (ai, bi], i = 1, 2}

and

J2 = {B2 : B2 = B1 ×B2, Bi ∈ B(Ri), i = 1, 2}

are both semi-algebras. Thus, to show that their respective σ -algebras are

the same it will be sufficient to show that that the elementary sets of one are
contained in the σ -algebra of the other. Now, it is evident that J1 ⊂ J2 ,

since, evidently, Ti ∈ B(Ri), i = 1, 2 . By Proposition 8.1, then, σ(J1) ⊂
σ(J2) . Conversely, consider σ(J1) and note that it contains the sets B1 ×
R2, R1 × B2 , for arbitrary Bi ∈ B(Ri), i = 1, 2 . Hence, it contains, also,



8.2. GENERAL PROBABILITY MODELS 241

their intersection, which is nothing more than B1 × B2 , for arbitrary Bi ∈
B(Ri), i = 1, 2 . This implies that σ(J2) ⊂ σ(J1) ; we, thus, conclude that
σ(J1) = σ(J2) . In fact it may be shown that

B(R2) = σ(J1) = σ(J2) = B(R1)⊗ B(R2).

Remark 8.5. The import of the preceding discussion is that given n identical
unidimensional Borel (measurable) spaces, we can routinely construct the n -

dimensional Borel (measurable) space, (Rn, B(Rn)) , where Rn = R1 ×R2 ×
. . .×Rn , and B(Rn) = B(R1)⊗ B(R2)⊗ . . .⊗ B(Rn) .

We close this section by considering the infinite dimensional Borel space.

This is an extremely important space, in that it is the space of (infinite) ordered
sequences; as such, or in suitably generalized fashion, it plays an important role

in the asymptotic theory of econometrics. Note that the space in question is

R∞ = {x : x = (x1, x2, x3, . . .)}, where xi ∈ Ri, i = 1, 2, 3, . . . ,

i.e. the ith real line Ri , is the space of the ith coordinate of the infinite

sequence. To complete the construction of the infinite dimensional Borel space

(R∞, B(R∞) ) , we need to specify its measurable sets, i.e., its σ -algebra.

From our previous discussion it is clear that this “should” be
⊗∞

i=1 B(Ri) ;
as pedagogical reinforcement, let us proceed to this task from first principles,

i.e., by first specifying a certain collection of “elementary sets”, usually a semi-

algebra, and then obtaining the σ -algebra it generates. On the real line this

is the collection of intervals {T : (a, b], a, b ∈ R} . On R2 , it is the collection

of rectangles T1 × T2 , and on Rn it is the collection

Tn = {T n : T n = T1 × T2 . . .× Tn, Ti = (ai, bi], ai, bi ∈ Ri, i = 1, 2, . . . , n}.

The obvious extension of this procedure is to specify the collection T1×T2×. . . ,
but this does not offer an operational framework, i.e. it does not afford us the
means of carrying out the required operations. Instead, we define the collection

of basic or elementary sets by

G(T n) = {x : x = (x1, x2, . . . , xn, . . .), xi ∈ Ti, Ti = (ai, bi]},

i.e., the elementary sets consist of all infinite sequences, the first n elements

of which lie in the intervals Ti, i = 1, 2, . . . , n , for ai, bi ∈ Ri . Such sets,

i.e. sets that require a finite number of elements (of an infinite sequence) to

lie in certain subsets of the appropriate coordinate space and leave all others
free are said to be cylinder sets. Thus, the typical cylinder set above could,

more carefully, be specified as T1 × T2 . . . × Tn × R × R . . . . The σ -algebra

generated by the cylinder sets above is denoted by B(R∞) . As before we

have the alternative of considering cylinder sets, where the first n elements
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of the infinite sequence are required to lie in the Borel sets of the appropriate

coordinate space. Thus, we consider the elementary sets to be the collection

G(Bn) = {x : x = (x1, x2, . . . , xn, . . .), xi ∈ Bi ∈ B(Ri), i = 1, 2, . . . n}.

The smallest σ -algebra that contains this collection, i.e. the σ -algebra gen-

erated by G(Bn) , for arbitrary n , is the (infinite) direct product of the

constituent σ -algebras, viz. B(R1)⊗ B(R2) ⊗ B(R3) ⊗ . . . . Finally, we may

consider the elementary sets to be the collection of cylinders G(Bn) = {x :
x = (x1, x2, x3, . . . , xn, . . .), (x1, x2 . . . , xn) ∈ Bn ∈ B(Rn)} .

It may be shown that the σ -algebras generated by all three such collections
of elementary sets are the same. The formal proof of this is somewhat tedious

but an intuitive understanding can be easily obtained by noting that if T n

is an n dimensional rectangle with (basic) interval sides, then clearly it is a

special form of an n dimensional rectangle with Borel sides, and the latter is
clearly a special case of a set in B(Rn) . On the other hand any rectangle with

Borel sides can be approximated by unions and/or intersections of rectangles

with interval sides. As to the unspecified components of the sequences, note

that the σ -algebra generated by the sets T n = T1 × T2 . . . × Tn , i.e., the

collection G(T n) , is the same as that generated by the collection, T n×R , is
the same as that generated by the collection T n×R×R , etc. This is so since

the “character” of the set is determined by the intervals Ti, i = 1, 2, . . . n ,

while the additional dimensions occupied by the real lines only determine the

“position” of the set in the higher dimension. This is so whether we are dealing
with the first or the second or the third type of elementary cylinder sets.

8.2.2 Specification of Probability Measures

The purpose of this section is to elucidate some of the basic properties of

the probability measure (whose definition was given in the preceding chap-

ter) and to show its connection with distribution functions. We recall that a
distribution function

F : R −→ [0, 1]

has the following properties:

i. F (−∞) = 0 ;

ii. F (∞) = 1 ;

iii. It is nondecreasing;
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iv. It is right continuous, i.e., if xn ↓ x , then limxn↓x F (xn) = F (x) , and

moreover, for each x ∈ R the limxn↑x F (xn) = F (x−) exists.

We repeat, for convenience, the definition of a probability measure given in

the preceding chapter.

Definition 8.4. Let (Ω, A) be a measurable space; the set function

P : A −→ R

is said to be a probability measure if and only if

i. P (∅) = 0 ;

ii. P (Ω) = 1 ;

iii. If {Ai : i ≥ 1, Ai ∈ A} is a collection of pairwise disjoint sets, then

P (

∞⋃
i=1

Ai) =

∞∑
i=1

P (Ai);

i.e. if and only if it is nonnegative, σ -additive and satisfies property ii.

A few basic properties of the probability measure follow immediately.

Proposition 8.2. Let (Ω, A, P ) be a probability space;

i. If A, B ∈ A , then P (A ∪B) = P (A) + P (B)− P (A ∩B) ;

ii. If A, B ∈ A and A ⊂ B , then P (A) ≤ P (B) ;

iii. If Ai ∈ A, i ≥ 1 , and A =
⋃∞
i=1 Ai ; then P (A) ≤

∑∞
i=1 P (Ai) .

Proof: For the proof of i we note that since (A ∪B) = A ∪ (Ā ∩B) , and the

two sets in the right member above are disjoint,

P (A ∪B) = P (A) + P (Ā ∩B).

On the other hand, B = (Ā ∩ B) ∪ (A ∩ B) and, again because the two sets

on the right are disjoint, P (B) = P (Ā ∩B) + P (A ∩B) . Thus, P (A ∪B) =
P (A) + P (B) − P (A ∩ B) . For ii, suppose A ⊂ B ; then, we can write

B = A ∪ (Ā ∩B) , so that the two components of B (in the right member of

the equation above) are disjoint; consequently,

P (B) = P (A) + P (Ā ∩B) ≥ P (A).
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For iii, we employ essentially the same construction as above, viz. we define:

B1 = A1, B2 = A2 ∩ Ā1, B3 = A3 ∩ Ā2 ∩ Ā1 . . . , so that the sequence
{Bi : i ≥ 1} consists of disjoint sets. Then,

P (

∞⋃
i=1

Ai) = P (

∞⋃
i=1

Bi) =

∞∑
i=1

P (Bi) ≤
∞∑
i=1

P (Ai).

q.e.d.

A number of other fundamental properties, which will be needed in

subsequent discussion, are most conveniently exposited at this juncture.

Proposition 8.3. Let (Ω, A) be a measurable space and P a nonnegative,

finitely additive set function defined on A , with P (Ω) = 1 ; then, the following
four conditions are equivalent:

i. P is σ -additive, i.e., P is a probability;

ii. P is continuous at ∅ , i.e., if Ai ⊃ Ai+1 and
⋂∞
i=1 Ai = ∅ , then

limi→∞ P (Ai) = 0 ;

iii. P is continuous from above, i.e., for any sets Ai ∈ A , i ≥ 1 such that
Ai ⊃ Ai+1, limi→∞ P (Ai) = P (

⋂∞
i=1Ai) ;

iv. P is continuous from below, i.e., for any sets Ai ∈ A , i ≥ 1 such that

Ai ⊂ Ai+1, limi→∞ P (Ai) = P (
⋃∞
i=1Ai) ;

Proof: We shall show that i implies iv; iv implies iii; iii implies ii; and finally,

that ii implies i, thus completing the proof. To show that i implies iv, let

{Ai : i ≥ 1} be a nondecreasing sequence and define as before

B1 = A1, Bi = Ai

i−1⋂
j=1

Āj , i > 1.

Since the sets are nondecreasing, we may simplify the expression above to

B1 = A1, Bi = Ai ∩ Āi−1, i > 1

and still preserve the disjointness of the Bi . Moreover, we find∑n
i=1 P (Bi) = P (A1) + P (A2)− P (A1) + P (A3)− P (A2)

+ . . .+ P (An)− P (An−1) = P (An).

Given the σ -additivity of P we obtain

P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Bi) = limn→∞

∑n
i=1 P (Bi)

= limn→∞ P (An),
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which proves that i implies iv; to show that iv implies iii, define

Bn = A1 ∩ Ān, n ≥ 1,

noting that B1 = ∅ , Bn ⊂ Bn+1 and, as required by iii, the sequence {An :

n ≥ 1} is nonincreasing. Since {Bn : n ≥ 1} is, evidently, a nondecreasing

sequence we have, by iv,

P (

∞⋃
i=1

Bi) = lim
n→∞P (Bn).

But from the definition of Bn , above, we easily ascertain that P (Bn) =

P (A1)− P (An) , or more usefully, P (An) = P (A1)− P (Bn) . Thus,

lim
n→∞P (An) = P (A1)− lim

n→∞P (Bn)

and, moreover,

lim
n→∞P (Bn) = P (

∞⋃
n=1

(A1 ∩ Ān))

The set whose probability measure is taken in the right member of the equation
above, may also be rendered as

∞⋃
n=1

(A1 ∩ Ān) = A1 ∩ (
∞⋃
n=1

Ān).

Since we can always write

A1 = [A1 ∩ (

∞⋃
n=1

Ān)] ∪ [A1 ∩ (

∞⋂
n=1

An)]

we have the relation

P (A1) = P (A1 ∩ [

∞⋃
n=1

Ān]) + P (

∞⋂
n=1

An).

Thus,

lim
n→∞P (An) = P (A1)− lim

n→∞P (Bn) = P (A1)− P (A1) + P (
∞⋂
n=1

An).

To show that iii implies ii is quite simple since

lim
n→∞P (An) = P (

∞⋂
n=1

An) = P (∅) = 0.
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Finally, to show that ii implies i define Bi ∈ A, i ≥ 1 to be pairwise disjoint

and further define An =
⋃∞
k=n Bk . Note that

P (
∞⋃
k=1

Bk) =
n−1∑
k=1

P (Bk) + P (An)

and moreover that {An : n ≥ 1} is a monotone nonincreasing sequence obey-

ing,
⋂∞
n=1An = ∅ . Thus we have by ii, and rearranging an argument just

used above,

∞∑
k=1

P (Bk) = lim
n→∞

n∑
k=1

P (Bk) = P (

∞⋃
k=1

Bk)− lim
n→∞P (An) = P (

∞⋃
k=1

Bk).

q.e.d.

To see the connection between probability measures and distribution func-

tions in the context of the measurable space (R, B) , let P be a probability
measure defined on B ; let A = (−∞, x] and define

F (x) = P (A).

Clearly the function F is nonnegative; it is also nondecreasing by iv of Propo-

sition 8.3; F (−∞) = P (∅) = 0 by i and F (∞) = P (R) = 1 , by property iv
of that proposition. Moreover, it is right continuous by iii of Proposition 8.3.

Thus, it is a distribution function as claimed. Conversely, if F is a dis-

tribution function defined on the measurable space in question, there exists

a unique measure, say P : B(R) −→ R such that for any set of B , say
A = (x, y], x, y ∈ R , it obeys

P (A) = F (y)− F (x).

By way of explanation consider the collection of intervals on the real line, i.e.,

sets of the form T = (a, b] , and suppose

A =

n⋃
i=1

(ai, bi],

where the intervals involved are disjoint. Define the probability measure

P0(A) =

n∑
i=1

[F (bi)− F (ai)],

and note that this defines uniquely a set function on the collection (semi-

algebra) of the intervals of the real line, which is finitely additive. It turns
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out that P0 is σ -additive on this semi-algebra and, moreover, that it can

be extended to B(R) . This demonstration involves arguments that are too
technical for our purposes and we give the result, below, without a complete

proof.

Proposition 8.4. Let F be a distribution function defined on the real line.

Then, there exists a unique probability measure on (R, B(R)) such that for

any x, y ∈ R

P ((x, y]) = F (y)− F (x)

Proof: For the basic interval collection, i.e., for sets of the form (a, b] define

P0((a, b]) = F (b)− F (a),

and for unions of disjoint such sets define

P0(

n⋃
i=1

(ai, bi]) =

n∑
i=1

[F (bi)− F (ai)].

One easily verifies that the preceding defines, uniquely, a nonnegative, nonde-

creasing finitely additive set function, on the semi-algebra of the elementary

sets of R . Moreover, P0(R) = 1 . The remainder of the proof makes use

of Caratheodory’s extension theorem which is given below (in a somewhat
generalized form).

Proposition 8.5 (Caratheodory Extension Theorem). Let Ω be a space, let
C be a semi-algebra of its subsets and let σ(C) be the smallest σ -algebra

containing C . Let P0 be a measure defined on (Ω, C) ; then, there exists a

unique measure, P , on (Ω, σ(C)) which is an extension of P0 to σ(C) , i.e.,
if A ∈ C , then

P (A) = P0(A);

the measure P0 is said to be be the restriction of P to C , denoted by P | C .

Moreover, if P0 is a probability or a σ -finite measure then so is P .

Proof: See Chow and Teicher [Theorem 1, Chap. 6.1].

Example 8.3. Consider the distribution function

F (x) = 0 if x < 0

= x
N if 0 ≤ x ≤ N <∞

= 1 if x > N
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Applying Proposition 8.3, we can assert that if a, b ∈ [0, N ] , then there exists

a measure say P such that

P ((a, b]) = b− a

Here, the space is Ω = [0, N ] and the σ -algebra of (Borel) subsets of the

space is given by

B([0, N ]) = {B ∩ [0, N ], B ∈ B(R)}.

Clearly, for sets in B([0, N ]) , P essentially defines the simple Lebesgue (outer)
measure on [0, N ] .

Remark 8.6. If the distribution function of Proposition 8.3 is absolutely
continuous, i.e. if there exists an integrable function, say f , such that

F is the (indefinite) integral of f , then the measure of that proposition is

definable by

P ((a, b]) =

∫ b

a

fdx = F (a)− F (b),

and it should be apparent to the reader that sets of the form (a, b) , (a, b] ,

[a, b) , [a, b] , all have the same measure.

Generalization of such results to the measurable space (Rn, Bn) , for finite
n , is straightforward. Incidentally, Bn is shorthand for B(Rn) . Thus, if P

is a probability measure on this space, let

T = T1 × T2 × . . .× Tn

where Ti = (−∞, xi], i = 1, 2, . . . , n , and define

F (x) = P (T ), x = (x1, x2, . . . , xn).

It can be routinely verified that F is indeed a distribution function. The

converse result is also valid and can be proved essentially in the same manner
as Proposition 8.4. In particular, if F is absolutely continuous and if T is as

above, then the probability measure obeys

P (T ) =

∫ b

a

fdx =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

fdxn . . . dx1,

except that, now, we take Ti = (ai, bi] . The extension of these results to the

space (R∞, B(R∞)) is due to Kolmogorov and essentially involves the idea

that if we can specify measures on B(Rn) in a consistent fashion, then, in fact,
we have established a measure on B(R∞) . Proceeding in the same fashion as
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before, let us ask ourselves, what do we want to take as the elementary sets

in this space. A natural choice would be the cylinder sets with base on the
Borel sets of B(Rn) . Let A be a Borel set in Rn ; we recall that the cylinder

set with base A is defined by

Cn(A) = {x : x ∈ R∞, (x1, x2, . . . , xn) ∈ A ∈ B(Rn)}.

A less precise, but perhaps more revealing, way of representing this (cylinder)

set is to write it as A × R × R . . . . . . . Consider now another set, say A∗ =
A×R , and the cylinder set associated with it, viz., Cn+1(A

∗) ; if we use the

more revealing notation to represent it we see that the two sets are indeed

identical. Hence, we would expect that

P (Cn(A)) = P (Cn+1(A
∗)).

Indeed, the basic character of such (cylinder) sets is determined by the set A ,
and the fact that they are “infinitely dimensional”, creates only “bookkeeping”

problems of properly dealing with the dimensionality of the sets to which var-

ious probability measures apply. Specifically, if P were a probability measure

on (R∞, B(R∞)) we would want it to satisfy the property above. However, in
the context of (R∞, B(R∞)) , the operation P (A) does not make any sense,

since A is strictly speaking not in that σ -algebra; if we want to “place” A

therein, we have to represent it as A × R × R . . . , i.e., as the cylinder set

Cn(A) . If we denote by Pn a probability measure on (Rn, B(Rn)) , then we

would want to have
P (Cn(A)) = Pn(A). (8.1)

Thus, if we construct a sequence of probability measures, Pi , on the space

(Ri, B(Ri) we would want them to satisfy the following consistency

property for any set A ∈ B(Ri), i ≥ 1 :

Pi+1(A×R) = Pi(A). (8.2)

It is remarkable that the converse of this result also holds and, moreover, that

it is valid for abstract measurable spaces as well.

Proposition 8.6 (Kolmogorov Extension Theorem). Let Pi , i ≥ 1 , be a

sequence of probability measures defined on the measurable spaces, (Ri, Bi) ,
i = 1, 2, . . . , respectively, and satisfying the consistency property of Eq. (8.2).
Then, there exists a unique probability measure, say P , on (R∞, B(R∞)) ,

such that for any cylinder set Cn(A) with A ∈ B(Rn)

P (Cn(A)) = Pn(A).

Proof: See Chow and Teicher [Theorem 2, Chap. 6.4].
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Remark 8.7. The reader may wonder: are the preceding results, which were

developed for the case where Ω = R , restricted to that space alone? In
fact they are not. The real number system possesses two types of properties:

algebraic, i.e., those that have something to do with notions of addition, mul-

tiplication etc., and metric, or topological properties, i.e., those that have

something to do with the distance between two numbers or sets of numbers

as well as those dealing with the concept of the limit. These metric or topo-
logical properties are not confined to R alone. In fact, we have the following

generalization of the version of Kolmogorov’s consistency theorem given above.

Proposition 8.7. Let (Ωi, Gi, Pi), i ≥ 1 , be a sequence of probability

spaces; then there exists a unique probability measure, say P , on the (infinite

dimensional product) measurable space (Ω, G) , where

Ω = Ω1 × Ω2 × . . .

G = G1 ⊗ G2 ⊗ . . . ,

such that if A ∈ G1 ⊗ . . .⊗ Gn , then

P (Cn(A)) = (P1 × P2 × . . .× Pn)(A).

Proof: See Chow and Teicher [Theorem 1, Chap. 6.4].

Remark 8.8. While the results of interest to us are valid for copies of the

measurable space (R, B) as well as copies of (Ω, G) , it must not be supposed

that there are no differences between the two sets of structures. For exam-

ple, if we consider the sequence of probability spaces (Ri, B(Ri), Pi) and

(Ωi, Gi, Pi) such that Gi ⊂ Gi+1 , and Pi = Pi+1 | Gi (the equivalent of the
consistency property for the infinite dimensional Borel space) then, defining

P (A) = lim
n→∞Pn(A)

for A ∈
⋃∞
n=1 Gn , does not yield a σ -additive measure on that algebra; on the

other hand if we consider the Borel probability spaces, the measure so defined

will be σ -additive, as Proposition 8.6 asserts. In any event, the import of the

discussions above, is that if (Ωi, Gi, Pi), i ≥ 1 , is a sequence of probability
spaces, as described in the proposition, and if A is a set of the form

A = A1 ×A2 × . . .×An × Ω× Ω . . . . . . ,

then there exists a unique probability measure, say P , such that

P (A) =

n∏
i=1

Pi(Ai).
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8.2.3 Fubini’s Theorem and Miscellaneous Results

We begin by repeating the definition of a product measure (space). If

(Ωi, Gi, μi), i = 1, 2 are two measure spaces, consider the space

Ω = Ω1 × Ω2

and the semi-algebra

G = G1 × G2.

We recall that the notation above indicates that the sets in G , say A , are of

the form A = A1 ×A2 , such that Ai ∈ Gi, i = 1, 2 . On this semi-algebra we

may define a measure by the operation

μ0(A) =

2∏
i=1

μi(Ai),

and for unions of disjoint such sets we may further require that

μ0(

n⋃
i=1

Bi) =

n∑
i=1

μ0(Bi).

If by σ(G) we denote the σ -algebra generated by the semi-algebra G , we may

extend μ0 to σ(G) , using Caratheodory’s extension theorem. We finally recall

that if μ0 is a probability then so would be its extension. Thus, let μ be the

desired extension and consider the space (Ω, σ(G), μ) ; this is a product space

and it is in the context of this space that we shall discuss Fubini’s theorem.
First, however, a few preliminaries.

Consider the set A = A1 × A2 , in the product space above, and let ωi ∈
Ai, i = 1, 2 . Define now the sets

A(1)
ω2

= {ω1 : (ω1, ω2) ∈ A, for fixed ω2}

A(2)
ω1

= {ω2 : (ω1, ω2) ∈ A, for fixed ω1}.

Definition 8.5. Consider the product measure space (Ω, σ(G), μ) and the

set A = A1 × A2 , with Ai ∈ Gi, i = 1, 2 . Then, the sets A
(1)
ω2 , A

(2)
ω1 as

defined above are said to be the sections of A at ω2 and ω1 , respectively.
More generally, if A ∈ G (and not necessarily as above), sets of the form

A
(1)
ω2 , A

(2)
ω1 , are said to be sections of A at ω2 and ω1 , respectively, with

ωi ∈ Ωi, i = 1, 2 .

Remark 8.9. Note that, in the general definition of sections, if A = A1 ×A2

and ω2 ∈ A2 , then A
(1)
ω2 = A1 ; otherwise it is the null set, and if ω1 ∈ A1,

A
(2)
ω1 = A2 , otherwise it is the null set. The development above leads to
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Proposition 8.8. Let (Ω, G, μ) be the product measure space, where Ω =

Ω1 ×Ω2 , G = σ(G1 × G2), μ = μ1 × μ2 and all measures are σ -finite. Then:

i. For any measurable set A , the sections A
(1)
ω2 , A

(2)
ω1 are G1 -, G2 -

measurable, respectively;

ii. If μ(A) = 0 , then μ1(A
(1)
ω2 ) = 0 and μ2(A

(2)
ω1 ) = 0 ;

iii. If f is a measurable function from (Ω, G, μ) to (R,B) , then for every

ω1 ∈ Ω1, f(ω1, ω2) defines a measurable function from (Ω2, G2, μ2) to

(R,B) , and for every ω2 ∈ Ω2, f(ω1, ω2) defines a measurable function
from (Ω1, G1, μ1) to (R,B) .

Proof: To prove i, let

A = {A : A ∈ G, A(1)
ω2 ∈ G1, for every ω2 ∈ Ω2}

C = {C : C = C1 × C2, Ci ∈ Gi, i = 1, 2}

and note that by Remark 8.9, C ⊂ A . Moreover, if Ai ∈ A, i ≥ 1 , consider

A =
⋃∞
i=1 Ai and its section at ω2 , which we denote by A(1) , for simplicity.

An easy calculation will show that A(1) =
⋃∞
i=1 A

(1)
i ∈ G1 . Similarly, if A ∈ A

its complement also belongs to A , since it can be written as the countable
union of sets of the form B1 × B2 , with Bi ∈ Gi, i = 1, 2 . Thus, by the

previous argument, the section of this union is the union of sections and thus

the complement of A ∈ A . But this shows that A is a σ -algebra that

contains σ(C) = G .

To prove ii, let A be of the form A = A1 × A2 ; clearly, for such a set
μ(A) = μ1(A1)μ2(A2) and its indicator (or characteristic) function obeys,

I12(ω1, ω2) = I1(ω1)I2(ω2)

where Ii(ωi), i = 1, 2 , are the indicator functions of the sets Ai, i = 1, 2 ,
respectively, i.e.,

I12(ω1, ω2) = 1, if (ω1, ω2) ∈ A1 ×A2

= 0, otherwise.

Moreover,

μ(A) =

∫
Ω

I12(ω1, ω2) dμ =

∫
Ω2

μ1(A
(1))dμ2 =

∫
Ω1

μ2(A
(2))dμ1.

Hence, on the semi-algebra, say A , of sets of the form A = A1 × A2 , the

result in ii holds, since evidently, μ(A) = 0 implies both μ1(A
(1)) = 0, a.e. ,
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and μ2(A
(2)) = 0, a.e. . Next, consider the restriction μ | A . This is a

σ -finite measure on the semi-algebra A and thus, by the Caratheodory exten-
sion theorem there exists a unique extension to the σ -algebra σ(A) . By

uniqueness, this extension is μ since σ(A) = G , which completes the proof

of ii.

To prove iii, note that setting

f(ω1, ω2) = I12(ω1, ω2),

where I12(·, ·) is, as in the proof of ii, the indicator function of the set

A = A1 × A2 , with Ai ∈ Gi, i = 1, 2 , we may conclude, by the discussion

immediately preceding, that

f(ω1, ω2) = 1, if (ω1, ω2) ∈ A

= 0, otherwise.

In particular, treating ω2 as fixed, we have the indicator function for A1 ,

while treating ω1 as fixed we have the indicator function for A2 . Thus, clearly

the result in iii holds for indicator functions of sets of the form A = A1 ×A2 .
But any measurable function on the space (Ω1 × Ω2, σ(G1 × G2)) can be

approximated by simple functions which are constant on (disjoint) sets of the

form A1 ×A2 , i.e., by

fn(ω1, ω2) =

n∑
i=1

ciI12i(ω1, ω2)

where I12i is the indicator function of a set of the form A1i ×A2i . Thus, for

fixed ω1, fn is G2 -measurable and for fixed ω2 it is G1 -measurable. The
conclusion then follows by the convergence of such functions to f .

q.e.d.

Proposition 8.9 (Fubini’s Theorem). Let (Ω, G, μ) be the product measure

space above (with μ σ -finite) and let (Ψ, C) be a measurable space. Let

f : Ω −→ Ψ

be a measurable function which is μ(= μ1 × μ2) -integrable. Then, the

following statements are true:

i. The integrals ∫
Ω1

f(ω1, ω2) dμ1,

∫
Ω2

f(ω1, ω2) dμ2

are well defined for all ω2, ω1 , respectively;
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ii. The integrals in i are G2 -, G1 -measurable, respectively, and moreover

μ2(D2) = μ1(D1) = 0 , where

D2 = {ω2 :

∫
Ω1

f(ω1, ω2) dμ1 = ∞}

D1 = {ω1 :

∫
Ω2

f(ω1, ω2) dμ2 = ∞}

iii. ∫
Ω
f dμ =

∫
Ω
f(ω1, ω2) d(μ2 × μ1)

=
∫
Ω1

[
∫
Ω2
f(ω1, ω2) dμ2] dμ1

=
∫
Ω2

[
∫
Ω1
f(ω1, ω2) dμ1] dμ2.

Proof: The proof of i is an immediate consequence of Proposition 8.8, since we

have shown there that for fixed ω2 , f is G1 -measurable and for fixed ω1 , it

is G2 -measurable. To prove ii and iii we begin with the case of nonnegative

(measurable) functions. Thus, consider the set A = A1 × A2 with Ai ∈
Gi, i = 1, 2 , take

f(ω1, ω2) = I12(ω1, ω2),

where I12 is the indicator function of the set A above, and observe that, in
the obvious notation,

I12(ω1, ω2) = I1(ω1)I2(ω2).

Consequently, ∫
Ω2

f dμ2 = I1(ω1)μ2(A2)

and ∫
Ω1

f dμ1 = I2(ω2)μ1(A1)

which are, evidently, G1 - and G2 -measurable functions, respectively. Now,

every nonnegative measurable function f , can be approximated by a sequence

of simple (nondecreasing) functions, converging pointwise to f . As we recall,
the simple functions are linear combinations of indicator functions of the type

examined above, i.e.,

fn =

n∑
i=1

ciI12i(ω1, ω2),

such that fn ≤ f , and I12i is the indicator function of a set of the form

A1i ×A2i . Notice that in view of the inequality above, we must also have, for

fixed ω1 , or ω2 ,

fn(ω1, ω2) ≤ f(ω1, ω2).
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Hence, by the Monotone Convergence Theorem

Hni =

∫
Ωi

fn dμi −→
∫
Ωi

fdμi = Hi, i = 1, 2

and similarly, since Hni ≤ Hi , again by the Monotone Convergence Theorem
we obtain ∫

Ω2

Hn1(ω2) dμ2 −→
∫
Ω2

H1(ω2) dμ2.

Moreover, the integral of Hn2 converges to that of H2 . But this demonstrates

the validity of iii. It is obvious, then that ii must be valid as well. This is so,
since the functions displayed there have finite integrals; a necessary condition

for this to be so is that the set over which the function(s) become unbounded

must have measure zero. Having shown the validity of the proposition for non-

negative (measurable) functions and noting that any (measurable) function, f ,

can be written as f+ − f− , the proof of the proposition is completed.

q.e.d.

8.3 Random Variables

8.3.1 Generalities

In this section we shall gather a number of results, regarding random vari-
ables, some of which have been dealt with in the previous sections and some

of which are entirely new. The purpose is to assemble in one location a num-

ber of useful characterizations and other pertinent information about random

variables. First, we recall the definition that a random variable is a real val-
ued measurable function, defined on a probability space. Thus, given

the extensive discussion of measurable functions in the previous chapter, we

already know a great deal about random variables, since nearly everything

discussed in that chapter dealt with measurable functions defined on general,

or at worst σ -finite, measure spaces. Since a random variable is a real valued
function defined on a probability space, which is certainly σ -finite, all results

obtained therein are immediately applicable to random variables.

If a function is given, how can we determine whether it is measurable? This

is answered unambiguously by

Proposition 8.10. Let (Ω, A), (R, B) be measurable spaces and

f : Ω −→ R

be a relation. Let C be a collection of subsets of R such that

σ(C) = B(R).
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Then, f is measurable if and only if

A ∈ A, A = {ω : f(ω) ∈ C}

for all C ∈ C .

Proof: If the condition holds, then evidently A ∈ A ; thus, consider the

sufficiency part. Let

H = {B : B ∈ B(R) and f−1(B) ∈ A}

and consider the sequence Bi, i ≥ 1 , such that Bi ∈ H . Since

f−1(B̄i) = f−1(Bi)

f−1(
∞⋃
i=1

Bi) =
∞⋃
i=1

f−1(Bi)

we conclude that H is a σ -algebra. Clearly C ⊂ H ⊂ B(R) . Therefore,3

σ(C) ⊂ H ⊂ B(R) . But, by the condition of the proposition

σ(C) = B(R).

q.e.d.

Corollary 8.1. A necessary and sufficient condition for X to be a random

variable, is that the set

Ax ∈ A, where Ax = {ω : X(ω) ≤ x} or, {ω : X(ω) < x}

for every x ∈ R , i.e. that such sets be A -measurable.

Proof: Let C be the collection of intervals of the form (−∞, x), x ∈ R and

C∗ the collection of intervals of the form (−∞, x] . From previous discussion

and Proposition 8.10 we know that σ(C) = σ(C∗) = B(R) .

q.e.d.

Remark 8.11. Notice that, in the course of the proof above, if σ(C) = B(R) ,
then putting

H = {H : H = X−1(C), C ∈ C}

we easily conclude that H is a σ -algebra. This σ -algebra is often denoted

by σ(X) and is said to be the σ -algebra induced by X .

3This is a consequence of the fact that if we have two (collections of) sets obeying

C1 ⊂ C2 then the σ -algebras they generate obey σ(C1) ⊂ σ(C2) .
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Remark 8.12. When dealing with random variables it is occasionally

convenient to allow the range of measurable functions to be

R̄ = [−∞, ∞], instead of R = (−∞, ∞).

Since the set [−∞, ∞] is said to be the extended real line, such random
variables are said to be extended random variables. When dealing with

such random variables it is crucial to bear in mind a number of

important conventions as follows: if a ∈ R , a ±∞ = ±∞ ; if a >

0, a ·∞ = ∞ ; if a < 0, a ·∞ = −∞ ; if a = 0, a ·±∞ = 0 . Moreover, ∞+

∞ = ∞; −∞+(−∞) = −∞ . We must also recognize that, despite the
conventions above, we are still left with the following indeterminate

forms: ∞/∞ , ∞−∞, 0/0 .

In most of our discussion we shall be dealing with a.c. finite random

variables, i.e., if X is a random variable, then

P (A) = 0, A = {ω : X(ω) = ±∞}.

Note further that if X is integrable, i.e., if∫
X dP <∞,

then for A , as defined above, we must also have P (A) = 0 .

Definition 8.6. The expectation of a random variable, defined over the prob-
ability space (Ω, A, P ) , is given by the integral above, whenever the latter

exists; thus, the expectation of a random variable is∫
Ω

X dP

and is denoted by E(X) , or EX, E being the expectation operator.4

Remark 8.13. Note that the use of the expectation operator, combined with
the notation for indicator functions, virtually eliminates the need to write an

integral sign. For purposes of notational ease we shall frequently employ this

procedure. For example, suppose we wish to take the integral of the square of

a zero mean random variable over a set A . Instead of the notation∫
A

X2dP,

we can write simply E[X2IA].

4When the context is clear and no confusion is likely to arise we shall generally use

the notation EX .
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The reader is no doubt very familiar with statements of the form: Let X

be a random variable with distribution function, F ; moreover he is no doubt
well aware of the fact that F is defined on the real line. This terminology

might create the erroneous impression that random variables are defined on

the real line which is incompatible with our previous discussion. The following

few words are meant to clarify these issues. Thus,

Definition 8.7. Let X be a random variable as in Definition 8.6. Then, its

probability distribution is a set function

Px : B(R) −→ R

such that for all sets B ∈ B

Px(B) = P (X−1(B)).

Remark 8.14. The probability function, Px , of a random variable, X ,

is to be distinguished from its distribution function, say F , sometimes

also termed the p.d.f. (probability distribution function), or c.d.f (cumulative

distribution function), which is a point function

F : R −→ [0, 1]

and is defined, for all x ∈ R , by

F (x) = P (X−1((−∞, x])) = Px((−∞, x]).

8.3.2 Moments of Random Variables

and Miscellaneous Inequalities

Let (Ω, A, P ), (R, B) be a probability and measurable space, respectively,

and let

X : Ω −→ R

be a random variable.5 We recall that the expectation or mean of a random

variable, say X , is denoted by E(X) and is given by

E(X) =

∫
Ω

X(ω) dP.

In all subsequent discussion it will be understood that all random variables are
integrable in the sense that the relevant integrals exist and are finite, i.e. we

5In order to avoid this cumbersome phraseology in the future, when we say that X

is a random variable, it is to be understood that we have predefined the appropriate

probability and measurable spaces. Thus, mention of them will be suppressed.
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shall always be dealing with a.c. finite random variables. If X is a random

variable then so is Xk , and the k th moment of the random variable X is
defined by ∫

Ω

Xk(ω) dP = E(Xk) = μk, k = 1, 2, . . .

provided the integrals exist and are finite. The second moment about the

mean, (μ1) , is of special significance; it is termed the variance of the random

variable and is given by

var(X) = E(X − μ1)
2.

If X is a random vector then μ1 is a vector of means6 and the concept of

variance is generalized to that of the covariance matrix

Cov(X) = E(X − μ1)(X − μ1)
′
= Σ,

which is usually denoted by the capital Greek letter Σ .

Proposition 8.12 (Generalized Chebyshev Inequality). Let X be a nonneg-

ative integrable random variable; then, given ε > 0 ,

P (A) ≤ E(X)

ε

where A = {ω : X(ω) ≥ ε}.

Proof: Let IA be the indicator function of the set A , above, and note that

X ≥ XIA ≥ εIA.

Taking expectations we find

E(X) ≥ E(XIA) ≥ εE(IA) = εP (A).

Noting that P (A) is the proper notation for P (X ≥ ε) we have the standard

result for the general case.

q.e.d.

Corollary 8.2. If ξ is an unrestricted random variable with mean μ and

variance σ2 , then

P (| ξ − μ |≥ ε) ≤ σ2

ε2
.

6It is a common practice that the subscript for the first moment is omitted

for both scalar and vector random variables. We shall follow this practice unless

reasons of clarity require otherwise.
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Proof: Let X =| ξ − μ |2 and note that E(X) = σ2 ; by Proposition 8.12,

P (X ≥ ε2) ≤ σ2/ε2 . Next, consider the sets A = {ω : X ≥ ε2} and A∗ =
{ω : X1/2 ≥ ε} . We shall show that A = A∗ . This is so since, if ω ∈ A , then

we must, also, have that [X(ω)]1/2 ≥ ε , so that ω ∈ A∗ , which shows that

A ⊂ A∗ ; similarly, if ω ∈ A∗ , then we must have that X(ω) ≥ ε2 , so that

ω ∈ A , which shows that A∗ ⊂ A . The latter, in conjunction with the earlier

result, implies A = A∗ and thus, P (A) = P (A∗) .

q.e.d.

Corollary 8.3. Let ξ be a vector random variable with mean μ and

covariance matrix Σ . Then

P (‖ ξ − μ ‖2≥ ε2) ≤ trΣ

ε2
.

Proof: Note that ‖ ξ−μ ‖2 = X is a nonnegative integrable random variable;
hence by Proposition 8.12,

P (X ≥ ε2) ≤ trΣ

ε2
,

where, evidently, trΣ = E(‖ ξ − μ ‖2) .
q.e.d.

Proposition 8.13 (Cauchy Inequality). Let Xi, i = 1, 2 , be zero mean
random variables and suppose that var(Xi) = σii ∈ (0,∞) ; then

(E | X1X2 |)2 ≤ σ11σ22.

Proof: Since σii > 0, i = 1, 2 , define the variables

ξi =
Xi

σ
1
2

ii

,

and note that var(ξi) = 1 . Moreover, since

(| ξ1 | − | ξ2 |)2 ≥ 0,

we have that

2E(| ξ1ξ2 |) ≤ E(ξ21 + ξ22).

But this implies E(| X1X2 |) ≤ (σ11σ22)
1/2 .

q.e.d.

Corollary 8.4. The correlation between any two square integrable random

variables, lies in [−1, 1] .
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Proof: Let Xi, i = 1, 2 , be any two square integrable random variables as

in the proposition and put σ12 = E(X1X2) = Cov(X1, X2) . We recall that
the correlation (or correlation coefficient) between two random variables is

given by

ρ12 =
σ12

(σ11σ22)1/2
.

Since from Proposition 8.13 we have σ2
12 ≤ σ11σ22 , the result follows

immediately.

q.e.d.

Proposition 8.14 (Jensen’s Inequality). Let h be a measurable function

h : Rn −→ R

and X be an integrable random vector, i.e., ‖ E(X) ‖<∞ ; then

i. If h is a convex function, h[E(X)] ≤ E(h[X ]) ;

ii. If h is a concave function, h[E(X)] ≥ E(h[X ]) .

Proof: If h is a convex function,7 then we can write for any point x0
8

h(x) ≥ h(x0) + s(x0)(x − x0),

where x is an appropriate (column) vector valued function. Consequently, for

x = X and x0 = E(X) , we have the proof of i, upon taking expectations. As
for ii, we note that if h is a convex function then −h is concave. The validity

of ii is, then, obvious.

q.e.d.

Proposition 8.15 (Liapounov’s Inequality). Let X be a suitably integrable

random variable and 0 < s < r be real numbers; then

(E | X |s) 1
s ≤ (E | X |r) 1

r .

Proof: Define | X |s= ξ , and consider ξk , where k = (r/s) ; since ξk is a

convex function, by Jensen’s inequality, we have

[E(ξ)]k ≤ E(ξk).

7For twice differentiable convex functions the matrix of the second order partial

derivatives is positive semidefinite; for concave functions, it is negative semidefinite; in

both cases this is to be understood in an a.e. sense.
8This result is obtained by using a Taylor series expansion around the point x0 ,

retaining terms up to and including the second derivative (third term of the expansion).
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Now, reverting to the original notation this gives the result

(E | X |s) 1
s ≤ (E | X |r) 1

r .

q.e.d.

Corollary 8.5. Let X be a suitably integrable random variable; then for any

integer n , for which | X |n is integrable,

E | X | ≤ (E | X |2) 1
2 ≤ . . . . . . ≤ (E | X |n) 1

n .

Proof: Obvious by repeated application of Liapounov’s inequality.

q.e.d.

Proposition 8.16 (Holder’s Inequality). Let Xi, i = 1, 2 , be suitably inte-

grable random variables and let pi ∈ (1,∞) , such that (1/p1) + (1/p2) = 1 .
Then, provided the | Xi |pi are integrable,

E | X1X2 | ≤ (E | X1 |p1)
1
p1 (E | X2 |p2)

1
p2 .

Proof: Evidently, if E | Xi |pi= 0 , then Xi = 0 , a.c., and consequently

the result of the proposition is valid. Thus, we suppose that E | Xi |pi> 0 .
Define, now ξi = | Xi | /ci , where ci = (E | Xi |pi)1/pi , i = 1, 2 . Since the

logarithm is a concave function, it is easy to show that

ln[ax+ by] ≥ a lnx+ b ln y

for x, y, a, b > 0 such that a + b = 1 . But this means that the following
inequality is also valid

xayb ≤ ax+ by.

Applying this inequality with x = ξp11 , y = ξp22 , a = 1/p1, b = 1/p2 , we find

E(ξ1ξ2) ≤ 1

p1
E(ξp11 ) +

1

p2
E(ξp22 )

and, reverting to the original notation, we have

E | X1X2 | ≤ (E | X1 |p1)
1
p1 (E | X2 |p2)

1
p2 .

q.e.d.

Proposition 8.17 (Minkowski’s Inequality). Let Xi, i = 1, 2 , be random

variables, p ∈ (1, ∞) such that | Xi |p is integrable. Then

| X1 +X2 |p is integrable

and, moreover,

(E | X1 +X2 |p) 1
p ≤ (E | X1 |p) 1

p + (E | X2 |p) 1
p .
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Proof: Consider the function F (x) = (x+ a)p − 2p−1(xp + ap) and note that

F
′
(x) = p(x+a)p−1−2p−1pxp−1 . From this we easily deduce that the function

has a maximum at x = a , provided a and x are restricted to be positive.

But we note that F ′(a) = 0 ; consequently, we have

(x + a)p ≤ 2p−1(xp + ap).

Since

(| X1 +X2 |)p ≤ (| X1 | + | X2 |)p ≤ 2p−1(| X1 |p + | X2 |p),

the validity of the first part of the proposition is evident. For the second part,

note that

(| X1 +X2 |)p ≤ | X1 | | X1 +X2 |p−1 + | X2 | | X1 +X2 |p−1 .

Applying Holder’s inequality to the two terms of the right member above, we

find

E(| X1 || X1 +X2 |p−1) ≤ (E | X1 |p) 1
p (E | X1 +X2 |(p−1)q)

1
q

E(| X2 || X1 +X2 |p−1) ≤ (E | X2 |p)
1
p (E | X1 +X2 |(p−1)q)

1
q ,

where q is such that (1/p) + (1/q) = 1 ; this being so, note that

(p− 1)q = p . Adding the two inequalities above we find

(E | X1 +X2 |p) 1
p ≤ (E | X1 |p) 1

p + (E | X2 |p) 1
p .

q.e.d.

8.4 Conditional Probability

8.4.1 Conditional Probability in Discrete Models

The reader is no doubt familiar with the general notion of conditional proba-
bility. Thus, for example, if (Ω, A, P ) is a probability space and A, B ∈ A ,

then the conditional probability of A , given B is given by the relation

P (A | B) =
P (A ∩B)

P (B)
,

provided P (B) �= 0 . The underlying principle is that by conditioningwe shift

the frame of reference, from the general space Ω to the conditioning

entity, in this case the event B . Thus, the probability of the event A given
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the event B is the probability assigned by the (probability) measure P to that

part of A which is also in the new frame of reference, viz., B ; this, of course,
is simply the intersection A ∩B ; division by P (B) is simply a bookkeeping

device to ensure that the probability (measure) assigned to the “new” space

is unity. This basic idea is easily transferable to discrete random variables but

its extension to general random variables, i.e., the case where the conditioning

entity is a σ -algebra, is somewhat less transparent; conditional probability is
also one of the most frequently misunderstood concepts in econometrics.

We begin by considering conditional probability in the case of discrete

probability models. First, an informal discussion by example. Suppose we

have two random variables, Xi, i = 1, 2 , which are independent, identically
distributed and assume the values, 1, 2, . . . , 6 , with equal probability, viz.,

1/6 . Define, a new random variable, say X = X1 + X2 . This is, evidently,

the two independent dice model we had discussed earlier, and the random

variable X is simply the sum of the faces showing at each throw; it is clear

that X assumes the values 2, 3, . . . , 12 with the probabilities determined at
an earlier stage. We note that if we condition on X2 , say by requiring that

X2 = i, 1 ≤ i ≤ min(k − 1, 6)) , then

P (X = k | X2 = i) = P (X1 = k − i).

The preceding has resolved the problem of calculating the probability that X

will assume a specific value given that X2 assumes a specific value, which
is really a special case of conditioning one “event” in terms of another. But

what would we want to mean by X | X2 , i.e. by conditioning the random

variable X in terms of the random variable X2 . Clearly, if we can determine

the probability with which this new variable “assumes” values in its range,
subject to the condition, we would have accomplished our task. Now, define

the sets

Dij = {ωj : Xj(ωj) = i}, i = 1, 2, . . . , 6, and j = 1, 2,

and denote the indicator functions of the sets Dij by Iij(ω) . Both collec-

tions of sets just defined are finite partitions of the spaces Ωj , j = 1, 2 ,
respectively. The sample space of X is Ω = Ω1 × Ω2

9; the probability

defined thereon is the product of the two probabilities, but since the two

spaces are independent we shall, for notational convenience, use the symbol

P to denote the probability measure on all three spaces. Next, construct the
finite partition of the space Ω by defining

D = (D2, D3, . . . , D10, D11, D12),

9Note that Ωj , j = 1, 2 , are exact copies of the same space.
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where Dk = {ω: X(ω) = k.} If we were dealing solely with discreet models,

then perhaps there would be no need to abstract the salient aspects of the
problem and seek to generalize the solution obtained. Unfortunately, however,

this is not the case. By way of motivation consider the following “experiment”:

choose a point, x , at “random” in the unit interval (0, 1) ; then toss a coin

whose “probability” of showing heads is x and of showing tails is 1 − x . If

we engage in such an experiment n times what is the conditional probability
that exactly k of the tosses result in heads, conditional on the fact that the

probability (of heads) is x . Since, in the context of the uniform distribu-

tion over the unit interval, the probability of choosing x is zero, the usual

approach fails. Nonetheless, it makes perfectly good sense to expect that the
required probability is given by the binomial distribution with p = x . More

formally, the elementary definition of conditional probability of an event A ,

given another, B , requires that P (B) > 0 . We have just given a very real

problem in which this condition is violated. Thus, there is need for abstraction

and we now turn to this task.
A careful examination of the solution we have given to the two dice example

indicates that the random variables as such do not play a direct intrinsic role;

rather, the result depends on certain collections of sets which are, of course,

determined by the random variables in question. From the discussion above,
the (unconditional) probability that X = k is evidently P (Dk) and since X

is a discrete random variable it has the representation

X(ω) =

12∑
k=2

kIk(ω),

where Ik(ω) is the indicator function of the set Dk . Thus, the unconditional

expectation of X is evidently given by

EX(ω) =

12∑
k=2

kEIk(ω) =

12∑
k=2

kP (Dk).

Now what would we want to mean by the conditional expectation E(X |
X2) ? By the previous discussion, and what we did above, we should define

the random variable

X | X2 =
12∑
k=2

{
∑
s+r=k

(s+ r)Is1(ω)Ir2(ω)},

where Iij(ω) are the indicator functions of the sets Dij , i = 1, 2, . . . , 6, j =

1, 2, defined above. Thus the probability of the event X = k | X2 = j is
given by

P (X = k | X2 = j) = EIk−j,1(ω)Ij2(ω) = P (Dk−j,1)P (Dj,2),
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and consequently

E(X | X2) =
12∑
k=2

k{
∑
s+j=k

P (Ds1)EIj2(ω)}.

Let us now examine the abstract elements of this procedure. First, note that

the discrete random variable X2 , i.e. the conditioning variable, gives rise to

the collection of sets: D2 = {Di2 : i = 1, 2, . . .6} . Moreover, note that this

is a partition of the space Ω2 , in the sense that the Di2 are disjoint and⋃6
i=1Di2 = Ω2 . Notice also that there is another partition, of Ω1 , in terms

of the collection D1 = {Di1 : i = 1, 2, . . . , 6} , and in fact that X is defined

over the space Ω = Ω1 ×Ω2 ; the σ -algebra of this space is generated by sets

of the form Di1 ×Dj2 with i, j = 1, 2, . . . , 6 ; the probability measure on this
space is simply the product (probability) measure. Thus, we can express the

random variable X as

X(ω) =

12∑
k=2

kIk(ω)

where Ik is the indicator set of Dk . Since by definition

EX =

12∑
k=2

kP (Dk)

it is natural, and it conforms to the earlier discussion, to define

E(X | X2 = j) =

12∑
k=2

kP (Dk | X2 = j).

But of course P (Dk | X2 = j) = P (Dk | Dj2) . In this context, what would

we want to mean by the notation P (Dk | X2) ? The notation alludes to the

probability to be assigned to the set Dk given or conditionally on the

variable X2 . Since the latter is a random variable, so should be the former.
Moreover, for every value assumed by the random variable X2 , say j , a

corresponding value ought to be assumed by P (Dk | X2) , viz., P (Dk | Dj2) .

This leads us to define10

P (Dk | X2) =

6∑
j=1

P (Dk | Dj2)Ij2(ω),

10To connect this with the earlier discussion of the topic note that

P (Dk | Dj2) =
P (Dk ∩Dj2)

P (Dj2)
= P (Dk−j,1 ∩Dj2)/P (Dj2).
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again it being understood that Ij2 is the indicator function of the set Dj2

and the conditional probability is defined to be zero whenever k < j + 1 .
With the help of these redefinitions of the steps we had taken earlier based on

elementary probability considerations, we can now write

E(X | X2) =

12∑
k=2

kP (Dk | X2) =

12∑
k=2

k

⎧⎨
⎩

∑
s+j=k

P (Ds−j,1)Ij2(ω)

⎫⎬
⎭ .

In addition, note that in some sense the notion of conditional expectation is

somewhat more “fundamental” than the notion of conditional probability, in

the sense that conditional probability can always be expressed as conditional

expectation. For example, given any set A , we may define its indicator set,
to be the random variable associated with it; by analogy with the standard

definition we may then set

E(A | X2) =

m∑
j=1

P (A | Dj2)Ij2(ω),

as the conditional expectation of A with respect to the random variable X2 .

In this framework, what would one want to mean by the conditional probability

of A | X2 ? Presumably one would want the random variable that rearranges
the mass assigned to A , over the constituent (elementary) sets of the partition

induced by X2 . This is simply

P (A | X2) =

6∑
j=1

P (A | Dj2)Ij2(ω).

If we take the expectation of this random variable (i.e. if we take the expec-

tation of the conditional probability) we have the standard formula for what

is known as total probability. Specifically, we have

E[P (A | X2)] =
6∑
j=1

P (A | Dj2)P (Dj2) = P (A),

and, moreover,

E[E(A | X2)] = P (A),

which exhibits the probability of an event A , as the expectation of a condi-

tional probability, as well as the expectation of a conditional expectation. We

now undertake the formal development of the subject.

Definition 8.10. Let (Ω, A, P ) be a probability space, A ∈ A and D =

{Di : i = 1, 2, . . . , n} be a finite partition of Ω (i.e., the Di are disjoint sets
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whose union is Ω) . The conditional probability of the “event” A given the

partition D is defined by

P (A | D) =
n∑
i=1

P (A | Di)Ii(ω)

where, evidently, Ii is the indicator function of Di .

Remark 8.16. It is important to realize just what the operation of condition-

ing with respect to a partition involves. It does not involve holding anything
“constant” although this notion is useful in operations involving integration.

What it does involve conceptually, however, is the rearrangement of the prob-

ability assigned to an event (or more generally a random variable) in terms

of the conditioning entity. In terms of the definition above, the event A has

probability in terms of the measure assigned to A by P , in the context of the
space Ω . Conditioning in terms of the partition D shifts attention from Ω

to D . In this new framework the probability of A is distributed over the con-

stituent parts (i.e., the sets Di of D ) and the random variable P (A | D)

takes on the value P (A | Di) , whenever ω ∈ (Di ∩ A) . Notice, further that
the expectation of this random variable yields the probability of the event A !

Specifically, since E(Ii) = P (Di) , we easily establish

E[P (A | D)] =

n∑
i=1

P (A ∩Di) = P (A).

Thus, loosely speaking, conditioning an event A in terms of a parti-

tion D means distributing the probability assigned to A over the
constituent elements (sets) of the partition. It is evident from the defi-

nition above, that the conditional probability of an event A , with respect to

a decomposition is a simple random variable which assumes a constant value

over the elements of the decomposition, this value being simply the condi-

tional probability of A given the element in question, say Di . It follows also
immediately that

P (A | Ω) = P (A),

and that if A, B are two disjoint sets, then

P (A ∪B | D) = P (A | D) + P (B | D).

Remark 8.17. It is now straightforward to apply to random variables the

notion of conditional expectation with respect to a partition. Thus, let D be
a partition as above, and let X be a discrete (simple) random variable, say

X(ω) =

m∑
j=1

xjIj(ω),
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where Ij is the indicator function of the set Bj = {ω : X(ω) = xj}, j =

1, 2, . . . ,m . Since

E(X) =

m∑
j=1

xjP (Bj),

it is natural to define the conditional expectation of X with respect to the
partition D as

E(X | D) =

m∑
j=1

xjP (Bj | D).

Notice that, as we have sought to explain above, the operation of conditioning

the expectation with respect to a partition simply involves the rearrangement

of the probability mass of the random variable X , in terms of the condition-

ing entity. Particularly, the random variable X , originally, assumes constant
values over the sets Bj and these values are xj , respectively. Its conditional

expectation with respect to D , on the other hand, redistributes (or perhaps

one should say rearranges) its probability mass over the constituent elements

of the partition, so that E(X | D) assumes constant values over the (ele-
mentary) constituent sets of D , say Di, i = 1, 2, . . . , n ; these values are,

respectively,
∑m
j=1 xjP (Bj | Di) . It should also be apparent that taking a

second expectation, over the partition, restores us to the basic notion of expec-

tation, since the expectation of the indicator functions of the elements of the

partition yields P (Di) . This discussion introduces

Definition 8.11. Let (Ω, A, P ) be a probability space, X a random variable
defined thereon and D a finite partition of Ω as above. Then, the conditional

expectation of X with respect to the partition D is given by

E(X | D) =

m∑
j=1

xjP (Bj | D) =

n∑
i=1

E(X | Di).

Finally, we formally introduce two common terms.

Definition 8.12. Let X be a (simple) random variable on the probability

space above and define the sets

Di = {ω : X(ω) = xi}.

The collection

Dx = {Di : i = 1, 2, . . . , n}

is a finite partition (or a decomposition) of the space Ω and is said to be the

decomposition (or partition) induced by the random variable X .
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Definition 8.13. Let X be a random variable as in Definition 8.11 and

suppose D is a finite partition of Ω ; we say that X is D -measurable, if and
only if D is finer than Dx , i.e. if X can be represented as

X(ω) =

r∑
j=1

zjIj(ω)

where some of the zj may be repeated, and Ij , j = 1, 2, . . . , r are the
indicator functions of the sets of D .

The following elementary properties for conditional expectations, follow

almost immediately.

Proposition 8.18. Let (Ω, A, P ) be a probability space, Xi, i = 1, 2 , be

discrete (simple) random variables, define the sets

Di1 = {ω : X1(ω) = xi1, i = 1, 2, . . . , n}

Dj2 = {ω : X2(ω) = xj2, j = 1, 2, . . . ,m},

and note that the collections, D1 = {Di1 : i = 1, 2, . . . , n} , D2 = {Dj2 : j =

1, 2, . . . ,m} are the finite partitions of Ω induced by the variables Xi, i =

1, 2 , respectively. Suppose, further, that D2 is a finer partition than D1 , in
the sense that every set in D1 can be expressed as a union of sets in D2 .

Then the following statements are true:

i. E(Xi | Xi) = Xi, i = 1, 2 ;

ii. E[E(X1 | X2)] = E(X1) ;

iii. If X3 is another simple random variable with an induced partition D3 ,
then

E(aX1 + bX2 | X3) = aE(X1 | X3) + bE(X2 | X3);

iv. If X3 is any other random variable, as in iii, i.e. with an induced

partition D3 , then, given D2 is finer than D1 ,

E[E(X3 | X2) | X1] = E(X3 | X1);

v. Let D be a decomposition of Ω , and suppose it, D , is finer than D1 ; let

X3 be another random variable as in iv., i.e. with an induced partition

D3 , then

E(X1X3 | D) = X1E(X3 | D).
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Proof: By definition E(X1 | X1) =
∑n

j=1

∑n
i=1 xi1P (Di1 | Dj1)Ij1(ω) . Since

the constituent sets of a partition are disjoint, P (Di1 | Dj1) = 0 , if i �= j and
is equal to unity if i = j . Thus, we may write

E(X1 | X1) =

n∑
i=1

xi1Ii1(ω) = X1.

The proof for X2 is entirely similar.

The proof of ii is as follows: by definition

E(X1 | X2) =

m∑
j=1

E(X1 | Dj2)Ij2(ω).

Consequently, E[E(X1 | X2)] =
∑m

j=1 E(X1 | Dj2)P (Dj2) . But

E(X1 | Dj2)P (Dj2) =

n∑
i=1

xi1P (Di1 | Dj2)P (Dj2).

Thus,
E[E(X1 | X2)] =

∑n
i=1 xi1

∑m
j=1 P (Di1 ∩Dj2)

=
∑n

i=1 xi1P (Di1) = E(X1)

which concludes the proof of ii; the result above may be looked upon as a

generalization of the formula for total probability.
The proof of iii is immediate from the definition of conditional expectation.

To prove iv we note that by definition

E[E(X3 | X2) | X1] =

n∑
s=1

E[E(X3 | X2) | Di1]Ii1(ω).

Since

E(X3 | X2) =
m∑
j=1

E(X3 | Dj2)Ij2(ω)

we conclude that

E[E(X3 | X2) | Di1] =

m∑
j=1

k∑
s=1

xs3P (Ds3 | Dj2)P (Dj2 | Di1).

Since D2 is finer than D1 , it follows that P (Dj2 ∩ Di1)/P (Dj2) is either

1, when Dj2 is one of the sets that make up Di1 , or else it is zero. Hence,
summing over those indices, j , for which Dj2 ⊂ Di1 , we may rewrite the

right member of the equation above as

k∑
s=1

xs3P (Ds3 | Di1) = E(X3 | Di1).
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Thus,

E[E(X3 | X2) | X1] =
n∑
i=1

E(X3 | Di1)Ii1(ω) = E(X3 | X1).

which proves iv, thus showing that the conditioning over the coarser partition

prevails.
The proof for v is entirely similar; thus, let Di, i = 1, 2, . . . , r , be the

elementary sets of D ; since X1 is D -measurable it has the representation

X1(ω) =

r∑
i=1

yi1Ii(ω),

where some of the yi1 may be repeated and Ii, i = 1, 2, . . . , r , are the

indicator functions of the elementary sets of D . By definition, then we have

E(X1X3 | D) =

r∑
i=1

E(X1X3 | Di)Ii(ω).

But,

E(X1X3 | Di) =
r∑

m=1

k∑
j=1

ym1xj3P (Dm ∩Dj3 | Di).

In view of the fact that the elementary sets of a partition are disjoint, we must

have

E(X1X3 | Di) = yi1

k∑
j=1

P (Dj3 | Di) = yi1E(X3 | Di).

Thus, we conclude that

E(X1X3 | D) =

r∑
i=1

yi1Ii(ω)E(X3 | Di).

On the other hand, using again the disjointness of the elementary sets of D , we

have that IiIm = 0 , if m �= i , and is equal to Ii , for i = m . Consequently,

E(X1X3 | D) =

r∑
i=1

yi1Ii(ω)

r∑
m=1

E(X3 | Dm)Im(ω),

or that E(X1X3 | D) = X2E(X3 | D) .

q.e.d.
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8.4.2 Conditional Probability in Continuous Models

In this section we shall extend the notions of conditional probability and con-

ditional expectation to continuous models; or, more precisely, we shall examine

the concepts of conditioning with respect to a σ -algebra. We begin with

Definition 8.14. Let (Ω, A, P ) be a probability space, let X be a (non-

negative extended) random variable defined thereon and let G be a σ -algebra

contained in A . The conditional expectation of X with respect to the σ -
algebra G , denoted by E(X | G) is a (nonnegative extended) random variable

such that

i. E(X | G) is G -measurable;

ii. For every set B ∈ G ∫
B

X dP =

∫
B

E(X | G) dP.

Remark 8.18. When dealing with extended random variables, the question

always arises as to when expectations exist. This is true as much in the stan-

dard case as it is in the case of conditional expectations. Thus, let X be

a random variable in the context of the definition above, except that we do
not insist that it is nonnegative. How do we know that conditional expec-

tation, as exhibited above, is well defined? Note that, since we are dealing

with nonnegative random variables, the problem is not that some expectation

(integral) is unbounded, but rather whether the definition leads to one of the

indeterminate forms, such as, e.g., ∞−∞ . This is resolved by the convention:
The conditional expectation of any random variable X , with respect to the

σ -algebra D , which is contained in A , exists if and only if

min(E(X+ | G), E(X− | G)) <∞.

It is evident that the definition of conditional expectation above is not a vac-

uous one. In particular, note that the Radon-Nikodym (RN) theorem of the

previous chapter guarantees that the conditional expectation exists. Thus,

recall that setting

Q(B) =

∫
B

X dP,

where X is a nonnegative random variable and B ∈ G , we have that Q is a

measure which is absolutely continuous with respect to P . The RN theorem

then asserts the existence of a G -measurable function, E(X | G) , unique up

to sets of P -measure zero such that

Q(B) =

∫
B

E(X | G) dP,
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which, therefore, establishes the existence of conditional expectation; its salient

properties are given below in

Proposition 8.19. Let X, Xi, i = 1, 2 , be random variables defined on

the probability space (Ω, A, P ) ; let G, Gi, i = 1, 2 be σ -(sub)algebras
contained in A , and suppose all random variables are extended and that their

expectations exist. Then the following statements11 are true:

i. If K is a constant, and X1 = K , a.c. , then E(X | G) = K ;

ii. If X1 ≤ X2 , then E(X1 | G) ≤ E(X2 | G) ;

iii. For any random variable X, | E(X | G) | ≤ E(| X | | G) ;

iv. For any scalars, ai, i = 1, 2 , such that
∑2
i=1 aiE(Xi) is defined,

E(a1X1 + a2X2 | G) = a1E(X1 | G) + a2E(X2 | G);

v. E(X | A) = X ;

vi. If G0 = (∅, Ω), E(X | G0) = E(X) ;

vii. If X is a random variable which is independent of the σ -algebra G .
Then,

E(X | G) = E(X);

viii. If Y is G -measurable, with E(| Y |) <∞ , E(| X |) <∞ , then

E(Y X | G) = Y E(X | G);

ix. If G1 ⊆ G2 , (i.e., if G2 is finer), then

E[E(X | G2) | G1] = E(X | G1);

x. G2 ⊆ G1 , (i.e., if G1 is finer), then

E[E(X | G2) | G1] = E(X | G2);

xi. E[E(X | G)] = E(X) .

Proof: To prove i we note that X = K is both A - and G -measurable since

it can be given the trivial representation X(ω) = KI(ω) , where I is the

indicator function of Ω . Hence for any set B ∈ G∫
B

X dP =

∫
B

E(X | G) dP implies KP (B) = KP (B),

11These statements are to be understood in the a.c. sense, where appropriate.
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which completes the proof of i.

To prove ii we note that, for any set A ∈ G ,

∫
A

E(X1 | G) dP =

∫
A

X1 dP ≤
∫
A

X2 dP =

∫
A

E(X2 | G) dP,

which implies that

E(X1 | G) ≤ E(X2 | G).

To see that, define

C = {ω : E(X1 | G) > E(X2 | G)}.

If P (C) = 0 , then the proof of ii is complete; if not, consider

∫
C

[E(X1 | G) − E(X2 | G)] dP,

which is unambiguously positive; this is a contradiction and, hence, P (C) = 0 ,

which proves ii.

To prove iii we note that for any random variable, X , − | X | ≤ X ≤ |
X | ; consequently, by ii we have

−E(| X || G) ≤ E(X | G) ≤ E(| X | | G),

which completes the proof of iii.

To prove iv we note that, by definition, for any set A ∈ G

a1

∫
A

X1 dP = a1

∫
A

E(X1 | G) dP

a2

∫
A

X2 dP = a2

∫
A

E(X2 | G) dP.

Summing, and using the fundamental properties of the integral, we establish
the validity of iv.

The proof of v is trivial since, evidently, X is A -measurable; consequently,

for every A ∈ A ∫
A

X dP =

∫
A

E(X | A) dP.

But this means that E(X | A) = X .

For vi we note that the integral of any measurable function over the null

set is zero and, moreover,

∫
Ω

X dP =

∫
Ω

E(X) dP.
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An argument similar to that used in connection with the proof of ii, will

then show the validity of vi.
To prove vii we note that E(X) is G -measurable, and using the funda-

mental definition of independence (which will be also be discussed in the next

section) we establish for any A ∈ G∫
A

X dP =

∫
Ω

IAX dP = E(IA)E(X) = P (A)E(X) =

∫
A

E(X) dP.

The proof of viii is as follows: clearly, Y E(X | G) is G -measurable; let

B ∈ G, Y = IB , the latter being the indicator function of B , and let A be
any set in G . Then,∫

A

Y X dP =

∫
A∩B

X dP =

∫
A∩B

E(X | G) dP =

∫
A

IBE(X | G) dP.

Hence,

E(Y X | G) = Y E(X | G)
for Y = IB , B ∈ G ; consequently, the result holds for nonnegative simple

G -measurable random variables. Thus, by the Lebesgue dominated conver-

gence theorem (Proposition 7.15 of Chap. 7), if Y is a nonnegative random
variable and {Yn : n ≥ 1, Yn ≤ Y } is a sequence of simple random variables

converging to Y , we have that

lim
n→∞E(YnX | G) = E(Y X | G), a.c.

Moreover, since E(| X |) ≤ ∞ , it follows that E(X | G) is a.c. finite.

Consequently,

lim
n→∞E(YnX | G) = lim

n→∞YnE(X | G) = Y E(X | G),

which shows the result to hold for nonnegative Y . The proof for general Y

is established by considering Y = Y + − Y − .

For the proof of ix let Z = E(X | G2) ; thus Z is a G2 -measurable random

variable, and we wish to show that

E(Z | G1) = E(X | G1).

For any B ∈ G1 , we have, by definition,∫
B

E(Z | G1) dP =

∫
B

Z dP.

Since G1 ⊆ G2, B ∈ G2 as well and, therefore, bearing in mind the definition

of Z , we find that for all sets B ∈ G1 ,∫
B

E(X | G2) dP =

∫
B

X dP =

∫
B

E(X | G1) dP.
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This, in conjunction with the preceding result shows that

E[E(X | G2) | G1] = E(Z | G1) = E(X | G1).

To prove x we must show that E(Y | G1) = E(X | G1) , where Y = E(X |
G2) . Since Y is G2 -measurable and G2 ⊆ G1 , Y is also G1 -measurable;

moreover, if B ∈ G2 , then B ∈ G1 as well. Consequently, for every B ∈ G2∫
B

E(Y | G1) dP =

∫
B

Y dP =

∫
B

E(X | G2) dP.

But this shows that

E[E(X | G2) | G1] = E(Y | G1) = E(X | G2),

which completes the proof of x.

The proof of xi is a simple consequence of vi and ix. Thus, let G1 = (∅, Ω)
and G2 = G . Then, clearly, G1 ⊆ G and, by ix,

E[E(X | G2)] = E[E(X | G2) | G1) = E(X).

q.e.d.

8.4.3 Independence

It is well established in elementary probability theory that two events are
“independent” if the probability attached to their intersection, i.e., their joint

occurrence, is the product of their individual probabilities. In the preceding

sections we have also seen another possible interpretation of independence; this

is the intuitively very appealing description that holds that if two events, say

A and B are independent, the probability attached to A is the same whether
or not we condition on the event B . Another way of expressing this concept

is that being told that event B has occurred does not convey any implication

regarding the probability of A ’s occurrence.

In this section we shall formalize these notions and apply them to the
case of random variables and families of random variables defined on suitable

probability spaces. We begin by noting that if A , B are two independent

events, i.e.

P (A | B) = P (A),

then this, in conjunction with the definition (and provided that P (B) > 0 ),

P (A | B) =
P (AB)

P (B)
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implies

P (AB) = P (A)P (B),

which is the operational characterization of independence. In the preceding,

the intersection operator (∩) was omitted; we shall follow this practice in

this section for notational simplicity, so that the notation AB will

always mean A ∩ B ; another notational simplification that will be
observed in this section is the following: if A ⊃ B , then we shall

write

A−B = A ∩ B̄.

These two operations will occur sufficiently frequently in the ensu-
ing discussion so as to make the notational conventions above quite

useful.

Definition 8.15. Let (Ω, A, P ) be a probability space and let Ci, i = 1, 2 ,

be two classes of events, contained in A . The two classes are said to be

independent classes if and only if any events Ci ∈ Ci, i = 1, 2 are independent

i.e., P (C1C2) = P (C1)P (C2) .

Definition 8.16. Let Cπ, Cλ be two classes of subsets of Ω .

i. Cπ is said to be a π -class if and only if A,B ∈ Cπ implies AB ∈ Cπ ;

ii. Cλ is said to be a λ -class if and only if

a. Ω ∈ Cλ ;

b. If Ai ∈ Cλ, i = 1, 2 and A1A2 = ∅ , then A1 ∪ A2 ∈ Cλ ;

c. If Ai ∈ Cλ, i = 1, 2 , and A1 ⊂ A2 , then A2 −A1 ∈ Cλ ;

d. If An ∈ Cλ, n ≥ 1 and An ⊂ An+1 , then limn→∞An ∈ Cλ .

A simple consequence of the definition is

Proposition 8.20. If a λ -class, C , is also a π -class, then it is a σ -algebra.

Proof: Let Ai ∈ C, i ≥ 1 , and recall that Ω ∈ C ; since the complement of

Ai , is given by Ω − Ai and this is in C , due to the fact that the latter is
a λ -class, it follows that C is closed under complementation. Next we show

that C is closed under countable unions; thus consider A1 ∪ A2 ; if the two
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sets are distinct, this union lies in C since it is a λ -class; if not distinct, write

A1 ∪ A2 = A = A1 ∪ (A2Ā1).

Since C is also a π -class, the second component of the union above is in C ;
since the two components of the union are disjoint and belong to C , their

union also belongs to C because C is a λ -class. Finally, define

Cn =

n⋃
i=1

Ai.

By the preceding discussion, Cn ⊂ Cn+1 , and Cn ∈ C ; since C is a λ -class

limn→∞ Cn ∈ C .

q.e.d.

An interesting consequence of the preceding discussion is

Proposition 8.21. If a λ -class C , contains a π -class D , then it also con-

tains σ(D) , the σ -algebra generated by D , i.e. the minimal σ -algebra

containing D .

Proof: It suffices to show that the minimal λ -class, A , containing D also

contains σ(D) . Define A1 = {A : AD ∈ A, ∀ D ∈ D} ; evidently, A contains

D and thus A1 ⊃ A , since it is a λ -class. From this argument we conclude
that for all A ∈ A and D ∈ D, AD ∈ A . Next, define A2 = {B : BA ∈
A, ∀ A ∈ A} ; clearly, A2 is a λ -class, it contains D and thus A . But this

implies that if A, B ∈ A , then AB ∈ A , so that A is a π -class, as well.

By Proposition 8.20, we conclude that A is a σ -algebra which contains D ;

consequently, it contains σ(D) .

q.e.d.

We may now use these basic concepts to characterize independence among

random variables.

Proposition 8.22. Let Gi, i = 1, 2 , be independent classes (of subsets of Ω )

and suppose further that G2 is also a π -class. Then G1 and σ(G2) are

independent.

Proof: For any A ∈ G1 , define A = {B : B ∈ σ(G2), P (AB) = P (A)P (B)}
Clearly, A ⊃ G2 ; moreover, A is a λ -class, since
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i. If B1B2 = ∅ , then

P [(B1 ∪B2)A] = P (B1A) + P (B2A)

= P (B1)P (A) + P (B2)P (A)

= [P (B1) + P (B2)]P (A) = P (B1 ∪B2)P (A);

ii. If B2 ⊃ B1 ,then B2 = B1 ∪ (B2 −B1) and the two components of the

union are disjoint; thus P (B2A) = P (B1A)+P [(B2−B1)A] ; rearranging

we have P [(B2 −B1)A] = P (B2 −B1)P (A) ;

iii. Ω ∈ A since Ω ∈ σ(G2) and P (ΩA) = P (Ω)P (A) ;

iv. If Bi ⊂ Bi+1, Bi ∈ A, i ≥ 1 , then P (BiA) = P (Bi)P (A) ,

limn→∞Bi = B ∈ σ(G) , and thus P (BA) = limn→∞ P (BiA) =

limn→∞ P (Bi)P (A) = P (B)P (A) .

This concludes the demonstration that A is a λ -class, containing the π -class

G2 ; hence by Proposition 8.21, it contains σ(G) ; but this means that if B is
any set in σ(G2) and A is any set in G1 , then P (AB) = P (A)P (B) .

q.e.d.

With these preliminaries aside we may now turn our attention to the question

of independence (of sets) of random variables. We begin with

Definition 8.17. Let T be a nonempty index set (generally the real line)
and let {Xt : t ∈ T } be a family of random variables indexed by the set T .

This family of random variables is said to be a stochastic process, if T is

continuous and a stochastic sequence if T is discrete.

The reader no doubt has an intuitive view as to what it means for a set of

random variables to be independent, or to be independent of another
set. No matter what intuitive meaning one ascribes to this concept, the latter

would not be very useful unless we can attach to it a specific operational

meaning. The question raised here is this: what does it mean, operationally

in this context, for random variables to be independent. This is answered in

Definition 8.18. Let {Xi : i = 1, 2, . . . , n} be a set of random variables

defined on the probability space (Ω, A, P ) ; they are said to be independent
(of one another), or mutually independent if and only if σ(Xi), i = 1, 2, . . . , n

are independent classes.

For stochastic processes, we have the obvious extension.
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Definition 8.19. Let {Xt : t ∈ T } be a stochastic process defined on the

probability space (Ω, A, P ) ; let Ti, i ≥ 1 be distinct subsets of the index
set T . The (stochastic) subprocesses, {Xt : t ∈ Ti}, i ≥ 1 , are said to be

independent, if and only if Ci = σ(Xt, t ∈ Ti), i ≥ 1 , are independent classes.

Proposition 8.23. Let {Xt : t ∈ T } be a family of random variables indexed

by the nonempty index set T and defined on the probability space (Ω, A, P ) ;
let Ti, i = 1, 2, be disjoint subsets of T and suppose t

(i)
j , j = 1, 2, . . . ,m

are m distinct elements of the the subsets Ti, i = 1, 2 , respectively. Define
the sets Dim = {ω : Xji ≤ xj , j = 1, 2, . . . ,m, xj ∈ R} , for all x ∈ R , and

all integers m . Define

Di = {Dim : m ≥ 1}, i = 1, 2.

If the Di , are independent classes, so are σ(Di), i = 1, 2 .

Proof: It is evident that Di, i = 1, 2 are π -classes, since if Dim and Din

are two sets in Di, i = 1, 2 , their intersection is a similar set, i.e., a set that
describes the region of the domain over which a group of variables indexed

by the set Ti assume values in certain intervals of their range, of the form

(−∞, x] . By Proposition 8.22, D1 is independent of σ(D2) ; applying Propo-

sition 8.22, again, and noting that D1 is also a π -class, we conclude that the
two σ -algebras, σ(Di), i = 1, 2, are independent.

q.e.d.

Corollary 8.6. Let {Xt : t ∈ T } be a family of random variables as in

the Proposition above; suppose, further, that the random variables are inde-
pendent, in the sense that for any indices j(i) ∈ Ti, i = 1, 2, . . . , n , and any

integer n, σ(Xj(i)) are independent classes. Let T1, T2 , be disjoint nonempty

subsets of T , then σ(D1) = σ(Xt, t ∈ T1) , and σ(D2) = σ(Xt, t ∈ T2) , are

independent classes.

Proof: Obvious, since constructing the classes of sets Di, i = 1, 2 , of the

proposition above, we conclude that they are independent classes; by Propo-
sition 8.23, so are σ(Di), i = 1, 2 ; but it is apparent from the construction of

these σ -algebras that σ(Di) = σ(Xt, t ∈ Ti), i = 1, 2, i.e., they amount to

the σ -algebras generated by the random variables indexed by the elements of

the set Ti .

q.e.d.

We have, finally, the fundamental characterization of independence of

sequences of random variables as follows:
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Proposition 8.24. Let {Xi : i = 1, 2, . . . , n} be a sequence of random

variables defined on the probability space (Ω, A, P ) ; define their (joint)
distribution function by

F(n)(x1, . . . , xn) = P (A1A2 . . . An),

and their individual (marginal) distribution functions by

Fi(xi) = P (Ai), i = 1, 2, . . . , n,

where Ai = {ω : Xi(ω) ∈ (−∞, xi]} . These random variables are

independent if and only if

F(n)(x1, . . . , xn) =

n∏
i=1

Fi(xi).

Proof: Necessity is obvious, since if Fn =
∏n
i=1 Fi , then we must have

P (A1A2 . . . An) =

n∏
i=1

P (Ai),

which shows the classes σ(Xi), i = 1, 2, . . . , n to be independent. To prove

sufficiency note that Ai ∈ σ(Xi) and note, also, that if the random variables

are independent, then the σ(Xi) are independent classes. Hence, that

P (A1A2 . . . An) =

n∏
i=1

P (Ai),

and the conclusion follows from the definition of the distribution functions.

q.e.d.

The following corollaries simply rephrase or articulate more explicitly some

of the preceding results.

Corollary 8.7. Let {Xt : t ∈ T } be a stochastic process; the random vari-

ables of the stochastic process are mutually independent if and only if for any

finite number of indices ti ∈ T, i = 1, 2, . . . , n the joint distribution of the
variables Xti , i = 1, 2, . . . , n, F(n) , is equal to the product of their marginal

distributions,
∏n
i=1 Fti .

Corollary 8.8. If {Xi : i = 1, 2, . . . , n} is a sequence of independent random

variables, and if, similarly, {Zi : i = 1, 2, . . . , n} is a sequence of independent

random variables; moreover, if Xi and Zi are identically distributed, then
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the joint distribution of the first sequence is identical to the joint distribution

of the second sequence, i.e., if F(n) and G(n) are the joint distributions of
the two sequences, respectively, then

F(n)(a1, a2, . . . , an) = G(n)(a1, a2, . . . , an).

We close this section with a definition that will play an important role

in examining questions of convergence of sequences of random variables, in

subsequent discussions.

Definition 8.20. Let {Xi : i ≥ 1} be a sequence of random variables defined

on the probability space (Ω, A, P ) ; the tail σ -algebra of this sequence is
given by

∞⋂
n=1

σ(Xi, i ≥ n),

where σ(Xi, i ≥ n) is the σ -algebra generated by the semi-algebra

Jn = σ(Xn)× σ(Xn+1)× σ(Xn+2)× . . . . . .

Proposition 8.25 (Kolmogorov Zero-One Law). Let {Xn : n ≥ 0} be a

sequence of independent random variables defined on the probability space

( Ω , A , P ); in this sequence, tail events have probability either zero or one.



Chapter 9

LLN, CLT and Ergodicity

9.1 Review and Miscellaneous Results

We recall from Chap. 8 that discussion of random variables (r.v.) takes place

in a probability space ( Ω , A , P ), where Ω is the sample space, A is the

σ -algebra and P is the probability measure.1

If X is an a.c. finite random variable,2 i.e. if P (A) = 0 for A = {ω :
X(ω) = ∞} , then

X

bn

a.c→ 0,

where bn is a sequence such that limn→∞ |bn| = ∞ .

Let {Xn: n ≥ 1} be a sequence of random variables defined on the

probability space ( Ω , A , P ) and suppose that

Sn =

n∑
i=1

Xi,
Sn
n

P or a.c.−→ 0,

then
Xn

n

P or a.c.−→ 0.

See pp. 148–150.

1Part of this chapter is an adaptation of a set of Lectures given in the Spring of

2005, at the University of Cyprus, whose purpose was stated as “The purpose of these

Lectures is to set forth, in a convenient fashion, the essential results from probability

theory necessary to understand classical econometrics.” All page references, unless

otherwise indicated, are to: Dhrymes (1989).
2The notation a.c. means almost certainly; an alternative notation is a.s. which

means almost surely. More generally, the notation, say, Xn
a.c→ X0 , or Xn

P→ X0

means that the sequence of random variables {Xn: n ≥ 1} converges to the random

variable X0 , respectively, almost certainly or in probability. These concepts will be

defined more precisely below.

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 9, © The Author 2013
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Definition 9.1. Let X be a random variable, defined on a probability space

( Ω , A , P ); the σ -algebra induced by X , say σ(X) ⊂ A , is the smallest
σ -algebra for studying X , and is defined by

σ(X) = {A: A = X−1(B), B ∈ B(R)},

where R is the real line and B(R) is the Borel σ -algebra.

Remark 9.1. The connection between random variables as used here and

random variables as usually taught in elementary statistics courses is the fol-

lowing: for each random variable, X , defined on the probability space ( Ω ,

A , P ), consider its range, R , and the σ -algebra associated with it, the

Borel σ -algebra, B(R) . Perform the identity transformation (so that X is
identified solely by the values it assumes)

X : R→ R

and deal exclusively with the values assumed by the random variable; we assign

probabilities to such sets (of values assumed by the random variable) by the

rule: if B ∈ B(R) , assign a probability to the event that X assumes a value
in B , by the rule

P (B) = P(A), A = X−1(B).

It may be shown that P (as in P (B) ) is a proper probability measure P :

B(R) → [0, 1] , and that (R,B(R), P ) is the probability space induced

by X , in the context employed in standard statistics discussions.

In this context what distinguishes one variable from another is the prob-

ability measure they induce, P . Hence, the usual statement: let X be a
random variable with distribution, G . The connection between P and G is

given by G(x) = P (B) in the case of a set B = (−∞, x] .

9.1.1 Limits of sets

Let {An : n ≥ 1} be a sequence of sets defined on some σ -algebra A . Define3

Bn =

∞⋃
i=n

Ai, Cn =

∞⋂
i=n

Ai, B∗ = lim
n→∞Bn, C∗ = lim

n→∞Cn,

and note that

Bn ⊇ An, Cn ⊆ An,

and both are monotonic (sequences) obeying Bn ⊇ Bn+1 and Cn ⊆ Cn+1 ,

respectively. This means that the B -sequence is non-increasing while the

3This is a summary of relevant results presented earlier in Chap. 8.
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C -sequence is non-decreasing. This justifies the definition of B∗, C∗ as

above since

B∗ =

∞⋂
n=1

Bn, C
∗ =

∞⋃
n=1

Cn.

The set B∗ is said to be the limit superior, and the set C∗ is said to
be the limit inferior of the sequence, and one writes

B∗ = A∗ = limsup
n→∞

An, C∗ = A∗ = liminf
n→∞ An.

Evidently, A∗ ⊇ A∗ . If A∗ = A∗ , the common value of the limit inferior

and limit superior is said to be the limit of the sequence and is denoted by

A = limn→∞ An . (pp. 8–10)

Note the notational equivalence:

A∗ =
∞⋃
n=1

∞⋂
k=n

Āk = Ā∗,

and conversely with the limit inferior, i.e. the complement of the limit inferior

of the sequence {An : n ≥ 1} is the limit superior of the sequence {Ān :

n ≥ 1} .

Remark 9.2. The intuitive meaning of the limit superior, A∗ , is that it

contains elements that belong to members of the sequence above infinitely

often, a fact that is denoted by (the notation)

A∗ = {ω : ω ∈ An, i .o.}

In connection with the preceding we have the following important result.

Proposition 9.1 (Borel-Cantelli Lemma and extension). : Let {An : n ≥ 1}
be a sequence of events defined on the probability space ( Ω , A , P ). If

∞∑
i=1

P(Ai) <∞, then P(An, i.o.) = 0.

If the events are mutually independent and

∞∑
i=1

P(Ai) = ∞, then P(An, i.o.) = 1.

As will become clear below, this result has potential applications in showing

the convergence of estimators with probability one. (See pp. 136–137)
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9.1.2 Modes of Convergence

Let {Xn : n ≥ 0} be a sequence of random variables defined on the probability

space ( Ω , A , P ), we want to define statements like: The sequence converges

to X0 . To this end define, for arbitrary integer r , the sets

An,r = {ω : |Xn(ω)−X0(ω)| ≥
1

r
}. (9.1)

Definition 9.2 (Convergence with probability one). Let {Xn : n ≥ 0} be a

sequence of random variables defined on the probability space ( Ω , A , P );

we say that the sequence {Xn : n ≥ 1} converges to X0 with probability

one, or almost surely (a.s), or almost certainly (a.c.) if and only if for
given r , denoting by A∗

r the limit superior of the sequence of sets in Eq. (9.1),

the latter obeys

P(A∗) = lim
r→∞P(A∗

r) = 0, because A∗ =

∞⋃
r=1

A∗
r , and A∗

r ⊆ A∗
r+1. (9.2)

For convenience in use we shall frequently denote this fact by

Xn
a.c. (or a.s.)→ X0,

which means that for arbitrary r the probability attached to the limit superior

A∗
r can be made arbitrarily close to zero with proper choice of r. (pp. 134–136)

9.1.3 Convergence in Probability

Definition 9.3 (Convergence in probability). Consider the sequence in Def-
inition 9.2. We say that the sequence converges in probability to X0 ,

denoted by

Xn
P→ X0,

if and only if for any r there exists a number q(r) , such that

lim
n→∞P(Anr) ≤ q(r) (9.3)

and q(r) can be made arbitrarily close to zero by making the proper

choice of r . Evidently, convergence a.c. implies convergence in probability.

(pp. 134–136)

9.1.4 Convergence in Mean of Order p, or L p

Definition 9.4 (Convergence in Mean of order p). Let {Xn : n ≥ 0} be a

sequence of random variables as in Definition 9.2 and suppose

E|Xn|p <∞, n ≥ 0, p > 0.
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The sequence converges to X0 , in mean of order p, denoted by

Xn
Lp

→ X0 (9.4)

if and only if

lim
n→∞ E|Xn −X0|p = 0.

See p. 156ff.

9.1.5 Convergence in Distribution

Definition 9.5 (Convergence in Distribution). Let {Xn : n ≥ 0} be a
sequence of random variables as in Definition 9.2 with respective cumulative

distribution functions (cdf) Fn ; it converges in distribution to a random

variable X0 if and only if

Fn
c→ F0, (9.5)

where c indicates complete convergence as follows. Let Gn, n ≥ 1 be

a sequence of non-decreasing functions; it is said to converge weakly to a

non-decreasing function G , denoted by Gn
w→ G if and only if

lim
n→∞Gn(x) = G(x), x ∈ C(G),

where C(G) is the set of continuity points of G . If, in addition

lim
n→∞Gn(±∞) = G(±∞) = lim

x→±∞G(x),

the sequence is said to converge completely, a fact that is denoted by

Gn
c→ G .

Since the cdf are non-decreasing functions, the explanation is complete,

and convergence in distribution is denoted by

Xn
d→ X0.

Remark 9.3. Note that, essentially, convergence in distribution does not

involve convergence to a random variable, even though common usage
of the term indicates that this is so. In fact convergence in distribution (or

convergence in Law as is termed in a more antique usage) indicates that the cdf

of the sequence converge completely and, thus, to a distribution function (cdf).

Since to each cdf there corresponds (non-uniquely) a random variable, (cf.: let
X be a sequence of i.i.d. random variables) what we mean by the terminology

is that the sequence converges in an equivalence class of random variables

having the distribution F . (pp. 152–153)
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9.2 Relationship Among Modes

of Convergence

Let {Xn : n ≥ 0} be a sequence of random variables defined on the probability

space ( Ω , A , P ), then4

1. Xn
a.c.→ X0 implies Xn

P→ X0,

2. Xn
P→ X0 implies Xn

d→ X0

3. Xn
Lp

→ X0 implies Xn
P→ X0,

4. Xn
P→ X0 does not imply Xn

Lp

→ X0

5. Xn
P→ X0 does not imply Xn

a.c.→ X0

6. Xn
Lp

→ X0 does not imply Xn
a.c.→ X0

7. Xn
d→ X0 does not imply Xn

P→ X0.

Remark 9.4. Even though by (7) convergence in distribution does not imply

convergence in probability for reasons given in Remark 9.3, there is one

instance where this is so. It occurs when convergence in distribution is to a con-
stant (degenerate). In this case it does imply convergence in probability

to that constant. (see pp. 165 and 262)

9.2.1 Applications of Modes of Convergence

Proposition 9.2. Let {Xn : n ≥ 0} be a sequence of random variables

defined on the probability space ( Ω , A , P ) and suppose

Xn
P→ X0.

If {Yn : n ≥ 1} is another sequence such that it converges in probability to

Y0 and, if Y0, X0 are equivalent in the sense that they differ only on a set
of P -measure zero, then

|Xn − Yn| P→ 0. (9.6)

See pp. 151–152.

4The implication in item (3) is easily established using Proposition 8.12, Chap. 8,

(Generalized Chebyshev Inequality) as follows: define Yn = |Xn−X0|p and note that

the Y-sequence consists of non-negative integrable rvs obeying EYn = sn , such that

sn converges to zero with n .
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Proposition 9.3. Let {Xn, Yn : n ≥ 0} be sequences of random variables

defined on the probability space ( Ω , A , P ) and suppose

Yn
d→ Y0, |Xn − Yn| P→ 0.

Then
Xn

d→ Y0. (9.7)

See pp. 161–162.

Proposition 9.4. Let {Xn : n ≥ 0} be a sequence of random variables
defined on the probability space ( Ω , A , P ), and let

φ : R → R

be a B(R)−measurable function whose discontinuities are contained in a

set D of P -measure zero. Then, provided φ(X0) is well defined, the following

is true:

i. Xn
P→ X0 implies φ(Xn)

P→ φ(X0) ;

ii. Xn
a.c.→ X0 implies φ(Xn)

a.c.→ φ(X0) ;

iii. Xn
d→ X0 implies φ(Xn)

d→ φ(X0) .

See pp. 144–145, pp. 147–148, pp. 242–243.

A more useful form of item iii is as follows:

Proposition 9.5. For the sequence of Proposition 9.4, let P0 be the

distribution of X0 and define the transformed sequence

Yn = φ(Xn), n ≥ 0.

Then
Yn

d→ φ(X0), whose distribution is P0 ◦ φ−1. (9.8)

Proof: We show explicitly the form of the converged distribution of the Y -

sequence. Let Pn and P ∗
n be, respectively, the distributions induced by the

elements of the X− and Y− sequences, and C an arbitrary set in B(R) .
If we can determine the value of P ∗

n(C) , for arbitrary C ∈ B(R) , we will

have defined the distribution function of Yn . But Yn ∈ C if and only if
Xn ∈ B = φ−1(C) ; now Xn ∈ B with probability Pn(B) . Thus,

P ∗
n(C) = Pn(B) = Pn[φ

−1(C)] = Pn ◦ φ−1(C),
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where Pn◦φ−1 is the composition of Pn and φ−1 . Since C is an arbitrary

set in B(R) , it follows
P ∗
n = Pn ◦ φ−1,

and consequently

Pn
w→ P0, implies P ∗

n
w→ P0 ◦ φ−1,

where the notation
w→ denotes weak convergence of measures which is

roughly comparable, in this context, to complete convergence of cumulative

distribution functions explained above. Note, in addition, that

P0 ◦ φ−1 is the distribution of Y0 = φ(X0).

An interesting by-product of this is the following very useful result.

Proposition 9.6. Let An, an be a suitable random matrix and vector, respec-

tively, converging in probability to A, a , and let ξn be a sequence of

random vectors converging in distribution to ξ0 , then

ζn = Anξn + an
d→ Aξ0 + a. (9.9)

See pp. 242–244.

9.3 Laws of Large Numbers and Central

Limit Theorems

Let {Xn : n ≥ 1} be a sequence of random variables defined on the probability

space ( Ω , A , P ) and define

Sn =

n∑
i=1

Xi, Qn =
Sn − an
bn

,

where bn > 0 , for all n , limn→∞ bn = ∞ , and it, as well as the sequence

an , are taken to be non-random. Both Laws of Large Numbers (LLN) and

Central Limit Theorems (CLT) describe properties of the sequence Qn as

n→ ∞ .

Definition 9.6 (Weak Law of Large Numbers (WLLN)). If Qn
P→ 0 we say

that the sequence obeys the WLLN.

Definition 9.7 (Strong Law of Large Numbers (SLLN)). If Qn
a.c.→ 0 , we say

that the sequence obeys the SLLN.
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Definition 9.8 (Central Limit Theorem (CLT)). If Qn
d→ ξ and ξ is a

member of a well defined equivalence class of random variables, we say that

the sequence obeys a CLT.

9.3.1 Criteria for Applicability, LLN

Let {Xn : n ≥ 1} be a sequence of random variables defined on the probability

space ( Ω , A , P ) and suppose the elements of the sequence are independent,
identically distributed (i.i.d. or iid) with mean μ (actually we need E|X1| <
∞ , but existence of variance is not required). Taking

an = nμ, bn = n;

it can be shown that

Qn =
1

n

n∑
i=1

(Xi − μ)
a.c.→ 0,

and hence that it converges to zero in probability as well, so that it obeys both

the WLLN and the SLLN. (See pp. 188–190)

For independent, not identically distributed random variables with finite

variance we have Kolmogorov’s criterion for a SLLN. Taking

Qn =
1

bn

n∑
i=1

(Xi − E(Xn))

it can be shown that Qn
a.c.→ 0 , provided

∞∑
n=1

(
var(Xn)

b2n

)
<∞.

Thus, for bn = n , a sufficient condition for

Qn =
1

n

n∑
i=1

(Xi − E(Xn))
a.c.→ 0

is that
∞∑
n=1

(
var(Xn)

n2

)
<∞.

Evidently this is satisfied when var(Xn) is (uniformly) bounded, or more

generally when var(Xn) ∼ cnα , for α ∈ [0, 1) . (See pp. 186–188)
If the sequence above is merely a sequence of uncorrelated random

variables with variance var(Xn) ≤ cnα , and α ∈ [0, 12 ) , then

Qn =
1

n

(
n∑
i=1

[Xi − E(Xi)]

)
a.c.→ 0

See pp. 191–193.
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9.3.2 Criteria for Applicability, CLT

Let {Xn : n ≥ 1} be a sequence of random variables defined on the probability

space ( Ω , A , P ) and suppose they are independent identically distributed

(iid) with mean μ and variance σ2 , then

Qn =

∑n
i=1(Xi − μ)√

n

d→ X ∼ N(0, σ2).

This is the most basic Central Limit Theorem.

See p. 264.

For the sequence above suppose that it is only one of independent, not
identically distributed random variables, with mean μn and variance σnn ,

we have the following: put

zn =
Sn
σn
, Sn =

n∑
i=1

(Xi − μi), σ2
n =

n∑
i=1

σii, Xin =
Xi − μi
σn

,

and note that

zn =

n∑
i=1

Xin, var(Xin) =
σii
σ2
n

= σ2
in.

If we denote the cdf of the Xi by Fi and the cdf of Xin by Fin we note

that the mean of the last distribution is zero and its variance σ2
in which

converges to zero with (the sample size) n . Moreover, define the Lindeberg

condition by

lim
n→∞Wn = 0, Wn =

n∑
i=1

∫
|ξ|> 1

r

ξ2dFin(ξ), (9.10)

for arbitrary integer r . The Lindeberg central limit theorem (CLT) then

states

Proposition 9.7 (Lindeberg CLT). Under the conditions above

zn
d→ ζ ∼ N(0, 1).

To see, roughly speaking, what the Lindeberg condition means, revert to

the original variables and, for simplicity, assume the sequence has zero means.
In this case the Lindeberg condition becomes

Wn =
1

σ2
n

n∑
i=1

∫
|ξ|> σn

r

ξ2dFi(ξ),

which says that as the sample increases the sum of the tails of the variance

integral becomes negligible in comparison to the total variance.
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Another way of displaying the Lindeberg CLT and the Lindeberg condition

is to redefine Xin from

Xin =
Xi − μi
σn

to Xin =
Xi − μi√

n
,

and put z∗n = Sn√
n
. This means that z∗n is given by

z∗n =
Sn
σn

σn√
n
= zn

σn√
n
,

so that

z∗n
d→ ζσ ∼ N(0, σ2), σ2 = lim

n→∞
σ2
n

n
,

provided the latter exists, i.e. σ2 <∞ . (See pp. 271–274)

When moments higher than the second are known to exist, it is possible

to employ another condition for convergence; this is embodied in the CLT due

to Liapounov.

Proposition 9.8 (Liapounov CLT). Let {Xn : n ≥ 1} be a sequence of

independent non-identically distributed rvs defined on the probability space
( Ω , A , P ), obeying E(Xn) = μn, |μn| <∞ , E(Xn − μn)

2 = σ2
nn <∞ ,5

and for some constant δ > 0 , E | Yn − μn |2+δ= ρ2+δnn <∞ . Define, now,

zn =
Sn
σn
, Sn =

n∑
i=1

(Xi − μi), σ2
n =

n∑
i=1

σii, Xin =
Xi − μi
σn

,

and in addition,

ρ2+δn =

n∑
i=1

ρ2+δin , ρ2+δin = E | Xin |2+δ .

Suppose further that σ2
n diverges to +∞ with n . A sufficient condition for

zn
d→ z ∼ N(0, 1)

is that

lim
n→∞

ρ2+δn

σ2+δ
n

= 0.

See pp. 275–276.

5Strictly speaking, this and the preceding are implied by the following condition,

which states that the sequence of rvs in question possesses finite (2 + δ) th moments,

for arbitrary δ > 0 . Moreover this last requirement implies the Lindeberg condition.
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Martingale Difference (MD) Central Limit Theorem

First, we define what martingales and martingale differences are.

Definition 9.9. Let {Xn : n ≥ 1} be a sequence of random variables defined

on the probability space ( Ω , A , P ) and consider the sequence of (sub) σ -

algebras, An−1 ⊆ An, n ∈ N , where N is a subset of the integers in

(−∞,∞) . The sequence {An : n ∈ N} is said to be a stochastic basis or

a filtration. If, in the sequence above, Xn is An -measurable, the sequence
of pairs {(Xn,An) : n ∈ N} is said to be a stochastic sequence. If, in

addition, E|Xn| <∞ , the sequence is said to be

i. A martingale if E(Xn+1|An) = Xn ;

ii. A sub-martingale if E(Xn+1|An) ≥ Xn ;

iii. A super-martingale if E(Xn+1|An) ≤ Xn ;

iv. A martingale difference if E(Xn+1|An) = 0 .

In the above, the notation |An means conditioning on the (sub) σ -algebra in
question, or the random variables generating them.

Proposition 9.9 (Martingale Difference CLT). In the notation of the previous

theorem, let {Xin : i ≤ n} be defined as

Xin =
Xi − EXi√

n
,

and suppose that, for each n , {(Xin,Ain) : i ≤ n} is a martingale difference

sequence satisfying the Lindeberg condition, i.e.6

plim
n→ ∞

Wn = 0, Wn =

n∑
i=1

E[X2
inI(|Xin| ≥

1

r
)|Ai−1,n],

where Ai−1,n is an element of the modified filtration induced by the sequence
Xin . The following statements are true

i. If
∑n
i=1 E(X2

in|Ai−1,n)
P→ σ2 , then zn =

∑n
i=1X

2
in

d→ ζ ∼ N(0, σ2) ;

ii. If
∑n
i=1X

2
in

P→ σ2 , then zn
d→ ζ ∼ N(0, σ2) .

See pp. 323–337.

6The function I in the equation below is the indicator function, which assumes the

value 1, if |Xin| ≥ 1
r

and the value zero otherwise.
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The reader may have noticed that we have given CLT only for scalar ran-

dom variables and may have wondered why we did not provide such results for
sequences of random vectors. In fact, such results may be subsumed under

the discussion of scalar CLT as the following will make clear. First we note

that the characteristic function (with parameter s ) of a normal variable

Y with mean μ and variance σ2 is given by

φ(s) = EeisY = eisμ−
1
2 s

2σ2

;

if Y is a normal random vector with mean vector μ and covariance matrix

Σ > 0 , its characteristic function, with parameter t , is given by

φ(t) = Eeit
′Y = eit

′μ− 1
2 t

′Σt.

We now have

Proposition 9.10. Let X be a random vector, i.e.

X : Ω → Rm, EX = μ, Cov(X) = Σ > 0 .

If for arbitrary conformable vector λ

λ′X ∼ N(λ′μ, λ′Σλ),

then

X ∼ N(μ,Σ).

Proof: For y(λ) = λ′X , with arbitrary conformable λ , y(λ) is, by the

premise of the proposition, normal with mean λ′μ and variance λ′Σλ . Its

characteristic function, with parameter s , is therefore given by

φ(s) = eisλ
′μ− 1

2 s
2λ′Σλ.

But taking t = sλ , we find

φ(s) = φ(t) = Eeit
′X = eit

′μ− 1
2 t

′Σt,

which is recognized as the characteristic function (with parameter t ) of a

multivariate normal with mean vector μ and covariance matrix Σ , which

was to be proved.

Remark 9.5. The relevance of this to CLT is the following: if XT is a

zero mean (vector) sequence such that for arbitrary λ , λ′XT converges in
distribution to a normal variable with mean zero and variance λ′Σλ , then

XT
d→ X ∼ N(0,Σ). (9.11)
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9.4 Ergodicity and Applications

9.4.1 Preliminaries

Had we not dealt with time series models, the preceding would have been

sufficient to deal with the estimation, properties of estimators and their limit-

ing distribution in the context of the standard models dealt with in classical

econometrics.
To see why this is so we note that the random variables (rvs) dealt with

in time series models are far more complex that the error terms’ probabilistic

specification typically found in classical econometrics. In time series, we spec-

ify the structure and the white noise process that define them; the properties
of the rvs are then to be derived from these specifications. For example in

AR(n), we obtain its MA(∞) representation as

X(t) =

∞∑
j=0

ψjut−j, u ∼WN(0, σ2), (9.12)

with u sometimes iid(0, σ2) . This is a far more complicated entity that the

usual iid or uncorrelated specification (with mean zero and variance σ2 ) we
encounter in the general linear model or panel data models or even in the

GLSEM so long as it is not dynamic.

Thus, in Eq. (9.12) we need to prove what the mean and variance are,

we cannot specify them arbitrarily. We should also determine whether
the time series is weakly or strongly stationary. For clarity we state these

results as a proposition.

Proposition 9.11. Consider the (causal) AR(n) sequence discussed above,

whose MA(∞) representation appears in Eq. (9.12), with absolute conver-

gence, i.e.
∞∑
j=0

|ψj | <∞.

The following statements are true:

i. The sequence has mean zero;

ii. The sequence has constant variance;

iii. The sequence is weakly stationary.

Proof: For causal AR we require the roots of the characteristic polynomial

(corresponding to the lag operator that defines the AR) be greater than one

in absolute value, which enables the inversion of the polynomial lag operator.
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In turn this enables the inversion of lag operators of the form I − λL , with

|λ| < 1 , which is guaranteed since the latter is the inverse of one of the
roots of the characteristic polynomial; this was dealt with extensively in

the chapter on difference equations. But absolute convergence in Eq. (9.12),

viz. that the series obeys
∞∑
j=0

|ψj | <∞,

is also ensured by the causal property of the AR because all the parameters

|λ|j converge to zero with j, and thus the series obeys the Cauchy criterion
for convergence. This in turn guarantees that

∞∑
j=0

|ψj |2 <∞.

To prove i, note that

|EX(t)| ≤
∞∑
j=0

|ψj |E|ut−j | =
∞∑
j=0

|ψj |m <∞. (9.13)

This is so because E|ut−j | = Eu+t−j + Eu−t−j = m and Eut−j = Eu+t−j −
Eu−t−j = 0 ; thus the expectations Eu+t−j , Eu

−
t−j are well defined. Moreover,

for sufficiently large N , |X(t) −
∑N
j=0 ψjut−j | < δ , for any pre-assigned

δ > 0 ; since EXN (t) = 0 , where XN(t) =
∑N
j=0 ψjut−j , it follows that

EX(t) = 0 .
To prove ii,

var(X(t)) = EX2(t) =

∞∑
j=0

∞∑
s=0

ψjψsEut−jut−s = σ2
∞∑
j=0

ψ2
j <∞. (9.14)

To prove iii, note that

c(t+ h, t) = EX(t+ h)X(t) =

∞∑
j=0

∞∑
s=0

ψjψsEut+h−jut−s

= σ2
∞∑
j=0

ψj−hψj = c(−h).

If in the penultimate member of the equation above we made the association
j = s+ h , we would have obtained c(h) , for the last member. Consequently

we obtain

c(t+ h, t) = c(|h|), (9.15)
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which shows the existence of the auto-variance function as well as weak sta-

tionarity for a causal AR. Incidentally this would be true whether the
u-sequence obeys

u ∼WN(0, σ2), or u ∼ iid(0, σ2),

and also note that in the second case the time series is strictly stationary
as well!

q.e.d.

In Chap. 6 (Proposition 6.1) we established that the auto-covariance func-

tion of a weakly stationary time series is at least a positive semi-definite

matrix. An interesting by product is the following result.

Proposition 9.12. A real function defined on the integers is the auto-

covariance function of a stationary time series if and only if it is even and

non-negative definite (positive semi-definite).
For a proof see Theorem 1.5.1, p. 27 in Brockwell and Davis (1991),

In that proof it is shown that there exists a strictly stationary Gaussian

time series with that auto-covariance function.

A casual reading of this result may lead the reader to conclude that the
causal AR discussed in Proposition 9.11, is also strictly stationary and

Gaussian because its auto-covariance function is even ( c(h) = c(−h) ) and
positive semi-definite. Unfortunately this is not true; Proposition 9.12 only

asserts the existence of a strictly stationary Gaussian time series with the auto-

covariance function exhibited in Proposition 9.11, but this is not necessarily
the causal AR which gave rise to that specific auto-covariance function.

9.4.2 Ergodicity

It would appear reasonable that we should be able to estimate such parameters

through observations on the AR sequence. The problem is that, for a time

series sequence

{X(t) : t ∈ T, T a linear index set},

a realization is a series of observations {xt : xt = X(ωt, t), t = 1, 2, . . . , N} ,
where we have inserted the understood argument ω since X(t) is a measur-
able function from Ω → R . What this means is that we have one observation

per rv and, without additional conditions we cannot assert that

1

N

N∑
t=1

xt converges in probability to EX(t). (9.16)
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It is at this stage that ergodic theory becomes relevant. In the following

discussion we shall explain what ergodicity or the ergodic property means and
provide the tools to determine that not only the usual mean function but also

the auto-covariance function estimated from realizations converge

to the corresponding parameters not only in probability (WLLN)

but with probability one (SLLN) as well.7 The discussion of the concept

of ergodicity, its relevant results and its potential applications begins with the
definition of measure preserving transformations, MPT.

Definition 9.10. Let ( Ω , A , P ) be a probability space; the mapping (or
transformation)

T : Ω → Ω,

is said to be measure preserving if for A ∈ A , T −1(A) ∈ A , i.e. it is
A -measurable, and P (T −1(A)) = P (A) .

Lemma 9.1. If T is the transformation in Definition 9.10, minus the measure
preserving property, and if T is viewed as a point transformation, i.e. for

ω ∈ Ω, T −1ω ∈ Ω , and if, in addition, it is one-to-one and onto, i.e.

invertible, then T is a MPT.

Proof: Let A be an arbitrary set in A , and let ω ∈ A be arbitrary; then

T ω ∈ B = T −1A , where B ∈ A . Thus, given any ω ∈ A , there exists a

unique T ω ∈ B , and vice-versa. Thus, P (A) = P (T A) , which shows T to
be a MPT.

Definition 9.11. In the context of Definition 9.10 a set A ∈ A , is said to be
invariant under T if T A = A .

Definition 9.12. In the context of Definition 9.10 a A−measurable function

f is said to be invariant, if f(ω) = f(T ω) .

Definition 9.13. In the context of Definition 9.11 the transformation T is

said to be ergodic if the only T -invariant sets in A have measure zero or one.

Definition 9.14. In the context of Definition 9.10, the orbit of a point ω ∈ Ω ,

under T is the sequence

{ω, T ω, T 2ω, T 3ω, . . .}.
7This discussion owes a great deal to Billingsley (1995), Shiryayev (1984), and Stout

(1974) which contain a very lucid description of the concepts and issues involved in

ergodicity, including the role played by Kolmogorov’s extension theorem we discussed

in Chap. 8 (Proposition 8.6), and Kolmogorov’s Zero-One Law, Proposition 8.25.
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We are now in a position to state the ergodic and ergodic related theorems

that will enable us to deal with the properties of parameter estimators such
as the mean and the auto-covariance or auto-correlation functions of causal

time series.

Proposition 9.13 (Ergodic theorem). Let ( Ω , A , P ) be a probability space

and consider the MPT

T : Ω → Ω,

and the A -measurable and integrable function f . Then

lim
N→∞

1

N

N∑
k=1

f(T k−1(ω)) = f̂(ω) (9.17)

exists with probability 1, is invariant and integrable with Ef̂(ω) = f(ω) .

Moreover, if T is ergodic, f̂ = f with probability 1.

Proof: See Billingsley (1995, pp. 317–319) and Shiryayev (1984, pp. 379–385).

Another important result that has a direct bearing in the discussion of such

issues in the context of time series is

Proposition 9.14. Let {X(t): t ≥ 1} be stationary (and) ergodic, and φ

a measurable function

φ: R∞ → (R, B(R)), and define Y (t) = φ(X(t), X(t+ 1), X(t+ 2), . . .).

Then {Y (t): t ≥ 1} is stationary (and) ergodic.

For a proof and relevant discussion, see Stout (1974, pp. 182–185).

Strictly speaking Proposition 9.14, as stated, is not directly applicable to
causal auto-regressions because there we need to have φ and Y (t) defined,

at least, as

Y (t) = φ(X(t), X(t− 1), X(t− 2), . . .), t ≥ 1,

in other words we need to deal with doubly infinite series. Since this is not a

book on mathematics we shall not attempt an extension. Instead, we present
an alternative result which corrects this deficiency.

Proposition 9.15. Let X be a stationary and ergodic (sequence); in particu-

lar if the Xn (Xn: n = 0,±1, . . . ) are independent and identically distributed,

(and if φ is measurable and time invariant) define the sequence

Yn = φ(. . . , Xn−1, Xn, Xn+1, . . .), (n = 0,±1,±2,±3, . . .). (9.18)
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Then the sequence Yn (as above) is stationary and ergodic.

For a discussion and proof of this result see Billingsley (1995, pp. 494–496).
The expressions in parentheses are editorial comments inserted only for clarity

and conformity with this author’s notation and style.

Remark 9.6. While in the discussion above we have developed the tools

to handle issues related to ergodicity, there is an important aspect of the

convergence of ergodic series (i.e. estimators) that needs to be made clear.

The methods of proof employed do not allow us to determine rates of

convergence.

Remark 9.7. To properly employ the tools provided by the ergodic results
above, it is useful to have a general conception of what ergodicity means beyond

the formal mathematical definitions we provided. One view, interpreting the

orbit of a point ω ∈ Ω of Definition 9.14, is to think of it as passing, (over

time) through nearly all sets of its σ -algebra (or at least the sub- σ -algebra

σ(X) generated by the elements of the sequence X ); thus when operating
with realizations over time we can capture moment related properties of the

sequence {X(t): t ∈ T } over the entire space; this may not be strictly accurate

but it conveys the meaning and essence of the limit theorems.

Another useful view is to think of the individual components, X(t) , as rvs
operating within a given probabilistic structure; thus a realization at “time” t is

one of infinite possible outcomes that may have been generated by the random

variable in question. Ergodicity in this context means, roughly speaking, that

the probability structure remains constant over “time”. Notice that this hints

at “identical” distributions but not necessarily independence.

Remark 9.8. In some widely circulating textbooks on advanced econometrics,
it is alleged that ergodicity means dealing essentially with nearly independent

sequences or, substantially, the independence between elements of the sequence

{X(t), X(s), t, s,∈ T } provided the indices are sufficiently far apart, i.e. that

|t − s| is sufficiently large.8 This is actually a confusion between two

concepts, mixing and ergodicity. Mixing, in the context of this discussion,
and particularly in the context of an MPT, T , means, for any two sets A,B

in the σ -algebra of the probability space ( Ω , A , P )

lim
n→∞P (A ∩ T −nB) = P (A)P (B); (9.19)

8This is a property referred to under certain circumstances as mixing.
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on the other hand T is ergodic if and only if9

lim
n→∞

1

n

n−1∑
k=1

P (A ∩ T −kB) = P (A)P (B), (9.20)

for any two sets A,B as in Eq. (9.19).
It is evident that the condition in Eq. (9.19) implies (is stronger than) the

condition in Eq. (9.20), so that mixing implies ergodicity, ergodicity does

not imply mixing.

9.4.3 Applications

Example 9.1. Consider the scalar (causal) AR(n)

X(t) =

n∑
j=1

φjX(t− j) + εt, (9.21)

where the sequence εt is one of iid(0, σ2) rvs and thus stationary and ergodic.

Since the AR(n) of Eq. (9.21) is causal, its M(∞) representation is

X(t) =
∞∑
i=0

ψiεt−i = ψ(εs, s ≤ t), (9.22)

and the function ψ is both measurable and time invariant. Because of
causality the right member of Eq. (9.22) converges absolutely and thus, by

Proposition 9.15, the sequence {X(t): t ∈ T } is stationary and ergodic.

Example 9.2. Consider now a realization of the sequence in Example 9.1,

{xk: k = 1, 2, 3, . . .N} , and the mean realization function

μ̂N =
1

N

N∑
k=1

xk. (9.23)

The right member of Eq. (9.23) is measurable and integrable and its limit exists
with probability 1, and moreover

lim
N→∞

μ̂N = lim
N→∞

Eμ̂N = 0,

with probability 1 by Proposition 9.14, or Proposition 9.15.

9See Billingsley (1995), p. 325, who also gives a counterexample of an ergodic

sequence which is not mixing.
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Example 9.3. In the context of Example 9.2, consider the realization auto-

covariance function (elements)

ĉN (h) =
1

N

N∑
k=1

xk+hxk, (9.24)

with the proviso that if for some index there is no corresponding observa-
tion that term is omitted from the sum. The function in the right member

of Eq. (9.24) is both measurable and integrable; thus its limit exists with

probability 1, by Proposition 9.13, and moreover

lim
N→∞

ĉN (h) = σ2
∞∑
j=0

ψ2
j ,

with probability 1 by Proposition 9.14 or Proposition 9.15. In a similar way we

can show that the estimators of (the elements of) the auto-correlation function

converge to their corresponding parameters with probability 1.

Example 9.4. Consider, in the usual (econometric regression) context, the

model

yt = λyt−1 + ut, |λ| < 1, where ut, t = 1, 2, 3, . . . , T, (9.25)

is iid and defined on the probability space ( Ω , A , P ). The OLS estimator

of λ is given by

λ̂ =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

= λ+

∑T
t=2 utyt−1∑T
t=2 y

2
t−1

.

Put

âT =

∑T
t=2 y

2
t−1

T
, and note that10 âT

P→ σ2

(1− λ2)
.

Therefore we can write

√
T (λ̂− λ) ∼ 1− λ2

σ2

T∑
t=2

XtT , XtT =
yt−1ut√

T
.

Now define the (sub) σ -algebras AtT = σ(XsT : s ≤ t) ⊆ At+1,T , and note

that XtT is AtT -measurable. In addition,

E(XtT |At−1,T ) =
1√
T
yt−1Eut = 0, EX2

tT |At−1,T =
1

T
y2t−1Eu

2
t =

1

T
y2t−1σ

2,

10Actually if we wished we could invoke the earlier discussion on ergodicity to

argue that the convergence is actually with probability one, which of course implies

convergence in probability.
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so that {XtT } is a martingale difference (MD) sequence (by vi of

Definition 9.9) and {At,T } is a stochastic basis (also by Definition 9.9).
Moreover,

T∑
t=2

EX2
tT |At−1,T =

1

T

T∑
t=2

y2t−1σ
2 P→ σ4

1− λ2
,

and the sequence obeys a Lindeberg condition. Consequently, by i of

Proposition 9.9 √
T (λ̂− λ)

d→ ζ ∼ N(0, 1− λ2).

Example 9.5. The previous example dealt with a rather simple case, that of

a scalar AR(1). Here we shall deal with a more complex case that of a vector

(r-element) AR(m). First some notation. Let

{xt·: xt· = (xt1, xt2, . . . , xtr), t = 1, 2, 3, . . .N}

be a realization of length N of the (causal) r -element vector AR(m) time
series sequence indexed on a linear index set. Define the (realization) matrices,

X=(xt·), t=m+1,m+2, . . . , N, X−i=(xt−i·), t=m+1−i,m+2−i, . . . , N−i,
(9.26)

and the r× r parameter matrices Ai , i = 1, 2, 3, . . . , m, so that the system

of observations can be represented as

X =
m∑
i=1

X−iAi + U, U = (ut·), t = m+ 1,m+ 2, . . . , N, (9.27)

where ut· is a realization of an r -element iid(0,Σ) sequence with Σ > 0 .

Using the results of Chap. 4 to vectorize, we can represent Eq. (9.27) as

x = (Ir ⊗X∗)vec(A) + vec(U) = (Ir ⊗X∗)a+ u, where

x = vec(X), X∗ = (X−1, X−2, . . . , X−m),

a = vec(A), A = (A′
1, A

′
2, A

′
3, . . . , A

′
m)′, u = vec(U). (9.28)

Thus, the unknown parameters of the model, contained in the vector a , can

be estimated by OLS methods as

â = (Ir ⊗X∗′X∗)−1(Ir ⊗X∗′)x = a+ (Ir ⊗X∗′X∗)−1(Ir ⊗X∗′)u. (9.29)

By the discussion of ergodicity above(
Ir ⊗X∗′X∗

N

)
a.c.→ Ir ⊗K, (9.30)
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where K is the block Toeplitz matrix (see Chap. 4)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K(0) K(1) K(2) . . . . . . K(m− 1)

K(1)′ K(0) K(1) . . . . . . K(m− 2)

K(2)′ K(1)′ K(0) . . . . . . K(m− 3)
...

...
...

...
...

...
...

...
...

...
...

...

K(m− 1)′ K(m− 2)′ K(m− 3)′ . . . . . . K(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

X ′
−iX−j
N

a.c.→ K(i− j), K(j − i) = K ′(i− j), i, j = 1, 2, 3, . . . ,m. (9.31)

Using Proposition 9.6 above we can, equivalently, deal with the problem of

finding the limiting distribution of

√
N(â− a) = (Ir ⊗K−1)

1√
N

(Ir ⊗X∗′)u, where

(Ir ⊗X∗′)u = vec(X∗′U),

X∗′U =

N∑
t=m+1

x∗′t·ut·. (9.32)

We shall now show that the sequence above is a MD and thus apply the MD

central limit theorem of Proposition 9.9, as we did in the simpler discussion

above. To this end note that

x∗′t· = (xt−1·, xt−2·, xt−3·, . . . , xt−m·)′, ut· = (ut1, ut2, ut3, . . . , utr). (9.33)

Thus, for the first summand of Eq. (9.32) we obtain

(xm·, xm−1·, xm−2·, . . . , x1·)′um+1·.

Now, if we construct the sub- σ -algebra

Am = σ(us· : s ≤ m),

the entities of the first summand obey

E[(xm·, xm−1·, xm−2·, . . . , x1·)′um+1·|Am] = 0, (9.34)

because the first factor is Am -measurable and thus independent of

um+1· .
Similarly, if we look at the second summand of Eq. (9.32) we obtain

(xm+1·, xm·, xm−1·, . . . , x2·)′um+2·,
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whose first factor is Am+1 -measurable and thus independent of um+2· . Con-
sequently the expectation of the second summand is zero and so on. Thus the
sequence

ζt = x∗′t·ut·, t = m+ 1,m+ 2,m+ 3, . . . (9.35)

is a martingale difference sequence (MD sequence) which obeys i of Proposi-

tion 9.9 as well as the Lindeberg condition noted therein; the latter is true

because of the causal property of the autoregression, which makes all parame-
ters involved in the MA(∞) representation of the elements of the realization,

less that one in absolute value. In addition

N∑
t=m+1

1

N

(
E(Ir ⊗ x∗′t·u

′
t·ut·Ir ⊗ xt·|At−1)

)
= Σ⊗ X∗′

X∗

N

a.c.→ Σ⊗K, (9.36)

and the first absolute moment exists. Thus, applying Proposition 9.9 we

conclude,
√
N(â− a)

d→ N(0,Σ⊗K−1). (9.37)



Chapter 10

The General Linear Model

10.1 Introduction

In this chapter, we examine the General Linear Model (GLM), an impor-

tant topic for econometrics and statistics, as well as other disciplines. The

term general refers to the fact that there are no restrictions in the number of

explanatory variables we may consider, the term linear refers to the manner
in which the parameters enter the model. It does not refer to the

form of the variables. This is often termed in the literature the regres-

sion model, and analysis of empirical results obtained from such models as

regression analysis.
This is perhaps the most commonly used research approach by empiri-

cally oriented economists. We examine both its foundations, but also how the

mathematical tools developed in earlier chapters are utilized in determining

the properties of the parameter estimators1 that it produces.

The basic model is

yt =

n∑
i=0

xtiβi + ut, (10.1)

where yt is an observation at “time” t on the phenomenon to be “explained”

by the analysis; the xti, i = 0, 1, 2, . . . , n are observations on variables that

the investigator asserts are important in explaining the behavior of the phe-
nomenon in question; βi, i = 0, 1, 2, . . . n are parameters i.e. they are fixed

but unknown constants that modify the influence of the x ’s on y . In the

language of econometrics, y is termed the dependent variable, while the

x ’s are termed the independent or explanatory variables; in the language
of statistics, they are often referred to, respectively, as the regressand and

the regressors. The u ’s simply acknowledge that the enumerated variables

1The term estimator recurs very frequently in econometrics; just to fix its meaning

in this chapter and others we define it as: an estimator is a function of the data only

( x′s and y′s ), say h(y,X) that does not include unknown parameters.

P.J. Dhrymes, Mathematics for Econometrics,
DOI 10.1007/978-1-4614-8145-4 10, © The Author 2013
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do not provide an exhaustive explanation for the behavior of the dependent

variable; in the language of econometrics, they are typically referred to as the
error term or the structural errors. The model stated in Eq. (10.1) is thus

the data generating function for the data to be analysed. Contrary to the

time series approach to data analysis, econometrics nearly always deals within

a reactive context in which the behavior of the dependent variable is condi-

tioned by what occurs in the economic environment beyond itself and its past
history.

One generally has a set of observations (sample) over T periods, and the

problem is to obtain estimators and carry out inference procedures (such as

tests of significance, construction of confidence intervals, and the like) relative
to the unknown parameters. Such procedures operate in a certain environment.

Before we set forth the assumptions defining this environment, we need to

establish some notation. Thus, collecting the explanatory variable observations

in the T × n+ 1 matrix

X = (xti), i = 0, 1, 2, . . . , n, t = 1, 2, 3, . . . , T, (10.2)

and further defining

β = (β0, β1, . . . , βn)
′
, y = (y1, y2, . . . , yT )

′
, u = (u1, u2, . . . , uT )

′
, (10.3)

the observations on the model may be written in the compact form

y = Xβ + u. (10.4)

10.2 The GLM and the Least Squares

Estimator

The assumptions that define the context of this discussion are the following:

i. The elements of the matrix X are nonstochastic and its columns are

linearly independent. Moreover,

lim
T→∞

X
′
X

T
=Mxx > 0 i.e. it is a positive definite matrix.

Often, the explanatory variables may be considered random, but inde-

pendent of the structural errors of the model. In such cases the
regression analysis is carried out conditionally on the x ’s.

ii. The errors, ut, are independent, identically distributed (iid) random

variables with mean zero and variance 0 < σ2 <∞.
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iii. In order to obtain a distribution theory, one often adds the assumption

that the errors have the normal joint distribution with mean vector zero
and covariance matrix σ2IT , or more succinctly one writes

u ∼ N(0, σ2IT ); (10.5)

with increases in the size of the samples (data) available to econometri-

cians over time, this assumption is not frequently employed in current

applications, relying instead on central limit theorems (CLT) to provide
the distribution theory required for inference.

The least squares estimator is obtained by the operation

min
β

(y −Xβ)
′
(y −Xβ),

which yields

β̂ = (X
′
X)−1X

′
y. (10.6)

The first question that arises is: how do we know that the inverse exists? Thus,

how do we know that the estimator of β is uniquely defined? We answer that

in the following proposition.

Proposition 10.1. If X obeys condition i, X
′
X is positive definite, and

thus invertible.

Proof: Since the columns of X are linearly independent, the only vector α

such that Xα = 0 is the zero vector—see Proposition 2.61. Thus, for α �= 0,
consider

α
′
X

′
Xα = γ

′
γ =

n+1∑
j=0

γ2j > 0, γ = Xα. (10.7)

Hence, X
′
X is positive definite and thus invertible—see Proposition 2.62.

The model also contains another unknown parameter, namely the common

variance of the errors σ2. Although the least squares procedure does not

provide a particular way in which such a parameter is to be estimated, it
seems intuitively reasonable that we should do so through the residual vector

û = y −Xβ̂ = [IT −X(X
′
X)−1X

′
]u = Nu. (10.8)

First, we note that N is a symmetric idempotent matrix—for a defini-

tion of symmetric matrices, see Definition 2.4; for a definition of idempotent
matrices, see Definition 2.8. It appears intuitively reasonable to think of û

of Eq. (10.8) as an “estimator” of the unobservable error vector u; thus it is

also natural that we should define an estimator of σ2, based on the sum of

squares û
′
û. We return to this topic in the next section.
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10.3 Properties of the Estimators

The properties of the least squares, termed in econometrics the OLS (ordinary

least squares), estimator are given below.

Proposition 10.2 (Gauss-Markov Theorem). In the context set up by the

three conditions noted above, the OLS estimator of Eq. (10.6) is

i. Unbiased,

ii. Efficient within the class of linear unbiased estimators.

Proof: Substituting from Eq. (10.4), we find

β̂ = β + (X
′
X)−1X

′
u, (10.9)

and taking expectations, we establish, in view of conditions i and ii,

Eβ̂ = β + E(X
′
X)−1X

′
u = β. (10.10)

To prove efficiency, let β̃ be any other linear (in y ) unbiased estimator. In

view of linearity, we may write

β̃ = Hy, where H depends on X only and not on y. (10.11)

Without loss of generality, we may write

H = (X
′
X)−1X

′
+ C. (10.12)

Note further that since β̃ = Hy is an unbiased estimator of β, we have

HXβ = β, which implies HX = In+1, or, equivalently, CX = 0. (10.13)

It follows then immediately that

Cov(β̃) = σ2(X
′
X)−1 + σ2CC

′
or, equivalently, (10.14)

Cov(β̃)− Cov(β̂) = σ2CC
′ ≥ 0. (10.15)

That the rightmost member of the equation is valid may be shown as follows:
If β̃ is not trivially identical to the OLS estimator β̂, the matrix C is of

rank greater than zero. Let this rank be r. Thus, there exists at least one

(non-null) vector α such that C′α �= 0. Consequently, α
′
CC

′
α > 0, which

demonstrates the validity of the claim.

q.e.d.
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Corollary 10.1. The OLS estimator of β is also consistent2 in the sense that

β̂T
a.c.−→ β,

provided |xt·x
′
t·| < B uniformly.

Proof: From Sect. 9.3.1 use Kolmogorov’s criterion with bn = T . Then

∣∣∣∣∣
T∑
t=1

var(x′t·ut)
t2

∣∣∣∣∣ ≤ Bσ2
T∑
t=1

1

t2
,

which evidently converges. Hence β̂
a.c.−→ β , as claimed. If one does not wish

to impose the uniform boundedness condition there are similar weaker con-

ditions that allow the proof of convergence with probability 1. Alternatively,
one may not add any further conditions on the explanatory variables, and

prove convergence in quadratic mean, see Definition 9.4. With p = 2 . This

entails showing unbiasedness, already shown, and asymptotic vanishing of the

estimator’s variance. Thus, by Proposition 10.2 and condition ii,

lim
T→∞

E(β̂ − β)(β̂ − β)
′
= σ2 lim

T→∞
1

T

(
X

′
X

T

)−1

= 0. (10.16)

q.e.d.

We now examine the properties of the estimator for σ2, hinted at the end of

the preceding section.

Proposition 10.3. Consider the sum of squares û
′
û; its expectation is

given by
Eû

′
û = (T − n− 1)σ2. (10.17)

Proof: Expanding the representation of the sum of squared residuals we find
û

′
û = u

′
Nu. Hence

Eu
′
Nu = Etru

′
Nu = EtrNuu

′
= trNEuu

′
= σ2trN. (10.18)

The first equality follows since u
′
Nu is a scalar; the second follows since for

all suitable matrices trAB = trBA—see Proposition 2.16; the third equality

2The term consistent generally means that as the sample, T , tends to infinity the

estimator converges to the parameter it seeks to estimate. Since the early development

of econometrics it meant almost exclusively convergence in probability. This is the

meaning we shall use in this and other chapters, i.e. an estimator is consistent for

the parameter it seeks to estimate if it converges to it in any fashion that implies

convergence in probability.
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follows from the fact that X, and hence N, is a nonstochastic matrix; the last

equality follows from condition ii that defines the context of this discussion.
Thus, we need only find the trace of N. Since tr(A + B) = trA + trB—see

Proposition 2.16—we conclude that

trN = trIT − trX(X
′
X)−1X

′
= T − tr(X

′
X)−1X

′
X

= T − trIn+1 = T − n− 1. (10.19)

q.e.d.

Corollary 10.2. The unbiased OLS estimator for σ2 is given by

σ̂2 =
û

′
û

T − n− 1
. (10.20)

Proof: Evident from Proposition 10.3.

10.4 Distribution of OLS Estimators

10.4.1 A Digression on the Multivariate Normal

We begin this section by stating a few facts regarding the multivariate normal

distribution. A random variable (vector) x having the multivariate normal
distribution with mean (vector) μ and covariance matrix Σ is denoted by

x ∼ N(μ,Σ), (10.21)

to be read x has the multivariate normal distribution with mean vector μ

and covariance matrix Σ > 0 .

Its moment generating function is given by

Mx(t) = Eet
′
x = et

′
μ+ 1

2 t
′
Σt. (10.22)

Generally, we deal with situations where Σ > 0, so that there are no linear

dependencies among the elements of the vector x, which result in the singular-

ity of the covariance matrix. We handle singular covariance matrix situations
through the following convention.

Convention 10.1. Let the k -element vector ξ obey ξ ∼ N(μ,Σ), such that

Σ > 0, and suppose that y is an n -element vector ( k ≤ n ) which has the

representation

y = Aξ + b, rank(A) = k. (10.23)
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Then, we say that y has the distribution

y ∼ N(ν,Ψ), ν = Aμ+ b, Ψ = AΣA
′
. (10.24)

Note that in Eq. (10.24), Ψ is singular, but properties of y can be inferred
from those of ξ which has a proper multivariate normal distribution. Cer-

tain properties of the (multivariate) normal that are easily derivable from its

definition are:

i. Let x ∼ N(μ,Σ), partition x =

(
x(1)

x(2)

)
, such that x(1) has s elements

and x(2) has k − s elements. Partition μ and Σ conformably so that

μ =

(
μ(1)

μ(2)

)
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (10.25)

Then, the marginal distribution of x(i), i = 1, 2, obeys

x(i) ∼ N(μ(i),Σii), i = 1, 2. (10.26)

The conditional distribution of x(1) given x(2) is given by

x(1)|x(2) ∼ N(μ(1) +Σ12Σ
−1
22 (x

(2) − μ(2)), Σ11 − Σ12Σ
−1
22 Σ21). (10.27)

ii. Let the k -element random vector x obey x ∼ N(μ,Σ), Σ > 0, and

define y = Bx+ c, where B is any conformable matrix; then

y ∼ N(Bμ+ c, BΣB
′
). (10.28)

iii. Let x ∼ N(μ,Σ) and partition as in part i; x(1) and x(2) are mutually
independent if and only if

Σ12 = Σ
′
21 = 0. (10.29)

iv. We also have the sort of converse of ii, i.e. if x is as in ii, there exists a

matrix C such that

y = C−1(x− μ) ∼ N(0, Ik). (10.30)

The proof of this is quite simple; by Proposition 2.15 there exist a nonsin-

gular matrix C such that Σ = CC′ ; by ii, y ∼ N(0, C−1ΣC′−1 = Ik) .

v. An implication of iv is that

(x− μ)′Σ−1(x− μ) = y′y =
k∑
i=1

y2i ∼ χ2
r, (10.31)

because the yi are iid N(0, 1) whose squares have the χ2 distribution.

More about this distribution will be found immediately below.



316 CHAPTER 10. THE GENERAL LINEAR MODEL

In item iii, note that if joint normality is not assumed and we partition

x =

(
x(1)

x(2)

)
, such that x(1) has s elements and x(2) has k − s elements,

as above, then under the condition in iii, x(1) and x(2) are still uncor-
related, but they are not necessarily independent. Under normality

uncorrelatedness implies independence; under any distribution independence

always implies uncorrelatedness.

Other distributions, important in the GLM context are the chi-square, the t -

(sometimes also termed the Student t ) and the F -distributions.

The chi-square distribution with r degrees of freedom, denoted by χ2
r, may

be thought to be the distribution of the sum of squares of r mutually

independent normal variables with mean zero and variance one; the

t -distribution with r degrees of freedom, denoted by tr, is defined as the

distribution of the ratio

tr =
ξ√
ζ/r

, ξ ∼ N(0, 1), ζ ∼ χ2
r, (10.32)

with ξ and ζ mutually independent.

The F -distribution with m and n degrees of freedom, denoted by Fm,n,

is defined as the distribution of the ratio

Fm,n =
ξ/m

ζ/n
, ξ ∼ χ2

m, ζ ∼ χ2
n, (10.33)

with ξ and ζ mutually independent.
Note that Fm,n �= Fn,m. The precise relation between the two is given by

Fm,n = 1/Fn,m.

10.4.2 Application to OLS Estimators

We now present a very important result.

Proposition 10.4. The OLS estimators β̂ and σ̂2 are mutually independent.

Proof: Consider the T + n + 1 -element vector, say φ = (β̂
′
, û

′
)
′
. From the

preceding discussion, we have the representation

φ = Au+

(
β

0

)
, where A =

[
(X

′
X)−1X

′

N

]
. (10.34)

From our discussion of the multivariate normal, we conclude

φ ∼ N(ν,Ψ), where ν =

(
β
0

)
, Ψ = σ2AA

′
. (10.35)
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But

AA
′
=

[
(X

′
X)−1 0

0 N

]
, (10.36)

which shows that β̂ and û are uncorrelated and hence, by the properties of

the multivariate normal, they aremutually independent. Since σ̂2 depends

only on û and thus not on β̂, the conclusion of the proposition is evident.

q.e.d.

Corollary 10.3. Denote the vector of coefficients of the bona fide variables
by β∗ and the coefficient of the “fictitious variable” one ( xt0 ) by β0 (the

constant term), so that we have

β = (β0, β
′
∗)

′
, β∗ = (β1, β2, . . . , βn)

′
, X = (e,X1), (10.37)

where e is a T -element column vector all of whose elements are unities. The

following statements are true:

i. û ∼ N(0, σ2N);

ii. β̂ ∼ N(β, σ2(X
′
X)−1);

iii. β̂∗ ∼ N(β∗, σ2(X∗′
1 X

∗
1 )

−1), X∗
1 = (IT − ee

′
/T )X1.

Proof: The first two statements follow immediately from Proposition 10.3 and
property i of the multivariate normal. The statement in iii also follows imme-

diately from property i of the multivariate normal and the properties of the

inverse of partitioned matrices; however, we also give an alternative proof

because we will need a certain result in later discussion.

The first order conditions of the OLS estimator read

Tβ0 + e
′
X1β∗ = e

′
y, X

′
1eβ0 +X

′
1X1β∗ = X

′
1y.

Solving by substitution, we obtain, from the first equation,

β̂0 = ȳ − x̄1β̂∗, ȳ =
e
′
y

T
, x̄1 =

X
′
1e

T
, (10.38)

and from the second equation

β̂∗ =

[
X

′
1

(
IT − ee

′

T

)
X1

]−1 [
X

′
1

(
IT − ee

′

T

)
y

]
; (10.39)

substituting for y = eβ0 +X1β∗ + u, and noting that (IT − ee
′
/T )e = 0, we

find equivalently

β̂∗ = β∗ + (X∗
1X

∗
1 )

−1X∗′
1 u. (10.40)
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The validity of statement iii then follows immediately from Property ii of the

multivariate normal.

q.e.d.

Remark 10.1. The results given above ensure that tests of significance or

other inference procedures may be carried out, even when the variance param-

eter, σ2, is not known. As an example, consider the coefficient of correlation

of multiple regression

R2 = 1− û
′
û

(y − eȳ)′(y − eȳ)
=

(y − eȳ)
′
(y − eȳ)− û

′
û

(y − eȳ)′(y − eȳ)
.

To clarify the role of matrix algebra in easily establishing the desired result,

use the first order condition and the proof of Corollary 10.3 to establish

y − eȳ= û+

(
IT − ee

′

T

)
X1β̂∗

(y − eȳ)
′
(y − eȳ)− û

′
û= β̂

′
∗X

′
1

(
IT − ee

′

T

)
X1β̂∗, and

R2

1−R2
=
β̂

′
∗X

′
1

(
IT − ee

′

T

)
X1β̂∗

û′ û
.

It follows therefore that

(
R2

1−R2

)
T − n− 1

n
=

(
β̂

′
∗X

∗′
1 X

∗
1 β̂∗/σ

2

û′ û/σ2

)
T − n− 1

n
. (10.41)

The relevance of this result in carrying out “significance tests” is as follows:

first, note that since β̂∗ ∼ N(β∗, σ2(X∗′
1 X

∗
1 )

−1) the numerator and denomi-

nator of the fraction are mutually independent by Proposition 10.3. From
Proposition 2.15, we have that every positive definite matrix has a nonsingular

decomposition, say AA
′
. Let

(X∗′
1 X

∗
1 )

−1 = AA
′
. (10.42)

It follows from property ii of the multivariate normal that

ξ =
A−1(β̂∗ − β∗)√

σ2
∼ N(0, In). (10.43)



10.4. DISTRIBUTION OF OLS ESTIMATORS 319

This implies that all of the elements of the vector ξ are scalars, mutually inde-

pendent (normal) random variables with mean zero and variance one. Hence,
by the preceding discussion,

ξ
′
ξ =

(β̂
′
∗ − β∗)X∗′

1 X
∗
1 (β̂∗ − β∗)

σ2
∼ χ2

n. (10.44)

Similarly, û
′
û = u

′
Nu and N is a symmetric idempotent matrix of rank

T − n− 1. As a symmetric and idempotent matrix, it has the representation

N = QΛQ
′

Λ =

[
IT−n−1 0

0 0n+1

]
, (10.45)

where Q is an orthogonal matrix. To verify that, see Propositions 2.53
and 2.55.

Partition the matrix of characteristic vectors Q = (Q1, Q2), so that Q1

corresponds to the nonzero (unit) roots and note that

u
′
Nu

σ2
=
u

′
Q1Q

′
1u

σ2
. (10.46)

Put ζ = Q
′
1u/

√
σ2 and note that by property ii of the multivariate normal

ζ ∼ N(0, Q
′
1(Q1Q

′
1)Q1) = N(0, IT−n−1). (10.47)

It follows, therefore, by the definition of the chi-square distribution

u
′
Nu

σ2
∼ χ2

T−n−1. (10.48)

Now, under the null hypothesis,

H0 : β∗ = 0

as against the alternative,

H1 : β∗ �= 0,

the numerator of the fraction (R2/n)/[(1−R2)/T − n− 1] is chi-square dis-

tributed with n degrees of freedom. Hence, Eq. (10.41) may be used as a
test statistic for the test of the hypothesis stated above, and its distribution

is Fn,T−n−1.

Remark 10.2. The preceding remark enunciates a result that is much broader

than appears at first sight. Let Sr be an n × r, r ≤ n, selection matrix;
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this means that the columns of Sr are mutually orthogonal and in each

column all elements are zero except one which is unity. This makes Sr of
rank r. Note also that it is orthogonal only in the sense that S

′
rSr = Ir; on

the other hand SrS
′
r �= In. It is clear that if we are interested in testing the

hypothesis, say, that β2 = β3 = β7 = β12 = 0, we may define the selection

matrix S4 such that

S
′
4β∗ = (β2, β3, β7, β12)

′
. (10.49)

Since S
′
4β̂∗ ∼ N(S

′
4β∗, σ

2Ψ4), where

Ψ4 = S
′
4(X

∗′
1 X

∗
1 )

−1S4, (10.50)

it follows, from the discussion of Remark 10.1 and property i of the multivariate

normal distribution, that(
β̂

′
∗S4Ψ

−1
4 S

′
4β̂∗

û′ û

)(
T − n− 1

4

)
∼ F4,T−n−1 (10.51)

is a suitable test statistic for testing the null hypothesis

H0 : S
′
4β∗ = 0,

as against the alternative,

H1 : S
′
4β∗ �= 0,

and its distribution is F4,T−n−1.

Finally, for r = 1—i.e. for the problem of testing a hypothesis on a single
coefficient—we note that the preceding discussion implies that the appropriate

test statistic and its distribution are given by

τ2 =
β̂2
i /Var(β̂)i

û′ û/σ2(T − n− 1)
∼ F1,T−n−1, (10.52)

where var( β̂i ) = σ2qii , and qii is the i th diagonal element of (X∗′
1 X

∗
1 )

−1.

Making the substitution σ̂2 = û
′
û/T − n − 1 and taking the square root in

Eq. (10.52) we find

τ =
β̂i√
σ̂2qii

∼
√
F1,T−n−1, (10.53)

A close inspection indicates that τ of Eq. (10.53) is simply the usual t -ratio

of regression analysis. Finally, also observe that

tT−n−1 =
√
F1,T−n−1, (10.54)

or more generally the distribution of the square root of a variable that has

the F1,n distribution is precisely the tn distribution.
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10.5 Nonstandard Errors

In this section, we take up issues that arise when the error terms do not obey

the standard requirement u ∼ N(0, σ2IT ), but instead have the more general

normal distribution
u ∼ N(0,Σ), Σ > 0. (10.55)

Since Σ is T ×T, we cannot in practice obtain efficient estimators unless Σ
is known. If it is, obtain the nonsingular decomposition and the transformed

model, respectively,

Σ = AA
′
, w = Zβ + v, w = A−1y, Z = A−1X, v = A−1u. (10.56)

It may be verified that the transformed model obeys the standard conditions,

and hence the OLS estimator

β̂ = (Z
′
Z)−1Z

′
w, with β̂ ∼ N(β, (Z

′
Z)−1) = N(β, (X ′Σ−1X)−1)

(10.57)

obeys the Gauss-Markov theorem and is thus efficient, within the class of linear
unbiased estimators of β.

If Σ is not known the estimator in Eq. (10.57), termed in econometrics

the Aitken estimator, is not available. However, (as T → ∞ ), if Σ has

only a fixed finite number of distinct elements which can be estimated

consistently, say by Σ̃ , the estimator in Eq. (10.57) with Σ replaced by
Σ̃ , is feasible and is termed the Generalized Least Squares (GLS)

estimator.

If we estimate β by OLS methods, what are the properties of that estima-

tor and how does it compare with the Aitken estimator? The OLS estimator
evidently obeys

β̃ = (X
′
X)−1X

′
y = β + (X

′
X)−1X

′
u. (10.58)

From property ii of the multivariate normal, we easily obtain

β̃ ∼ N(β,Ψ), (10.59)

where Ψ = (X
′
X)−1X

′
ΣX(X

′
X)−1. It is evident that the estimator is

unbiased. Moreover, provided

lim
T→∞

X
′
ΣX

T 2
= 0, (10.60)

we have

lim
T→∞

Ψ = lim
T→∞

1

T

(
X

′
X

T

)−1 (
X

′
ΣX

T

)(
X

′
X

T

)
= 0, (10.61)
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which shows that the estimator is consistent in the mean square sense i.e. it

converges to β in mean square and thus also in probability.
How does it compare with the Aitken estimator? To make the comparison,

first express the Aitken estimator in the original notation, Thus,

β̂ = (X
′
Σ−1X)−1X

′
Σ−1y, β̂ ∼ N(β, (X

′
Σ−1X)−1). (10.62)

Because both estimators are normal with the same mean, the question of effi-

ciency reduces to whether the difference between the two covariance matrices

is positive or negative semi-definite or indefinite. For simplicity of notation

let Σβ̃ , Σβ̂ be the covariance matrices of the OLS and Aitken estimators,
respectively. If

i. Σβ̃ − Σβ̂ ≥ 0, the Aitken estimator is efficient relative to the OLS
estimator;

ii. Σβ̃ − Σβ̂ ≤ 0, the OLS estimator is efficient relative to the Aitken

estimator;

iii. Finally if Σβ̃−Σβ̂ is an indefinite matrix i.e. it is neither positive nor

negative (semi)definite, the two estimators cannot be ranked.

To tackle this issue directly, we consider the simultaneous decomposition of

two positive definite matrices; see Proposition 2.64.

Consider the characteristic roots of X(X
′
Σ−1X)−1X

′
in the metric of

Σ i.e. consider the characteristic equation

|λΣ−X(X
′
Σ−1X)−1X

′ | = 0. (10.63)

The (characteristic) roots of the (polynomial) equation above are exactly those

of
|λIT −X(X

′
Σ−1X)−1X

′
Σ−1| = 0, (10.64)

as the reader may easily verify by factoring out on the right Σ, and noting

that |Σ| �= 0. From Proposition 2.43, we have that the nonzero characteristic
roots of Eq. (10.64) are exactly those of

|μIn+1 − (X
′
Σ−1X)−1X

′
Σ−1X | = |μIn+1 − In+1| = 0. (10.65)

We conclude, therefore, that Eq. (10.63) has n+ 1 unit roots and T − n− 1

zero roots. By the simultaneous decomposition theorem, see Proposition 2.64,

there exists a nonsingular matrix A such that

Σ = AA
′
, X(X

′
Σ−1X)−1X

′
= A

[
0T−n−1 0

0 In+1

]
A

′
. (10.66)
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It follows, therefore, that

Σ−X(X
′
Σ−1X)−1X

′
= A

[
IT−n−1 0

0 0n+1

]
A

′
≥ 0. (10.67)

Pre- and post-multiplying by (X
′
X)−1X

′
and its transpose, respectively, we

find

(X
′
X)−1X

′
[Σ−X(X

′
Σ−1X)−1X

′
]X(X

′
X)−1 = Σβ̃ − Σβ̂ ≥ 0, (10.68)

which shows that the Aitken estimator is efficient relative to the OLS esti-

mator. The validity of the last inequality is established by the following

argument: let B be a T × T positive semidefinite matrix of rank r, and

let C be T × m of rank m, m ≤ T ; then, C
′
BC ≥ 0. For a proof, we

show that either C
′
BC = 0, or there exists at least one vector α �= 0, such

that α
′
C

′
BCα > 0 and no vector η such that η

′
C

′
BCη < 0. Since C is of

rank m > 0, its column space is of dimension m; if the column space of C

is contained in the null space of B, C
′
BC = 0; if not, then there exists

at least one vector γ �= 0 in the column space of C such that γ
′
Bγ > 0,

because B is positive semidefinite. Let α be such that γ = Cα; the

claim of the last inequality in Eq. (10.68) is thus valid. Moreover, no vector η

can exist such that η
′
C

′
BCη < 0. This is so because Cη is in the column

space of C and B is positive semidefinite.

Remark 10.3. We should also point out that there is an indirect proof of the

relative inefficiency of the OLS estimator of β in the model above. We argued
earlier that the Aitken estimator in a model with nonstandard errors is simply

the OLS estimator in an appropriately transformed model and thus obeys the

Gauss-Markov theorem. It follows, therefore, that the OLS estimator in the

untransformed model cannot possibly obey the Gauss-Markov theorem and

is thus not efficient.
We now take up another question of practical significance. If in the face of a

general covariance matrix, Σ > 0, for the errors of a GLM we estimate param-

eters and their covariance matrix as if the model had a scalar covariance

matrix, do the resulting test statistics have a tendency (on the average) to
reject too frequently, or not frequently enough, relative to the situation when

the correct covariance matrix is estimated.

If we pretend that Σ = σ2IT , the covariance matrix of the OLS estimator

of β is estimated as

σ̃2(X
′
X)−1, where σ̃2 =

1

T − n− 1
ũ

′
ũ. (10.69)

The question posed essentially asks whether the matrix

W = Eσ̃2(X
′
X)−1 − (X

′
X)−1(X

′
ΣX)(X

′
X)−1 (10.70)
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is positive semidefinite, negative semidefinite or indefinite. If it is positive

semidefinite, the test statistics ( t -ratios) will be understated and hence the
hypotheses in question will tend to be accepted too frequently; if it is neg-

ative semi-definite, the test statistics will tend to be overstated, and hence

the hypotheses in question will tend to be rejected too frequently. If it is

indefinite, no such statements can be made.

First we obtain

Eσ̃2 =
1

T − n− 1
Etruu

′
N =

1

T − n− 1
trΣN = kT . (10.71)

To determine the nature of W we need to put more structure in place. Because

Σ is a positive definite symmetric matrix, we can write

Σ = QΛQ
′
, (10.72)

where Q is the orthogonal matrix of the characteristic vectors and Λ is the

diagonal matrix of the (positive) characteristic roots arranged in decreasing
order, i.e. λ1 is the largest root and λT is the smallest.

What we shall do is to show that there exist data matrices (X ) such

that W is positive semidefinite, and data matrices such that W is negative

semidefinite. To determine the nature of W we must obtain a result that holds

for arbitrary data matrix X . Establishing the validity of the preceding claim
is equivalent to establishing that W is an indefinite matrix.

Evidently, the columns of Q can serve as a basis for the Euclidean space

RT ; the columns of the matrix X lie in an (n+ 1) -dimensional subspace of

RT . Partition Q = (Q1, Q∗) such that Q1 corresponds to the n+ 1 largest
roots and suppose we may represent X = Q1A, where A is nonsingular.

This merely states that X lies in the subspace of RT spanned by the

columns of Q1. In this context, we have a simpler expression for kT of

Eq. (10.71). In particular, we have

(T − n− 1)kT = trQΛQ
′
[IT −Q1A(A

′
A)−1A

′
Q

′
1]

= trΛ[IT − (In+1, 0)
′
(In+1, 0)] =

T∑
j=n+2

λj , (10.73)

so that kT is the average of the smallest T−n−1 roots. Since X
′
X = A

′
A ,

we obtain

W = kT (A
′
A)−1 −A−1Q

′
1ΣQ1A

′−1 = A−1[kT In+1 − Λ1]A
′−1. (10.74)

Because kT is the average of the T−n−1 smallest roots whereas Λ1 contains

the n+1 largest roots, we conclude that kT In+1−Λ1 < 0, and consequently

W < 0. (10.75)
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But this means that the test statistics have a tendency to be larger relative to

the case where we employ the correct covariance matrix; thus, hypotheses (that
the underlying parameter is zero) would tend to be acceptedmore frequently

than appropriate.

Next, suppose that X lies in the (n + 1) -dimensional subspace of RT

spanned by the columns of Q2, where Q = (Q∗, Q2), so that Q2 corresponds

to the n+ 1 smallest roots. Repeating the same construction as above we
find that in this instance

(T − n− 1)kT = trQΛQ
′
[IT −Q2A(A

′
A)−1A

′
Q

′
2]

= trΛ[IT − (0, In+1)
′
(0, In+1)] =

T−n−1∑
j=1

λj , (10.76)

so that kT is the average of the largest T − n− 1 roots. Therefore, in this

case, we have

W = kT (A
′
A)−1 −A−1Q

′
2ΣQ2A

′−1 = A−1[kT In+1 − Λ2]A
′−1 > 0, (10.77)

since kT is the average of the T − n − 1 largest roots and Λ2 contains

along its diagonal the n+ 1 smallest roots of Σ.
Evidently, in this case, the test statistics are smaller than appropriate

and, consequently, we tend to reject hypotheses more frequently than

appropriate. The preceding shows that the matrix W is indefinite.

Finally, the argument given above is admissible because no restrictions
are put on the matrix X ; since it is arbitrary it can, in principle, lie in an

(n + 1) -dimensional subspace of RT spanned by any set of n + 1 of

the characteristic vectors of Σ. Therefore, we must classify the matrix

W as indefinite, when X is viewed as arbitrary. It need not be so for any

particular matrix X. But this means that no statement can be made with
confidence on the subject of whether using σ̃2(X

′
X)−1 as the covariance

matrix of the OLS estimator leads to any systematic bias in accepting or

rejecting hypotheses. Thus, nothing can be concluded beyond the fact that

using the OLS estimator, and OLS based estimators of its covariance matrix,
(when actually the covariance matrix of the structural error in non-scalar) is

inappropriate, unreliable, and should be avoided for purposes of hypothesis

testing.

10.6 Inference with Asymptotics

In this section we dispose of the somewhat unrealistic assertion that the struc-

tural errors are jointly normally distributed. Recall that we had made this
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assertion only in order to develop a distribution theory to be used in inferences

regarding the parameters of the model.
Here we take advantage of the material developed in Chap. 9, to develop a

distribution theory for the OLS estimators based on their asymptotic or

limiting distribution. To this end return to the OLS estimator as exhibited

in Eq. (10.6). Nothing much will change relative to the results we obtained

above, but the resultswill not hold for every sample size T , but only for
“large” T , although it is not entirely clear what large is. Strictly speaking,

limiting or asymptotic results hold precisely only at the limit, i.e.

as T → ∞ ; but if the sample is large enough the distribution of the

entity in question could be well approximated by the asymptotic or
limiting distribution. We may, if we wish, continue with the context of OLS

estimation embodied in condition i above, or we may take the position that the

explanatory variables are random and all analysis is carried conditionally on

the observations in the data matrix X ; in this case we replace the condition

therein by plimT→∞(XX/T ) = Mxx > 0 . We shall generally operate under
the last condition. At any rate developing the expression in Eq. (10.6) we find

β̂=(X
′
X)−1X

′
y=β+(X ′X)−1X ′u, or

√
T (β̂−β)=

(
X ′X
T

)−1 (
X ′u√
T

)
.

(10.78)

Applying Proposition 9.6, we find3

√
T (β̂ − β) ∼M−1

xx

1√
T

T∑
t=1

x′t·ut. (10.79)

The sum in the right member above is the sum of independent non-

identically distributed random vectors with mean zero and covariance matrix

σ2(x
′
t·xt·/T ) , to which a CLT may be applied. Since in all our discussion of

CLT we have used only scalar random variables, ostensibly none of these
results can be employed in the current (vector) context. On the other hand

using the observation in Remark 9.4 let λ be an arbitrary conformable

vector and consider

ζT =
1√
T

T∑
t=1

λ′x′t·ut. (10.80)

The rvs λ′x′t·ut , are independent non-identically distributed with mean zero

and variance σ2λ′(x
′
t·xt·/T )λ , which also obey the Lindeberg condition,

3In the context of Eq. (10.79) the notation ∼ is to be read “behaves like”.
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because of the conditions put on X ′X/T . Consequently by Proposition 9.7

we conclude

ζT
d−→ N(0, σ2λ′Mxxλ), and by Remark 9.4

1√
T

T∑
t=1

x′t·ut
d−→ N(0, σ2Mxx),

thus establishing √
T (β̂ − β)

d−→ N(0, σ2M−1
xx ). (10.81)

For large T practitioners often use the approximation

√
T (β̂ − β) ≈ N(0, σ̃2M̃−1

xx ), M̃−1
xx =

(
XX

T

)−1

, σ̃2 = û′û/T.

To translate the procedures for inference tests developed earlier (where we had

normal distributions for every sample size, T ) to the asymptotic case (where

normality holds only for large T ) we shall not follow step by step what we

had done earlier. Instead we shall introduce the so called general linear

hypothesis,

H0: Aβ = a0
as against the alternative

H1: Aβ �= a0 ,

where A is k×n+1, k ≤ n+1 , rank(A) = k , and A, a0 are respectively

a matrix and vector with known elements.

Remark 10.4. Note that the formulation above, encompasses all the types of

inference tests considered in the earlier context. For example, if we wish to test
the hypothesis that βi = a(0),i = 0 simply take a0 = 0 and A as consisting of

a single row, all of whose elements are zero save the one corresponding to βi ,

which is unity. If we wish to test the hypothesis that β2 = β3 = β7 = β10 = 0 ,

simply take a0 = 0 , and A consisting of four rows, all of whose elements are

zero except, respectively, those corresponding to βi, i = 2, 3, 7, 10. If we wish
to duplicate the test based on the ratio R2/1−R2 , which tests the hypothesis

that the coefficients of all bona fide variables are zero, i.e. β∗ = 0 ,4 take

A = (0, In) , which is an n × n + 1 matrix. Thus, all tests involving linear

restrictions on the parameters in β are encompassed in the general linear
hypothesis Aβ = a0 .

To apply the asymptotic distribution we need to design tests based

exclusively on that distribution. To this end consider

τ∗ =
√
T (Aβ̂ − a0)

′[σ2AM−1
xx A

′]−1
√
T (Aβ̂ − a0) ∼ χ2

k,

4Occasionally this test is referred to as a test of significance of R2 .
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because of item v (Eq. (10.31)) given in connection with the multivariate nor-

mal above. Unfortunately, however, τ∗ is not a statistic since it contains the
unknown parameters σ2 and Mxx , not specified by the null. From Propo-

sition 9.6, however, we know that if we replace σ2, Mxx by their consistent

estimators, viz. û′û/T , X ′X/T respectively, the limiting distribution will be

the same; thus, consider instead

τ =
√
T (Aβ̂ − a0)

′[σ̃2AM̃−1
xx A

′]−1
√
T (Aβ̂ − a0)

=
T (Aβ̂ − a0)

′[A(X ′X/T )−1A′]−1(Aβ̂ − a0)

û′û/T
d→ χ2

k.

Finally, clearing of redundancies, we may write

τ =
(Aβ̂ − a0)

′[A(X ′X)−1A]−1(Aβ̂ − a0)

û′û/T
d→ χ2

k, (10.82)

which is a statistic in that it does not contain unknown parameters not
specified by the null hypothesis.

Remark 10.5. A careful examination will disclose that when applied to the
test statistic obtained earlier when estimators were normally distributed for

every sample size T , the statistic τ of Eq. (10.82) duplicates them precisely,

except for the denominator in û′û/T , which is immaterial. This means that

if one does what is usually done in evaluating regression results (when it is

assumed that normality of estimators prevails for all sample sizes T ) the test
procedures will continue to be valid when the sample size is large and

one employs the limiting distribution of the estimators. The only

difference is that what is t -test in the earlier case is now a z -test (i.e. based

on N(0,1)) and what was an F -test is now a chi square test.

10.7 Orthogonal Regressors

Suppose that the regressors of the GLM are mutually orthogonal, meaning

that in the representation

y = Xβ + u, we have X
′
X = D = diag(d1, d2, . . . , dn+1).

In this case, the elements of β, the regression coefficients, can be estimated
seriatim, i.e.

β̂i = (x
′
·ix·i)

−1x
′
·iy, i = 0, 1, 2, . . . , n+ 1.

This may be verified directly by computing the elements of

β̂ = (X
′
X)−1X

′
y = D−1X

′
y.
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Although this is a rare occurrence in actual practice, nonetheless it points out

an important feature of least squares. Suppose, for example, the model is
written as

y = X1β1 +X2β2 + u, (10.83)

where X1 is T ×m+1 and X2 is T × k, k = n−m such that X
′
1X2 = 0.

By the argument given above, we can estimate

β̂1 = (X
′
1X1)

−1X
′
1y, β̂2 = (X

′
2X2)

−1X
′
2y. (10.84)

The least squares residuals are thus given by

û = N1y + (N2 − IT )y, Ni = IT −Xi(X
′
iXi)

−1X ′
i, i = 1, 2. (10.85)

Even if the two sets of variables in X1 and X2 are not mutually orthogonal,

we can use the preceding discussion to good advantage. For example, suppose

we are not particularly interested in the coefficients of the variables in X1 but
wish to carry out tests on the coefficients of the variables in X2. To do so, we

need estimators of the coefficient vector β2 as well as its covariance matrix.

Oddly enough, we may accomplish this with a simple regression as follows.

Rewrite the model as

y=Xβ + u = X1β1 +N1X2β2 + u∗, (10.86)

u∗ = (IT −N1)X2β2 + u.

Carrying out an OLS regression, we find

β̂ = [(X1, X
∗
2 )

′
(X1, X

∗
2 )]

−1(X1, X
∗
2 )

′
y, X∗

2 = N1X2.

Making a substitution (for y ) from Eq. (10.86), we can express the estimator as

β̂ =

⎛
⎝ β1

β2

⎞
⎠+

⎛
⎝X

′
1X2β2

0

⎞
⎠+

⎛
⎝ (X

′
1X1)

−1X
′
1

(X∗′
2 X

∗
2 )

−1X∗′
2

⎞
⎠u. (10.87)

Note that the estimator for β2 is unbiased but the estimator for β1 is not.
Because we are not interested in β1, this does not present a problem. Next,

compute the residuals from this regression, namely

û= y −X1β̂1 −X∗
2 β̂2 = y −X1β1 −N1X2β2

−(IT −N1)X2β2 − [(IT −N1) +X∗′
2 (X∗′

2 X
∗
2 )

−1X∗′
2 ]u

= y −X1β1 −X2β2 − [(IT −N1) +X∗′
2 (X∗′

2 X
∗
2 )

−1X∗′
2 ]u
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= [N1 −N1X
′
2(X

′
2N1X2)

−1X
′
2N1]u

= [IT −X∗′
2 (X∗′

2 X
∗
2 )

−1X∗′
2 ]N1u. (10.88)

To complete this facet of our discussion we must show that the estimator

of β2 as obtained in Eq. (10.87) and as obtained in Eq. (10.6) or Eq. (10.9)

are identical; in addition, we must show that the residuals obtained using the

estimator in Eq. (10.6) and those obtained from the estimator in Eq. (10.87)

are identical.
To show the validity of the first claim, denote the OLS estimator as origi-

nally obtained in Eq. (10.6) by β̃ to distinguish it from the estimator examined

in the current discussion. By Corollary 10.3, its distribution is given by

β̃ ∼ N(β, σ2B), B =

[
B11 B12

B21 B22

]
= (X

′
X)−1. (10.89)

By the property of the multivariate normal given in Eq. (10.26), the marginal

distribution of β̃2 is given by

β̃2 ∼ N(β2, σ
2B22). (10.90)

From Proposition 2.31, pertaining to the inverse of a partitioned matrix, we
find that

B22 = [X
′
2(IT −X1(X

′
1X1)

−1X
′
1)X2]

−1 = (X∗′
2 X

∗
2 )

−1, (10.91)

thus proving that β̂2 as exhibited in Eq. (10.87) of the preceding discussion

is indeed the OLS estimator of the parameter β2, since, evidently, β̃2 of
Eq. (10.90) has precisely the same distribution.

To show the validity of the second claim, requires us to show that

IT −X(X
′
X)−1X

′
= N1 −X∗

2 (X
∗′
2 X

∗
2 )

−1X∗′
2 , (10.92)

thus demonstrating that the residuals as obtained in Eq. (10.88) and as

obtained in Eq. (10.8) are, in fact, identical.
The OLS residuals obtained from the estimator in Eq. (10.6) are given by

ũ = y −Xβ̃ = [IT −X(X
′
X)−1X

′
]u. (10.93)

Using the notation X = (X1, X2), as in the previous discussion, we find

IT −X(X
′
X)−1X

′
= IT − [X1B11X

′
1 +X1B12X

′
2 +X2B21X

′
1 +X2B22X

′
2].

(10.94)
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From Proposition 2.3 and Corollary 5.5,

B11 = [X
′
1X1 −X

′
1X2(X

′
2X2)

−1X
′
2X1)]

−1 = (X
′
1X1)

−1

+(X
′
1X1)

−1X
′
1X2(X

′
2N1X2)

−1X
′
2X1(X

′
1X1)

−1

B12 =−(X ′
1X1)

−1X
′
1X2(X

′
2N1X2)

−1, B21 = B
′
12,

B22 = (X
′
2N1X2)

−1 = (X∗′
2 X

∗
2 )

−1. (10.95)

Substituting the preceding expressions in the right member of Eq. (10.93), we

can render the standard OLS residuals of Eq. (10.93) as

ũ = [N1 −N1X2(X
′
2N1X2)

−1X
′
2N1]u = [IT −N1X2(X

′
2N1X2)

−1X
′
2N1]N1u.

(10.96)

This provides a constructive proof that the residuals from the regression of y

on X1 and N1X2 are precisely the same (numerically) as the residuals of the

regression of y on X1 and X2.

Remark 10.6. If we had proved in this volume the projection theorem, the

preceding argument would have been quite unnecessary. This is so because the
OLS procedure involves the projection of the vector y on the subspace spanned

by the columns of the matrix (X1, X2), which are, by assumption, linearly

independent. Similarly, the regression of y on (X1, N1X2) involves a projec-

tion of the vector y on the subspace spanned by the columns of (X1, N1X2).
But the latter is obtained by a Gram-Schmidt orthogonalization procedure on

the columns of the matrix (X1, X2). Thus, the two matrices span precisely

the same subspace. The projection theorem also states that any vector in a

T -dimensional Euclidean space can be written uniquely as the sum of two

vectors, one from the subspace spanned by the columns of the matrix in ques-
tion and one from the orthogonal complement of that subspace. Because

the subspaces in question are identical, so are their orthogonal comple-

ments. The component that lies in the orthogonal complement is simply the

vector of residuals from the corresponding regression.

Remark 10.7. The results exhibited in Eqs. (10.6) and (10.87) imply the

following computational equivalence. If we are not interested in β1, and we
merely wish to obtain the OLS estimator of β2 in such a way that we can

construct confidence intervals and test hypotheses regarding the parameters

therein, we can operate exclusively with the model

N1y = N1X2β2 +N1u, noting that N1X1 = 0. (10.97)
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From the standard theory of the GLM, the OLS estimator of β2 in

Eq. (10.97) is
β̂2 = (X∗′

2 X
∗
2 )

−1X∗′
2 N1y, (10.98)

and the vector of residuals is given by

û = [IT −X∗
2 (X

∗′
2 X

∗
2 )

−1X∗′
2 ]N1u, (10.99)

both of which are identical to the results obtained from the regression of y on

(X1, N1X2), or on (X1, X2).

10.8 Multiple GLM

In this section we take up the case where one has to deal with a number

of GLM, that are somehow related but not in any obvious way. The term,

multiple GLM, is not standard; in the literature of econometrics the prevailing

term is Seemingly Unrelated Regressions (SUR). In some sense it is the
intellectual precursor to Panel Data Models, a subject we shall take up in the

next chapter.

This topic arose in early empirical research that dealt with disaggregated

investment functions at the level of the firm. Thus, suppose a GLM is an

appropriate formulation of the investment activity for a given firm, i, say

yt(i) = xit·β
(i) + ut(i). (10.100)

Suppose further the investigator wishes to deal with a small but fixed number

of firms, say m . The explanatory variables in xt(i) need not have anything

in common with those in xt(j), i �= j , although they may; the vectors of coeffi-

cients need not be the same for all firms and may indeed have little in common.

However, by the nature of the economic environment the error terms may
be correlated across firms, since they all operate in the same (macro)

economic environment. We may write the observations on the i th firm as

y·i = X iβ·i + u·i, i = 1, 2, . . .m, (10.101)

where y·i is a T element column vector,5 X i is a T × ki matrix of observa-

tions on the explanatory variables, β·i is the ki -element column vector of the

regression parameters and u·i is the T -element column vector of the errors.
Giving effect to the observation that all firms operate in the same economic

environment, we are prepared to assume that

Cov(ut(i)ut(j)) = σij �= 0, (10.102)

for all t . All other standard conditions of the GLM continue in force, for each

firm.
5The sample size is assumed to be the same for all firms.
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We could estimate all m GLM seriatim, as we discussed above, obtain

estimators and make inferences. If we did so, however, we would be ignoring
the information, or condition, exhibited in Eq. (10.102), and this raises the

question of whether what we are doing is optimal. To address this issue, write

the system in Eq. (10.101) as

y = X∗β∗ + u, y = (y′·1, y
′
·2, . . . , y

′
·m)

′, u = (u′·1, u
′
·2, . . . , u

′
·m)

′, where

X∗ = diag(X1, X2, . . . , Xm), β∗ = (β′
·1, β

′
·2, . . . , β

′
·m)′,

(10.103)

and note that

Cov(uu′) = (Eu·iu′·j) = (σijIT ) = Σ⊗ IT = Ψ. (10.104)

Also y is an mT -element column vector as is u , X∗ is an mT × k matrix,
k =

∑m
i=1 ki and β∗ is a k -element column vector.

In view of the fact that the system in Eq. (10.103) is formally a GLM, the

efficient estimator of its parameters is the Aitken estimator when Ψ is known

and, when not the generalized least squares (GLS) estimator. The latter is
given by

β̂∗ = (X∗′Ψ̃−1X∗)−1X∗′Ψ̃−1y = β∗ + (X∗′Ψ̃−1X∗)−1X∗′Ψ̃−1u, (10.105)

where Ψ̃ is a consistent estimator of Ψ . Since the latter, an mT × mT

matrix, contains a fixed number of parameters viz. the elements of the m×m
symmetric matrix Σ , this estimator is feasible. Indeed, we can estimate
seriatim each of the m GLM by least squares (OLS) obtain the residuals

ũ·i = y·i −X iβ̃·i

and thus obtain the consistent estimator

Ψ̃ = Σ̃⊗ IT , Σ̃ = (σ̃ij), where σ̃ij =
ũ′·iũ·j
T

, i, j = 1, 2, . . . ,m.

(10.106)

Since

σ̃ij =
ũ′·iũ·j
T

=
u′·iu·j
T

+QT

QT =
u′·i(N

iN j −N i −N j)u·j
T

, N i = X i(X i′X i)−1X i′, i = 1, 2, . . .m,

it follows by the standard assumptions of the GLM that plimT→∞QT = 0 . It

also follows from the standard assumptions of the GLM that u′·iu·j/T obeys
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the SLLN, see Sect. 9.3.1 on the applicability of the latter to sequences of iid

rvs with finite mean. Consequently,

σ̃ij
P→ σij , and thus Ψ̃

P→ Ψ. (10.107)

Using exactly the same arguments as above we can establish the limiting

(asymptotic) distribution of the GLS estimator as

√
T (β̂∗ − β∗) d→ N(0,Φ), Φ = plim

T→∞

(
X∗′Ψ−1X∗

T

)−1

. (10.108)

In the discussion above, see Eq. (10.68), we have already shown, in the finite

T case, that the GLS estimator is efficient relative to the OLS estimator.

Remark 10.8. Perhaps the development of the argument in this section

will help explain the designation of such models as Seemingly Unrelated

Regressions (SUR) and justify their special treatment.



Chapter 11

Panel Data Models

11.1 Introduction

The study of empirical models based on cross-section times series data dates

back well into the early 1950s. However, the first modern attempt to consis-

tently model the behavior of agents in such contexts can be traced to Balestra

and Nerlove (1966), hereafter referred to as BN, who studied the demand for
natural gas by state in the US, over the period 1957–1962.

The subsequent development of the subject, however, arose in the context

of studies of human populations by “labor” economists, for want of a better

term.
A sample of observations is said to be a cross section, if it refers to a

number of economic agents at the same period of time, or reasonably close

to the same period. For example the study of family budgets based on con-

sumer expenditure surveys, or the study of the “determinants” of wages based

on a survey of population, are examples of use of cross sections, or cross sec-
tional samples. On the other hand a sample of observations on a single or a

group of agents over time is said to be a time series sample. For example a

study of aggregate consumption, or investment, or exports etc. over a period

of time are instances of use of time series samples.1 The term Panel (or Panel
data) refers to a situation where (the same) agent, or a number of agents, are

observed over multiple periods of time; for example if there are n individuals

observed at time t and t = 1, 2, . . . , T , then for each t we have information

over the same n individuals. This is more generally referred to as a Balanced

Panel, and the term Panel is also applied to situations in which, by attrition
or otherwise, not all n individuals are observed over all T periods, but a

1Over the last 20 years or so the term time-series has acquired a very specialized

meaning in econometrics connected to the study of non-stationary, particularly inte-

grated, stochastic processes. However, our use of the term time series here typically

does not refer to this meaning.

P.J. Dhrymes, Mathematics for Econometrics,
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substantial number is. The term repeated cross sections or pooled

samples typically refer to situations in which there may be substantial differ-
ences in the composition of the cross sections, although broadly conforming to

the original specification(s).

The purpose of this chapter is to exposit in simple form the basic structure

of these models, indicating clearly their relation to the general linear model

broadly and in particular when n is fixed and T is large, to the “seemingly
unrelated regressions” model (SUR) discussed in Chap. 10.

It does not aim to be an exhaustive treatment of the subject.

11.2 Notation

Because the study of panel data models operates in three dimensions, the

number of agents, the number of periods and the number of variables (depen-
dent and independent in the regression sense of the terms), care is required

in devising a notation to represent the data. We adopt the following conven-

tions. In Eq. (11.1) below we represent the typical econometric relationship

estimated in a panel setting,

yti = xti·β + γi + uti, i = 1, 2, . . . , n, t = 1, 2, . . . T, (11.1)

where n is the number of agents observed, so that it is the dimension of

the cross section, T is the number of the periods of observation, so that it

is the dimension of the time series, and xti· is a k element row vector,
containing the independent or explanatory variables of the model. The term

γi is an idiosyncratic, time invariant, entity that refers exclusively to agent

i , and uti is the standard error term. The term γi may be random (so

that it is distributed over the agents through a time invariant distribution), or

nonrandom, like a distinct constant term.2

Because of the three-dimensional nature of panel data, it is not possible

to give a (meaningful) single matrix representation for the entire sample; we

shall now define the entities in terms of which we shall represent the data.

Y = (yti), t = 1, 2, . . . , T, i = 1, 2, . . . , n, (11.2)

is the matrix of the dependent variable. Its i th column,

y·i = (y1i, y2i, . . . , yTi)
′, (11.3)

contains all T observations on the individual agent i , while its t th row,

yt· = (yt1, yt2, . . . , ytn), (11.4)

2In many studies, allowing for this particular type of individual effect removes as

much as 30–40% of the observed variation in the dependent variable.
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contains all observations on the n agents at time t , i.e. it represents the

observations on the entire cross section at time t .
With the help of this notation, we may represent all observations in the

sample in two ways. First, we can exhibit, seriatim, all observations on the

first agent, then the second agent and so on. The second is to present seriatim

all the observations on the first cross section (i.e. the relevant observations at

time t = 1 ), then those of the second cross section and so on. To implement
the first, let

Xi = (xti·), t = 1, 2, . . . , T, (11.5)

note that it is a T × k matrix and that

y·i = Xiβ + γieT + u·i, i = 1, 2, . . . , n (11.6)

represents3 all (time series) observations, for the i th agent, and thus for i =

1, 2, . . . , n, across all individuals; finally eT is a T -element column vector,

all of whose elements are one.

To implement the second, let

y′t· = X(t)β + γ + u′t·, γ = (γ1, γ2, . . . , γn)
′, (11.7)

where

X(t) =

⎡
⎢⎢⎣
xt1·
xt2·
...

xtn·

⎤
⎥⎥⎦ , (11.8)

so that X(t) is a matrix of order n×k , and Eq. (11.7) exhibits the observations

on all agents at time t , i.e. it exhibits all the cross section observations at

time t .

To round out the required notation we introduce the following two
definitions, noted already in Chap. 4 as Convention 4.1.

Definition 11.1. Let A be a matrix of dimension q × s , and define

a = vec(A) =

⎡
⎢⎢⎣
a·1
a·2
...

a·s

⎤
⎥⎥⎦ , (11.9)

i.e. it is of dimension qs× 1 (a column vector) that exhibits the columns of

A , seriatim.

3Note that this formulation implies homogeneity of the coefficients (parameters) of

all explanatory variables i.e. the x′s, across all individual agents.
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Definition 11.2. Let A be a matrix as in Definition 11.1 and define the

operator rvec by

a∗ = rvec(A)′ =

⎡
⎢⎢⎢⎣
a′1·
a′2·
...

a′q·

⎤
⎥⎥⎥⎦ , (11.10)

i.e. it is of dimension qs× 1 (a column vector) that exhibits the transposed

rows (so they become column vectors) of A , seriatim.

Remark 11.1. Note that the two (column) vectors in Eqs. (11.9) and (11.10)

contain the same elements differently arranged.

If we put

Y = (yti), U = (uti), both being T × n matrices, (11.11)

we can represent the entire sample in two ways; the first is

y = vec(Y ) = Xβ+γ⊗eT+u, u = vec(U), X =

⎡
⎢⎢⎣
X1

X2
...

Xn

⎤
⎥⎥⎦ , an nT × k matrix,

(11.12)

while the second is

y∗ = rvec(Y )′ = X∗β + eT ⊗ γ + u∗, u∗ = rvec(U)′,

X∗ =

⎡
⎢⎢⎢⎣
X(1)

X(2)

...

X(T )

⎤
⎥⎥⎥⎦ , an nT × k matrix, (11.13)

and both of them “look” like a general linear model (GLM).

11.3 Interpretation and Assumptions

11.3.1 Interpretation

The interpretation of the models in Eqs. (11.12) and (11.13), depends on how

we view the entities γi ; in the Balestra and Nerlove (BN) context, they relate

to the structural error specification; thus, if we wish to estimate parame-

ters by means of maximum likelihood (ML) methods, we need to state the
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distribution of the γi and uti , and obtain various moments such as, e.g. the

covariance matrix, so as to be able to write down the likelihood function, if nor-
mal, or the generalized least squares objective function, if not. In particular,

the conditional expectation of yi given x is given by

E(yti|xti) = xti·β, (11.14)

because BN assume E(γi|x) = 0 , E(ui|x) = 0 , for all i , and it is clear that

the γi are not part of the mean specification.
In the context of such models as used in “labor” economics, the entities

γi are viewed as part of the “mean component” of the dependent variable, and

in fact they are a crucial component of their structure. The γi are presumed

to denote native ability, which is not observed or observable; if it were, then

it would have entered as one of the components of xti· and its coefficient
would have been one of the elements of β . For that reason it is entered as

a single entity denoting both the “magnitude” of native ability as well as

the manner of its impact on the dependent variable, i.e. its coefficient. From

an operational point of view, in the context of the so called “within groups”
estimation, it acts very much like a conventional regression constant term.

A more sophisticated view holds the γi to be (proportional to) a random

assignment of an unobservable property, such as ability, to agent i . In this

context the entities γi , within the sample, are (proportional to) realizations

of this random process.
An important consequence of this difference in interpretation between the

BN and “labor” economics versions is that, in the first, the vector xti· is

allowed to have a component which is unity, corresponding to the constant

term of the regression, while in the second we assert

Convention 11.1. The vector β does not contain a constant term, i.e.

the vector xti· does not contain a unit entry.

11.3.2 Assumptions

In the GLM we generally make three types of assumptions: (a) regarding the

error process (b) regarding the explanatory or “independent” variables and (c)

the relation between them.

In this literature, generally, not much is assumed about the explanatory
variables, the vectors xti· . The tendency is to consider the variables (y, x, γ, u)

as being defined on a probability space, say ( Ω , A , P ), and subject to some

joint distribution from which we can derive marginal and conditional distribu-

tions. They are also taken to be square integrable. In part the justification is
that papers in this literature are seldom concerned with limiting distributions
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and take the distribution of the vector (y, x, γ, u) to be jointly normal. We

shall depart from this practice, thus assuming in particular:

i.

Assumption 11.1. The explanatory variables, xti· are a realization of

a square integrable stochastic process, so that Exti· and Cov(xti·) are

both finite and Aij = plimT→∞
X′

iXj

T , exist for all i, j and for i = j Aii
is nonsingular.

ii.

Assumption 11.2. The vectors u·i are generally taken to be strictly or

weakly stationary in the sense of Definitions 6.5 and 6.6 (of Chap. 6); for
example in the strictly stationary case we have that, for arbitrary q, s

the joint distribution4 of the elements of the sequence {ut·: t ∈ T } are

square integrable and have the property5

f(ut·, ut+1·, . . . , ut+q·) = f(ut+s·, ut+s+1·, . . . , ut+s+q·);

often the elements of the sequence are taken to be iid (independent
identically distributed).

iii.

Assumption 11.3. The conditional densities of u|x and γ|x have the

property E(ut·|x = 0) , and where appropriate E(γi|x) = 0 ) and, more-

over, their conditional (on x ) covariance matrices are not a function
of x .

Remark 11.2. The conditions in Assumption 11.3, rely too heavily on the
conventions of the GLM, especially as they relate to finite samples and require-

ments for the validity of the Gauss-Markov theorem. Unless considerably more

structure is imposed, limiting distribution arguments would require that x and

u be (statistically) independent.

Remark 11.3. The condition E(u|x) = 0 is a bit stronger than Cov(x, u) =

0 , whether we use the same time frame for both, or we are also claiming this

4The notation f(·) is used generically to denote a density, which may be marginal,

joint, or conditional as the context requires.
5The change in notation regarding the linear index set, here denoted by T , while

in the definition of stochastic sequences, in earlier chapters was usually denoted by

T , is necessary because in this context we use T as the length of the time series

observations.
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property for ut· and xt′i·, t �= t′ . To see this in the simplest possible context,

let u, x be scalar random variables, each with marginal mean zero. Then,

Cov(u, x) =

∫ ∞

−∞

∫ ∞

−∞
xuf(x, u)dxdu =

∫ ∞

−∞
xf(x)

(∫ ∞

−∞
uf(u|x)du

)
dx = 0

(11.15)

because

h(x) =

∫ ∞

−∞
uf(u|x)du = E(u|x) = 0, by assumption.

The converse, however, is not true, i.e. Cov(u, x) = 0 does not necessarily

imply that E(u|x) = 0 . This is so because

Cov(u, x) =

∫ ∞

−∞

∫ ∞

−∞
xuf(x, u)dxdu =

∫ ∞

−∞
xf(x)

(∫ ∞

−∞
uf(u|x)du

)
dx

=

∫ ∞

−∞
xh(x)f(x)dx = 0 (11.16)

does not necessarily imply that h(x) is equal to zero!

11.4 Estimation

11.4.1 Within Groups Estimation

The estimation of panel data models involves basically the same procedures

one employs in the estimation of general linear models, or systems of general
linear models (SUR) studied in Chap. 10, with the added complication of the

unobservable “ability”, termed in this literature unobserved heterogeneity.

The term “within groups” is something of a misnomer and derives from

an older usage in the context of analysis of variance, where one could define

variance within groups and between groups; such considerations, however, are
irrelevant in this case and the term survives only as a historical relic.

If we look at Eqs. (11.6) and (11.12) we see that even though our primary

interest is the parameter β , estimation by simple methods is hampered by the

presence of the unobservable γi , for the i th agent. If T ≥ 2 we can, in fact,
estimate β from centered data. We shall now consider the case where n is

fixed and T → ∞ , thus, initially we deal with the case where the structural

errors, the u′s are iid .

Let IT − ee′/T be the (sample mean) centering matrix, Dhrymes (1978,
p. 18ff.), where e is a column vector of T unities; we may transform Eq. (11.6)
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to obtain(
IT − ee′

T

)
y·i =

(
IT − ee′

T

)
Xiβ +

(
IT − ee′

T

)
u·i, (11.17)

because the centering matrix and eT are mutually orthogonal, i.e.

(
IT − ee′

T

)
eT = 0.

The centering operation produces observations centered on their respective

means, for example (
IT − ee′

T

)
y·i = y·i − eT ȳi,

etc. While this operation has gotten rid of one problem, it has created another

in that the covariance matrix of the error vector in Eq. (11.17) is no longer

scalar, and if Xi contains a constant term,6 it has reduced its rank by one. In

fact, we also have another “problem” in that the sum of all equations therein is

identically zero, indicating that the covariance matrix is singular. Note that
the centering matrix is a symmetric idempotent matrix of rank T − 1 ,

see Chap. 2. Hence, it has the decomposition

IT − ee′

T
= Q

[
IT−1 0

0 0

]
Q′ = Q1Q

′
1, (11.18)

where Q is the orthogonal matrix of the characteristic vectors, and Q1 is

(its) the sub-matrix corresponding to the nonzero (unit) roots.
Now, using another old device from Dhrymes (1969), transform Eq. (11.17)

to obtain

Q′
1

(
IT − ee′

T

)
y·i = Q′

1

(
IT − ee′

T

)
Xiβ +Q′

1

(
IT − ee′

T

)
u·i. (11.19)

Noting that Q′
1(IT − ee′

T ) = Q′
1 , it is apparent that this entire operation could

have been done ab initio; it was done in an extensive fashion only to clarify
what is behind this transformation.

The virtue of this transformation is that it eliminates the parameter γi ,

by centering observations about sample means, and retains the property of the

covariance matrix of the error as a scalar matrix of the form σiiIT−1 .

Since in the transformed context of Eq. (11.19), the entities therein obey
the conditions for the Gauss-Markov theorem, it follows that, given Xi , the

estimator

6Note that this was ruled out by Convention 11.1.
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β̂ = [X ′
iQ1Q

′
1Xi]

−1
[X ′

iQ1Q
′
1y·i] = β + [(X ′

iQ1Q
′
1Xi]

−1[X ′
iQ1Q

′
1u·i], (11.20)

is the best linear unbiased estimator in the context of Eq. (11.19). But there

are n such estimators and it is clear that from a system-wide point of view

this is not the most efficient estimator.

If we consider the system-wide version of Eq. (11.19), we are dealing with

(In ⊗Q′
1)y = (In ⊗Q′

1)Xβ + (In ⊗Q′
1)u, (11.21)

because (In ⊗Q′
1)(γ ⊗ eT ) = 0 . We also observe that

Cov(u) = Σ⊗ IT , so that Cov[(In ⊗Q′
1)u] = Σ⊗ IT−1. (11.22)

Applying the same device as in Dhrymes (1969)7 we pre-multiply by Σ−(1/2)⊗
IT−1 to obtain the final estimating form as

(Σ−1/2 ⊗Q1)y = (Σ−1/2 ⊗Q1)Xβ + (Σ−1/2 ⊗Q1)u, (11.23)

the covariance matrix of whose error term is In(T−1) . Thus, when Σ is

known the least squares estimator in the context of the transformed model

as in Eq. (11.23) is the optimal estimator. If Σ is not known but can be

estimated consistently, the estimator above is the optimal estimator in the
sense that it has the smallest variance within the class of consistent estimators

conditionally on the “instruments” X.

As of now, we have not specified what Σ is, but we operated on the

(implicit) assumption that it is the scalar matrix σ2 ⊗ InT . In the large T ,
fixed n context we have several (three) possibilities for

Σ = (σij), (11.24)

(a): no restrictions; (b): σij = 0, i �= j ; and (c): the condition in (b) and in

addition σii = σ2, i = 1, 2, . . . , n , which is the condition implicitly adopted

in the estimation above.
In case (c), we have the typical condition imposed when T = 1 and a

least squares procedure is applied. With T ≥ 2 , however, this condition

is unnecessarily restrictive and we can operate instead with condition (b),

which preserves the traditional assumption of independence in the error terms

corresponding to different agents. At the same time, from Eq. (11.26) below,
we can estimate consistently the unknown elements of Σ , thus rendering the

7The motivation for this device is to transform the equation whose parameters we

are interested in estimating so that, at least asymptotically, it obeys the conditions of

a Gauss-Markov like theorem. This idea (mutatis mutandis) is behind all subsequent

(literature) developments in optimal non-linear simultaneous equations and generalized

method of moments (GMM) procedures.
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estimator in Eq. (11.27) feasible. The same is true if we operate with condi-

tions (a), except that here we are asserting that the error terms for different
agents are not independent, which is not an assumption made in this litera-

ture. Thus, in all cases with fixed n and large T it is possible to estimate

consistently the σij and hence the estimator of Eq. (11.23) is feasible. This

shows that in the unrestricted case panel data model’s efficient estimation is

simply SUR estimation.
To complete the estimation phase we need to obtain an estimator for γi .

Noting that in Eq. (11.6) γ·i is dealt with as if it were the constant term of a

standard GLM (general linear model), we can estimate

γ̂i = ȳi − x̄iβ̂, i = 1, 2, . . . , n, (11.25)

where the symbols with overbars denote the sample means of the corresponding
vectors ( y·i ), or matrices (Xi ).

To enable us to obtain the efficient estimator for the system as a whole we

can estimate the covariance matrix of ut· as

σ̂ij =
1

T
(y·i − γ̂ieT −Xiβ̂)

′(y·j − γ̂jeT −Xj β̂), (11.26)

so that the efficient estimator of β is given by

β̃ = [X ′(Σ̂−1 ⊗Q1Q1)X ]−1X ′(Σ̂−1 ⊗Q1Q
′
1)y (11.27)

Remark 11.4. Evidently the estimator in Eq. (11.27) is the only relevant

one. The one in Eq. (11.20) is a “first stage” which serves to explain the
procedure and helps us estimate γi and σij , i, j = 1, 2, . . . , n . Notice also

that the system estimator in Eq. (11.27), in the case of large T fixed n panels,

should enable us to test for a more general form of heterogeneity. Thus, if

we endow each agent, or groups of agents based on certain characteristics,
with a different parameter vector, say, β·j , we may test the hypothesis

that all such vectors are the same. Otherwise we take, arbitrarily, parameter

homogeneity across agents or groups of agents as a given and, even though

the data permit it, we do not test this hypothesis (assumption).

Consistency of the estimators in Eqs. (11.25)–(11.27) is immediate by virtue of

the assumption that the x’s form a square integrable process, Assumptions 11.1

and 11.3.
Not sufficiently precise assumptions have been made to ensure that the

limiting distribution of these estimators exist, but with little additional

loss of generality we can ensure that the Lindeberg condition holds, see
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Proposition 9.7 (of Chap. 9). This will permit us to conclude that

√
T (β̃ − β)

d→ N(0,Ω), Ω = plim
T→∞

(
X ′(Σ̂−1 ⊗Q1Q

′
1)X

T

)−1

. (11.28)

With a little additional effort we can devise a test for the hypothesis

H0 : γj = γ1
as against the alternative H1 : γi �= γj , for i �= j .

We now take up the case, in the context of T large n fixed, where the vector

ut· is not iid but is either strictly stationary or an AR of some order. If the

error process is square integrable this means that

Cov(u′t·) = K(t, t), Cov(u′t·, u
′
t′·) = K(t, t′). (11.29)

If the process is strictly (or even weakly) stationary K(t, t) = K(0) ; if it is

covariance stationary, K(t, t′) = K(τ), τ = t− t′ , and K(τ) = K(−τ)′ .
Thus, in the popular first order stable, i.e. causal autoregression, AR(1),

(which is strictly stationary as well as covariance stationary) when the ε
process is iid(0,Σ > 0) , we find

u′t· = Ru′t−1· + ε′t·, u′t· =
∞∑
j=0

Rjε′t−j·,
∞∑
j=0

‖ R ‖j<∞.8 (11.30)

Moreover,

Cov(u′t·) = K0 =

∞∑
j=0

RjΣR′j , Cov(u′t·, u
′
t−τ ) =

∞∑
i=0

∞∑
j=0

RiE(ε′t·, εt−τ ·)R
′j

=

∞∑
i=0

∞∑
j=0

RiK(i− j)R′j = RτK0, (11.31)

for positive τ = i − j , and K0R
′|τ | , for negative τ . Thus, the covariance

matrix of the vector u in Eq. (11.13), for the stable first order autoregression

above, is given by

Cov(u) =

⎡
⎢⎢⎣

K0 RK0 R2K0 . . . RT−1K0

K0R
′ K0 RK0 . . . RT−2K0

...
...

... . . .
...

K0R
′T−1 K0R

′T−2 K0R
′T−3 . . . K0

⎤
⎥⎥⎦ = K. (11.32)

8The symbol ‖ R ‖ means the norm of the matrix R .
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Remark 11.5. When we discussed causal ARs, Definition 6.12 of Chap. 6, and

surrounding discussion, we did not enter into the specifics of the computations
involved in demonstrating the validity of their M(∞) representation, except

in the scalar case in scattered occasions. Let us do the complete calculation in

this instance. The representation in Eq. (11.30), requires absolute convergence

of the series. If R were a scalar, say r we would require that
∑∞

j=0 |r|j <∞ ;

when it is a matrix on the other hand, the analogous requirement is that∑∞
j=0 ‖ R ‖j < ∞ , where ‖ R ‖ is the norm of the matrix R . The general

definition of a matrix norm is as follows.

Definition 11.3. Let A be a square matrix of dimension n . The scalar

function ‖ A ‖ , is said to be a matrix norm if it obeys

i. ‖ A ‖≥ 0 and ‖ A ‖= 0 , if and only if A = 0 ;

ii. For any scalar c , ‖ cA ‖= |c| ‖ A ‖ ;

iii. If B is an arbitrary conformable matrix ‖ A + B ‖≤ ‖ A ‖ + ‖ B ‖ ,
and

iv. ‖ AB ‖≤‖ A ‖‖ B ‖

In view of the definition of the norm above consider again the matrix R ; con-

ceding a very slight degree of generality we shall assume that its characteristic

roots are distinct,9 so that we can write

R = S−1ΛS, and thus ‖ R ‖ ≤ ‖ S−1 ‖ ‖ S ‖ ‖ Λ ‖,
where Λ, S are, respectively, the matrices of the characteristic roots and

vectors of R . Moreover, in this representation we can rewrite Eq. (11.30) as

u′t· =
∞∑
j=0

S−1ΛjSε′t−j·.

In this context we have to show that
∞∑
j=0

‖ S−1 ‖ ‖ S ‖ ‖ Λ ‖j<∞.

Since the norms of S and S−1 are finite we need deal only with the magni-

tude of the norm ‖ Λ ‖ which is a term of an infinite series. To this end using
specifically the L2 norm for matrices

‖ A ‖= max
z′z=1

|Az|2,

9See the discussion in Propositions 2.39 and 2.40 in Chap. 2.
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and applying it to Λ we find

‖ Λ ‖= max
z′z=1

|Λz|2 = max
z′z=1

(
n∑
s=1

λ2sz
2
s

)1/2

≤ |λ∗|,

where |λ∗| = maxs |λs| . Consequently,
∞∑
j=0

‖ R ‖j≤‖ S−1 ‖‖ S ‖
∞∑
j=0

‖ Λ ‖j ≤‖ S−1 ‖‖ S ‖
∞∑
j=0

|λ∗|j

= ‖ S−1 ‖‖ S ‖ 1

1− λ∗
<∞,

because the AR(1) sequence is causal and thus all roots of R ,

including the largest, are less than one in absolute value.
We shall now address the question of how to estimate the parameters

of Eq. (11.21) when the error terms constitute an AR(1) sequence with

covariance matrix as in Eq. (11.32)

In Eqs. (11.12) and (11.13) we have given two representations for the display
of the observations on the model in Eq. (11.1). This was not done frivolously.

Rather, the representation in Eq. (11.12) is most convenient for eliminating

the “unobserved heterogeneity” parameters, γi , while the representation in

Eq. (11.13) is most convenient when the error term follows a more complicated

distribution such as for example the AR(1) considered just above; in addition,
Eq. (11.13) is most convenient in obtaining the covariance matrix of the error

vector, when the latter is not iid but has a more complicated probabilistic

structure, such as e.g. in the AR(1) case noted above, but it is extremely

inconvenient for the “within groups” estimator because it is not simple to
eliminate the vector γ from Eq. (11.13) in any meaningful way.

Thus, we shall proceed by using Eq. (11.12) to eliminate the unobserved

heterogeneity parameters, and we shall use Eq. (11.13) to obtain the covariance

matrix of the error as we did in Eq. (11.32); having done that we must find

some way to rearrange the elements of that matrix so that it becomes the
covariance matrix of the vector as exhibited in Eq. (11.12). Noting that

u = vec(U), u∗ = rvec(U)′ (11.33)

contain the same elements differently arranged, we find from Lemma 4.3

(Chap. 4) that there exists a permutation matrix PnT , such that

u = PTnu
∗, or u∗ = PnTu, PTn =

⎡
⎢⎢⎢⎣
In ⊗ e′·1
In ⊗ e′·2

...

In ⊗ e′·T

⎤
⎥⎥⎥⎦ , (11.34)
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where e·t is a T element column vector all of whose elements are zero

except the t th, which is unity.
Returning to Eq. (11.21) we thus find

Cov[(In ⊗Q′
1)u] = Φ, where (11.35)

Φ = S′KS, S =

⎡
⎢⎢⎣

In ⊗ q1·
In ⊗ q2·

...

In ⊗ qT−1·

⎤
⎥⎥⎦ , (11.36)

and qt· is the tth row of Q1 . Notice that the rows of Q1 have T−1 elements

and thus In⊗qt· is n×n(T −1) , so that S is nT ×n(T −1) ; thus the matrix

Φ is n(T − 1) × n(T − 1) and nonsingular, as required for the definition of
the optimal estimator. The latter may be obtained as the OLS estimator in

the context of

Φ−(1/2)(In ⊗Q′
1)y

∗ = Φ−(1/2)(In ⊗Q′
1)X

∗β +Φ−(1/2)(In ⊗Q′
1)u

∗. (11.37)

Given a consistent estimator of K (and thus Φ̂ = S′K̃S ) the feasible

estimator is

β̃ = [X∗′(In⊗Q1)Φ̂
−1(In⊗Q′

1)X
∗]−1X∗′((In⊗Q1)Φ̂

−1(In⊗Q′
1)y

∗. (11.38)

By arguments analogous to those leading to Eq. (11.28) we conclude that
√
T (β̃ − β)

d→ N(0,Φ−1), Φ = plim
T→∞

S′K̃S, (11.39)

where K̃ is the consistent estimator of K obtained by regressing ût· on
ût−1· , thus obtaining R̂ , and by estimating

K̂0 =
1

T

T∑
t=1

û′t·ût·. (11.40)

This procedure yields a consistent estimator because we have assumed

that the error process is a stable AR(1) , and thus strictly stationary.

If the error process is more complex and/or is not stated parametrically, we
can employ, mutatis mutandis a similar procedure by estimating the entries in

the (general form of the) matrix K = [K(t, t′)] , using the sample covariances,

( t �= t′ )

K̂(t, t′) =
∑

w(t, t′)û′t·ût′·, K̂0 =
1

T

T∑
t=1

u′t·ut·, (11.41)

provided stationarity is preserved, and where w is an appropriate weighting

function, akin to the spectral windows (also known as kernels) employed when

such problems are considered in the frequency domain.
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When n is large and T ≥ 2 is fixed our flexibility is considerably more

circumscribed. This is so because, (a) no time series parameters can be
consistently estimated, owing to the fixity of T , and (b) the cases

Σ = diag(σ11, σ22, . . . , σnn), Σ = (σij), σij �= 0, for i �= j, (11.42)

do not permit “efficient estimators”, because the parameters in Σ cannot

be consistently estimated. Thus we are reduced to assuming, implicitly, that

Σ = σ2In and obtaining OLS estimators. In the case of a diagonal covariance
matrix in Eq. (11.42) we can consistently estimate the (limiting) covariance

matrix of the estimator β̂ , by the same methods as in the GLM, thus per-

mitting valid inference. The case of an unrestricted covariance matrix in

Eq. (11.42), however, does not allow for consistent estimation of the (limit-

ing) covariance matrix of the estimator β̂ , and thus valid inference in this
case is not possible.



Chapter 12

GLSEM and TS Models

12.1 GLSEM

12.1.1 Preliminaries

In this chapter, we take up two important applications, involving simultane-

ous equation, AR, and ARMA models, which are very important in several

disciplines, such as economics, other social sciences, engineering and statis-

tics. We partially discussed such topics in Chap. 4, in the context of difference
equations, since simultaneous equation and AR models involve the use of dif-

ference equations and it is important to establish the nature and the properties

of their solutions.

We begin with simultaneous equation models, more formally the General

Linear Structural Econometric Model (GLSEM).
The basic model is

yt·B∗ = xt·C + ut·, t = 1, 2, 3, . . . , T, (12.1)

where yt· is an observation at “time” t on the m -element vector of endoge-

nous variables, xt· is an observation on the G -element vector of the

predetermined variables, ut· is the m -element vector of the (unobserv-

able) structural errors, and B∗, C are matrices of unknown parameters to be
estimated. This model may be written compactly as

Y B∗ = XC + U, (12.2)

where Y is T ×m, X is T × G, U is T ×m, B∗ is m ×m, and C is

G×m.

12.1.2 The Structural and Reduced Forms

Endogenous variables are those determined by the system whose descrip-

tion is given in Eq. (12.1); exogenous variables are those whose behavior

P.J. Dhrymes, Mathematics for Econometrics,
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is determined outside the system above; predetermined variables are those

whose behavior is not determined by the system of Eq. (12.1) at time t.
Thus, the class of predetermined variables consists of lagged endogenous and

exogenous variables.

Remark 12.1. The class of predetermined variables has only tradition to

recommend it. The distinction that is important in econometrics is between

the variables that are independent of, or at least uncorrelated with, the

structural error at time t and those that are not. When the structural errors

are assumed to be independent, identically distributed ( iid ) as was invariably
the case at the initial stages of the literature on the GLSEM, predetermined

variables, such as lagged endogenous variables, were indeed independent of the

error term at time t. If the error process, however, is asserted to be a moving

average of length n, exogenous variables are still independent of the error
at time t, but not all lagged endogenous variables are!

The standard assumptions under which we operate the benchmark (sim-
plest) full model are:

i. The error process is one of iid random vectors with mean zero and
covariance matrix Σ > 0.

ii. The predetermined variables of the model are

xt· = (yt−1·, yt−2·, . . . , yt−k·, pt·), pt· = (pt1, pt2, . . . , pts),

where pt· is the vector of the s exogenous variables, so that

G = mk + s.

iii. The exogenous variables are non-collinear, or more precisely if P = (pt·)
is the matrix of observations on the s exogenous variables, the rank of P

is s, and (at least)

plim
T→∞

P
′
P

T
=Mpp > 0.

iv. The system is stable, an issue that was explored at length in Chap. 6. To

see what this means, write the model with k lagged endogenous and s

exogenous variables as

yt·B∗ =
k∑
i=1

yt−i·Ci + pt·Ck+1 + ut·,
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and note that this is a difference equation of order k and forcing function

pt·Ck+1 + ut·. From the discussion therein, we see that its characteristic
equation is

|B∗ −
k∑
i=1

Ciξ
i| = 0.

Stability means that the roots of this characteristic equation lie outside

the unit circle.

v. (Identification and normalization) The coefficient of the ith endogenous

variable, yi, in the ith equation is set to unity (normalization), and some
coefficients of endogenous and predetermined variables are known a priori

to be zero (identification). We generally employ the convention that in the

ith equation there are mi + 1 ≤ m endogenous variables and Gi ≤ G

predetermined variables.

vi. (Uniqueness of equilibrium) The matrix B∗ is nonsingular.

The model as exhibited in Eq. (12.1) is said to be the structural form of the
model, and the equations listed therein are termed the structural equations.

By extension, the parameters appearing therein are said to be the structural

parameters.

In contradistinction to the structural form of the model is the reduced
form, which is given by

Y =
k∑
i=1

Y−iΠi + PΠk+1 + V, Πi = CiD, V = UD, D = B∗−1,

C =

⎛
⎜⎜⎜⎜⎜⎝

C1

C2
...
Ck
Ck+1

⎞
⎟⎟⎟⎟⎟⎠
, Π =

⎛
⎜⎜⎜⎜⎜⎝

Π1

Π2
...
Πk

Πk+1

⎞
⎟⎟⎟⎟⎟⎠
, X = (Y−1, Y−2, . . . , Y−k, P ) , (12.3)

which is obtained by using assumptions iv and vi. The dimensions of the

parameter matrices in Eq. (12.3) are: Πi, i = 1, 2, . . . , k which are m ×m ;
Πk+1 is s × m , thus Π is G × m , where G is as defined in assumption

ii above; finally D is evidently m × m . Notice, in particular, that in this

notation Πi is the coefficient matrix of the ith lag, i.e. the coefficient matrix

of Y−i , in the vector difference equation representation of reduced form of the
GLSEM in Eq. (12.3).
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The model as exhibited in Eq. (12.3) is said to be the reduced form, and

the equations listed therein are termed the reduced form equations. By
extension, the parameters appearing therein are said to be the reduced form

parameters.

The structural form purports to describe the manner in which economic

agents actually behave, and through the feedback matrix B∗ allows one

endogenous variable to influence another, i.e. to appear as an explanatory
variable in the latter’s “equation”. By contrast, the reduced form nets out

all such feedbacks and displays the endogenous variables as functions only of

predetermined variables and the (reduced form) errors.

12.1.3 Inconsistency of Ordinary Least Squares

Employing the convention noted previously regarding normalization, we write
the system as1

Y = Y B +XC + U, (12.4)

where B has only zeros on its diagonal. Further, imposing the identification
convention, we may write the ith structural equation as

y·i = Yiβ·i +Xiγ·i + u·i, i = 1, 2, 3, . . . ,m. (12.5)

We shall now make clear the connection between the symbols here and the

matrices Y,X,B∗, C, U through the use of selection matrices. The latter
are permutations of (some of) the columns of an appropriate identity matrix.

Denote by e·i a column vector all of whose elements are zero except the

ith , which is unity. The m × m identity matrix is denoted by Im =

(e·1, e·2, . . . , e·m), where the e·i are m -element column vectors. The G×G

identity matrix is denoted by IG = (e·1, e·2, . . . , e·G), where, here, the e·i
are G -element column vectors all of whose elements are zero except the ith ,

which is unity.

Because Yi has as its columns the T observations on the endogenous

variables that appear as explanatory (right hand) variables, and similarly for
Xi, there exist selection matrices L1i and L2i, which are of dimension m×mi

and G×Gi, respectively, such that

Yi = Y L1i, Xi = XL2i, (12.6)

and, moreover, y·i = Y e·i, u·i = Ue·i. It is immediately apparent that the
columns of B and C are related to the structural parameter vectors exhibited

in Eq. (12.5) by

b·i = L1iβ·i, c·i = L2iγ·i. (12.7)

1In econometrics, the least squares procedure is termed “Ordinary Least Squares”

(OLS), for reasons that will become evident presently.
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Since the columns of L1i and L2i are orthonormal, we also have the

relationship
β·i = L

′
1ib·i, γ·i = L

′
2ic·i. (12.8)

Writing the ith structural equation even more compactly as

y·i = Ziδ·i + u·i, Zi = (Yi, Xi), δ·i = (β
′
·i, γ

′
·i)

′
, (12.9)

the OLS estimator of the structural parameters is given by

δ̃·i = (Z
′
iZi)

−1Z
′
iy·i. (12.10)

Putting

Li = diag(L1i, L2i), we have δ̃·i − δ·i = (L
′
iZ

′
ZLi)

−1L
′
iZ

′
Ue·i. (12.11)

To demonstrate the inconsistency of the OLS estimator of the structural

parameters, we need to show that L
′
i(Z

′
Z/T )Li converges, at least in proba-

bility, to a nonsingular matrix and that L
′
i(Z

′
U/T )e·i converges to a nonzero

vector. By definition, Z = (Y,X) and, using the reduced form Y = XΠ+ V,

we find

1

T
Z

′
Z =

1

T

[
Π

′
X

′
XΠ+D

′
U

′
UD Π

′
X

′
UD

D
′
U

′
XΠ X

′
X

]

+
1

T

[
Π

′
X

′
UD +D

′
U

′
XΠ D

′
U

′
X

X
′
UD 0

]
.

In view of assumptions i, ii, iii, and iv,

1

T
X

′
U =

1

T

T∑
t=1

x
′
t·ut·

P→ 0,

1

T
U

′
U =

1

T

T∑
t=1

u
′
t·ut·

P→ Σ,

1

T
X

′
X =

1

T

T∑
t=1

x
′
t·xt·

P→Mxx > 0. (12.12)

Consequently,

plim
T→∞

(δ̃·i − δ·i) =
(
L

′
i

[
Π

′
MxxΠ+D

′
ΣD Π

′
Mxx

MxxΠ Mxx

]
Li

)−1

L
′
i

(
D

′
Σ

0

)
e·i,
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and it is evident that D
′
σ·i is not necessarily null.2 The demonstration that

the OLS estimator of the structural parameters is inconsistent will be complete
if we show that the right hand matrix above is nonsingular, and that the

vector multiplying it is non-null. For the first, write the matrix in question as

L
′
i(Π, IG)

′
Mxx(Π, IG)Li + L

′
i

[
D

′
ΣD 0

0 0

]
Li,

and note that3 (Π, IG)Li = (Πi, IGi) = Si is a matrix of full (column) rank, if

the ith structural equations is identified, see Dhrymes (1994, Proposition 5,
p. 25).4 Since Si is G × (mi + Gi) and the rank of Mxx is G, it follows

that S
′
iMxxSi is nonsingular. This is true because of Propositions 2.61

and 2.62 of Chap. 2. Thus, the matrix is positive definite; adding to it the

positive semi-definite matrix with L
′
1iD

′
ΣDL1i in the upper left block

and zeros elsewhere still leaves us with a positive definite matrix, which is
thus invertible.

12.2 Consistent Estimation: 2SLS and 3SLS

In this section we derive consistent estimators for the parameters of the

GLSEM, beginning with 2SLS (two stage least squares) and extending it to

3SLS (three stage least squares).
The discussion proceeds in two main directions: (a) first we discuss the

original approach suggested by Theil (1953, 1958), the inventor of 2SLS and

3SLS estimation, and (b) the approach suggested in Dhrymes (1969), which

first transforms the GLSEM so that, asymptotically, it “looks” like a GLM

and then represents 2SLS and 3SLS, respectively, as OLS and GLS estimation
in this transformed context. In the second direction (b), we first use a special

notation to make the result visibly obvious by inspection; in addition we also

2In the special case where D is upper triangular and Σ is diagonal, it may be

shown that L
′
1iDσ·i = 0 and, in this case only, the OLS estimator of the structural

parameters is indeed consistent. Such systems are termed simply recursive.
3In order to avoid excessive notational clutter we shall use, in the following dis-

cussion, the notation Πi to indicate not CiD as defined in Eq. (12.3), but to

mean ΠL1i , as well as in all discussions pertaining to the estimation, lim-

iting distributions and tests of hypotheses. In this usage Πi refers to the

coefficients of X in the reduced form representation of Yi , i.e. the endoge-

nous variables that appear as explanatory variables in the ith structural

equation. We shall use the definition CiD , of Eq. (12.3), only in connection

with issues of forecasting from the GLSEM.
4We shall discuss identification issues at some length at a later section.
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express our results in an alternative more standard notation which is very

useful in exploring other GLSEM issues relevant to estimation and testing.
The initial motivation for the 2SLS estimator, which is also responsible

for the terminology “two stage least squares” thus distinguishing it from the

“ordinary least squares” estimator, is as follows: Retracing our steps in the

preceding discussion, we note that the last term in

(
L

′
i

[
Π

′
MxxΠ+D

′
ΣD Π

′
Mxx

MxxΠ Mxx

]
Li

)−1

L
′
i

(
D

′
Σ

0

)
e·i

is simply the probability limit of L
′
iZ

′
Ue·i/T ; examining the random compo-

nent, we see that we are dealing with

1

T
Z

′
U =

1

T

(
Y

′
U

X
′
U

)
=

1

T

[(
Π

′
X

′
U

X
′
U

)
+

(
D

′
U

′
U

0

)]
.

What is responsible for the inconsistency of OLS is the limit of the term
D

′
U

′
U/T ; that term corresponds to the covariance matrix between the

structural errors and the error component of the reduced form system

Y = XΠ + V. If we were to eliminate V from consideration, the resulting

“OLS” estimator would be consistent. Unfortunately, we do not know Π; we

may, however, estimate it consistently by (ordinary) least squares as

Π̃ = (X
′
X)−1X

′
Y.

This is the “first” stage of (two stage) least squares; in the “second” stage, we

regress y·i on Z̃i = (Ỹ , X)Li, where Ỹ = XΠ̃.

Noting that

(Ỹ , X)Li = X(Π̃L1i, L2i) = XS̃i, S̃i = (Π̃, IG)Li, Li = diag(L1i, L2i),

we find that the “second” stage yields

δ̃·i(2SLS) = δ·i + (S̃
′
iX

′
XS̃i)

−1S̃
′
iX

′u·i. (12.13)

The estimator in Eq. (12.13) is the 2SLS estimator of the parameters

in the ith structural equation of the GLSEM. In principle this can be

applied to every equation of the GLSEM. Consequently, by the previous
discussion, it is evident that the 2SLS estimator of the structural parameters

of a GLSEM is consistent.

12.2.1 An Alternative Derivation of 2SLS and 3SLS

By the assumptions made in this model, it is evident that

rank(X) = G, a.c. i.e. with probability one.
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Hence (with probability one), there exists a nonsingular matrix, R, such that

X
′
X = RR

′
.

Consider now the transformation

R−1X
′
y·i = R−1X

′
Ziδ·i +R−1X

′
u·i, i = 1, 2, . . . ,m. (12.14)

It is easily verified, in the transformed model, that

plim
T→∞

1

T
Q

′
·ir·i = 0, where Qi = R−1X

′
Zi, r·i = R−1X

′
u·i.

In effect, this transformation has yielded a formulation in which the condi-

tions responsible for making the OLS estimator in the General Linear Model

consistent hold here as well, at least asymptotically, and in this formulation

the 2SLS estimator is simply the OLS estimator (in the transformed context)!

12.2.2 Systemwide Estimation

As a matter of notation, put

w·i =R−1X
′
y·i Qi = R′S̃i, S̃i = (Π̃, IG)Li

r·i =R−1X
′
u·i Q∗ = diag(Q1, Q2, . . . , Qm) = (Im ⊗R′)S̃,

δ=

⎛
⎜⎜⎝
δ·1
δ·2
...

δ·m

⎞
⎟⎟⎠ r =

⎛
⎜⎜⎝
r·1
r·2
...

r·m

⎞
⎟⎟⎠ w =

⎛
⎜⎜⎝
w·1
w·2
...

w·m

⎞
⎟⎟⎠

S̃ = diag(S̃1, S̃2, . . . , S̃m) a = vec(A) A =

(
B

C

)
, (12.15)

and write the entire system more compactly as

w = Q∗δ + r, Cov(r) = Σ⊗ IG = Φ. (12.16)

The 2SLS estimator in the context of this transformed model is the OLS

estimator
δ̃2SLS = (Q∗′

Q∗)−1Q∗′
w = δ + (Q∗′

Q∗)−1Q∗′
r, (12.17)

while the 3SLS estimator is the generalized least squares (GLS), or feasible

Aitken, estimator

δ̃3SLS = [Q∗′
Φ̃−1Q∗]−1Q∗′

Φ̃−1w = δ + [Q∗′
Φ̃−1Q∗]−1Q∗′

Φ̃−1r. (12.18)
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The notation employed above was particularly well suited for showing that

2SLS is OLS estimation and 3SLS is generalized least squares (GLS)
estimation in the context of the transformed model of Eq. (12.16).

However, it will not be particularly suitable for certain other purposes

in the discussion to follow. Thus, we also present here the alternative

representations.5

(δ̃ − δ)2SLS =
(
S̃′(Im ⊗ M̃xx)S̃

)−1 (Im ⊗X ′)u
T

, M̃xx =
X ′X
T

(δ̃ − δ)3SLS =
(
S̃′(Σ̃−1 ⊗ M̃xx)S̃

)−1

(Σ̃−1 ⊗ IG)
(Im ⊗X ′)u

T
(12.19)

Consistency and Asymptotic Normality of 2SLS and 3SLS

We take up first the issue of consistency of the two estimators. To this end we

note that by the assumptions made above we have, at least, that

X ′X
T

P→ Mxx > 0,

and thus by Proposition 2.64 there exists a non-singular G × G matrix R̄

such that R̄R̄′ =Mxx .

Moreover

Q′
iQi
T

=
Z ′
iXR

′−1R−1X
′
Zi

T
=

L′
i

(
Y ′

X ′

)
X(X ′X)−1X ′ (Y X )Li

T

P→ L′
i(Π, IG)

′Mxx(Π, IG)Li = S′
iMxxSi, (12.20)

because, at least, (X ′V/T ) P→ 0 , thus confirming the implications of

Eq. (12.19) about the consistency of 2SLS and 3SLS estimators.
We shall now derive their limiting distribution. To this end consider

√
T (δ̃ − δ)2SLS =

(
Q∗′

Q∗

T

)−1
Q∗′

r√
T

√
T (δ̃ − δ)3SLS =

(
Q∗′

Φ̃−1Q∗

T

)−1 (
Q∗′

Φ̃−1r√
T

)
.

5Notice that, in this alternative representation, consistency of the 2SLS and 3SLS

estimators is obvious.
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We now have recourse to Proposition 9.6 (of Chap. 9) in order to simplify

certain derivations to follow. From previous definitions of symbols we find

Q∗′Q∗

T
= L′

[
Im ⊗ Z ′X

T

(
X ′X
T

)−1
X ′Z
T

]
L

P→ S′(Im ⊗Mxx)S

Q∗′Φ̃−1Q∗

T

P→ S′(Σ−1 ⊗Mxx)S (12.21)

Q∗′r√
T

∼ S′ (Im ⊗X ′)u√
T

,
Q∗′Φ̃−1r√

T
∼ S′(Σ−1 ⊗ IG)

(Im ⊗X ′)u√
T

,

and we see that the limiting distribution problem is the same whether we

are dealing with 2SLS or 3SLS estimators since both involve the

limiting distribution of (Im ⊗X ′)u)/
√
T . From Proposition 4.1 (Chap. 4)

we see that

1√
T
(Im ⊗X ′)u =

1√
T
vec(X ′U) =

1√
T

T∑
t=1

x′t·ut·. (12.22)

But {x′t·ut·: t = 1, 2, 3, . . .} is a MD sequence because its first moment exists

and E(x′t·ut·|At−1) = 0 , where

At−1 = σ(uq·: q ≤ t− 1).

This is so because xt· contains k lagged endogenous variables and s exoge-

nous variables. The latter are independent of the structural errors, or the

analysis is done conditionally on the exogenous variables, and the lagged

endogenous variables are At−1 -measurable. Moreover, given the conditions on
X ′X/T the sequence obeys a Lindeberg condition, and thus we may apply the

MD CLT, Proposition 9.9 (of Chap. 9), with the Lindeberg condtion (Proposi-

tion 9.7) provided one of the two subsidiary conditions hold. To this end note

that for

ζT =
1√
T
(Im ⊗X ′)u =

1√
T

T∑
t=1

(Im ⊗ x′t·)u
′
t·

Cov(ζT ) = Σ⊗ X ′X
T

P→ Σ⊗Mxx, (12.23)

where the covariance is calculated term by term conditioning on the appro-

priate sub- σ -algebra At−1 . Equation (12.23) satisfies condition i of the MD

CLT. Consequently,

ζT
d→ N(0,Σ⊗Mxx).
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Since

C2 = (S∗′S∗)−1S∗′ΦS∗(S∗′S∗)−1

C3 = (S∗′Φ−1S∗)−1S∗′Φ−1ΦΦ−1S∗(S∗′Φ−1S∗)−1 = (S∗′Φ−1S∗)−1

we conclude

√
T (δ̃ − δ)2SLS

d→ N(0, C2),

√
T (δ̃ − δ)3SLS

d→ N(0, C3).

We have therefore proved

Proposition 12.1. Under the conditions above the system-wide 2SLS and
3SLS estimators of the parameters of the GLSEM are consistent and, moreover,

their limiting distributions are given, respectively, by

√
T (δ̃ − δ)(2SLS)

d→N(0, C2),
√
T (δ̃ − δ)(3SLS)

d→ N(0, C3),

C2 = (S∗′
S∗)−1S∗′

ΦS∗(S∗′
S∗)−1,

C3 = (S∗′
Φ−1S∗)−1, Φ = Σ⊗ IG,

X
′
X

T

P→Mxx = R̄R̄
′
, Si = (Π, IG)Li, S∗

i = R̄
′
Si = R̄

′
(Π, IG)Li,

S∗ = diag(S∗
1 , S

∗
2 , S

∗
3 , . . . , S

∗
m). (12.24)

In terms of the alternative notation the covariance matrices of the systemwide

2SLS and 3SLS are given by

C2 = (S′(Im ⊗Mxx)S)
−1S′(Σ⊗Mxx)S(S

′(Im ⊗Mxx)S)
−1

C3 = (S′(Σ−1 ⊗Mxx)S)
−1.

In Chap. 10, we showed, in the context of the GLM, that the OLS estima-

tor is inefficient relative to the Aitken estimator, using a certain procedure.
Although the same procedure may be used to show that the 3SLS estimator is

efficient relative to the 2SLS estimator, we shall use an alternative argument.

Proposition 12.2. 3SLS are efficient relative to 2SLS estimators in the sense

that C2 − C3 ≥ 0.
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Proof: By Proposition 2.66, (of Chap. 2), it will suffice to show that

C−1
3 − C−1

2 ≥ 0.

Since
Δ = C−1

3 − C−1
2 = S∗′

P
′
[ImG −H ]PS∗,

where H = P
′−1S∗(S∗′

ΦS∗)−1S∗′
P−1, P

′
P = Φ−1, we need only show that

ImG −H ≥ 0. Consider the characteristic roots of the symmetric matrix H,
which is of dimension mG. By Corollary 2.8, the roots of H , given by

|λImG −H | = |λImG − P
′−1S∗(S∗′

ΦS∗)−1S∗′
P−1| = 0

consist of mG−q zeros, where q =
∑m
i=1(mi+Gi), and q unit roots because

the non-zero roots of the characteristic polynomial above are precisely those

of
0 = |μIq − (S∗′

ΦS∗)−1S∗′
P−1P

′−1S∗| = |μIq − Iq| = 0,

which are q unities. Since H is symmetric, its characteristic vectors, i.e. the

columns of the matrix J below, may be chosen to be orthonormal and thus

ImG −H = JJ
′
− J

[
Iq 0
0 0

]
J

′
= J

[
0 0
0 ImG−q

]
J

′
≥ 0.

But then

Δ = S∗′
P

′
J

[
0 0

0 ImG−q

]
J

′
PS∗ ≥ 0.

q.e.d.

12.3 Identification Issues

Because we are dealing with a system the identification of whose parameters

depends (in part) on prior restrictions, it is desirable to examine the nature of
such restrictions, to possibly test for their validity and elucidate the role they

play in the estimation procedures we developed.

In the early development of this literature, see e.g. Anderson and Rubin

(1949, 1950), the basic formulation of the identification problem was this:
Given knowledge of the parameters of the reduced form can we determine

uniquely, within normalization, the parameters of the structural form of the

model? First note that Π is G × m and thus it contains mG parame-

ters. The structural form of Eq. (12.2), Y B∗ = XC +U , contains m2 +mG

parameters and the relation between the two is ΠB∗ = C ; thus we have a sys-
tem of mG equations in m(m+G) unknowns, (the unknown elements of B∗
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and C ). Evidently such a system has no unique solution! It is this requirement

that we expressed under item vi in the discussion below Remark 12.1. In and
of itself, however, this is inadequate because it is only a necessary but not a

sufficient condition for identification. To sharpen the focus, consider the ith

structural equation, and suppose we wish to impose the normalization that

the coefficient of yti in the ith equation is unity, i.e. b∗ii = 1 ; we retain

the previously imposed exclusion restrictions that only mi jointly dependent
(endogenous) and Gi predetermined variables appear as “explanatory” vari-

ables in its right member. This additional requirement (of normalization)

necessitates a modification of the selection matrices defined in Eqs. (12.7) and

(12.8). Thus, concentrating on the ith equation we find

Y b∗·i = (y·i, Yi)
(

1

−β·i

)
= Y (e·i, L1i)

(
1

−β·i

)
, Xc·i = Xiγi = XL2iγi

and thus

b∗·i = L∗
1i

(
1

−β·i

)
, L∗

1i = (e·i, L1i), c·i = L2iγi. (12.25)

Noting that, for the ith equation, the connection between the structural

and reduced form parameters is

Πb∗·i = c·i, or 0 = Πb∗·i − c·i

and substituting from Eq. (12.25), results in

0 = ΠL∗
1i

(
1

−β·i

)
− L2iγ·i = π·i − (Π, IG)Liδ·i, or

π·i = (Π, IG)Liδ·i = Siδ·i. (12.26)

By the convention that there are mi + Gi , explanatory variables in the ith
equation, mi jointly dependent and Gi predetermined variables, the system

in Eq. (12.26) contains G equations and mi+Gi unknowns; thus, it has

a unique solution only if the matrix of the system is of full rank. We have thus

proved

Proposition 12.3. A necessary and sufficient condition for the ith equation

of the GLSEM above to be identified is that

rank[(Π IG)Li] = rank(Si) = mi +Gi. (12.27)

Remark 12.2. The proof of identification above is in the spirit of Anderson

and Rubin (1949, 1950), but its motivation and argumentation represents an

appreciable modification of what is usually done in such discussions.
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Remark 12.3. Notice that the sufficient rank condition can only be

asserted prior to estimation; we can only verify the order condition,
which is merely necessary.

Remark 12.4. In contrast to the Anderson-Rubin treatment of identifiability,
the discussion above makes quite clear the role of the identification condition in

estimating the parameters of the system. In particular observe from Eq. (12.13)

and the surrounding discussion that Si = (Π, IG)Li , and its role is quite

crucial in 2SLS and 3SLS estimation. In this connection also note that we can

reassure ourselves ipso facto that if the 2SLS or 3SLS estimator of some
structural equation can be obtained, that equation is identifiable!

The preceding suggests the following definitions.

Definition 12.1. The ith equation of a GLSEM is said to be identified if
and only if it obeys the identification condition in Eq. (12.27). In practice,

however, we can only check the order condition.

If every equation of a GLSEM is identified, we say that the system is

identified.

Definition 12.2. If for the ith equation of a GLSEM, G > mi + Gi , the

equation is said to be over-identified; if G < mi+Gi it is said to be under-
identified; if G = mi+Gi the equation is said to be just-identified. Thus,

by the order condition the ith equation is identified if G ≥ mi+Gi . Otherwise

it is said to be non-identifiable.

12.3.1 Tests of Over-identifying Restrictions

When an equation is over-identified, G > mi +Gi , the “excess” restrictions
we imposed (beyond normalization), q = G − mi − Gi , are said to be the6

over-identifying restrictions. We may wish to test for their validity, indeed

for the validity of all restrictions.7 This, however, cannot be done routinely

with the formulation of the estimation problem as given above. In that con-

text, all we can do it to re-estimate the model with fewer restrictions (i.e.
more parameters) and then either test the extra parameters so estimated for

6Some readers may be confused by the terminology. To clarify, note that if q > 0 ,

this means that we have specified that more parameters in B and C are zero than

is allowable consistent with identification, i.e. relative to the number of restrictions

that render the equation just identified. To test for their validity we need to allow for

fewer restrictions, i.e. to increase mi and/or Gi ; thus we would then be estimating

a model with more parameters than before!
7As we shall see later this is not possible.
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significance, or engage in a likelihood ratio like procedure by comparing the

sum of squared residuals (from 2SLS or 3SLS) in the case of fewer restrictions
to that of the case with more restrictions. If this difference is “significant”

we conclude that some of the over-identifying restriction may not be valid;

if not, the over-identifying restrictions are valid. This is a very cumbersome

procedure. Instead, we shall give a simpler alternative based on the method of

Lagrange multipliers which, computationally, modifies the estimation problem
as exposited above.

To this end, return to Eq. (12.14) and define

Q = R−1X
′
Z, (12.28)

so that the ith equation may be written as

w·i = Qa·i + r·i, a·i =
(
b·i
c·i

)
, i = 1, 2, 3, . . .m. (12.29)

Letting L∗
1i, L

∗
2i be the complements8 of L1i, L2i of Eqs. (12.7) and (12.8)

in Im and IG, respectively, we may express the prior restrictions as

L∗′
i a·i = 0, L∗

i = diag(L∗
1i, L

∗
2i), (12.30)

so that the 2SLS estimator of the unknown parameters in that equation may

be obtained by the process

min
a·i

1

T
(w·i −Qa·i)

′
(w·i −Qa·i) subject to L∗′

i a·i = 0.

Operating with the Lagrangian expression

F =
1

T
(w·i −Qa·i)

′
(w·i −Qa·i)− 2λ

′
L∗′
i a·i, (12.31)

we obtain, after some rearrangement, the first order conditions

⎡
⎣
Q

′
Q
T L∗

i

L∗′
i 0

⎤
⎦
⎛
⎝ a·i

λ

⎞
⎠ =

⎛
⎝

Q
′
w·i
T

0

⎞
⎠ , (12.32)

where λ is the q = G − mi − Gi -element vector of the Lagrange multipli-

ers, corresponding to the “excess” restrictions beyond normalization. If we
examine the first set of equations in Eq. (12.32)

Q
′
Q

T
a·i + L∗

i λ =
Q

′
w·i
T

=
Q′Q
T

a·i +
Q′r·i
T

,

8This means that L∗
1i is what remains after we eliminate form Im the columns of

L1i and from IG the columns of L2i .
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substitute therein a·i = Liδ·i , and pre-multiply by L′
i , we find, noting that

L′
iL

∗
i = 0 , that the first set of equations in Eq. (12.32) reads

L′
iQ

′
QLi
T

δ̃·i =
L′
iQ

′
QLi
T

δ·i +
L′
iQ

′r·i
T

, or

Q∗′
i Q

∗
i

T
(δ̃ − δ·i) =

Q∗′
i r·i
T

, Q∗
i = QLi,

whose solution is identical9 with the ith sub-vector in Eq. (12.18), which
exhibits the standard system-wide 2SLS estimators. Thus, in deriving the

limiting distribution of the estimators in Eq. (12.32) we need not be concerned

with that of (ã·i − a·i) , which contains a lot of zeros (the over-identifying

restrictions) and whose limiting covariance matrix is thus singular. We con-

centrate instead on the more relevant limiting distribution of the Lagrange
multipliers.

As a matter of notation, set K̃ = Q
′
Q/T and note that

K = plim
T→∞

Q
′
Q

T
=

(
Π

′

IG

)
Mxx(Π, IG).

Thus, K is an (m + G) × (m + G) matrix of rank at most G. It is shown

in Dhrymes (1994, Proposition 6, p. 45) that the ith equation is identified

if and only if K + L∗
iL

∗′
i is of full10 rank (nonsingular).

Because in the matrix[
K L∗

i

L∗′
i 0

]
=

[
A11 A12

A21 A22

]

both diagonal blocks (A11 and A22 ) are singular, we cannot use Proposi-
tion 2.30 to obtain an explicit representation for the 2SLS estimator of a·i,
and the Lagrange multiplier λ. On the other hand, because the ith equation

is identified the condition for invertibility in Proposition 2.31a is satisfied.

Using the latter we find11

[
A11 A12

A21 A22

]−1

=

[
B11 B12

B21 B22

]

9Note, incidentally, that S∗′
i S

∗
i is the probability limit of L′

iQ
∗′Q∗Li/T .

10The symbol L∗
i in this discussion corresponds to the symbol L∗◦

i in Proposi-

tion 6.
11Noting that V −1

11 =
(
plimT→∞

Q′Q
T

)
+ L∗

iL
∗′
i , and that Mxx =

plimT→∞
X′X
T

, and their frequent use in the immediately ensuing discussion, we shall

not, in our usage, distinguish between these probability limits and their definition for

finite samples, letting the context provide the appropriate meaning. We do so only in

order to avoid notational cluttering.
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B11 = V11 − V11L
∗
i (L

∗′
i V11L

∗
i )

−1L∗′
i V11, V11 = (K+L∗

iL
∗′
i )

−1

B12 = V11L
∗
i (L

∗′
i V11L

∗
i )

−1

B21 = (L∗′
i V11L

∗
i )

−1L∗′
i V11

B22 = Iq − (L∗′
i V11L

∗
i )

−1, q = G−Gi −mi. (12.33)

Consequently, we can solve explicitly for these parameters. Doing so, and

utilizing the restrictions imposed by the Lagrange multiplier, we obtain

⎛
⎝ ã·i

λ̃

⎞
⎠ =

⎛
⎝ a·i

0

⎞
⎠+

⎛
⎝B11

B21

⎞
⎠ 1

T
Q

′
r·i,

K̃ =
1

T
Q

′
Q, V11 = (K̃ + L∗

iL
∗′
i )

−1, B11 = V11 − V11L
∗
i (L

∗′
i V11L

∗
i )

−1L∗′
i V11

B21(L
∗′
i V11L

∗
i )

−1L∗′
i V11. (12.34)

Concentrating on the Lagrange multipliers we have

√
T λ̃ = B21

Q′r·i√
T
. (12.35)

Since
Q′r·i√
T

=
1√
T

Z ′X
T

(
X ′X
T

)−1
X ′u·i√
T

∼
(

Π′

IG

)
X ′u·i√
T
,

we need only establish the limiting distribution of the last term, which we
had encountered repeatedly in previous discussions, albeit in a system-wide

context. Thus12

Q′r·i√
T

d→ N(0,Θi), Θi = σii

(
Π′

IG

)
Mxx ( Π Ig ) . (12.36)

Consequently, √
T λ̃

d→ N(0,Ψi), Ψi = B21ΘiB
′
21.

The matrix B21 = (L∗′
i V11L

∗
i )

−1L∗′
i V11 , is of dimension q ×m+G and rank

q ; the matrix Θi is of dimension m+G×m+G and rank G , so that Ψi ,

a q × q matrix, is non-singular provided q ≤ G , which is true in the present

case.

We have thus proved

12Note that Θi is an m+G×m+G matrix of rank G .
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Proposition 12.4. The limiting distribution of the Lagrange multiplier

estimator for the over-identified restrictions in the ith structural equation
is given by

√
T λ̃

d→ N(0,Ψi), (12.37)

Ψi = σii(L
∗′
i V11L

∗
i )

−1[L∗′
i V11

(
Π′

IG

)
Mxx (Π Ig )V11L

∗
i ](L

∗′
i V11L

∗
i )

−1.

The matrix in square brackets, above, is q×q of rank q , and the first and last

matrix terms are non-singular of dimension q×q ; since q = G−mi−Gi ≤ G ,
the matrix Ψi is non-singular, as claimed.

Statistical Tests

Given the limiting distribution in Eq. (12.37) we can test for the validity of all

the over-identifying restrictions by using Eq. (10.31) of Chap. 10. Let A be
an arbitrary, nonrandom s× q matrix, s ≤ q ; then

√
TAλ̃

d→ N(0, AΨiA
′),

and the test statistic for testing the null hypothesis that (some) Lagrange mul-

tipliers are zero, i.e. that (some of ) the restrictions are not binding because

they are true, is given by

τ = T λ̃′Ψ̃−1
i λ̃

d→ χ2
rank(A), where (12.38)

Ψ̃i = σ̃ii(L
∗′
i V11L

∗
i )

−1[L∗′
i V11

(
Π̃′

IG

)
Mxx ( Π̃ IG )V11L

∗
i ](L

∗′
i V11L

∗
i )

−1;

Π̃ = (X ′X)−1X ′Y, σ̃ii =
ũ′·iũ·i
T

,

ũ·i being the 2SLS residuals of the ith equation.

Remark 12.5. Notice that the Lagrange multiplier estimator is centered on
zero; this is because the implicit or null hypothesis is that over-identifying

restrictions are not binding, i.e. they are in fact correct. If we wish

to test all of them, we take A = Iq , in which case the test statistic has a

limiting distribution which is central chi-squared with q degrees of freedom;
if we only wish to test a subset, or even a single one, we define A accordingly.

Acceptance is to be interpreted that, at the specified level of significance, no

restriction is binding i.e. all restrictions tested are in fact true.
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Rejection is to be interpreted that, at the given level of significance, one

or more of the restrictions are in fact binding i.e. that one or more may be
false.

Remark 12.6. Notice that we could not test for the validity of all possible
restrictions; one such possibility is that all elements of a·i (beyond normal-

ization) are zero. In this case there is no simultaneous equations model to

estimate and we are asserting that each endogenous variable equals possibly a

constant plus a zero mean error term. We can only test the validity of those

restrictions beyond the number necessary to attain identification for
the ith structural equation.

It is perhaps instructive to make the point more forcefully, by showing what

would happen if we attempted to estimate the ith equation of a model by

allowing the number of parameters therein to exceed G , i.e. if we take

mi + Gi > G . The reader should bear in mind that identification depends

on the rank of the matrix Si , which crucially depends on the true
parameters, not merely its dimension. So the premise is: the ith

equation is identified, i.e. in fact mi + Gi ≤ G , but through lack of proper

information or otherwise we attempt to fit an equation where mi +Gi > G .

The first thing to note is that the matrix S̃i = (Π̃, IG)Li of Eq. (12.13) is of
dimension G × (mi + Gi) and the matrix S̃′

iX
′XS̃i (also of Eq. (12.13)) is

of dimension (mi + Gi) × (mi + Gi) and of rank at most G < mi + Gi .

Hence its inverse does not exist and thus the 2SLS estimator is not defined.

Consequently, we can test overidentifying restrictions, but we cannot test

all restrictions! So the null hypothesis in the full test exhibited above is best
thought of as: the equation in question is overidentified versus the equation

in question is just identified. An interesting by-product of the preceding

discussion is

Proposition 12.5. When every equation in the system is just-identified

the structural and reduced forms are identical, in the sense that there is

a one-to-one relationship between them; thus they convey precisely the same
information.

Proof: Consider again Eq. (12.13) and note that if the ith structural equation

is just-identified this means that the matrix Si is G×G and non-singular.

Consequently, we can rewrite it as

(δ̃·i − δ·i)2SLS = S−1
i (π̃·i − π·i), i = 1, 2, . . . ,m. (12.39)
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Writing down the entire system, we have

√
T (δ̃ − δ)2SLS = S−1

√
T (π̃ − π)un

π = vec(Π), S = diag(S1, S2, . . . , Sm), δ =

⎛
⎜⎜⎝
δ·1
δ·2
...

δ·m

⎞
⎟⎟⎠ .

√
T (π̃ − π)un

d→N(0, D′ΣD ⊗M−1
xx ). (12.40)

It then follows immediately that in the case where all equations in the

system are just-identified, the structural and reduced form coefficients are
linear transformations of each other and thus convey precisely the

same information about the system.

Other interesting implications of just identifiability of a structural system will

be considered more systematically in a subsequent section.

12.3.2 An Alternative Approach to Identification

In this section,13 we give applications relating to the conditions for the

identifiability of the parameters of a simultaneous equations system.
We recall that the parameters of the ith equation are identified if and only

if the matrix Si, as defined in Eq. (12.13), is of full rank.

The method to be employed below is most easily exposited if we assume

that the structural errors are jointly normally distributed; consequently, if
we write the log-likelihood function, L, divided by the number of observa-

tions, T,

LT (θ) = −m
2
ln2π − 1

2
ln|B∗′

B∗| − 1

2
trΣ−1A∗′

(
1

T
Z

′
Z

)
A∗ (12.41)

we can obtain the maximum likelihood (ML) estimator, θ̂T , which obeys

LT (θ̂T ) ≥ LT (θ), for all θ. (12.42)

Because of Jensen’s inequality, (Proposition 8.14 of Chap. 8), we may write

0 = lnEθ0
L∗(θ)
L∗(θ0)

≤ Eθ0LT (θ)− Eθ0LT (θ0), (12.43)

13This section may be omitted, if desired, without any loss of ability to deal with

the remainder of this volume.
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where L∗ denotes the likelihood function, not the log-likelihood function and

Eθ0 indicates that the expectation is taken relative to the distribution function
with parameter θ0 . Moreover, because we deal with the case where the errors

are identically distributed, given some minimal additional conditions, we can

show that

LT (θ)
a.c.→ L̄(θ, θ0), LT (θ0)

a.c.→ L̄(θ0, θ0), (12.44)

which are the limits of the expectations of LT (θ) and LT (θ0), respectively.

These limits may be determined as follows: since

LT (θ0) = −m
2

− 1

2
ln|Σ0|+

1

2
ln|B∗′

0 B
∗
0 | −

1

2
trΣ−1

0

[
A∗′

0

(
Z

′
Z

T

)
A∗

0

]
,

and since

A∗′
0

(
Z

′
Z

T

)
A∗

0 =
1

T
U

′
U,

by the strong law of large numbers (SLLN) for independent, identically

distributed random vectors it follows that

A∗′
0

(
Z

′
Z

T

)
A∗

0
a.c.→ Σ0.

For A∗′
(Z

′
Z/T )A∗, we first write ZA∗ = ZA∗

0 − Z(A∗
0 −A∗) and note that

A∗′ Z
′
Z

T
A∗ =A∗′

0

Z
′
Z

T
A∗

0 + (A∗
0 − A∗)

′ Z
′
Z

T
(A∗

0 −A∗)

−U
′
Z

T
(A∗

0 −A∗)− (A∗
0 −A∗)

′ Z
′
U

T
.

Again, by using an appropriate SLLN we can show that

Z
′
U

T

a.c.→
(
B∗′−1

0 Σ0

0

)

and

Z
′
Z

T

a.c.→
[
Π

′
0MxxΠ0 Π

′
0Mxx

MxxΠ0 Mxx

]
+

[
Ω0 0

0 0

]
= P0 +

[
Ω0 0

0 0

]
,

where

P0 = (Π0, IG)
′
Mxx(Π0, IG). (12.45)
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Hence, after some manipulation, we find

(A∗
0 −A∗)

′ Z
′
Z

T
(A∗

0 −A∗) a.c.→ (A∗
0 −A∗)

′
P0(A

∗
0 −A∗)

+(B∗
0 −B∗)

′
Ω0(B

∗
0 −B∗)

(A∗
0 −A∗)

′ Z
′
U

T

a.c.→ (B∗
0 −B∗)

′
B∗′−1

0 Σ0, (12.46)

and we conclude that

L̄(θ0, θ0) =−m
2
ln2π − 1

2
ln|Σ0|+

1

2
|B∗′

0 B
∗
0 | −

1

2
trΣ−1

0 Σ0

=−m
2
(ln2π + 1)− 1

2
ln|Ω0|

L̄(θ, θ0) =−m
2
ln2π − 1

2
ln|Σ|+ 1

2
ln|B∗′

B∗| − 1

2
trΣ−1H,

H = (A∗
0 −A∗)

′
P0(A

∗
0 −A∗) +B∗′

Ω0B
∗. (12.47)

By definition, the ML estimator, θ̂T , obeys

LT (θ̂T ) ≥ LT (θ), for all θ ∈ Θ, (12.48)

where Θ is the admissible parameter space; moreover, it is assumed that Θ is
compact (closed and bounded) and that the true parameter θ0 is an interior

point of Θ. A rigorous proof that the ML estimator is strongly consistent

(i.e. that it converges with probability one to the true parameter point) under

certain conditions is given in Dhrymes (1994), Chap. 5, in a more general

context than the one employed here. It is also shown therein that it (the ML
estimator) is a minimum contrast estimator with (asymptotic) contrast

K(θ, θ0) = L̄(θ0, θ0)− L̄(θ, θ0). (12.49)

The contrast14 is a nonnegative function, which attains its global minimum

at θ = θ0; moreover, this minimizer is unique. In the theory of minimum

contrast estimators, identification means the uniqueness of the minimizer in

Eq. (12.49) above. We employ this framework to obtain the necessary and

sufficient conditions for identification of the parameters of the GLSEM in the
context of ML estimation.

14The expression in the left member of Eq. (12.49) is also referred to in the literature

as the (asymptotic) Kullback information of θ0 on θ.
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Since Eq. (12.42) holds for all θ ∈ Θ, we have, in particular,

LT (θ̂T ) ≥ LT (θ0). (12.50)

Since θ̂T ∈ Θ, it must have a limit point, say θ∗; or, alternatively, we may

argue that since LT (θ) is bounded by an integrable function, the convergence
is uniform, thus obtaining

LT (θ̂T )− LT (θ0)
a.c.→ L̄(θ∗, θ0)− L̄(θ0, θ0) ≥ 0.

But the strict inequality cannot hold because of Jensen’s inequality noted

previously, so that we conclude

K(θ∗, θ0) = 0. (12.51)

Clearly, θ∗ = θ0 satisfies Eq. (12.51). Is this the only vector that does so?

Denoting the elements of θ0 by a zero subscript and those of θ∗ without a

subscript, we have

K(θ∗, θ0) = −m
2

− 1

2
ln|Ω0|+

1

2
ln|Σ| − 1

2
ln|B∗′

B∗|+ 1

2
trΣ−1H. (12.52)

Because in the context of the GLSEM the identification conditions are cus-

tomarily stated in terms of the parameters in B∗ and C, we eliminate Σ

from Eq. (12.52) by partial minimization. Thus, solving

∂K

∂vec(Σ−1)
= −1

2
vec(Σ)

′
+

1

2
vec(H)

′
= 0, (12.53)

and substituting Σ = H in Eq. (12.52), we find the concentrated contrast, or

Kullback information,

K∗(Ω0, B
∗, C) =

1

2
ln

(
|Ω0 +B∗′−1(A∗

0 −A∗)
′
P0(A

∗
0 −A∗)B∗−1|

|Ω0|

)
. (12.54)

Evidently, taking A∗ = A∗
0 gives us the global minimum. But is it unique, or,

otherwise put, is the system identifiable? The answer is evidently no. To see

this note that P0 is a square matrix of dimension G+m but of rank G. Hence,
there are m linearly independent vectors, say the columns of the matrix J

such that P0J = 0. Let N be an arbitrary square matrix of dimension m

and consider

A∗ = A∗
0 + JN, so that A∗ −A∗

0 = JN. (12.55)

The matrix A∗
0 + JN also attains the global minimum since

(A∗ −A∗
0)

′
P0(A

∗ −A∗
0) = N

′
J

′
P0JN = 0. (12.56)



374 CHAPTER 12. GLSEM AND TS MODELS

Thus, we have no identification if no restrictions are placed on B∗

and C.
By the conventions of the GLSEM literature, we have at our disposal two

tools: normalization and prior (zero) restrictions. Imposing normalization, we

find A∗ − A∗
0 = −(A − A0), where A = (B

′
, C

′
)
′
. Since in Eq. (12.56) B∗

must be a nonsingular matrix, the only task remaining is to determine what

restrictions must be put on A so as to produce uniqueness in the matrix A
that satisfies

Ψ = (A−A0)
′
P0(A−A0) = 0, (12.57)

Because the matrix P0 of Eq. (12.57) is positive semi-definite, by Corol-

lary 2.14, the condition in Eq. (12.57) is equivalent to the condition

trΨ =

m∑
i=1

(a·i − a0·i)
′
P0(a·i − a0·i) = 0 (12.58)

Recalling the selection matrices employed earlier, we have

a·i − a0·i = Li(δ·i − δ0i ), i = 1, 2, 3, . . . ,m. (12.59)

Therefore, we may rewrite Eq. (12.58) as

trΨ = (δ−δ0)′L′
(Im⊗P0)L(δ−δ0) = 0, L = diag(L1, L2, . . . , Lm). (12.60)

The matrix L
′
(Im ⊗ P0)L is block diagonal and its ith diagonal block is

L
′
i(Π, IG)

′
M̄xx(Π, IG)Li = S

′
iMxxSi, i = 1, 2, 3, . . . ,m. (12.61)

For the solution of Eq. (12.60) to be unique in δ, the matrices in Eq. (12.61)

must be nonsingular. Because Mxx is nonsingular, it follows from Proposi-
tions 2.61 and 2.62 that the necessary and sufficient condition for identification

is, in the context of this discussion,

rank(Si) = mi +Gi, i = 1, 2, 3, . . . ,m, (12.62)

which is the condition for identification usually obtained by conventional
means.

12.4 The Structural VAR Model

The structural VAR Model (SVAR) was developed as an alternative to the

GLSEM in areas of research where there was lack of a broad intellectual

consensus on the type of prior restrictions that should be employed.
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Thus, reflecting a desire to avoid possibly controversial prior restrictions,

many researchers turned to autoregressive (AR) models of the type examined
in Sect. 6.4 of Chap. 6. The models first proposed were of the form

yt· = yt−1·A1 + yt−2·A2 + . . .+ yt−k·Ak + ut·, (12.63)

where yt· is an m -element row vector containing the endogenous variables,
Ai are m × m matrices containing the unknown parameters and ut· is an

m -element row vector containing the error terms. Initially, the latter were

assumed to be iid(0,Σ > 0) . However, it did not take long to realize that a

model where an economic variable is determined solely by its past history is
devoid of any economics and indeed obscures or totally overlooks the essentially

interactive and reactive behavior of economic agents. The natural evolution

was the SVAR model, which is of the form

yt·A0 = yt−1·A1 + yt−2·A2 + . . .+ yt−k·Ak + εt·, (12.64)

where now the matrix A0 introduces the reactive and interactive features of

the economic universe and the new error terms, the ε′ s, are asserted to be

iid(0, Im) . Moreover, it is asserted that A0 is non-singular. The condition
on the covariance of the errors is, in effect, an identification condition.

Remark 12.7. The VAR model, closely associated with the work of Sims
(1980), was in fact first examined by Mann and Wald (1943) who dealt with the

GLSEM as a set of stochastic difference equations, i.e. without exogenous

variables, and obtained identification and estimation by standard means,

i.e. by imposing exclusion restrictions. The later papers by Anderson and
Rubin (1949, 1950) complemented Mann and Wald by introducing exogenous

variables, and imposing exclusion restrictions; they also obtained estimators

by maximum likelihood (ML), as did Mann and Wald.

The novelty of SVAR lies not so much in its formulation, but rather in the

method of estimating its parameters, a topic to which we now turn.

The method is basically this: (a) we first obtain its reduced form, by
multiplying on the right by A−1

0 ; (b) having done so we obtain the matrix

of residuals, say Û and estimate the reduced form covariance matrix, say

Σ̂ = Û ′Û/T ; (c) noting that the reduced form covariance matrix is (A0A
′
0)

−1 ,

decompose Σ̂−1 , imposing prior restrictions on the elements of A0 ,

as needed, to produce a unique estimator thereof.
Following this process, we obtain the reduced form

yt· =
k∑
i=1

yt−i·Πi + ut·, Πi = AiA
−1
0 , ut· = εt·A−1

0 , i = 1, 2, 3, . . . , k.

(12.65)
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and we write the entire sample as

Y = Y ∗Π∗ + U, Y ∗ = (Y−1 Y−2 . . . Y−k ) , Π∗ =

⎛
⎜⎜⎝

Π1

Π2
...

Πk

⎞
⎟⎟⎠

y= (Im ⊗ Y ∗)π∗ + u, y = vec(Y ), π∗ = vec(Π∗), u = vec(U). (12.66)

We then obtain the OLS estimator of π∗ and we estimate the covariance

matrix, Σ̃ as

π̃∗ = [Im ⊗ (Y ∗′Y ∗)−1Y ∗′]y = π∗ + [Im ⊗ (Y ∗′Y ∗)−1Y ∗′)]u,

ũ= [Im ⊗ (Y ∗′Y ∗)−1Y ∗′)]u, Σ̃ =
Ũ ′Ũ
T

, Ũ = mat(ũ), (12.67)

where mat is the (re)matricizing operator that reverses the vec operator, i.e.
if u = vec(U) , then U = mat(u) .

Since

Σ̃−1 = Ã0Ã
′
0,

the procedure relies on Proposition 2.62 or Corollary 2.15, of Chap. 2, to argue
that the implied estimator of A0 is that non-singular matrix that decomposes

the positive definite matrix Σ̃−1 . The problem is that Proposition 2.62

and/or Corollary 2.15 do not assert that such a matrix is unique.

Indeed, if Ã0 serves that purpose, then so does Ã0W , where W is any
arbitrary (conformable) orthogonal matrix. Thus, we have again an

identification problem that necessitates prior restrictions, even though

one of the chief motivations for the SVAR was to avoid “arbitrary” prior

restrictions. But the situation here is even worse, in that the nature of the

problem requires us to impose just identifiability restrictions; as we saw in
a previous section, parameters estimated under conditions of just identifiability

do not contain any additional information beyond that which is conveyed by

the information utilized for obtaining them, in this case the estimator of the

covariance matrix of the reduced form, i.e. the simple VAR!. The
reason is as follows: the matrix Σ̃ contains m(m+1)/2 distinct elements;

Ã0 contains, potentially, m2 distinct elements; an orthogonal matrix obeys

WW ′ = Im , which implies that m(m− 1)/2 restrictions need to be imposed

for uniqueness. Another way of putting this is to note that the proposed

decomposition has to satisfy the equations
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σ̃ij = ãi·ã′j·, i, j = 1, 2, . . . ,m, (12.68)

where ai· is the ith row of A0 .

Because of symmetry m(m− 1)/2 of the equations are redundant, so that
there are in fact only m(m + 1)/2 equations to determine m2 unknowns.

Even though the equations are nonlinear, it should be clear to the reader

that a unique solution cannot possibly exist, without imposition of

restrictions on the elements of A0 . We need at least m(m−1)/2 restric-
tions so that the unknown elements of A0 are reduced to m(m + 1)/2 , the

number of distinct equations. But this means that we render the system in

Eq. (12.68) just-identified. One typical choice by those applying the SVAR

model is to take A0 to be lower or upper triangular.

Example 12.1. An example will, perhaps, illustrate best the problematic

nature of the SVAR model. Suppose we have estimated

(
Ũ ′Ũ
T

)−1

= Σ̃−1 =

⎡
⎣ 145 2 72

2 13 15

72 15 61

⎤
⎦ .

Following the procedure outlined above, we may obtain an estimator of A0

using the triangular decomposition of positive definite matrices , i.e.

Ã0 =

⎡
⎣

√
145 0 0

2
√
145

145
3
√
30305
145 0

72
√
145

145
677

√
30305

30305
46

√
209

209

⎤
⎦ =

⎡
⎣ 12.04 0 0

.17 3.60 0

5.98 .006 3.18

⎤
⎦ , (12.69)

and it can, indeed, be verified that Ã0Ã
′
0 = Σ̃−1 . However it can also be

verified that

Â0 =

⎡
⎣ 1 0 12

2 3 0
0 5 6

⎤
⎦ (12.70)

satisfies the condition

Σ̃−1 = Â0Â
′
0!

Needless to say, the economics implied by Ã0 of Eq. (12.69) and Â0 of

Eq. (12.70) are vastly different but the empirical basis of the two claims

are identical, viz. the inverse of the estimated covariance matrix of the

reduced form errors.
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12.5 Forecasting from GLSEM and TS

Models

12.5.1 Forecasting with the GLSEM

Preliminaries

Given the discussion in previous sections it is relatively simple to use the esti-
mated GLSEM for one step ahead forecasts. However, it should be noted

that the structural form cannot be used for forecasting even one

step ahead. This is so since in order to forecast one of the dependent

variables, even one period beyond the sample, would require us to specify

not only the exogenous variables in that future period, but also all
other jointly dependent (endogenous) variables as well! Thus, for

forecasting purposes we can only use the reduced form.

Definition 12.3. The structural and reduced forms of the GLSEM are

given by Eqs. (12.1) and (12.3), respectively. The reduced form, whose

representation is reproduced below,

Y = XΠ+ V, Π = CD, V = UD, D = B∗−1

can be estimated in any one of at least three ways, in the context of this
volume; one can use:

i. The unrestricted reduced form, reproduced just above, which ignores all
restrictions, including normalization associated with the structural form,

and estimate

Π̃un = (X ′X)−1X ′Y, or

(π̃ − π)un = (D′ ⊗ IG)(Im ⊗ (X ′X)−1)(Im ⊗X ′)u,

using the notation π = vec(Π) .

ii. The restricted reduced form induced by the 2SLS estimators of the

structural form

Π̂RRF (2SLS) = C̃2SLSD̃2SLS , D̃2SLS = (I − B̃2SLS)
−1; and

iii. The restricted reduced form induced by the 3SLS estimators of the

structural form

Π̂RRF (3SLS) = C̃3SLSD̃3SLS, D̃3SLS = (I − B̃3SLS)
−1.
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Before we proceed with the discussion of forecasting issues, however, we

need to derive all relevant limiting distributions. The unrestricted reduced
form, as noted above, is estimated by least squares. The restricted reduced

form is estimated as C̃D̃ , where C̃, D̃ contain the structural parameters

estimated by 2SLS or 3SLS methods.

Thus, the restricted reduced form estimator is given by

Π̂−Π = C̃D̃ − CD = C̃D̃ − C̃D + C̃D − CD

= Π̂(B̃ −B)D + (C̃ − C)D = (Π̂, IG)

(
B̃ −B

C̃ − C

)
D, D = (I −B)−1,

and we note that,15 using the results in Proposition 4.4 of Chap. 4,

vec

(
B̃ −B

C̃ − C

)
= L(δ̃ − δ); thus

√
T (π̃ − π)un ∼ (Im ⊗M−1

xx )
(Im ⊗X ′)u√

T

d→ N(0,Φ1),

Φ1 = (D′ ⊗ IG)(Σ⊗M−1
xx )(D ⊗ IG), (12.71)

√
T (π̂ − π)RRF (2SLS) = (D′ ⊗ IG)Ŝ

√
T (δ̃ − δ)2SLS

√
T (π̂ − π)RRF (3SLS) = (D′ ⊗ IG)Ŝ

√
T (δ̃ − δ)3SLS

√
T (δ̃ − δ)2SLS

d→ N(0, C2),
√
T (δ̃ − δ)3SLS

d→ N(0, C3)

C2 = (S′(Im ⊗Mxx)S)
−1S′(Σ⊗Mxx)S(S

′(Im ⊗Mxx)S)
−1

√
T (π̂ − π)RRF (2SLS)

d→ N(0,Φ2), Φ2 = (D′ ⊗ IG)SC2S
′(D ⊗ IG)

(12.72)

√
T (π̂ − π)RRF (3SLS)

d→ N(0,Φ3), Φ3 = (D′ ⊗ IG)SC3S
′(D ⊗ IG),

(12.73)

C3 = (S′(Σ−1 ⊗Mxx)S)
−1.

This is an opportune time to examine the issue of the difference, if any, between

the restricted and unrestricted reduced form estimators, as well as the
differences between the 2SLS and 3SLS estimators, especially when the system

is just identified. A relatively easy calculation will prove

15We also include below the result for the unrestricted reduced form for ease of

reference.



380 CHAPTER 12. GLSEM AND TS MODELS

Proposition 12.6. The following statements are true when all equations of

the GLSEM are just identified.

i. The 2SLS and 3SLS are identical with probability one, in the sense that

their limiting distributions are identical;

ii. RRF(2SLS) and RRF(3SLS) are identical with probability one, in the sense

that they have the same limiting distribution;

iii. Unrestricted and all (both) restricted reduced form estimators are identical

with probability one, in the sense that they all have the same limiting
distribution.

Proof: Under the premise of the proposition S is a nonsingular matrix. Thus,

C2 = C3 = S−1(Σ⊗M−1
xx )S

′−1, (12.74)

which proves i; it follows immediately that

Φ2 = Φ3 = D′ΣD ⊗M−1
xx , (12.75)

which proves ii; finally a comparison with Eq. (12.71) above proves iii.

q.e.d.

In the general case, i.e. when the equations of the GLSEM are not just-

identified we have

Proposition 12.7. The following statements are true, when not all of the

equations of the GLSEM are just-identified.

i. The 3SLS induced restricted reduced form, RRF(3SLS), estimator is effi-

cient relative to the 2SLS induced restricted reduced form, RRF(2SLS),

estimator;

ii. RRF(3SLS) is efficient relative to the unrestricted reduced form estimator;

iii. The RRF(2SLS) and unrestricted reduced form estimators cannot be

ranked in the sense that the difference of the covariance matrices in their

respective limiting distributions is indefinite.

Proof: To prove i we note that

Φ2 − Φ3 = (D′ ⊗ IG)S(C2 − C3)S
′(D ⊗ IG);
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since the matrix (D′⊗ IG)S is of full column rank, and we had already shown

in earlier sections that C2 −C3 ≥ 0 , it follows that Φ2 −Φ3 ≥ 0 . The proofs
of ii and iii are too complex to produce here, but they are easily found in

Dhrymes (1973) or Dhrymes (1994, Theorem 5, pp. 96ff).

Forecasting with the GLSEM

What are the properties of one-step-ahead forecasts obtained by the three
alternatives? Since we generally do not make distributional assumptions

beyond the existence of second moments and the like, we need to rely on

asymptotic theory, which we developed in the previous section specifically for

this purpose.
The one step ahead forecast presents no new problems. Thus,

ŷT+1· = xT+1·Π̂, or ŷ′T+1· = (Im ⊗ xT+1·)π̂

e′T+1· = y′T+1· − ŷ′T+1· = (Im ⊗ xT+1·)(π̂ − π) + v′T+1·, (12.76)

where the second equation above denotes the forecast error; the latter, even if

conditioned on the actually observed predetermined variables and the specified
or hypothesized exogenous variables,16 contains two components or sources of

uncertainty (randomness), one related to the reduced form error, ( v′T+1· ), and
the other to the fact do not know the structural form, we only have an

estimate. But, given the assumptions embedded in the specification
of the GLSEM, and conditionally on the predetermined and specified

(future) exogenous variables, these two sources are independent. Thus,

if the initial sample is sufficiently large, we can approximate

(π̂−π)RRF (2SLS) ≈ N(0,Φ2/T ), (π̂−π)RRF (3SLS) ≈ N(0,Φ3/T ), (12.77)

respectively, for 2SLS and 3SLS based restricted reduced forms. Moreover

from Eqs. (12.72) and (12.73) we find

Cov(e′T+1·)RRF (2SLS) ≈ N(0,Ψ2), (12.78)

Ψ2 = D′ΣD + (Im ⊗ xT+1·)(D′ ⊗ IG)S(C2/T )

×S′(D ⊗ IG)(Im ⊗ x′T+1·)

Cov(e′T+1·)RRF (3SLS) ≈ N(0,Ψ3), (12.79)

Ψ3 = D′ΣD + (Im ⊗ xT+1·)(D′ ⊗ IG)S(C3/T )

S′(D ⊗ IG)(Im ⊗ x′T+1·)
16In the forecasting literature, at least the one found in public discussions, the

specification of the exogenous variables is referred to as “scenarios”.
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The analogous expressions for the one step ahead unrestricted reduced

form forecast is given by

ŷT+1· = xT+1·Π̃, or ŷ′T+1· = (Im ⊗ xT+1·)π̃

(e′T+1·)un = y′T+1· − ŷ′T+1· = −(Im ⊗ xT+1·)(π̃ − π)un + v′T+1·,

Cov(e′T+1·)un ≈ N(0,Ψ1),Ψ1 = D′ΣD

+(Im ⊗ xT+1·)(D′ΣD ⊗M−1
xx /T )(Im ⊗ x′T+1·), or

Ψ1 = D′ΣD
(
1 +

xT+1·M−1
xx x

′
T+1·

T

)
. (12.80)

Remark 12.8. Since, as we have just seen, a one step ahead forecast is sim-

ply a linear function of the reduced form estimates, it is immediate that
efficiency in estimation translates into efficiency of forecasts. Thus, forecasts

through RRF(3SLS) are efficient relative to other forecasts in the sense of hav-

ing a smaller covariance matrix. What, if anything, is different when we

attempt a forecast involving more than one period ahead. We will elucidate
the issues by examining the case of a three-step-ahead forecast, which is suf-

ficiently complex to bring forth all the relevant issues and at the same time

remains manageable.

When we did one step ahead forecast we used the standard notation

xT+1· = (yT ·, yT−1·, . . . , yT+1−k·, pT+1·),

and all entries therein were actually observed, or specified as in the

case of pT+1· .
When we attempt, say, a two step ahead forecast, we cannot specify

xT+2· in the usual way because yT+1· is not observed; thus we cannot

proceed routinely. What is done in practice, is to substitute for it the one

step ahead forecast obtained earlier. The same will be true if we had to
do a three period ahead forecast, in which case the requisite predetermined

variables yT+1·, yT+2· are not observed; in their stead we use the one and two

period ahead forecasts, ŷT+1·, ŷT+2· . This provides an operational mech-

anism for actually carrying out the requisite forecasts but complicates
the analysis of the sources of randomness and makes more difficult than it need

be, the derivation of the covariance matrix of the three period ahead forecast.

For the purpose of analyzing these issues only we shall follow a slightly

different strategy. Let us take up first the simpler case of a two period ahead

forecast. Put17

ŷT+2· = xT+2·Π̂− eT+1·Π̂1, (12.81)

17In the following discussion Π1 and Π2 refer to these entities as defined in

Eq. (12.3).
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and note what is being done; first, xT+2· contains the unobserved predeter-

mined variable yT+1· , which may be written as yT+1· = ŷT+1·+eT+1· , where
the second term is as defined in Eq. (12.76). If we examine the nature of the

matrix Π in Eq. (12.3), we see that we have corrected for the inaccuracies in

xT+2·Π̂ by subtracting eT+1·Π̂1 . Thus, we may write

eT+2· = yT+2· − ŷT+2· = −xT+2·(Π̂−Π) + eT+1·Π̂1 + vT+2·

= −xT+2·(Π̂−Π)− xT+1·(Π̂−Π)Π̂1 + vT+2· + vT+1·Π̂1, or

eT+2· ≈ −xT+2·(Π̂−Π)− xT+1·(Π̂−Π)Π1 + vT+2· + vT+1·Π1, (12.82)

and observe that the forecast error is now more complex than the one for the

one period ahead forecast. Similarly, for the three period ahead forecast error

we have

eT+3· = yT+3· − ŷT+3· = −xT+3·(Π̂−Π) + eT+1·Π̂2 + eT+2·Π̂1 + vT+3·, or

eT+3· ≈ −xT+3·(Π̂−Π)− xT+1·(Π̂−Π)Π2 − xT+2·(Π̂−Π)Π1 + vT+3·
+vT+2·Π1 + vT+1·Π2. (12.83)

To see what the covariance matrix of the three periods ahead forecast is,
approximately, consider

e′T+3· ≈ −(Im ⊗ xT+3·)(π̂ − π)− (Π′
2 ⊗ xT+1·)(π̂ − π) (12.84)

−(Π′
1 ⊗ xT+2·)(π̂ − π) + v′T+3· +Π′

1v
′
T+2· +Π′

2v
′
T+1·.

Thus, the approximate covariance matrix for the three periods ahead forecast,
based on RRF(3SLS) is

Cov(e′T+3·) ≈ (Im ⊗ xT+3·)Ψ3(Im ⊗ x′T+3·) + (Π′
1 ⊗ xT+2·)Ψ3(Π1 ⊗ x′T+2·)

+(Π′
2 ⊗ xT+1·)Ψ3(Π2 ⊗ x′T+1·) + crossproducts + V +Π′

1VΠ1 +Π′
2VΠ2,

(12.85)

and if we proceed to a four periods ahead forecast the first three terms of

Eq. (12.85) will become four terms, as will the last three terms, with a cor-

responding increase in the number of cross products. Note that because

we estimate Π on the basis of the first T observations the last three
terms of Eq. (12.84), corresponding to the reduced form errors for periods

T + 1, T + 2, T + 3 are not involved in any cross products.
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12.5.2 Forecasting with Time Series Models (TSM)

Preliminaries

Forecasting with time series (TS) is not essentially different from what one

does in econometrics with respect to the GLM, or the GLSEM, but it is not
identical, reflecting the differences in the data and problems encountered in

the statistics, engineering or physical sciences as compared to those typically

found in economics. Time series for dynamic systems are long in the disci-

plines mentioned above, but not in the case of economics. The universe in

which the data originate in the former tend to be governed by more stable
relationships, but much less so in economics. This makes economic forecasting

extremely difficult and it accounts for the greater emphasis in the specification

of economic relationships than we find in time series modeling. In the latter we

rely solely on the past history of the phenomenon studied to provide us with
insight into its future development. A similar reliance in economics is rarely

productive of insights, except possibly with so called high frequency data in

certain financial markets.

In Chap. 6, we dealt with the basic concepts of time series and, in Exam-

ple 9.5 (Chap. 9), we have also estimated and gave the limiting distribution
of parameters in the case of multivariate AR(m) sequences. It is highly

recommended that the reader review these sections before proceeding.

In previous discussions we did not produce estimators and their limiting

distributions in the case of MA(n) or ARMA(m, n) , whether scalar or mul-
tivariate. Since this is not a volume on TS per se it would take us too far

afield to discuss these issues in detail; and even though we shall only consider

scalar MA(n) and ARMA(m, n) sequences, we shall provide sufficient infor-

mation for an interested reader to pursue their generalization to multivariate

sequences, if desired.
The plan is roughly as follows: (a) The main tool of analysis in TS is the

autocovariance function; thus, we shall define and obtain the autocovariance

generating function (AGF) of stochastic sequences, analogous to the moment

generating function (MGF) the reader is no doubt familiar with in connection
with random variables. This enables us to express the AGF in terms of the

underlying parameters of the sequences in question. (b) The main tool of

prediction, or forecasting, in time series relies on the concept of the best

linear predictor which we shall derive, and finally (c) we shall provide the

limiting distribution of an arbitrary size vector of autocovariance estimators.
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The Autocovariance Generating Function (AGF)

Definition 12.4. Let {c(k): k ∈ T } 18 be an autocovariance function,

or sequence, of a (stationary) time series. The autocovariance generating

function, AGF, is generally defined by the series

AGF =

∞∑
k=−∞

c(k)zk,

where z is a real or complex indeterminate. If we specify the stochastic

sequence, say {Xt: t ∈ T } , the autocovariance function above is that

of that specific time series and for this reason we use the notation

AGF (X) =
∞∑

k=−∞
c(k)zk; if the TS is stationary we have the

representation

AGF (X) = c(0) +

−1∑
k=−∞

c(k)zk +

∞∑
k=1

c(k)zk, or

AGF (X) = c(0) +
∞∑
k=1

c(k)[zk + z−k]. (12.86)

Proposition 12.8. The AGF of a (stationary) zero mean19 sequence that is

capable of having the representation

Xt =
∞∑

j=−∞
ψjut−j, u ∼WN(0, σ2), such that (12.87)

∞∑
j=−∞

|ψj |zj < ∞, for κ−1 < |z| < κ, κ > 1.

is given by

AGF (X) = σ2ψ(z)ψ(z−1), ψ(z) =

∞∑
j=−∞

ψjz
j, (12.88)

and analogously with ψ(z−1) .

18We use the symbol T to denote the linear index set to avoid confusion with T ,

which was used repeatedly in this chapter to denote the length of the sample.
19If the sequence does not have zero mean one uses, instead of Xt , Xt −μ , where

μ is the constant mean of the sequence, or xt − x̄ if we are using a realization to

estimate autocovariances.
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Proof: First, we note that under the conditions above, the X sequence is

stationary and thus c(k) = c(−k) ; second c(k) = EXt+kXt .
20 It follows

then, form Eq. (12.87) and the surrounding discussion, that

AGF (X) = c(0) + σ2
−1∑

k=−∞

∞∑
j=−∞

ψj−kψjzk + σ2
∞∑
k=1

∞∑
j=−∞

ψj+kψjz
k, or

AGF (X) = c(0) + σ2
∞∑
k=1

∞∑
j=−∞

ψjψj+k[z
k + z−k]. (12.89)

Next, note that

ψ(z)ψ(z−1) =

∞∑
j=−∞

∞∑
s=−∞

ψjψsz
j−s, (12.90)

with the notational convention that the positive power (j) corresponds to the

index of the first component of ψjψs , and the negative power (-s) corresponds
to the index of the second component. It follows then that the power (of z)

corresponding to ψsψj is −(j − s) . More generally, let r = j − s ; then

the terms ψjψs are attached to zr and ψsψj are attached to z−r . The

two products are identical, and putting j = r + s , we have the pairings
ψsψs+r[z

r + z−r] , for r ≥ 1 , and for r = 0 we have the term
∑∞

s=−∞ ψ2
s ;

thus, we can write

ψ(z)ψ(z−1) =

∞∑
s=−∞

ψ2
s +

∞∑
r=1

∞∑
s=−∞

ψsψs+r [z
r + z−r].

Since in Eq. (12.89), c(0) = σ2
∑∞

j=−∞ ψ2
j , AFG(X) = σ2ψ(z)ψ(z−1) , a

relation valid for κ−1 < |z| < κ κ > 1, the two expressions are identical.

q.e.d.

Example 12.2. Consider the MA(n) sequence Xt ; its autocovariance

generating function as adapted from Eqs. (12.89) or (12.90) is

AGF (MA(n))(z) = σ2

⎛
⎝ n∑
j=0

a2j +

n∑
r=1

n−r∑
j=0

ajaj+r[z
r + z−r]

⎞
⎠ κ−1 < |z| < κ,

20There is a convention in notation the reader may not be aware of, viz. the lag

k is, by this convention, the difference between the index of the first factor, Xt+k

and the second factor Xt . Thus the autocovariance at lag −k is EXtXt+k or,

of course, EXt−kXt . Since the two terms under expectation commute it is evident

that c(k) = c(−k) . This is of course obvious also by the very definition of stationary

sequences. To avoid such minor confusions one generally defines c(k) = EXt+|k|Xt

whether k is positive or negative.
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with the understanding that as = 0 for s ≥ n + 1 . Needless to say when n

is finite the restriction on |z| is irrelevant. It follows then immediately that,
for autocovariances at positive lag k , we have

c(0) = σ2
n∑
j=0

a2j , c(1) = σ2
n−1∑
j=0

ajaj+1, c(2) = σ2
n−2∑
j=0

ajaj+2 (12.91)

c(3) = σ2
n−3∑
j=0

ajaj+3, and finally c(n) = σ2
n−n∑
j=0

ajaj+n = σ2a0an

c(n+ s) = 0, s ≥ 1, a0 = 1,

and since we have 11 equations in 11 unknowns we can solve them, even though

the equations are nonlinear. This is facilitated by noting that⎛
⎝ n∑
j=0

aj

⎞
⎠

2

=

n∑
j=0

a2j + 2

n∑
r=1

n−r∑
j=0

ajaj+r =
1

σ2

(
c(0) + 2

n∑
k=1

c(k)

)
.

The reason we present examples like the one above is to facilitate the deriva-
tion of autocovariances at certain lags, from the parameters (coefficients)

that define the stochastic sequence in question. Thus, when such

parameters can be estimated directly, as we did with the multivari-

ate AR(m) of Example 9.5 (Chap. 9), there is no need to derive the
AGF for the scalar AR(m) . But to be complete, we simply display the

AGF of a scalar AR(m) ; thus,

AGF (AR(m))(z) = σ2 1

b(z)b(z−1)
, κ−1 < |z| < κ, (12.92)

where b(z) =
∑m

j=0 bjz
j, b(z−1) =

∑m
j=0 bjz

−j, b0 = 1 , and the bj are the

coefficients of the lag polynomial b(L) =
∑m
j=0 bjL

j.

Finally, in the case of an ARMA(m, n) sequence, we have not given a

way of estimating its parameters (a) because it involves a much more com-
plex procedure, whose derivation lies outside the scope of this volume, and

(b) because it has a rather limited direct application in econometrics, where

ARMA-like specifications generally correspond to exogenous variables not

to error sequences. There are several algorithms for obtaining such esti-

mates and the interested reader may find them in many undergraduate texts
on TS or can find a more advanced and complete treatment in Brockwell and

Davis (1991), Chap. 8. The ARMA(m, n) AGF is given by

AGF (ARMA(m, n))(z) = σ2 a(z)a(z
−1)

b(z)b(z−1)
. (12.93)
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Best Linear Predictor (BLP)

Definition 12.5. Let {Xt: t ∈ T } be a zero mean stationary time series

indexed on the linear index set {T : 0,±1,±2,±3, . . .} . The best linear

predictor of

Xt+h, h ≥ 1 , given {X1, X2, . . . , Xn} , is the function

X̂t+h =

n∑
j=1

αjXn+1−j , (12.94)

which minimizes

S = E(Xn+h −
n∑
j=1

αjXn+1−j)2.

Some authors use the notation X̂t+h = Pn(Xt+h) , where P is the prediction

operator; the subscript indicates the number of prior realizations used and the
argument is the entity to be predicted.

The first order conditions are

∂S

∂α
= −2E(Xn+h − a′X(n))X

′
(n) = 0, X(n) =

⎛
⎜⎜⎜⎝

Xn

Xn−1

...

X1

⎞
⎟⎟⎟⎠ . (12.95)

Writing Eq. (12.95) more extensively, we obtain

EXn+hX
′
(n) = α′EX(n)X

′
(n), or α = Cn(i− j)cnh, (12.96)

Cn(i− j) = (EXn+1−jXn+1−i), i, j = 1, 2, . . . , n, (12.97)

cnh = (EXn+hXn EXn+hXn−1 . . . EXn+hX1 )
′
, or

cnh = ( c(h) c(h+ 1) . . . c(h+ n− 1) )′ , (12.98)

where Cn(i− j) , cnh are, respectively, the matrix of autocovariances of X(n)

and the vector of autocovariances between Xt+h and the elements of the

vector X(n) .

Remark 12.9. Notice the similarities and differences in the equations above,

especially Eq. (12.96), relative to what we have in econometric applications
of the GLM, as specified for example in Eqs. (10.1) through (10.4) of Chap. 10.

In the latter, the equivalent of C(i−j) would have been a set of observations on

the variables in the vector X(n) , say the matrix W , and plimN→∞(W ′W/N)

would converge to the equivalent of C(i − j) . In the notation of Chap. 10,
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it is the matrix X ′X/T . In time series we have only one observation

(realization) on any element of the time series, Xt . Thus what we
do in the GLM is not available to us in TS analysis. Moreover, in

the econometric applications of the GLM we are able to conduct analyses of

the results, conditional on the equivalent of X(n) . This is not done in the

context of time series (TS) analysis. Notice, also that in the GLM context

of Eqs. (10.1) through (10.4) X ′y/T is the equivalent of cnh in the TS con-
text. Finally, in the GLM the probabilistic properties of the estimator of the

parameter vecor, i.e. the coefficient vector of the explanatory variables, which

are the equivalent of X(n) , depends chiefly on the error term (of the GLM),

something that is not directly available in TS analysis. Instead, we rely on the
expected values, EXn+hX(n) , EX(n)X

′
(n) , the essential parameters of the

TS, viz. their variances and autocovariances which are evidently non-random.

Thus, the “regression” coefficients, the elements of the vector α , are estimated

indirectly through the estimated autocovariances.

These features make TS analysis somewhat easier to comprehend but make

the determination of the probabilistic features of the forecasts more difficult

to pin down. For this reason we shall not give as complete a coverage of the
probabilistic properties of TS forecasts as we did in the case of forecasts of the

far more complex GLSEM.

Estimation and Limiting Distribution of Autocovariances

To treat forecasting with time series symmetrically with our treatment of fore-

casting from the GLSEM, we need to provide estimators of the autocovariances

as well as establish their limiting distributions. Since this is not a volume

devoted to time series we shall limit our scope. First, we shall only deal the
moving average (MA), autoregressive (AR) and autoregressive moving average

(ARMA) sequences. Second, to facilitate and simplify the derivation of the

relevant limiting distributions, we shall assert that the underlying u -sequence

defining them, is iid(0, σ2) , rather than the standard WN(0, σ2) . Where

appropriate, all sequences are taken to be causal and invertible. Second,
we shall only deal with scalar stochastic sequences, and we shall

omit treatment of multivariate (vector) TS.

Estimation of Autocovariances

In this section we deal, as we noted above, with zero mean stationary time

series which are, where appropriate, causal and invertible. Estimation of

autocovariances is the same whether we are dealing with MA(n) , AR(m) or

ARMA(m, n) TS. The nature of the TS will play a role only if we wish to

connect autocovariances with the basic parameters of the TS, i.e. c(k) would
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consist of different parametric configurations depending on whether we are

dealing with MA(n) , AR(m) or ARMA(m, n) TS. Generally, this is not
an issue in forecasting and, at any rate, this representation is rather complex

if the orders m, n are at all large, like more than 3 or 4. The reader can

determine these relationships by examining the representation of such TS in

their MA(∞) form.

Let {xt: t = 1, 2, . . . , N} be a realization; for any integer k the kth
order autocovariance, or the autocovariance at lag k , is estimated by21

ĉ(k) =

∑N−|k|
1 xt+|k|xt

N
, −N < k < N. (12.99)

Since we do not specify distributional properties of the TS under consideration

we do not have any results for their “small sample” distribution, beyond their
expected values. Even asymptotically, to establish their limiting distribution,

we need additional assumptions on the existence of moments (of the basic

iid(0, σ2) ), which are stated in the proposition below.

Proposition 12.9. Let {Xt: t ∈ T } be a stochastic sequence that has the

representation

Xt =

∞∑
j=−∞

ψjut−j,
∞∑

j=−∞
|ψj | <∞, ut ∼ iid(0, σ2) (12.100)

and, moreover, suppose that22

Eu4t = ησ4, for some constant η. (12.101)

Then for any integer s ∈ T
ĉ(s) = (ĉ(1), ĉ(2), . . . , ĉ(s))′, obeys

√
N(ĉ(s) − c(s))

d→ N(0, V ), where (12.102)

V =

(
(η − 3)c(i)c(j) +

∞∑
k=−∞

c(k)c(k − i+ j)

+c(k + j)c(k − i)

)

, j = 1, 2, . . . , s, and N is the length of the realization,

where the ĉ(k) are defined in Eq. (12.99).

21Even though dividing by N , instead of N − k , renders this estimator biased,

it is the preferred practice in this literature because it preserves the positive semi-

definiteness of the autocovariance matrix or function.
22Note that when the u sequence is also N(0, σ2) , Eu4t = 3σ4!
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Proof: See Brockwell and Davis (1991), Proposition 7.3.4, pp. 229ff.

Prediction Based on BLP

To make use of the results obtained in the earlier discussion of the BLP (best

linear predictor) we need to adapt the results of Proposition 12.9 to handle

the limiting distribution of the estimator of the BLP vector α = C−1
n cnh ,

obtained from Eqs. (12.97) and (12.98); thus, we need to determine the limiting
distribution of

α̂− α = Ĉ−1
n ĉnh − Ĉ−1

n cnh + Ĉ−1
n cnh − C−1

n cnh or

α̂− α = Ĉ−1
n (ĉnh − cnh − (Ĉn − Cn)α)

= Ĉ−1
n

(
ĉnh − cnh − (α′ ⊗ In)vec(Ĉ − C)

)
. (12.103)

We note that Ĉ − C is a symmetric Toeplitz matrix with n distinct

elements contained in the vector

γ̂ − γ =

⎛
⎜⎜⎜⎝

ĉ(0)− c(0)
ĉ(1)− c(1)

...
ĉ(n− 1)− c(n− 1)

⎞
⎟⎟⎟⎠ . (12.104)

The vector cnh , assuming h < n , contains the n − h elements (c(h),

c(h+ 1), . . . , c(h+ (n− 1− h))) , which are also contained in γ , and the

h elements c(n), c(n + 1), . . . , c(n + h − 1) which are not contained in

γ . To separate them create the (n − h) × n selection matrix F1 , such that

F1γ = (c(h), c(h+ 1), . . . , c(h+ (n− 1− h)))′ and construct the matrix

F =

[
F1 0

0 Ih

]
, (12.105)

which is n× n+ h , and note that

cnh = F

(
γ

δ

)
, δ = (c(n), c(n+ 1), . . . , c(n+ h− 1))′. (12.106)

Next, we note that vec(C) is n2 × 1 ; because C is a symmetric Toeplitz
matrix, by Eq. (4.25) of Chap. 4, as defined therein, there exists an n2 × n

matrix BST , such that

vec(C) = BSTγ; thus vec(Ĉ − C) = BST (γ̂ − γ). (12.107)
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Combining the two results we may thus rewrite Eq. (12.103)

√
N(α̂− α) = Ĉ−1

n [F − (α′ ⊗ In)(BST , 0)]
√
N

(
γ̂ − γ
δ̂ − δ

)
or

√
N(α̂− α) = Ĝ

√
N(θ̂ − θ), θ̂ − θ =

(
γ̂ − γ

δ̂ − δ

)
(12.108)

Ĝ = Ĉ−1
n [F − (α′ ⊗ In)(BST , 0)],

where N is the length of the realization on the basis of which the autocovari-

ances in θ̂ have been obtained. Incidentally the change in notation from BST
to (BST , 0) is to accommodate the change from γ to θ = (γ′, δ′)′ , so that

the inserted zero is a matrix of dimension n× h .
From Proposition 9.6 (of Chap. 9) the limiting distribution of

√
N(α̂− α)

is a linear transformation, by the probability limit G of Ĝ , of the limiting

distribution of
√
N(θ̂ − θ) as derived in Proposition 12.9 above.

We have thus proved

Proposition 12.10. Under the conditions of Proposition 12.9, the limiting

distribution of the coefficient vector of the best linear predictor (BLP) obeys

√
N(α̂− α)

d→ N(0, GV G′), where (12.109)

G = C−1
n [F − (α′ ⊗ In)(BST , 0)], and V is as in Eq. (12.102).



Chapter 13

Asymptotic Expansions

13.1 Introduction

This chapter deals with situations in which we wish to approximate the

limiting distribution of an estimator. As such it is different from other chap-

ters in that it does not discuss topics in core econometrics and the ancillary

mathematics needed to develop and fully understand them. Moreover, its
purpose is different from that of the earlier (theoretical) chapters. Its aim

is not only to introduce certain (additional) mathematical concepts but also

to derive certain results that may prove useful for econometric applications

involving hypothesis testing.
Suppose the distribution of an estimator cannot be obtained in closed form,

but we can establish its limiting distribution i.e. the probability density func-

tion of the estimator as the sample size increases to infinity. This is

possible for nearly all problems dealt with in econometrics and is the major

approach followed in previous chapters. The question then arises as to whether
this result is a useful approximation in making inferences, and/or testing

hypotheses regarding underlying parameters, when the sample is “finite”. For

example, the reader may perhaps accept without question that as an approx-

imation this is indeed quite useful if the sample size is 1,000 or higher. But
is it useful if it is 500, or even 75? Although precise answers to these ques-

tions are not always possible, nonetheless such questions yield to mathematical

analysis; in many instances it is possible to augment the limiting distribution

in ways in which it may be rendered amenable, and better adapted, to the

issues we have raised.
To be more precise, suppose the cumulative distribution function (cdf) for

an estimator based on a sample of size T is given by FT ; suppose further that

it may be shown that FT → F, at the points of continuity of F, where the

notation is to be read: as T → ∞, FT converges to F, pointwise, at the
points where F is continuous. This also means that the sequence of random

P.J. Dhrymes, Mathematics for Econometrics,
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vectors, say
√
T (θ̂T − θ∗), converges as the sample size increases to infinity to

a random vector having the distribution function F ; in addition, it would also
usually mean that θ̂T converges (in some form) as the sample size increases

to infinity to θ∗ , which is the true value of the parameter in question. Indeed

these are the procedures we routinely employed in earlier chapters.

The nature and adequacy of the approximation is determined by the cri-

terion that, using F yields useful results in making inferences regarding the
parameter being estimated by θ̂T , even when the sample is finite but large.

13.2 Preliminaries

Econometric estimation, and other forms of inference, takes place1 in the con-

text of a probability space (p.s.). The latter is the triplet ( Ω, A, P ), where

Ω is the sample space, or the universe of discourse (frequently referred to as
the set containing all possible outcomes of a “random” experiment, but best

left as a logical primitive); A is a collection of subsets of Ω, referred to as

the σ -algebra, and P is a probability measure defined over the elements of

the σ -algebra.

A random variable, in the context of a probability space, is a measurable
function, say

X : Ω −→ R,

so that for each ω ∈ Ω, X(ω) ∈ R. Measurability means the following: if by

B(R) we denote the one-dimensional Borel field, i.e. the collection of all half
open intervals on the real line, their complements, and countable unions, and

if we pick an arbitrary element of this σ -algebra, say B ∈ B(R), then the

inverse image of B is a set in A. More precisely, if we put

A = {ω : X(ω) ∈ B} = X−1(B), the inverse image of B

then A ∈ A. The function X is then said to be A - measurable.

This framework helps us understand the basic aspects of random variables

and demystifies them in that it shows them to be simply real valued measurable

functions, like many other well known functions. It is also an excellent frame-

work for understanding issues related to convergence of sequences of random
variables.

1Nearly all concepts contained in this chapter are being dealt in much greater detail

elsewhere in this volume. We undertake this discussion only in order to make this

chapter as self contained as possible for those who are familiar with the broad aspects

of probability theory and do not wish to go through the more detailed expositions

above.
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Often, however, such issues are not the primary focus, and we wish to

concentrate on distributional aspects, i.e. on the probability with which the
random variable takes on values in certain sets, particularly sets like (−∞, x).

It is interesting that if we begin with the fundamental framework given earlier,

we may convert that framework into one that involves only the real line, the

one dimensional Borel field, and a distribution function induced by the random

variable in question. Thus, let

X : Ω −→ R,

be a measurable function according to the general framework just discussed.

On the range space, R, define the Borel σ -algebra B(R), so that (R,B(R))
is a measurable space. Moreover, for any B ∈ B(R), define its inverse

image A = X−1(B). If we wish to concentrate on the distributional aspects
of X, we need to define a function that gives us the probability with which

it takes on values in certain sets (elements of B(R) ) as a function of these

sets. Consequently, we may define the probability measure induced by X as

follows:

Px(B) = P(A), for every B ∈ B(R).
It may be verified that Px is a probability measure, i.e.

Px : B(R) −→ [0, 1],

obeys all other requirements for probability measures, and, moreover, that

(R,B(R), Px) is the smallest p.s. on which we can consider the random

variable X. To make this perfectly analogous to the definition we gave to
probability spaces earlier we adopt the convention that X is the identity

transformation

X : R −→ R,

so that all information on X is embedded in the probability measure Px,

which is termed the probability distribution function (pdf). Note that

Px is a set function, i.e. its arguments are sets in B(R). The reader is more
likely to be familiar with it in a slightly different form; more precisely, one is

more likely to be familiar with its counterpart, the cumulative distribution

function (cdf) Fx. The connection between the two is rather simple. Take

B to be the special set B = (−∞, b), for any b ∈ R. Then, with Fx viewed
as a function of the point b, we have

Fx(b) = Px(B), B = (−∞, b).

Thus, the cdf is a point function, which is derived from the set function Px
for the special sets above. If the derivative of F exists, it is generally denoted

by f and is said to be the density function (of X ).
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Notice that the fundamental p.s. is considerably more informative regard-

ing the random variable in question than the probability space it induces.
In the former, we are given the nature of the function (random variable), as

well as the general rule of assigning probabilities to the elements (sets) of the

σ -algebra in ( Ω, A, P ). In the latter, we do not know the nature of the

random variable X ; all we know is its cdf, say F. But there are infinitely

many variables that may have F as their cdf. Thus, given only F, we
generally cannot obtain uniquely the particular random variable from which

we may have derived the cdf in the discussion above.

Finally, the precise context in which we shall discuss asymptotic expansions

is this: θ̂T is an estimator of some unknown parameter θ, based on a sample
of size T. The estimator is such that we can assert that

√
T (θ̂T − θ), is

expressible as
√
T (θ̂T − θ) = ZT =

1√
T

T∑
t=1

zt,

where zt are random variables, and that ZT obeys a central limit theorem,
i.e. in the limit it converges to a random variable which is normal with

mean zero and a certain variance, say ψ2. Denote its limit normal density

by φ(0, ψ2), and denote the limit random variable by Z. We may then make

the approximation to be

θ̂T ≈ θ +
1√
T
Z,

which therefore has the approximate density φ(θ, ψ2/T ).
The object of asymptotic expansion theory is to improve on this approx-

imation, because as we know the relation above is “exact” only as T → ∞.

For some specific value of T it may be wildly off.

13.3 General Bounds on Approximations

Let XT = (1/bT )
∑T

t=1 xt be a sequence of random variables obeying a CLT,

where bT is a positive sequence tending to infinity. This means that we have

the result that XT
d→ X (to be read XT converges in distribution to a

random variable having the distribution (cdf) of some random variable X ).
Let this be the normal cdf Φ, with mean zero and variance one.

The most basic results on approximation are the so called Berry-Esseen

theorems that put a bound on the quantity

D = sup
x∈R

|FT (x)− Φ(x)| ,
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where FT is the cdf of XT . One such theorem is given in Dhrymes (1989,

p. 276), for the case where the underlying sequence obeys

E|xt|2+δ = ρ2+δtt <∞, for δ > 0,

in which case

D < C

(
ρT
σT

)2+δ

, ρ2+δT =

T∑
t=1

ρ2+δtt , σ2
T =

T∑
t=1

σ2
tt, σ2

tt = Var(xt).

The constant C is independent of the distribution of the x ’s, but may depend

on δ. Another, for the case of i.i.d. random variables with mean zero, variance

one, bounded third moment, and normalizing sequence bT =
√
T , is given in

Kolassa (1997, p. 19), in which case we have

D < Cρ
1√
T
, ρ = E|x1|3 = ρ <∞,

and C may be taken to be 3. The interested reader may search the literature

for results that are more suitable for the problem he faces.

This of course is a bound on the maximal difference in the relevant cdfs,
and as such it may not be deemed satisfactory. For example if the sample

size is T = 100 and ρ = 3, the maximal difference is .9; if T = 625 and

ρ = 3, the maximal difference is .38. In either case, this is quite sizeable

and is generally unacceptable for an approximation on which we wish to base

inference procedures. Of course this is the maximal difference, and in some
applications the actual difference may well be less; however, we have no way of

establishing this in general. Thus, we are led to consider alternatives. These

alternatives rely crucially on the connection between the cdf and the charac-

teristic function of a random variable, a topic we elucidate in the discussion
below.

13.4 Characteristic Functions (CF) and

Moment Generating Functions (MGF)

We begin by recalling that the sth moment of a random variable, X, denoted

by μs, is defined by

μs =

∫ ∞

−∞
xsf(x) dx,

where f is the density function. In addition, we often deal with the so called
central moments, defined by

σk =

∫ ∞

−∞
(x− μ1)

kf(x) dx.
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We note that σ1 = 0 and that μ1 is termed the mean of the random variable

in question; similarly, σ2 is usually denoted by σ2 and is termed its variance.
We also remind the reader of the following important fact: If a r.v. X has

a finite moment of order n, i.e. if E|X |n <∞, then it has finite moments of

order s ≤ n.

We now turn to the main topic of this section.

Definition 13.1. Let X be a random variable with cdf F, and let t ∈ R.

Its characteristic function is given by

ψx(t) = EeitX =

∫ ∞

−∞
eitxdF (x)

where, we remind the reader, eitx = cos tx+ i sin tx, i is the imaginary unit

obeying i2 = −1, and the expression above is to be interpreted as a Riemann-

Stieltjes integral. If the cdf ( F ) is differentiable, and thus the density f
exists, the CF is given by

ψx(t) = EeitX =

∫ ∞

−∞
eitxf(x)dx,

and is thus the Fourier tranform of the density function.

Characteristic functions have the following properties.

i. |ψ(t)| ≤ ψ(0) = 1.

ii. ψ(t) is uniformly continuous.

iii. ψ(t) = ψ(−t).

iv. ψ(t) is a real valued function if and only if the distribution of the r.v.

X is symmetric, in the sense that f(x) = f(−x) .

v. If E|X |m <∞, the mth derivative of ψ(t) exists and, moreover,

μs =
1

is
dmψ(t)

dtm

∣∣∣∣∣
t=0

, s = 1, 2, 3, . . . ,m,

where μs = EXs. Conversely, if X has finite moment of order s, s =
1, 2, 3, . . . ,m, its characteristic function has derivatives of order s and

the relation in item v holds.
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Definition 13.2. Let X be as in Definition 13.1 and t ∈ R; its moment

generating function (MGF) is defined by

Mx(t) =EetX =

∫ ∞

−∞
etxdF (x)dx, or if F is differentiable, by

Mx(t) =EetX =

∫ ∞

−∞
etxf(x)dx.

Remark 13.1. Notice that since, in Definition 13.1, the entity eitxf(x)

is absolutely integrable, the characteristic function always exists. In

Definition 13.2, however, the integrand is etxf(x); if X is a continuous ran-
dom variable with range [−∞,∞], the MGF need not exist. Whether it exists

or not depends crucially on the behavior of

lim
x→∞ etxf(x).

We provide a number of examples.

Example 13.1. Let X ∼ N(μ, σ2), which is to be read: X is a random

variable whose distribution is normal with mean μ and variance σ2. In this
case,

EetX =

(
1√
2πσ2

)∫ ∞

−∞
etxe−(1/2σ2)(x−μ)2 dx

= etμ+
tσ2

2 +

(
1√
2πσ2

)∫ ∞

−∞
e−(1/2σ2)(x−μ−tσ2)2 dx.

If X obeys the normal density,

lim
|x|→∞

etxf(x) = lim
|x|→∞

etμ+
tσ2

2

[
e−(1/2σ2)(x−μ−tσ2)2

]
= 0,

so that the necessary condition for the existence of the MGF is satis-
fied; moreover, as the example makes clear, the MGF actually exists and

is given by

Mx(t) = etμ+(1/2)t2σ2

. (13.1)

On the other hand, if X has the Cauchy or the (Student) t density, it has
no moment generating function but it has a characteristic function.

We illustrate this with the Cauchy distribution.
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Example 13.2. Let X be a r.v. with the Cauchy distribution, whose density

is f(x) = 1/π(1 + x2). That this is a density function is easily verified from

1

π

∫ ∞

−∞

dx

1 + x2
dx =

1

π

∫ 1

0

u(1/2)−1(1 − u)(1/2)−1 du =
Γ(1/2)Γ(1/2)

πΓ(1)
= 1,

where Γ(·) is the gamma function given by

Γ(α) =

∫ ∞

0

xα−1e−x dx, with Γ(1/2) =
√
π.

The result is obtained by noting that the integrand (the Cauchy density) is

symmetric (about zero) and making the change in variable u = 1/(1 + x2) .
Consider now

lim
|x|→∞

etx

1 + x2
;

if t > 0 and x > 0, the limit of the expression is unbounded (infinite),

because etx grows faster than x2; also, for t < 0 and x < 0, the limit of the

expression converges to ∞. Hence, the Cauchy distribution does not satisfy

the necessary condition for the existence of a MGF. In fact, the MGF does
not exist for the Cauchy distribution. On the other hand its CF exists and is

given by

ψc(t) = EeitX = e|t|. (13.2)

Note that ψc(t) is continuously differentiable for t > 0 and for t < 0. How-

ever, continuity fails for t = 0, since the derivative is et for t > 0 and its

limit as t ↓ 0 is 1; on the other hand for t < 0 the derivative is −e−t and

its limit as t ↑ 0 = −1 . Indeed, its derivative at t = 0 does not exist.
Actually carrying out the integration above is too complex to present here.

The other distinctions between CF and MGF follow immediately from the

fact that in CF the exponential involves it, whereas in the MGF the expo-

nential involves only t. Thus, in property v of Definition 13.1, the formula

should be amended to

μs =
dmψ(t)

dtm

∣∣∣∣∣
t=0

, s = 1, 2, 3, . . . ,m,

Remark 13.2. The usefulness of characteristic (and moment generating)

functions derives from two very important facts. First, given a characteris-

tic function, say ψ, there exists a unique cdf that corresponds to it, say F,

which may be derived from it through the so called inversion formula, where
a, b, are points of continuity of F,

F (b)− F (a) = lim
s→∞

1

2π

∫ s

−s

e−ita − e−itb

it
ψx(t)dt.
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For a proof of this see, for example, Dhrymes (1989, pp. 254–256).

Moreover, if the CF is absolutely integrable, i.e. if

∫ ∞

−∞
|ψx(t)| dt <∞,

F is differentiable and the density is given by

f(x) =
1

2π

∫ ∞

−∞
e−itxψx(t) dt,

so that f and ψ are a pair of Fourier transforms.

Second, if {ψT : T = 1, 2, 3, . . .} is a sequence of characteristic functions

converging pointwise to ψ, then the corresponding sequence of cdfs {FT :
T = 1, 2, 3, . . .} converges to F, which is the cdf corresponding to ψ.

Mathematically, the most complete exposition of the subject of asymptotic

expansions can be made only in terms of the CF. However, because many

students in economics may not be very familiar with complex analysis, we

shall make an effort as much as possible to use the device of MGF.

13.5 CF, MGF, Moments, and Cumulants

13.5.1 CF, MGF, and the Existence of Moments

Let X be a r.v. that possesses moments of all orders.

The connection between the MGF and the moments of a r.v. is seen

immediately from the Taylor series of the exponential. Specifically, we have

etx =
∞∑
s=1

tsxs

s!
,

where the Taylor series converges on all compact subsets of [−∞,∞].

Therefore,

M(t) = EetX =

∞∑
s=1

ts

s!
μs, (13.3)

which helps to explain the term moment generating function, and inci-
dentally shows the validity of part v of Definition 13.1 in the case of

MGF.

The same situation prevails relative to the CF except that here, even if

all moments fail to exist (be finite), the CF is still defined. The problem is

that the formula given in part v of Definition 13.1 is valid only when the sth
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moment is known to exist. In fact, we may always write the CF in terms of

the moments that do exist plus a remainder that approaches zero at a certain
order. To make this point clear, we need certain additional notation.

Orders of Magnitude Notation

It will simplify the presentation if we introduce the o, O and op, Op
notation.

Definition 13.3. Let h(x) be a (real valued) function, and let x∗ ∈ R̄, the

extended real number system (including ±∞).

i. We say that h is of order little oh, and denote this by o(x) , as x→ x∗,
if and only if

lim
x→x∗

h(x)

x
= 0.

This means then that h “grows” at a rate slower than x, i.e. grows at

a sublinear rate.

ii. We say that h is of order big oh, and denote this by O(x), as x→ x∗,
if and only if

lim
x→x∗

h(x)

x
exists and is finite.

This means then that h “grows” at the same rate as x, i.e. grows at a

linear rate.

iii. We say that h is of order little oh in probability, and denote this by

op(x), as x→ x∗, if and only if

plim
x→x∗

h(x)

x
= 0.

iv. We say that h is of order big oh in probability, and denote this by Op(x)

as x→ x∗, if and only if

plim
x→x∗

h(x)

x
exists and is finite.

In such cases, we employ the notation

h(x) ∼ o(x), or h(x) ∼ O(x), or h(x) ∼ op(x), or h(x) ∼ Op(x).

We illustrate the use of the first two concepts by means of an example.
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Example 13.3. Consider the expansion

hn(x) = n[ex/n − 1] = x+

∞∑
j=2

xj

j!nj−1
= x+O(1/n)

= x+ o(1/nα), α ∈ (0, 1).

This is so because

1

1/n

∞∑
j=2

xj

j!nj−1
=
x2

2!
+

∞∑
j=3

xj

j!nj−2
,

whose limit as n→ ∞ is x2/2. On the other hand,

1

1/nα

∞∑
j=2

xj

j!nj−1
=

∞∑
j=2

xj

j!nj−1−α ,

which converges to zero with n, in view of the fact that for any j = 2, 3, . . .

the denominators of the series contain a term of the form nβ, for β > 0.

Existence of Moments and Derivatives of CF

In this section, we give the important result that connects the existence of

moments with the existence of derivatives of the CF, and conversely. Notice

that, in the statement of the result, the first part of the proposition is more
general than the second.

Proposition 13.1. Let X be a random variable having a finite moment

of order n + δ, for some δ ∈ [0, 1]. Then, its characteristic function has

continuous derivatives up to order n and, moreover,

ψx(t) =

n∑
j=0

(it)j

j!
μj + o(|t|n). (13.4)

Conversely, if ψ
(2k)
x (0) exists and is finite for k = 1, 2, 3, . . . , then

EX2k <∞, for k = 1, 2, 3, . . . . (13.5)

Proof: A complete proof is given in Chow and Teicher (1988, pp. 277–279);

here we give only a proof of the first part of the proposition relating to the

(partial) expansion of the CF as a complex polynomial whose coefficients are

moments of the r.v. in question.
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Use integration by parts to find

∫ y

0

(y − x)neix dx =
yn+1

n+ 1
+

i

n+ 1

∫ y

0

(y − x)n+1eix dx, (13.6)

which, evidently, holds for all n ≥ 1. Next, we need to verify that it holds for
n = 0 as well. More precisely, we must verify that

∫ y

0

eix dx = y + i

∫ y

0

(y − x)eix dx.

Again using integration by parts, we note that
∫ y

0

(y − x)eix dx= y

∫ y

0

eix dx−
∫ y

0

xeix dx =
1

i
y[eiy − 1]−

∫ y

0

xeix dx

∫ y

0

xeix dx=
1

i
xeix

∣∣∣∣∣
y

0

− 1

i

∫ y

0

eix dx =
1

i
yeiy − 1

i

∫ y

0

eix dx.

Substituting the last member of the second equation in the last member of the

first and collecting terms, we find

∫ y

0

eix dx= y + i

∫ y

0

(y − x)eix dx; moreover,

eiy = 1 + i

∫ y

0

eix dx, (13.7)

thus verifying the claim.

Applying repeatedly integration by parts to the integral in the right

member of the last equation in Eq. (13.7) we find

eiy =

n∑
j=0

(iy)j

j!
+
in+1

n!

∫ y

0

(y − x)neix dx. (13.8)

Since ∣∣∣∣ i
n+1

n!

∫ y

0

(y − x)neix dx

∣∣∣∣ ≤ 1

(n+ 1)!
|y|n+1,

we have the bound
∣∣∣∣eiy −

n∑
j=0

(iy)j

j!

∣∣∣∣ ≤ 1

(n+ 1)!
|y|n+1. (13.9)

The difficulty with using this bound is that it involves the existence of the

(n+1) st moment, something we have not assumed. To obtain another bound
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that involves only the nth moment, return to Eq. (13.6) and reverse it to

obtain ∫ y

0

(y − x)neix dx=
n

i

(∫ y

0

(y − x)n−1eix dx− yn

n

)

=
n

i

(∫ y

0

(y − x)n−1[eix − 1] dx

)
.

Substituting in Eq. (13.8), we have the alternative representation

eiy =

n∑
j=0

(iy)j

j!
+

in

(n− 1)!

∫ y

0

(y − x)n−1[eix − 1] dx. (13.10)

Since ∣∣∣∣ in

(n− 1)!

∫ y

0

(y − x)n−1[eix − 1] dx

∣∣∣∣ ≤ 2
|y|n
n!

,

we have the alternative bound

∣∣∣∣eiy −
n∑
j=0

(iy)j

j!

∣∣∣∣ ≤ 2
|y|n
n!

. (13.11)

Replacing iy by itX and taking expectations, we have

ψx(t) =EeitX

∣∣∣∣ψx(t)−
n∑
j=0

(it)j

j!
μj

∣∣∣∣≤ |t|nmin

[
|t| 1

(n+1)!
E|X |n+1,

2

n!
E|X |n

]
, (13.12)

which provide sharp bounds for the remainder.2

Since by previous discussion μs =
∂sψx(t)
∂ts

∣∣∣∣∣
t=0

, expanding the characteristic

function about t = 0 we obtain, from Taylor’s theorem,

ψx(t) =

n∑
j=0

(it)j

j!
μj + o(|t|n).

2Evidently, this is so only when moments of all orders exist. If, for example, the

(n + 1) st moment does not exist, only the second bound is relevant.
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13.5.2 Cumulants and Cumulant Generating

Functions (CGF)

In dealing with asymptotic expansions one typically deals not with CF’s or

MGF’s but with cumulant generating functions (CGF). This construct
has no independent or distinctive significance; it is simply a more convenient

representation of the MGF given the purpose served in this context. We begin

with the fundamental definition.

Definition 13.4. Let X be a r.v. defined on the probability space ( Ω, A,
P ) and let Mx(t) be its MGF, assuming that one exists. The cumulant

generating function is defined by

Kx(t) = logMx(t). (13.13)

It follows immediately that, if X,Y are mutually independent r.v., and Z =

aX + b then

Kx+y(t) = Kx(t) +Ky(t), Kz(t) = Kax+b(t) = Kx(ta) + bt. (13.14)

Remark 13.3. The relations in Eq. (13.14) attest very strongly to the
usefulness and convenience of the CGF.

Definition 13.5. The jth cumulant of a r.v. X , as above, is given by

κ
(x)
j =

djK(t)

dtj

∣∣∣∣∣
t=0

.

The following result is immediate.

Proposition 13.2. Let X,Y, Z be as in Definition 7.4. Then,

κx+yj = κxj + κyj , κax+bj = aκxj + b. (13.15)

As we noted earlier, cumulants and CGF’s have no distinctive significance
because they are conceptually simple creatures of moments and MGF’s;

nonetheless, as the order of the cumulant increases its relationship to the

underlying moments becomes increasingly complex.
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There are at least two general ways in which we can establish a relation-

ship between cunulants and moments. First, we may obtain the Taylor series
expansion of the CGF about t = 0, thus producing the relation

K(t) =

∞∑
j=0

κj

(
tj

j!

)
; (13.16)

recalling the definition of the CGF, we observe that

e
∑∞

j=0

(
κj

tj

j!

)
=M(t) =

∞∑
j=0

(
μj
tj

j!

)
. (13.17)

The leftmost member of the equation may also be written as

e
∑∞

j=0 κj

(
tj

j!

)
=

∞∏
j=0

eκj
tj

j! (13.18)

and, moreover,

eκj
tj

j! =

∞∑
s=0

(
(κjt

j/j!)s

s!

)
. (13.19)

Next, expand every term in this fashion and multiply together the resulting

power series in the leftmost member of Eq. (13.17); if we equate powers of t

on both sides of that equation, we find the desired relationship.

The alternative approach is to find the relationship through the operation

κj =
djK(t)

dtj

∣∣∣∣∣
t=0

=
dj logM(t)

dtj

∣∣∣∣∣
t=0

. (13.20)

In either case, this is exposited in great detail in Sect. 3.14, volume I of Kendall

and Stuart (1963) as well as Kendall et al. (1987), hereafter, respectively, KS

and KSO.

We illustrate the problem by giving a number of such relationships. More

exhaustive equivalences are given in KS and KSO as noted.

Cumulants Moments

κ0 = 0 μ0 = 1
κ1 = μ1 μ1 = κ1
κ2 = μ2 − μ2

1 μ2 = κ2+κ21
κ3 = μ3 − 3μ1μ2+2μ3

1 μ3 = κ3+3κ1κ2+κ31
κ4 = μ4 − 4μ1μ3 − 3μ2

2+12μ2
1μ2 − 6μ4

1 μ4 = κ4+4κ1κ3+3κ22+6κ21κ2+κ
4
1

The general formula for obtaining higher order moments or cumulants (in

terms of each other) is given in KSO as

μr =

r∑
m=0

[∑
π

m∏
s=1

(
κps
ps!

)πs
]

r!∏m
s=0 πs

, (13.21)
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where the second summation runs over all values of πs, such that

m∑
s=1

psπs = m. (13.22)

Although the coefficients of the various cumulants appear to be hopelessly

complex, in fact we can establish the relations

∂μr
∂κ1

= rμr−1,

∂μr
∂κj

=

(
r

j

)
μr−j , j = 2, 3, . . . , r − 1. (13.23)

The analogous connection for cumulants is given by

κr = r!

r∑
m=0

[∑
π,ν

m∏
s=1

(
μps
ps!

)πs
]
(−1)ν−1(ν − 1)!∏m

s=1(πs)!
, (13.24)

where the second summation runs over all possible values of π ’s and ν ’s

such that
m∑
s=1

psπs = m, and
m∑
s=1

πs. (13.25)

13.6 Series Approximation

The basic notion underlying this approach is roughly the following: Suppose
it is desired to approximate the cdf Fy by some function of the cdf Fx so

that the approximation is (nearly) as close as desired. One way to proceed

is to obtain the CF of the two cdf’s, say φy(t), φx(t), respectively, perform

the desired operation in terms of these two entities, and then invert the result

to obtain the desired cdf approximation. To minimize unnecessary arguments
regarding the existence of logarithms for complex entities, we assume that

both cdf’s have moment generating functions and proceed accordingly.

Thus, let My(t), Mx(t), respectively, be the MGF’s and consider the ratio

ψ(t) =
My(t)

Mx(t)
=

∞∑
j=0

bj
tj

j!
, (13.26)

assuming that the ratio has a Taylor series expansion about t = 0. It follows

then that formally

My(t) =Mx(t)

⎡
⎣ ∞∑
j=0

bj
tj

j!

⎤
⎦ . (13.27)
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The preceding is then a precise representation of the MGF of Fy in terms of the

MGF of Fx and the unknown parameters bj. It is also evident that the
more parameters we retain in our representation, the closer the approximation

will be. That this is a solution to the problem can be made entirely transparent

even to a reader with modest mathematical sophistication if we assume that

the density functions exist, so that we are dealing with two random variables,

Y and X, with the respective density functions fy and fx. Because the CF’s
and the densities are pairs of Fourier transforms, i.e.

φx(t) =

∫ ∞

−∞
eitξfx(ξ) dξ, fx(ξ) =

1

2π

∫ ∞

−∞
e−itξφx(t) dt, (13.28)

it follows that the CF uniquely determines the density function and vice-versa.
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