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Preface

This book about mathematics and methodology for economics is the result of the
lifelong teaching experience of the authors. It is written for university students
as well as for students of a university of applied sciences. It is completely self-
contained and does not assume any previous knowledge of high school mathematics.
At the end of all chapters and sections, there are exercises such that the reader
can test how familiar she or he is with the material of the preceding stuff. After
each set of exercises, the answers are given to encourage the reader to tackle the
problems.

The idea to write such a book was born in 1990 during an international
meeting on functional equations which took place at the University of Graz,
Austria. At this meeting a lot of fascinating applications of functional equations
to solve mathematically formulated economic problems inspired János Aczél,
Distinguished Professor of Mathematics, University of Waterloo, Ontario, Canada:
He proposed to one of us (W.E.) to start such an adventure in a form of a
textbook for beginners. Since then he supported the tentative steps into this direction
by a great wealth of brilliant scientific advices. Later on he became for both
of us the lodestar for our endeavour. Dear János, we owe you a great debt of
gratitude.

For a basic course Chaps. 1 (sets, vectors, trigonometric functions, complex
numbers), 3 (mappings and functions), 4 (vectors, matrices, systems of linear
equations), 6 (functions, limits, derivations), 7 (important nonlinear functions), and
10 (integration) are sufficient. If a later course will discuss discrete models of
economics, Chap. 12 (difference equations) should be covered, too. For continuous
models, Chap. 11 (differential equations) is necessary. (However, we decided not to
go very far into details.)

Chapter 2 gives an introduction to linear optimisation and game theory using
production systems. These ideas are continued in Chaps. 5 and 9, which discusses
the notion of a Nash Equilibrium. Chapter 8 deals with nonlinear optimisa-
tion.

Chapter 13, as the conclusion, reflects methodologically most of all that what we
optimistically offered in Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

v



vi Preface

Many thanks go to Thomas Schlink for typing most of the manuscript in LATEX
very conscientiously and to Dr. Roland Peyrer for his inspiring drawings, which
were transformed to PSTricks, an additional package for graphics in Latex.

Karlsruhe, Germany Wolfgang Eichhorn
Landshut, Germany Winfried Gleißner
Summer, 2015
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1Sets, Numbers and Vectors

God created the natural numbers,
everything else is the work of mankind.

LEOPOLD KRONECKER (1823–1891)

1.1 Introduction

Notions like sets, numbers and vectors with which this introductory chapter deals,
among others, are fundamental both to mathematical (quantitative) representations
of relations in economics and to mathematical notions and methods which will
be the subject of this book. The belief that mathematics and its applications to
economics are just about calculations is mistaken. Mathematics and mathematicians
are needed to discover or create and analyse structures in a logically sound way.
Chapter 13 at the end of the book will deal, among other things, with the basics of
mathematical–logical reasoning.

In the present chapter we not only summarise basic knowledge about natural
numbers, integers, rational and real numbers but define also complex numbers as a
particular case of vectors. They will make, among others, the derivation of important
trigonometric formulas easier than usual. Vectors and sets, to be introduced in this
chapter, form the basis of much that will follow.

1.2 Basics

Most of the contents of this section just restates the obvious or the well known.
It may, however, be useful to remind the reader of these building stones in what
follows.

A set is a collection of distinct objects (this is really just paraphrasing not
defining; we do not define such apparently simple things in this book). The objects,
of which it consists, are the elements of the set. For instance you are an element of
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2 1 Sets, Numbers and Vectors

(or: belong to) the set of all people who are reading this sentence (“belongs to” is
a synonym of “element of”). A set is usually given by enumerating all its elements
(if there are only finitely many of them) or by giving a procedure (often called
“algorithm”) enabling us to determine all its elements.

For instance, the set S consisting of the elements A;B;C is usually written as

S D fA;B;Cg or S D fA;C;Bg or S D fB;A;Cg or

S D fB;C;Ag or S D fC;A;Bg or S D fC;B;Ag:

The order of the elements is irrelevant (unless told otherwise; if the order is of
partial or total relevance then we speak of partially or totally ordered sets; to the
latter belong the sequences with which we will deal in detail in Sect. 5.4; compare
also Sects. 1.5 and 3.7).

The set of all positive integers, in other words the set of all natural numbers
1; 2; 3; : : : is written as

N D f1; 2; 3; : : :g:

We also mention the notation

N D fn j n is a natural numberg:

After n follows the condition imposed on n separated form n by j.
The symbol 2 reads “element of”, while … means “is not among the elements of”

(or “does not belong to”). For instance,

B 2 fA;B;Cg; 126 2 N; 3 … f1; 4; 7g:

In addition to the “natural numbers” we are also familiar with 0 (zero) and the
negative integers (like �5ı in temperature). The set of all integers is denoted by

Z D f0; 1;�1; 2;�2; 3;�3; : : :g:

Similarly familiar are (or should be) the set of all rational numbers:

Q D
nm

n
j m 2 Z; n 2 N; gcd.m; n/ D 1

o
;

that is, the set of fractions with integer numerator and positive integer denominator,
whose greatest common divisor (gcd) is 1. We assume also that the rules for
addition, subtraction, multiplication and division of rational numbers are known.
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As is also known, rational numbers can be represented as finite or periodic
infinite decimal fractions. Confining ourselves, for simplicity, to positive rational
numbers, a finite decimal fraction can be written as

a1a2 : : : an:b1b2 : : : bm D a110
n�1 C a210

n�2 C : : :C an�110C an

C b1
10

C b2
102

C : : :C bm

10m

(where n 2 N; m 2 N; aj 2 f0; 1; : : : ; 9g . j D 1; 2; : : : ; n/; bk 2 f0; 1; : : : ; 9g
.k D 1; 2; : : : ;m/ and, of course, 102 D 100, 103 D 1000,. . . ). For instance,

17

8
D 2:125:

An infinite decimal fraction can be written as

a1a2 : : : an:b1b2b3 : : : D a110
n�1 C a210

n�2 C : : :C an�110C an

C b1
10

C b2
102

C b3
103

C : : : :

On the right hand side we really have an infinite series. We will deal with infinite
series in detail in Chaps. 5 and 6, here the example

237

70
D 3:38571428571428 : : :

should suffice to show what an infinite decimal fraction, for that matter what a
periodic infinite decimal fraction is. The latter means that the same segment, here
857142, keeps repeating.

We demonstrate on the simple examples 101
8

and 30
13

why every rational number
equals either a finite or a periodic infinite decimal fraction. In the long division the
remainders have to be smaller than the denominator, so they have to be one of the
numbers 0, 1, 2, 3, 4, 5, 6, 7 in the first case and one of 0, 1, 2, . . . , 12 in the second.
So sooner or later either the division ends or we get a previous remainder again and
the period restarts. Indeed

101

8
D 12:625 and

30

13
D 2:307692307692307692 : : : :

We also show on another simple example why, conversely, all periodic infinite
decimal fractions equal rational numbers. (That finite decimal fractions are rational
numbers, is obvious: for instance 34:125 D 34125

1000
D 273

8
.) Take

x D 5:4181818 : : : :
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Then

1000x D 5418:1818 : : :

10x D 54:1818 : : :

and, by subtraction (really multiplication and subtraction of infinite decimal fraction
have to be justified but they are quite intuitive here),

990x D 5364; so x D 5364

990
D 298

55
:

There is an obvious way to make a (periodic) infinite decimal fraction out of a
finite one:

31:46 D 31:460000 : : :

but we agree that, if in a decimal fraction (finite or infinite) there are only 0’s from
a place on (after the decimal point), then we omit them. There is also a less obvious
way:

31:46 D 31:459999 : : : :

Indeed, using the above procedure for

x D 31:45999 : : :

we get

1000x D 31459:999 : : :

� 100x D 3145:999 : : :

900x D 28314

x D 28314
900

D 3146
100

D 31:46:

Actually, those ending with 999. . . and those ending with 000. . . are the only infinite
decimal fractions which equal finite ones and they are the only pairs of infinite
decimal fractions which are equal without all their digits being equal (in the same
order).

Clearly there are also non-periodic decimal fractions; for instance

111:1010010001000010 : : : :

(While only 1’s and 0’s figure in it, there is no finite segment which keeps exactly
repeating.) These (and their products by .�1/) are the irrational numbers. The
numbers 2� (the length of the circumference of the unit circle) and

p
2 (the number



1.2 Basics 5

whose square is 2) are also irrational. Actually, in a certain sense, which can be
made precise, there are “many more” irrational than rational numbers. This is quite
intuitive: we would be rather surprised if the same numbers in the same order kept
repeating as winners in a lottery every fixed (albeit possibly large) number of weeks.

The rational and irrational numbers together form the set R of real numbers. It
follows from the above that every real number can be represented as a finite or
infinite decimal fraction—multiplied by .�1/ if the real number was negative.

There is a pretty proof showing that
p
2 is indeed irrational, that is, it cannot be

a rational number. We prove this by contradiction. (see Appendix): Suppose

p
2 D m

n

(n 2 N, m 2 N since
p
2 is positive). We may choose m and n so that not both

are even (either just one or neither of them is even; an even number is an integer
divisible by 2; an integer which is not even, is odd) because, if both the numerator
and the denominator were even, then we could cancel the highest power of 2 by

which both would be divisible (for instance 16
24

D 2
3

).
Squaring the above equation, we get

2 D m2

n2
; that is, m2 D 2n2;

so m2 is even. But then also m would be even (because the squares of odd numbers
are odd):

m D 2k:

Substituting this into m2 D 2n2, we obtain

4k2 D 2n2; that is, n2 D 2k2:

So n2 would be even, thus, by the above argument, n would be even too. But at the
beginning of this proof we had excluded that both m and n are even.

This contradiction shows that our original supposition, that
p
2 is rational, cannot

be true. Therefore
p
2 is irrational, as asserted.

The expression “irrational number” (like later “imaginary number”) comes
from a time in the distant past when only integers and fractions of integers
were considered “reasonable”. But there is nothing “unreasonable” about irrational
numbers. In fact, in their geometric representation on the straight line they are quite
indistinguishable from the rational numbers: If one chooses (Fig. 1.1) a point 0 and
a point 1 on the line then every point represents a real number (either rational
or irrational) and, conversely, every real number is represented by a point of that
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Fig. 1.1 Representation of real numbers on the straight line. The rational numbers 1
2

D 0:5 and
� 11

3
D �3:66 � � � are represented by the points � between 0 and 1, and �3 and �4, respectively.

The irrational numbers
p
2 D 1:41 � � � , � D 3:14 � � � , and �e D �2:71 � � � are represented by

the points � between 1 and 2, 3 and 4, and �3 and �2, respectively

line. We will identify that point with the real number which it represents (use them
interchangeably) and call this line the “real line” or the “number line”. We note that
any real number can be approximated both by rational and by irrational numbers as
closely as one wants, that is, the distance from the real number to an appropriately
chosen rational resp. irrational number can be made as small as one wishes. The
distance of two (real or rational or integer or positive) numbers x and y is defined by

d.a; b/ D jb � aj;

where

jxj WD
8
<

:

x if x > 0
0 if x D 0

�x if x < 0

is the absolute value of x. (Here and in what follows A WD B or B DW A means
that A is defined by B.) Note (see also Fig. 1.1) that even for pairs a; b of positive
numbers the difference b �a may be negative but jb �aj is always nonnegative (that
is, either positive or 0).

We denote the set of nonnegative real numbers by RC, that of positive real
numbers by RCC:

RC WD fx j x 2 R and x � 0g; RCC WD fx j x 2 R; x > 0g:

Similarly

R� WD fx j x 2 R; x � 0g; R�� WD fx j x 2 R; x < 0g;
QC WD fx j x 2 Q; x � 0g; QCC WD fx j x 2 Q; x > 0g;
Q� WD fx j x 2 Q; x � 0g; Q�� WD fx j x 2 Q; x < 0g:
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1.2.1 Exercises

1. Express the following periodic infinite decimal fractions as rational numbers:
(a) 2.38888. . . , (b) 7.074074074. . . ,
(c) 5.76432143214321. . . , (d) 28.571428571428571428. . . ,
(e) 3.59999. . . , (f) 3.60000. . . .

2. Express the following rational numbers as infinite fractions:
(a) 61234/3, (b) 98765/6,
(c) 11/123, (d) 77/666.

3. Write in the notation of this section the sets of numbers which can be described
verbally as follows:
(a) All numbers x 2 R whose distance from x D 3:50 is smaller than or equal to

4.18.
(b) All rational numbers smaller than x D p

2.
(c) All irrational numbers greater than or equal to x D p

2.
4. Which of the following expressions are sets?

(a) f2; 4; 7; 9g, (b) d.3; 8/ D j3 � 8j,
(c) f1; 6; 5; 8; 1g, (d) ff5; 7g; f2g; f1; 4; 3gg,
(e) ff8; 9g; f7; 8g; f8gg, (f) fx j x 2 R; x > 1; x < 2g.

5. (a) Let a and b be rational numbers. Are a C b, a � b, and, with b 6D 0, a=b
rational numbers?

(b) Let a be a rational number and � be an irrational number. Are a C �, a � �,
a�, a=� irrational numbers?

(c) Is for any pair �, � of distinct irrational numbers �C�, ��, �=� irrational?

1.2.2 Answers

1. (a) 43
18

, (b) 191
27

, (c) 1 152 749
199 980

, (d) 200
7

, (e) 18
5

, (f) 18
5

.
2. (a) 20 411.3333. . . , (b) 16 460.83333. . . ,

(c) 0.089 430 894 3. . . , (d) 0.115 615 6. . . .

3. (a) fx j x 2 R; d.x; 3:50/ D jx � 3:50j � 4:18 g
D fx j x 2 R; �0:68 � x � 7:68g,

(b)
n
x
ˇ
ˇ
ˇ x 2 R; x D m

n ; m 2 Z; n 2 N; m
n <

p
2
o

D
n
x
ˇ
ˇ
ˇ x 2 Q; x <

p
2
o
,

(c)
n
x
ˇ
ˇ
ˇ x 2 R x ¤ m

n ; m 2 Z; n 2 N; x � p
2
o

D
n
x
ˇ
ˇ
ˇ x 2 R; nQ; x � p

2
o
.

4. The expressions (a), (d), (e), (f) are sets. The expression (b) means the distance
(number) 5, not the set consisting of the single element 5 (that would be f5g).
The expression (c) is no set, since not all numbers (elements) are distinct.
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5. (a) Yes, (b) Yes,
(c) No. For � D 1 C p

2, � D 1 � p
2 we get � C � D 1, for � D p

2,
� D p

1=2 we get �� D 1 and �=� D 2.

1.3 Subsets, Operations Between Sets

A set T is a subset of a set S if every element of T is also element of S (while elements
of S may or may not be elements of T). This is written as

T � S or, what is the same, S � T;

and is sometimes verbalised as “S contains T”. For instance,

N � Z; Z � Q; Q � R

(which also can be written as N � Z � Q � R ),

R � R;

f3; 5g � f8; 5; 3g; f8g � f3; 5; 8g:

Note from the last example that there are sets having only one element. It is
often convenient to speak also about a set with no element, the empty set which is
denoted by ;. This is not to be confused with the set f0g which has one element: the
number 0.

Clearly, if T � S and S � T then S D T, that is, S and T are the same set (because
every element of T belongs also to S and every element of S is also element of T).

The set T needs not be a subset of S in order to define

S n T D fx j x 2 S but x … Tg

(which may be empty) as the complement of T with respect to S. But SnT is a subset
of S. Examples:

f3; 4; 6g n f3; 6g D f4g; f3; 4; 6g n f1; 2; 3g D f4; 6g; RC n RCC D f0g:

The union of the sets S and T (neither of which needs to be a subset of the other)
is the set V which contains those elements which belong either to S or to T (or to
both). In symbols:

V D S [ T WD fx j x 2 S or x 2 Tg:
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Examples

f1; 3; 5g [ f2; 7; 9g D f1; 2; 3; 5; 7; 9g;
f1; 3; 5g [ f1; 3; 6g D f1; 3; 5; 6g;

f2; 4; 6; : : :g [ N D N;

f2; 4; 6; : : :g [ f1; 3; 5; : : :g D N

(in the last two examples f2; 4; 6; : : :g is, of course, the set of all even numbers
and, in the last one, f1; 3; 5; : : :g is the set of all odd numbers).

Also

N [ Z D Z; N [ R D R; RC [ R� D R; RCC [ R� D R:

The reader can easily check that, for all sets S, T, W,

S [ S D S; S [ ; D S; .S n T/ [ T D S [ T;
.S n T/ [ S D S; .S [ T/ [ W D S [ .T [ W/:

One can also define the union of three sets S, T, W:

S [ T [ W WD fx j x 2 S or x 2 T or x 2 Wg .D .S [ T/ [ W/;

or the union of any (even infinite) number of sets. One may use in this case
the more convenient notation

n[

kD1
Sk D fx j x 2 S1 or x 2 S2 or : : : or x 2 Sng:

We use this occasion to call attention to a fine point. Let the sets A, B and C
consist of the employees (“elements”; of course, a company consists of more
than its employees but we will ignore this here) a1; a2; : : : ; a10, b1; b2; : : : ; b90,
c1; c2; : : : ; c35, respectively:

A D fa1; a2; : : : ; a10g; B D fb1; b2; : : : ; b90g; C D fc1; c2; : : : ; c35g:

Then the set S defined in the next line is a set of sets

S D fA;B;Cg

(continued)
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which has three elements (A, B, and C) while the union

A [ B [ C D fa1; a2; : : : ; a10; b1; b2; : : : b90; c1; c2; : : : ; c35g

has 135 elements assuming that no individual is employed by more than one
company.

The intersection of the sets S and T is the set W, the elements of which
belong to both S and T. In symbols:

W D S \ T D fx j x 2 S and x 2 Tg:

If S and T have no element in common, then

S \ T D ;:

Examples

f1; 3; 5g \ f1; 3; 6g D f1; 3g; R�� \ RC D ;; R� \ RC D f0g:

Again one can define also

S \ T \ V D fx j x 2 S and x 2 T and x 2 Vg

and

n\

kD1
Sk D fx j x 2 S1 and x 2 S2 and : : : and x 2 Sng:

and verify for any sets S, T, V

S \ T \ V D .S \ T/ \ V D S \ .T \ V/;

S \ .T [ V/ D .S \ T/ [ .S \ V/;
S [ .T \ V/ D .S [ T/ \ .S [ V/:

(1.1)

We have also the commutativity of both \ and [:

S \ T D T \ S and S [ T D T [ S

(continued)
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(why?), while

.S \ T/ \ V D S \ .T \ V/ and .S [ T/ [ V D S [ .T [ V/

is called the associativity of \ and [, respectively, and the first and second
part of (1.1) is the distributivity of \ over [ and of [ over \, respectively.

While these “identities” are quite important, one can construct many
others.

The symbols 8 (“for all”) and 9 (“there exists”) help express some
mathematical facts. For instance,

8 x 2 T W x 2 S means T � S

and

9 x 2 S means S ¤ ;:

1.3.1 Exercises

1. Do the following expressions describe sets?

(a) ff8; 9g;;; f0gg, (b) ff3; 4g \ f4; 5g; f4; 5gg,
(c) ff3; 4g [ f4; 5g; f3; 4; 5gg, (d) ff3; 4; 5g \ f4; 5; 6g; f4; 5gg,
(e) ; \ f0g, (f) ; [ f0g.

2. Let S D f3; 4; 5g, T D f2; 3g. Which of the following statements are correct?

(a) T � S, (b) S � T, (c) S ¤ T, (d) 5 � S,
(e) 2 2 T, (f) ff3; 4g; 5g � S; (g) f5; 3g � S.

3. Write the elements of the following sets in a simpler form:
(a) .f˛; ˇ; �; ıg [ f˛; ı; �g/[ f˛; !g; f˛; ˇ; �; ıg [ .f˛; ı; �g [ f˛; !g/;
(b) .f˛; ˇ; �; ıg \ f˛; ı; �g/\ f˛; ı; !g; f˛; ˇ; �; ıg \ .f˛; ı; �g \ f˛; ı; !g/;
(c) .f˛; ˇ; �; ıg \ f˛; ı; �g/[ f˛; !g;
(d) f˛; ˇ; �; ıg \ .f˛; ı; �g [ f˛; !g/,
(e) .f˛; ˇ; �; ıg \ f˛; ı; �g/[ f˛; ˇ; �; ıg \ f˛; !g,
(f) f˛; ˇ; �; ıg n f�; ı; 1; 2; 3; : : :g:

4. Show that for arbitrary sets S, T, V
(a) .S \ T/ \ V D S \ .T \ V/ (associativity of \),
(b) .S [ T/ [ V D S [ .T [ V/ (associativity of [),
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(c) S \ .T [ V/ D .S \ T/ [ .S \ V/ (distributivity of \ over [),
(d) S [ .T \ V/ D .S [ T/ \ .S [ V/ (distributivity of [ over \),

5. Verify for arbitrary sets S, T, V
(a) S � T and T � V imply S � V ,
(b) S n T D S implies T n S D T and S \ T D ;,
(c) S \ .T n V/ D .S \ T/ n .S \ V/:

6. Give examples of sets S, T, V such that
(a) S [ .T n V/ ¤ .S [ T/ n .S [ V/,
(b) S [ .T n V/ ¤ .S [ T/ n V ,
(c) S n .T [ V/ ¤ .S n T/ [ V ,
(d) S n .T \ V/ ¤ .S n T/ \ V ,
(e) S n .T n V/ ¤ .S n T/ n V.

1.3.2 Answers

1. (a) and (b) are set, their elements, the sets f8; 9g;;; f0g and f4g; f4; 5g, respec-
tively are distinct.

(c) is not a set, since its elements, the sets f3; 4g[f4; 5g D f3; 4; 5g and f3; 4; 5g,
are not distinct.

(d) is not a set, since its elements, the sets f3; 4; 5g\f4; 5; 6g D f4; 5g and f4; 5g,
are not distinct.

(e) and (f) are the sets ; and f0g, respectively.
2. The statements (c), (e), (g) are correct.
3. (a) f˛; ˇ; �; ı; �; !g, (b) f˛; ıg, (c) f˛; ı; !g,

(d) f˛; ıg, (e) f˛; ıg, (f) f˛; ˇg.

1.4 Cartesian Products of Sets,Rn, Vectors

Another important operation between sets is the Cartesian product, defined as
follows. The Cartesian product S � T of the sets S and T is the set of ordered pairs
.s; t/ where s 2 S, t 2 T, in symbols:

S � T WD f.s; t/ j s 2 S; t 2 Tg:

A few remarks may be useful here: This is a “set of sets” as discussed in the previous
section on the example of a “set of companies”: The elements of S�T are the ordered
pairs .s; t/ just as the elements of the Cartesian product of n sets (the notations on
the left and in the middle can be used interchangeably):

����
n

kD1Sk WD S1 � S2 � : : : � Sn

WD f.s1; s2; : : : ; sn/ j s1 2 S1; s2 2 S2; : : : ; sn 2 Sng
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Fig. 1.2 The points in the plane are represented by pairs of real numbers. If the numbers of such
a pair are written in different order, we usually get different points

are ordered n-tuples .s1; s2; : : : ; sn/. “Ordered”, because their order is of importance
(at the beginning of Sect. 1.2 we have already indicated that later some sets may
be ordered or, at least, partially ordered). The importance of ordering is seen on
the example in Fig. 1.2: As usual (see also below), a point in the Cartesian plane
is represented by its “x and y coordinates”, that is, its distances from the “vertical
axis” f.0; y/ j y 2 Rg and from the “horizontal axis” f.x; 0/ j x 2 Rg, respectively.
Both “Cartesian product” and “Cartesian plane” refer to the name of the French
mathematician René Descartes (1596–1650). We emphasise that the couples and n-
tuples are ordered: As we see in the Fig. 1.2, (2,3) and (3,2) are two different points.

(Actually .s; t/ and .t; s/ give the same points only in the obvious case t D s).

Example The Cartesian product of the sets

S1 D fa; b; cg; S2 D fx; yg; S3 D fzg and S4 D fwg

(continued)
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is given by

S1 � S2 � S3 � S4

D f.a; x; z;w/; .a; y; z;w/; .b; x; z;w/; .b; y; z;w/; .c; x; z;w/; .c; y; z;w/g:

This is a set of six elements .a; x; z;w/; : : : ; .c; y; z;w/ and not of seven elements
a; b; c; x; y; z;w: the ordered sets .a; x; z;w/; .a; y; z;w/; : : : themselves are the
elements of S1 � S2 � S3 � S4.

By the way, the S1 � S2 � : : : � Sn notation is legitimate because the Cartesian
product is associative:

.S1 � S2/ � S3 D S1 � .S2 � S3/ D S1 � S2 � S3

D f.s1; s2; s3/ j s1 2 S1; s2 2 S2; s3 2 S3g:

But the Cartesian product is not commutative:

S1 � S2 D f.s; t/ j s 2 S1; t 2 S2g ¤ f.s; t/ j s 2 S2; t 2 S1g D S2 � S1;

for instance

fa; b; cg � fx; yg D f.a; x/; .a; y/; .b; x/; .b; y/; .c; x/; .c; y/g

and

fx; yg � fa; b; cg D f.x; a/; .x; b/; .x; c/; .y; a/; .y; b/; .y; c/g:

While the latter equals f.x; a/; .y; a/; .x; b/; .y; b/; .x; c/; .y; c/g (compare the intro-
duction of sets at the beginning of Sect. 1.2), this is still not the same as fa; b; cg �
fx; yg above, because .x; a/ is not the same ordered pair as .a; x/, and .y; a/ not the
same as .a; y/, and so on.

If all sets S1; S2; : : : ; Sn are the same

S1 D S2 D : : : D Sn D S

then their Cartesian product is the n-th Cartesian power

Sn WD f.s1; s2; : : : ; sn/ j s1 2 S; s2 2 S; : : : ; sn 2 Sg:

In particular, for S D R, we get

Rn D f.x1; x2; : : : ; xn/ j xk 2 R .k D 1; 2; : : : ; n/g:
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In other words, the elements of Rn are the vectors with n real components or
“n-component real vectors”. Similarly, the elements of Sn are “vectors with n
components in S”. For instance, the elements of RnCC are the vectors with n
positive components, those of Nn are the vectors whose all n components are natural
numbers, similarly for Nn

0, where N0 D N [ f0g is the set of nonnegative integers,
and so on.

There are many examples of such vectors in economics and other social sciences,
for instance the price vector . p1; : : : ; pn/ 2 RnCC of the present prices and the vector
of quantities .q1; q2; : : : ; qn/ 2 RnCC in a “basket of goods”. Further, the component
of the vector

.m1;m2; : : : ;mn/ 2 Nn
0

could be, say, the number of unemployed in n different job categories or the number
of students enrolled in n faculties of a university, and so on.

As mentioned (compare Figs. 1.2 and 1.3), for n D 2, every element .x1; x2/ of
R2 can be identified with the point in the (Cartesian) plane, whose coordinates are x1
and x2. We identify .x1; x2/ 2 R2 also with the directed segment of the straight line
connecting the origin (the point (0,0)) with the point .x1; x2/ (Fig. 1.3). That directed
segment is the arrow usually associated with the word “fig1.3”, in this case a “2-
component real vector” (x1; x2 are its components). Similarly a 3-component real
vector can be identified with a point in the three-dimensional (Euclidean) space and
also with a directed segment from the origin (0,0,0) to that point. As a generalisation

-4 -3 -2 -1 0 1

2

3 4

3

2

1

-1

-2

-3

Y-axis

X-axis

(x1 , x2 ) = (− 4, 3)

(x1 , x 2 ) = (3 , 2)

(x1 , x2 ) = (2, − 3)

Fig. 1.3 .x1; x2/ as point and as vector (directed segment) in the plane
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we call the n-component real vector .x1; x2; : : : ; xn/ 2 Rn (x1; x2; : : : ; xn are its
components) also a point in the n-dimensional (Cartesian) space.

We will write bold face letters for vectors, in particular for real vectors:

x D .x1; : : : ; xn/ 2 Rn:

This manner of writing really defines “row vectors”. It is sometimes more conve-
nient to write the components in a column. Then we speak about “column vectors”:

x D

0

B
@

x1
:::

xn

1

C
A :

At present we treat these interchangeably: we will not distinguish them till Chap. 4,
where they will turn out to be two different special cases of matrices.

For n D 2 the length of the vector (directed segment) x D .x1; x2/ is jjxjj D
.x21 C x22/

1=2
by the theorem of Pythagoras. While the reader is surely familiar with

this theorem, the simple proof in Fig. 1.4 may not be so well known. Actually,
Pythagoras’s theorem proves

jjxjj D .x21 C x22/
1=2

only for positive x1, x2 but it implies the same expression for the length of all x D
.x1; x2/ 2 R2 and we accept as definition of jjxjj the similar formula

jjxjj D .x21 C : : :C x2n/
1=2 2 RC

x 2

x2

x1

x 1

x 2

x1x2

x1 x2

x2 x2

x 2 x1

x 2
2

x2 x1

x1 x 2
1

x1

Fig. 1.4 jjxjj2 D x21 C x22: Pythagoras’s theorem proved by taking away four equal rectilinear
triangles each from the two equal (big) squares
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for all x D .x1; : : : ; xn/ 2 Rn (n D 1; 2; 3; : : :; note that, for n D 1; jjxjj D jxj) and
call it the Euclidean norm (though “Pythagorean” may be appropriate). For n D 3

it still has the geometric meaning of length of x. Vectors e with norm 1 (jjejj D 1)
are called unit vectors.

We emphasised that the n-tuples of components are ordered. In another sense, the
set R of real numbers is ordered (“totally ordered”, to be exact): for any a; b 2 R

either a < b or a D b or a > b (one and only one of these can hold). “Greater”
(or “smaller” and, of course, “equal”) can be usefully defined also for n-component
real vectors with n > 1, even in two, in general different, ways. One is

x > y .the same as y < x/ if x1 > y1; x2 > y2; : : : ; xn > ynI

Of course,

x D y means x1 D y1; x2 D y2; : : : ; xn D yn:

If this does not hold (that is, x and y are not the same vector) then we write x ¤ y.
Knowing that xk � yk for real numbers means that xk is either greater or equal yk, we
define for n-component real vectors the second “greater” (or “smaller”) relation by

x � y .the same as y � x/ if x1 � y1; x2 � y2; : : : ; xn � yn but x ¤ y;

that is xk � yk for all k.D 1; 2; : : : ; n/ but, at least for one `, “sharply” x` > y`
(` 2 f1; 2; : : : ; ng). This is not the same as

x>D y .or y<D x/ which means that x1 � y1; x2 � y2; : : : ; xn � yn

but no x` needs to be really greater than y`. In other words, x>D y contains x D y as
particular case, but x � y does not. Strictly speaking, in R1 (=R, that is, for reals),
we should write x>D y if x can be either greater or equal y but it is traditional to use
the simpler x � y notation in this (exceptional) n D 1 case (where the “�” in the
above sense is not needed, because it means the same as “>” for n D 1, which is
not the case if n > 1).

Under either of these “greater” relations (there are also others, these are the most
useful ones), Rn is not totally ordered, it is only partially ordered, meaning that,
while for some pairs of vectors x 2 Rn, y 2 Rn we have x > y (or x < y or x D y)
or x � y (or x � y or x D y and at most one of these three), there are x 2 Rn,
y 2 Rn for which neither x > y nor x < y nor x D y (neither x � y nor x � y nor
x D y) holds. For instance, of the two vectors .3; 2/ and .2; 3/ in Fig. 1.2 neither is
greater (either in the sense > or �) than the other. (Their norms happen to be equal,
both are

p
13, but they are not equal according to the above definition, since already

their first components are different.) Another example is given by the three vectors
of goods

a D .3; 2/; b D .4; 5/; c D .6; 3/
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(the first components being, say, pounds of butter, the second pounds of honey).
Clearly

a < b .because 3 < 4; 2 < 5/ and a < c .since 3 < 6; 2 < 3/

but neither b < c nor b D c, not even b � c or b � c (since 4 < 6 but 5 > 3). This
is not only of theoretical importance: because of this it is not clear which of the two
vectors of quantities of goods, b or c is of more economic utility. This is what makes
synthesising (merging, index) methods necessary.

We note that there does exist a total order on Rn, the lexicographical order.
In this order, the point with the greater first component is considered greater; in
case of equal first components that with greater second component, and so on.
The ordering is called “lexicographic” because that is how “lexicons” (dictionaries,
phone directories, etc.) are ordered: in the alphabetical order of the first letter; if
that is the same in two words then by the second letter, and so on. The words can
consist of differently many letters. Any word W stands in front of every longer
word starting with W. Applying this rule accordingly we can establish a complete
(lexicographical) order for all vectors of R2, R3, R4, . . . The lexicographical order
is, however, not practical for most applications in economics.

1.4.1 Exercises

1. For the sets S1 D fa; bg, S2 D fc; d; e; f g, S3 D fxg determine
(a) S1 � S2,
(b) S2 � S1,
(c) the Cartesian product S1 � S2 � S3,
(d) the fourth Cartesian power of S1.

2. Calculate the length of the vectors
(a) (3,4), (5,12), (6,7),
(b) (3,4,5), (1,2,3), (2,2,2).

3. Calculate the Euclidean norms of the vectors
.3; 4; 5; 6/, (2,2,2,2), (1,2,3,4,5,6,7).

4. Take the vectors

u D .4; 7/; v D .1; 8/; w D .2; 8/; x D .3; 9/; y D .�5; 8/; z D .2; 4; 6/:

Which of the following relations are correct?
(a) u < v, (b) v � w, (c) x > y,
(d) z < u, (e) u > y, (f) w>D v.

5. Take the vectors
a D .�3; 4/, b D .5; 2; 1/, c D .4; 5; 6; 7/, d D .�1; 7/,
e D .4; 5; 6; 8/, f D .6; 1/, g D .6; 1; 2/.
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(a) Which of these vectors are comparable with respect to <, �, <D ?
(b) Order them in the lexicographical order. (Start with a which has the smallest

first component.)

1.4.2 Answers

1. (a) f.a; c/; .a; d/; .a; e/; .a; f /; .b; c/; .b; d/; .b; e/; .b; f /g;
(b) f.c; a/; .c; b/; .d; a/; .d; b/; .e; a/; .e; b/; .f ; a/; .f ; b/g;
(c) f.a; c; x/; .a; d; x/; .a; e; x/; .a; f ; x/; .b; c; x/; .b; d; x/; .b; e; x/;

.b; f ; x/g:
(d) S41 D f.a; a; a; a/; .a; a; a; b/; .a; a; b; a/; .a; b; a; a/; .b; a; a; a/;

.a; a; b; b/; .a; b; a; b/; .b; a; a; b/; .a; b; b; a/; .b; a; b; a/;

.b; b; a; a/; .a; b; b; b/; .b; a; b; b/; .b; b; a; b/; .b; b; b; a/; .b; b; b; b/g:

2. (a) 5, 13,
p
85, (b) 5

p
2,

p
14, 2

p
3.

3.
p
86, 4, 2

p
35.

4. (b), (c), (f).
5. (a) a < d; a � d; a<D d; c � e; c<D d:

(b) a, d, c, e, b, f, g.

1.5 Operations for Vectors, Linear Dependence
and Independence

While not any two vectors could be compared in the sense of the above “>” or
“�” order, any two (n-component real) vectors can be added, subtracted, any vector
can be multiplied by a real number (“scalar” in this context) and even any two
n-component vectors can be multiplied in a sense (giving a “scalar product”, not an
n-component vector as product).

1.5.1 Sums, Differences, Linear Combinations of Vectors

If the prices p01; p02; : : : ; p
0
n of n goods in a “basket of goods” in the base year are

considered to be the components of a vector

p0 D . p01; : : : ; p
0
n/ 2 RnCC

and during a certain time-interval the prices increase by d1; : : : ; dn, which we collect
again into a vector

d D .d1; : : : ; dn/ 2 RnCC;
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then the new prices will be p01 C d1; p02 C d2; : : : ; p0n C dn, forming the new price
vector

p D . p01 C d1; : : : ; p
0
n C dn/:

It is natural to consider this p the sum of the two vectors p0 and d:

p D p0 C d WD . p01 C d1; : : : ; p
0
n C dn/:

The sum of two vectors x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ in Rn (practical since,
incredible as it may seem, prices can also go down or remain unchanged) is therefore
defined by

x C y D .x1; : : : ; xn/C .y1; : : : ; yn/ WD .x1 C y1; : : : ; xn C yn/:

Obviously, the addition of real vectors is commutative and associative:

x C y D y C x and .x C y/C z D x C .y C z/ DW x C y C z;

because the addition of real numbers has these properties (write the above equation
in components). The sum of more than three vectors can be defined similarly.

As motivation for the rule on multiplication of vectors by scalars, consider a bank
which pays on 90-day term deposit 4 % (nominal) yearly interest, that is 1 % for the
90 day period. Denote the amounts of n term deposits by t01; t

0
2; : : : ; t

0
n, again forming

a vector

t0 D .t01; : : : ; t
0
n/ 2 RnCC:

By the end of the 90-days term, the depositors will be paid the amounts
1:01 t01; 1:01 t02; : : : ; 1:01 t0n. It is natural to consider the vector

t D .1:01 t01; : : : ; 1:01 t0n/

as 1.01 times the original vector t0:

1:01 t0 D 1:01.t01; : : : ; t
0
n/ WD .1:01 t01; : : : ; 1:01 t0n/:

In general, multiplication of a vector x D .x1; : : : ; xn/ in Rn by a real number
(“scalar”) � 2 R is defined by

�x D �.x1; : : : ; xn/ WD .�x1; : : : ; �xn/:
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By definition this is also x� (multiplication of a scalar by a vector):

x� WD �x .x 2 Rn; � 2 R/

(a kind of “commutativity”). Observe also

.��/x D �.�x/ .� 2 R; � 2 R; x 2 Rn/

(a kind of “associativity”) and the two distributivity identities:

�.x C y/ D �x C �y .� 2 R; x 2 Rn; y 2 Rn/

.�C �/x D �x C �x .� 2 R; � 2 R; x 2 Rn/:

Notice that the null-vector 0 WD .0; : : : ; 0/ 2 Rn satisfies

x C 0 D 0 C x D x; 0x D 0 for all x 2 Rn and r0 D 0 for all r 2 R:

Combining (as in the distributivity identities) the rules for multiplication of a
vector by a scalar and for addition of vectors (and the associativity of the latter), we
get the definition of the linear combination

�x C �y D �.x1; : : : ; xn/C �.y1; : : : ; yn/ WD .�x1 C �y1; : : : ; �xn C �yn/;

and a similar definition for p vectors (with n components each):

�1x1 C : : :C �pxp D
pX

jD1
�jxj

(the right hand side is just a short way of writing the left, in the same vein as we had
[n

kD1Sk; \n
kD1Sk; Xn

kD1Sk). A particular case is the difference of two vectors:

x � y D .x1; : : : ; xn/� .y1; : : : ; yn/ WD .x1 � y1; : : : ; xn � yn/:

For instance, the vector d considered above is the difference p � p0 of the vectors p
and p0 of the new and the base year prices, respectively.

1.5.2 Linear Dependence, Independence

If a vector xm is, as above a linear combination of p D m � 1 vectors,

xm D �1x1 C �2x2 C : : :C �m�1xm�1
.�1 2 R; : : : ; �m�1 2 RI x1 2 Rn; : : : ; xm�1 2 Rn; xm 2 Rn/;

(1.2)
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then we say that xm is linearly dependent upon x1; : : : ; xm�1. Of course also, for
instance, x1 could be linearly dependent upon x2; : : : ; xm. This is not quite the same
as (1.2): if �1 D 0 (which was not excluded) then it does not follow from (1.2)
that x1 is a linear combination of x2; : : : ; xm�1; xm. A symmetrical definition for all
these linear dependencies (also for x2 or . . . or xm�1 to be linearly dependent on the
others) is: x1; : : : ; xm are linearly dependent if there exist �1 2 R; : : : ; �m 2 R, not
all 0, such that

�1x1 C : : :C �m�1xm�1 C �mxm D 0:

Equation (1.2) is the special case where �m D �1.
The opposite of linear dependence is the linear independence: the vectors

x1; : : : ; xm are linearly independent if

�1x1 C : : :C �mxm D 0 can hold only for �1 D : : : D �m D 0:

As an important example, take the basis vectors of Rn

e1 D .1; 0; 0; : : : ; 0; 0/; e2 D .0; 1; 0; : : : ; 0; 0/; : : : ; en D .0; 0; : : : ; 0; 1/:

They are clearly unit vectors (jjekjj D 1I k D 1; 2; : : : ; n). They are also linearly
independent. Indeed,

�1e1 C �2e2 C : : :C �nen D .�1; �2; : : : �n/

can be the 0 vector only if �1 D �2 D : : : D �n D 0. Of course any number (< n) of
them are also linearly independent. Note that a single vector of nonzero (therefore
positive) length (norm) is always linearly independent (�1x D 0 only if �1 D 0)
while the zero vector is always linearly dependent .�10 D 0 for all, also nonzero
�1). In particular, each single basis vector ek is linearly independent.

The basis vectors (all n of them together) span Rn. By this we mean the
following. The vectors x1 2 Rn; : : : ; xm 2 Rn span a subset S of Rn (possibly
Rn itself) if every x 2 S is a linear combination of x1; : : : ; xm. This is indeed the
case for e1; : : : ; en with S D Rn: for every x D .x1; : : : ; xn/ 2 Rn

x D .x1; : : : ; xn/ D x1.1; 0; : : : ; 0; 0/C : : :C xn.0; 0; : : : 0; 1/

D x1e1 C : : :C xnen:

But it is easy to see that fewer than n of the basis vectors cannot span Rn. In general,
if m < n then no m vectors can span Rn but if the m vectors are independent they
span a “space S of dimension m”. Furthermore, n vectors span Rn exactly if they are
linearly independent (n vectors which span Rn are often called a basis of Rn). On
the other hand more than n nonzero vectors in Rn can never be linearly independent.
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We will not prove these assertions here but the reader may wish to try. However, we
give examples:

Example 1 The vectors x1 D .1; 3; 1/; x2 D .4; 2; 1/; x3 D .2; 0; 1=5/ 2 R3

are linearly dependent, because

2x1 C .�3/x2 C 5x3 D .2� 12C 10; 6� 6C 0; 2� 3C 1/ D .0; 0; 0/ D 0:

Example 2 The vectors y1 D .3; 4/; y2 D .2; 1/ 2 R2 are linearly
independent:

�1y1 C �2y2 D �1.3; 4/C �2.2; 1/ D .3�1; 4�1/C .2�2; �2/

D .3�1 C 2�2; 4�1 C �2/ D .0; 0/

if 3�1 C 2�2 D 0 and 4�1 C �2 D 0. From the second equation �2 D �4�1
which we put into the first:

3�1 C 2.�4�1/ D �5�1 D 0; so �1 D 0 and �2 D �4�1 D 0;

that is y1 D .3; 4/ and y2 D .2; 1/ indeed satisfy the definition of linear
independence. They also span R2 (they form a basis of R2). Indeed, for any
x D .x1; x2/ 2 R2 one can find �1; �2 such that x D �1y1 C �2y2. These are
�1 D .2x2 � x1/=5; �2 D .4x1 � 3x2/=5:

�1.3; 4/C �2.2; 1/ D 2x2 � x1
5

.3; 4/C 4x1 � 3x2
5

.2; 1/

D
�
6x2 � 3x1 C 8x1 � 6x2

5
;
8x2 � 4x1 C 4x1 � 3x2

5

�

D .x1; x2/:

Example 3 The vectors y1 D .3; 4/; y2 D .2; 1/; y3 D .1;�1/ 2 R2 are
linearly dependent, because

3.3; 4/C .�7/.2; 1/C 5.1;�1/ D .9 � 14C 5; 12� 7 � 5/ D .0; 0/:

(continued)
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Actually, since we showed in Example 2 that every x is linearly dependent
upon y1; y2 these y1 D .3; 4/; y2 D .2; 1/ would be linearly dependent
not only with this y3 D .1;�1/ but also with any other y3. (Moreover, as
mentioned above, no three vectors in R2 are linearly independent.)

1.5.3 Inner Product

If the quantities of goods in a “basket of goods” are x1; x2; : : : ; xn, their prices
p1; p2; : : : ; pn then this basket of goods costs x1p1 C x2p2 C : : :C xnpn. In vectorial
terminology we define this scalar as the “inner or scalar product” of x D .x1; : : : ; xn/

and p D . p1; : : : ; pn/ and write

x � p D .x1; : : : ; xn/ � . p1; : : : ; pn/ WD x1p1 C : : :C xnpn

(the notations .x;p/ or xp without dots are also used in some books). In general, if
x D .x1; : : : ; xn/ 2 Rn; y D .y1; : : : ; yn/ 2 Rn, then

x � y D x1y1 C : : :C xnyn 2 R

is the inner product of x and y (also called scalar product because the result is
a scalar; there are also “outer products”, “vectorial products” but they are less
important for us and we will not deal with them here).

Notice that the inner product is commutative and distributive over vector
addition:

x � y D x1y1 C : : :C xnyn D y � x and

x � .y C z/ D .x1y1 C x2y2; : : : ; xnyn C xnzn/ D x � y C x � z:

Associativity makes no sense for n > 1, because x � y is in R, not Rn and if we would
consider once the scalar product and once multiplication of a vector by a scalar on
each side, we would get

.x � y/ � z D .x1y1 C : : :C xnyn/.z1; : : : ; zn/

D .x1y1z1 C : : :C xnynz1; : : : ; x1y1zn C : : :C xnynzn/;

x � .y � z/ D .x1; : : : ; xn/.y1z1 C : : :C ynzn/

D .x1y1z1 C : : :C x1ynzn; : : : ; xny1z1 C : : :C xnynzn/

which are not the same, as the example (check!)

x D .1; 2/; y D .2; 1/; z D .1; 3/
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shows. But we have

�.x � y/ D .�x/ � y D x � .�y/ for all x; y 2 Rn; � 2 R: (1.3)

We see that, for n D 1, the inner product (just as the multiplication of a vector by
a scalar) reduces to ordinary multiplication of real numbers: if x D x1 2 R; y D
y1 2 R then x � y D x1y1 D x1y D xy1. (And, similarly, for n D 1, addition of
vectors reduces to addition of real numbers, etc.) Indeed, the value of the quantity
x1 2 R of one good with price p1 is x1p1 (and that is also the value at maturity of
one 90-day term deposit of x1 with interest factor p1 D 1C .q=400/, where q is the
bank’s interest rate).

There is a remarkable connection between the inner product and the norm: the
scalar product of a vector with itself equals the square of its norm:

x � x D .x1; : : : ; xn/ � .x1; : : : ; xn/ D x21 C : : :C x2n D jjxjj2:

1.5.4 Exercises

1. From the vectors x D .1; 3; 5/; y D .2;�4;�1/; z D .�2; 8; 7/ calculate the
following vectors:
(a) 3x � 6y C 9z,
(b) 1:04x C 1:05y � 1:06z;
(c) �x C 	y C 
z.

2. Is the vector (2,1,3) linearly dependent upon
(a) the vectors (1,2,3) and (1,3,4),
(b) the vectors (1,2,3) and (0,3,4)?

3. (a) Are the vectors (1,2) and (1,-2) linearly independent?
(b) Are the vectors (1,2,3), (1,2,-3), (7,14,-9) linearly dependent?

4. For the vectors x, y, z in Exercise 1 calculate
(a) .x � y/ � z, (b) x � .y � z/,
(c) x � .y C z/, (d) .x C y/ � z,
(e) x.y � z/, (f) .x � y/ � z.

5. For the vectors x, y, z in Exercise 1 calculate
(a) 5x � y � 3y � z C 2z � x,
(b) 6.x � z/ � y � 4.x C z/ � y,
(c) 7x � x � 8y � y C z � z.

6. For the vectors

a D .a1; a2/ 2 R2; u D .u1; u2; u3/ 2 R3; x D .x1; x2; x3; x4/ 2 R4

determine vectors b 2 R2, v 2 R3, y 2 R4 such that
(a) a � b D 0; (b) u � v D 0; (c) x � y D 0.
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1.5.5 Answers

1. (a) .�27; 105; 84/, (b) .5:26; �9:56; �3:27/,
(c) .�C 2�� 2
; 3� � 4�C 8
; 5� � �C 7
/:

2. (a) Yes, .2; 1; 3/ D 5 .1; 2; 3/� 3 .1; 3; 4/.
(b) No, there do not exist �1; �2 such that

�1.1; 2; 3/C �2.0; 3; 4/ D .2; 1; 3/:

3. (a) Yes, �1.1; 2/C �2.1;�2/ D .0; 0/ if and only if �1 D �2 D 0.
(b) Yes, 2.1; 2; 3/C 5.1; 2;�3/C .�1/.7; 14;�9/D .0; 0; 0/.

4. (a) .30; �120; �105/, (b) .�43; �129; �215/.
(c) 42, (d) 14, (e) �72, (f) 100.

5. (a) 168, (b) 400, (c) 210.

1.6 Geometric Interpretations. Distance. Orthogonal Vectors

While we have just seen that the operations with one-component real vectors
are just the familiar operations with real numbers, we saw also in Sect. 1.4 that
two-component real vectors nicely and simply illustrate the general situation (three-
component real vectors do this even better, though the drawings are less simple,
therefore we stick to n D 2).

Figure 1.5 illustrates the addition of two component real vectors, Fig. 1.6 their
multiplication by a real number (scalar). We see that, by completing the two vectors

Fig. 1.5 The vector x C y is
represented by the fourth
vertex of the parallelogram,
whose other three vertices
represent 0, x and y

0 y1 x 1 x 1 + y1

X1 -axis

x= (x1 , x2 )

y = ( y1 , y2 )

x + y = (x1 + y1 , x2 + y2 )

x 2

y2

x 2 + y2

X2 -axis



1.6 Geometric Interpretations. Distance. Orthogonal Vectors 27

X1 -axis

X2 -axis

−x

−x 1

x1
x1

3

− x1

3

− x 2

x2

x2

3

−
x2

3

x = (x1 , x 2 )

Fig. 1.6 The vector x has the same direction but three times the length of 1
3
x, �x has also three

times the length but opposite direction to 1
3
x, �x D .�1/x has the same length as x but opposite

direction

to a parallelogram (quadrangle with two pairs of parallel sides), the vertex opposite
to the origin 0 represents the vector x C y.

On the other hand, for x 2 Rn; � 2 R

�x D .�x1; : : : ; �xn/;

j�xj D .�2x21 C : : :C �2x2n/
1=2 D j�j.x21 C : : :C x2n/

1=2 D j�j jxj :

(We know that the absolute value j�j is the positive square root of �2, that is, the
nonnegative number whose square is �2, still otherwise put: j�j D � if � � 0

but j�j D �� if � < 0. Notice that, on the right end of the above equation, both
the absolute value and the norm figure. We mentioned already in Sect. 1.4 that, for
n D 1, the norm is the absolute value, so the norm is a generalisation of the absolute
value from n D 1 to n > 1.) Thus the length of �x is j�j times the length of x and
the direction of �x is that of x if � > 0, but opposite to x if � < 0 (of course, for
� D 0 we get 0 x D 0, the null-vector).

Figure 1.7, based on Figs. 1.5 and 1.6, illustrates the subtraction of vectors:

x � y D x C .�1/y
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X 1 -axis

X2-axis

O−y1

− y2

y1

y2

x 1

x2

x 1 − y1

x2 − y2

C y = − (y1 , y 2 )

B y = (y1 , y2 )

D x − y = (x1 − y1 , x 2 − y2 )

A x = (x 1 , x 2 )

Fig. 1.7 Construction of x � y D x C .�1/y based on Figs. 1.5 and 1.6. Note that jx � yj is the
distance between the points x and y

is the vector connecting O and D (we write also OD). One sees immediately (since
not only OCDA but also ODAB is a parallelogram) that BA has the same length as
OD and that length is jx � yj. Now, the length of BA is the distance of the points x
and y. We accept

d.x; y/ WD jx � yj

as definition of the distance d.x; y/ 2 RC of x 2 Rn; y 2 Rn for all n (For n D 3

we have still a similar geometric picture and proof).
From Fig. 1.5 we see that the “triangle inequality”

jx C yj � jxj C jyj

holds, because the sum of the lengths of the two sides of a triangle is at least as large
as the length of the third side. We see also that there is “=” in place of “�” in the
triangle inequality if, and only if, the two vectors “have the same direction”, that is,
(compare Fig. 1.6) either there exists � 2 R such that

y D –x or x D 0;

in other words: exactly when x and y are linearly dependent (why are the last two
statements equivalent?). These results are true also in n-dimensional spaces with
n > 2.
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Fig. 1.8
.5; 2/ D 5.1; 0/C 2.0; 1/

X1 -axis

X 2 -axis

-1 1 2 3 4 5

-1

1

2

e1 = (1 , 0)

e2 = (0 , 1)

5e1 = (5, 0)

2e2 = (0, 2) 5e1 + 2e 2 = (5, 2)

Fig. 1.9 For the orthogonal
vectors x, y we have
x � y D .x1; x2/ � .�x2; x1/ D
�x1x2 C x1x2 D 0

X1 -axis

X2 -axis

O− x 2 x1

x2

x1

x = (x1 , x2 )

y = (−x2 , x1)

Figure 1.8 gives an example that the base vectors e1 D .1; 0/ and e2 D .0; 1/

indeed span R2, that is, to every x 2 R2 there exist �1; �2 2 R such that x D
�1e1 C �2e2. Here x D .5; 2/, �1 D 5, �2 D 2.

We will return in Sect. 1.7.2 to the geometric interpretation of the inner product.
Here we deal only with the case when x � y D 0 (Fig. 1.9).

In Fig. 1.9, x D .x1; x2/ and y D .�x2; x1/ are orthogonal (“perpendicular”: their
angle is a right angle; look at all angles at 0) and their inner product is 0:

x � y D .x1; x2/ � .�x2; x1/ D x1.�x2/C x2x1 D 0:

These x and y are of equal length .x21 C x22/
1=2 but it follows now from (1.3) in

Sect. 1.4 that the inner product of any two perpendicular 2-component real vectors
is 0. In general we can define, also for n > 2, two n-component vectors to be
orthogonal exactly when their inner product is 0. (Again it could still be illustrated
geometrically for n D 3; for n D 1 it does not make much sense because for x D x1,
y D y1 2 R we have x � y D x1y1 D 0 exactly if either x1 D 0 or y1 D 0.) Notice
that the null-vector is orthogonal to every vector in Rn (including itself):

x � 0 D .x1; : : : ; xn/ � .0; : : : ; 0/ D x10C : : :C xn0 D 0
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(true also for x D 0). Since the inner product is commutative, the orthogonality
relation is “symmetric”, that is, if x is orthogonal to y then y is orthogonal to x
.0 D x � y D y � x/; in particular 0 � x D x � 0. That is why we chose the “symmetric”
expression “x and y are orthogonal (to each other)”.

1.6.1 Exercises

1. Draw the vectors x D .1; 2/; y D .3; 4/; z D .�2; 4/ in the plane and calculate
with their aid also the vectors
(a) x C y, (b) x � y; (c) x C z; (d) x � z;
(e) y C z; (f) y � z; (g) 3x; (h) 2y;
(i) x C y C z; ( j) x � y C z; (k) x C y � z; (l) 3x C 2y C z;

2. Calculate the distances d.x; y/; d.x; z/; d.y; z/, where x, y, z are the vectors
defined in Exercise 1.

3. Construct vectors of length 1 which are orthogonal to the vectors

(a) (3,4), (b) (4,�1,�1),
(c) (�6,2,2,2), (d) (2,2,3,4,5).

4. For the vectors a D .1; 2; 3; 4/;b D .�3; 5;�6; 2/; c D .�3;�2;�1; 8/;d D
.6;�4; 7; 3/ show that

ja C b C c C dj < jaj C jbj C jcj C jdj ;
ja � b C c � dj < jaj C jbj C jcj C jdj :

5. (a) For pairs of vectors x, y taken from Exercise 4 and for arbitrary real numbers
� 6D 0, � 6D 0, show that

j�x C �yj � j�j jxj C j�j jyj :

(b) Prove this inequality for all x 2 Rn, y 2 Rn, � 2 R, � 2 R.
(c) When does D hold for the above inequality?

1.6.2 Answers

1. d.x; y/ D 2
p
2, d.x; z/ D p

13, d.y; z/ D 5.
2. (a) 1

5
.4;�3/, (b) 1

3
.1; 2; 2/,

(c) 1
2
.1; 1; 1; 1/, (d) 1

7
.�5;�4; 0; 2; 2/.

Note that these vectors are not unique.
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1.7 Complex Numbers; the Cosine, Sine, Tangent
and Cotangent

Vectors in R2 are particularly important because they can be interpreted as “complex
numbers”. Why do we need another kind of number? Negative numbers were
introduced so that an equation like 3 C x D 2 have a solution .x D �1/;
(noninteger) rational numbers came in so that an equation like 3x D 2 have a
solution .x D 2=3/. As one reason for introducing irrational numbers we can name
the desire that an equation like 3x2 D 2 have a solution .x D p

2=
p
3/; there

are also other reasons, for instance that � (the half circumference length of the
unit circle) be a number or that the “number line” (Sect. 1.1, compare Fig. 1.1) be
“filled”. In the sixteenth century the need to solve equations like 3 C x2 D 2 or
25 C z2 D 8z arose. But there are no real numbers (rational or irrational) x and z
satisfying these equations and the one-dimensional number line is already “full”.
So we have to move into two dimensions. In the two-dimensional space there are
the two-component (real) vectors. But we had till now no multiplication of vectors
(and so no squaring) which results in a vector (though we have multiplication of a
vector by a scalar and multiplication of two vectors, the inner product, which results
in a scalar). Fortunately, two is a dimension in which a multiplication of vectors
can be defined which results in a vector of the same dimension (two) and which has
quite similar properties to the product of real numbers. (There are not many such
dimensions: in a sense two is the only one, though there is a multiplication in four
dimensions, that of “quaternions” which has many properties of multiplication for
real numbers but not commutativity, that is, there in general xy ¤ yx. We will not
deal with them here. The multiplication of “complex numbers”, as we will define
it, is commutative.) Actually, this multiplication is what makes “complex numbers”
out of two-component (real) vectors.

We could define multiplication right away but that definition could seem quite
arbitrary. So, rather than hitting the reader over the head with these formulas, we try
some gentle persuasion and preparation:

1.7.1 Multiplication of Complex Numbers

As we saw in Sect. 1.5.2, any two 2-component real vectors can be written as

a D a1e1 C a2e2; b D b1e1 C b2e2; where e1 D .1; 0/; e2 D .0; 1/

(and a1e1 is the product of the scalar a1 and of the vector e1 as defined in Sect. 1.4,
and so on). If we want our new multiplication of complex numbers (2-component
real vectors) to be distributive (and satisfy .�x/.�y/ D .��/xy/ then

ab D .a1e1 C a2e2/.b1e1 C b2e2/

D a1b1e1e1 C a1b2e1e2 C a2b1e2e1 C a2b2e2e2:
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This shows that the only products we have to define are e1e1, e2e2 and e1e2 D e2e1,
if we want the multiplication to be also commutative. We want the product to be
again a (two-component real) vector (not a scalar as in the scalar product) so the
above three fundamental products have also to be vectors (with two components,
though one of them may be 0). There are still several possibilities left but, since
we want the horizontal line to be our old “real line”, it is rather pleasing to define
e1e1 D e1 and then, similarly,

e1x D xe1 D x for every x in R2: (1.4)

In particular,

e1e2 D e2e1 D e2: (1.5)

Only e2e2 remains to be defined. It may be tempting to equate it to e2 but then we
could loose an important property of multiplication, the cancellativity: if xz D yz
and z ¤ 0 then x=y or, equivalently, t z D 0 only if t D 0 or z D 0 or both.
Cancellativity yields e1 D e2 from e2e2 D e2 D e1e2 (see (1.5)) and e2 ¤ 0. The
same problem would arise if we chose e2e2 D �e2. So we do not want e2e2 to
equal e2 or �e2. The same reason excludes e2e2 D e1 (be careful not to use later
the equations in the last three sentences and in the next sentence). Indeed we would
have then, by (1.4), e2e2 D e1 D e1e1, that is, 0 D e1e1 � e2e2 D .e1 C e2/.e1 � e2/
contradicting cancellativity, because neither e1 C e2 D 0 (since e2 ¤ �e1), nor
e1 � e2 D 0 (since e2 ¤ e1) hold. So we choose the next best thing and define

e2e2 D �e1: (1.6)

From (1.4), (1.5) and (1.6) we have now the definition of the product of two complex
numbers:

ab D .a1e1 C a2e2/.b1e1 C b2e2/
D .a1b1 � a2b2/e1 C .a1b2 C a2b1/e2

(1.7)

or, what is the same, the definition with which we could have started but which in
our opinion needed some explanation:

.a1; a2/.b1; b2/ WD .a1b1 � a2b2; a1b2 C a2b1/:

Note that this product satisfies cancellativity (see Exercise 2).
Because of (1.4), e1 plays the same role in this multiplication of complex

numbers as 1 in the multiplication of real numbers. Therefore we will define 1 WD e1.
Then (1.6) reads

e22 D e2e2 D �1
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( just as for numbers, we define also for complex numbers the product, of a
“number” by itself as the square of that number). We write i WD e2 because of
this property, since the “number” i, for which i2 D �1 was what mathematicians
were looking for. (Of course, there exists no such real number. This i would be, in
particular, a solution of the equation 3C x2 D 2, mentioned at the beginning of this
section or, what is the same, a solution of x2 C 1 D 0.) With this notation, every
complex number a can be written as

a D a11 C a2i:

Now, if we only remember the all-important relation i2 D �1 (and distributivity),
we can get rid of the vector notation and write complex numbers just as real ones:

a D a1 C ia2:

Indeed then, as in (1.7),

ab D .a1 C ia2/.b1 C ib2/ D a1b1 C ia1b2 C ia2b1 C i2a2b2
D .a1b1 � a2b2/C i.a1b2 C a2b1/:

(1.8)

As “non real”, i got the name “imaginary unit” and every b i with b 2 R was called
“imaginary number”.

Not only does x D i satisfy x2 C 1 D 0 and z D 4 C 3i satisfy the equation
25C z2 D 8z .25C .4C 3i/2 D 25C 16C 24i � 9 D 32C 24i D 8.4C 3i// but,
for every equation of the form

apxp C ap�1
p�1 C : : :C a1x C a0 D 0

(a0; a1; : : : ; ap (real or) complex, ap ¤ 0), there exists a complex number x which
satisfies it (“fundamental theorem of algebra”, see also Sect. 6.2).

Note that particular cases of the complex numbers

a D a1 C ia2 .a1; a2 2 R/

are real numbers (for a2 D 0) and the imaginary numbers (for a1 D 0). From now
on i will no longer be represented bold-faced, i.e. we shall write i instead of i.

Let us recapitulate: Complex numbers are 2-component real vectors with the
multiplication (1.7) [or (1.8)] defined for them. If such a multiplication is defined
then, instead of the “real plane” R2, we speak about the “complex plane” or
“Gaussian plane” C (Carl Friedrich Gauss (1777–1855) was a very famous German
mathematician but he did not invent complex numbers, only clarified and enhanced
their role). This time the horizontal and vertical axes are called the “real axis” and
the “imaginary axis”, respectively. We write the complex numbers as

a D a1 C ia2 .a1; a2 2 R/
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and can add, subtract, multiply, divide (see below), square etc. them as we would
do with other two-term sums. We have to remember only that

i2 D �1:

In particular, the multiplication (1.8) is commutative, associative and distributive
upon addition:

ab D ba; .ab/c D a.bc/; a.b C c/ D ab C ac .a; b; c 2 C/:

(We leave the proofs to the reader). Clearly two complex numbers are equal, that is
a1 C ia2 D b1 C ib2 exactly if their real parts are equal: a1 D b1 and so are their
imaginary parts: a2 D b2.

The addition of complex numbers and their multiplication by a real number has,
of course, the same meaning as for 2-component real vectors, see Figs. 1.5 and 1.6.
To interpret geometrically the multiplication of complex numbers is easier in their
trigonometric form.

1.7.2 Trigonometric Form of Complex Numbers; Sine, Cosine

A complex number in the Gaussian plane (or, for that matter, a vector in R2) can
be described not only by its two components, but also by its length (the norm
jzj D .z21 C z22/

1=2 of the vector z D z1e1 C z2e2 D z11 C z2i D z1 C iz2; for
complex numbers, just as for real ones, we use the absolute value name and sign
for norms: jzj D jz1 C iz2j D jz11 C z2ij D .z21 C z22/

1=2) and by its “angle”,
“argument” or “amplitude”. The latter is the (directed) angle � between the basis
vector e1 D .1; 0/ and the vector z D .z1; z2/ (see Fig. 1.10), it is denoted by arg

Fig. 1.10 Trigonometric form of a complex number: z D z1 C iz2 D jzj .cos � C i sin�/
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z D �. Two reservations have to be made: For the complex number 0 (the null-vector
0) the amplitude (angle) is arbitrary (while the absolute value makes sense: jzj D 0;
conversely, if jzj D 0 then z D 0. And, if jzj D jzj > 0 (the absolute value is never
negative), then the amplitude of z is determined only up to multiples of 2� . Note that,
while for some practical purposes angles are measured by degrees or even “decimal
degrees” (with which the right angle is 90ı or 100 decimal degrees, respectively),
in mathematics angles are mostly measured in radians (length of the arc of the unit
circle belonging to that central angle: right angle = �=2, full angle = full turn = 2�);
we will see the advantage of this, among others, in Sects. 5.2 and 5.4.

The triangle inequality in Sect. 1.6 can now be written as

jz1 C z2j � jz1j C jz2j for all z1; z2 2 C

with equality if and only if

arg z1 D arg z2 .or arg z1 D arg z2 C 2k�; k 2 Z/:

This implies (why? prove it by induction) the following generalisation:

jz1 C z2 C : : :C zmj � jz1j C jz2j C : : :C jzmj

for all z1; z2; : : : ; zm in C, with equality if and only if

arg z1 D arg z2 D : : : D arg zm:

Often this too is called triangle inequality.
We also need to define sin � and cos�, the “sine” and the “cosine” of the

amplitude �. This can be done in many ways. For our purpose the following seems
to be convenient. For every vector z ¤ 0, the vector (see Fig. 1.10) (1/jzj/z is a unit
vector with the same amplitude � as that of z. The components of this unit vector are
cos� and sin �, they define the cosine and sine of �. This holds also if � � �=2 or
� � 0; the cos� and the sin� do not change if we add 2k� .k 2 Z/ to �. It follows
from the definition that �1 � cos� � 1, �1 � sin� � 1. From the similarity of
the two rectangular triangles in Fig. 1.10 (both with the angle � at 0)

z D jzj cos� e1 C jzj sin � e2:

Now, identifying, as above, the vector z 2 R2 with the complex number z 2 C, its
norm jzj with the absolute value jzj, e1 with 1 and e2 with i, we get

z D jzj .cos� C i sin �/ D r.cos� C i sin �/;

the trigonometric form of the complex number z (it is customary to write r D jzj)
and it is easy to see that this remains valid also for � � �=2 and � � 0.
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Now we can give a geometrical interpretation for the multiplication of complex
numbers. First, we know that multiplication of any real (2-component) vector by a
real number c means (see Fig. 1.6) stretching (or compressing) it by c and keeping
its direction (this is for positive c, for simplicity we will restrict ourselves in this
argument to positive c; for negative c, we stretch by jcj D �c and reverse the
direction; for c D 0 the product is the null-vector) and this is also how we multiply
a complex number by a real number. We now look at multiplication of a complex
number by i:

zi D .z1 C iz2/i D �z2 C z1i:

But, as we have seen (look at Fig. 1.9), the vector (�z2; z1) is orthogonal (perpen-
dicular) to z D .z1; z2/. This is all we need. Figure 1.11 shows the steps yielding

.a1 C ia2/.b1 C ib2/ D ab D a.b1 C ib2/ D ab1 C .ai/b2:

Since the rectilinear triangle OC1C can be obtained by “enlarging” (if jaj > 1,
otherwise “shrinking”) the triangle OB1B “jaj-times” (look at the sides enclosing
the rectangle in both triangles), so OC, the length of the product vector ab will also

Fig. 1.11 Multiplication of complex numbers: the absolute values are multiplied, the amplitudes
are added up
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be jaj times the “length” (absolute value) OB of b:

jabj D jaj jbj .a 2 C; b 2 C/

and the angle †C1OC will equal the angle †B1OB. So, we multiply two nonzero
complex numbers by multiplying their absolute values and adding up their ampli-
tudes:

ab D .jaj .cos� C i sin �// .jbj .cos C i sin //

D jaj jbj .cos.� C  /C i sin.� C  //:
(1.9)

As an added bonus we get “free of charge” significant properties of the cosine and
sine, which otherwise are usually proved by rather painful and lengthy arguments.

Comparing our last formula to that obtained by straightforward multiplication,
as in (1.12 and 1.13):

ab D .jaj cos� C i jaj sin�/ .jbj cos C i jbj sin /

D jaj jbj .cos� cos � sin� sin C i.sin � cos C cos� sin // ;

we get

cos.� C  / D cos� cos � sin � sin ; (1.10)

sin.� C  / D sin � cos C cos� sin ; (1.11)

the all–important addition formulas of the cosine and of the sine, respectively.
The above definitions of the cosine and sine imply (Fig. 1.12)

cos 0 D 1; sin 0 D 0;

cos.�=2/ D 0; sin.�=2/ D 1;

cos� D �1; sin� D 0;

cos.� �  / D � cos ; sin.� �  / D sin ;
cos.� / D cos ; sin.� / D � sin :

Using the last two equations when replacing  by � in (1.10), (1.11), we obtain

cos.� �  / D cos� cos C sin � sin ; (1.12)

sin.� �  / D sin � cos � cos� sin ; (1.13)

the subtraction formulas of the cosine and of the sine. Choosing here � D �=2, the
above equations give (see also Fig. 1.12)

cos
��

2
�  

�
D sin ; sin

��

2
�  

�
D cos ;
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Fig. 1.12 Cosines and sines of 0, �=2; �; �� ;� ; .�=2/� . The circle is the unit circle, i.e.,
has radius 1

an important link between the cosine and the sine and which is now true for all  .
Also another important link between the cosine and the sine follows from (1.12) and
from cos 0 = 1: Putting  D � into (1.12) we get the fundamental equation

cos2 � C sin2 � D 1 (1.14)

(cos2� and sin2� are frequently used—though not very fortunate—abbreviations for
.cos�/2 and for .sin �/2, respectively). This follows also from the definition of cos
� and sin � as components of a unit vector with amplitude � (see Fig. 1.10), via the
Pythagoras theorem (see Fig. 1.4) at least when 0 < � < �=2; but we obtained it
now right away for all � 2 R. From (1.11), (1.12), (with  D �) and (1.10) (with
 D 0), (1.14) we get also

sin 2� D 2 sin� cos�;

cos 2� D cos2 � � sin2 � D 2 cos2 � � 1 D 1 � sin2 �:
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Another application of the subtraction formula (1.12) for the cosine reaches back
to the definition of the inner product. As Fig. 1.10 shows, two–component real
vectors can be written as

x D .jxj cos�; jxj sin �/; y D .jyj cos ; jyj sin /:

Their inner product is

x � y D .jxj cos�/ .jyj cos /C .jxj sin�/ .jyj sin /

D jxj jyj cos.� �  /:

Since � �  is the angle between x and y (see Fig. 1.13) so, at least for two-
component real vectors, the inner product of two vectors is the product of their
norms (lengths) multiplied by the cosine of the angle between the two vectors.

The same rule can be proved also for three-component real vectors and, if
the angle between vectors is appropriately defined, also for n-component vectors
(actually, then the angle is defined just so that this rule should remain valid).

But let us return now to complex numbers.

Fig. 1.13 The inner product x � y D jxj jyj cos.� �  /
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1.7.3 Division of Complex Numbers; Equations

As for reals, also for complex numbers b D c=a is by definition the (complex)
number for which ab D c .a ¤ 0/. From (1.9),

c D jcj .cos�C i sin�/ D ab D jaj jbj .cos.� C  /C i sin.� C  //;

we get the rule for division of two complex numbers in trigonometric form:

b D c

a
D jcj

jaj.cos.� � �/C i sin.� � �//; if a ¤ 0

because b D jbj .cos C i sin / so, from the above equation,

jcj D jaj jbj ; that is; jbj D jcj
jaj .since jaj ¤ 0/

and

� D � C  ; that is;  D � � �:

(Note that, as mentioned above, �,  , and � are determined only up to multiples
of 2� , but adding or subtracting multiples of 2� to the angles does not change the
cosines and sines).

We still have not expressed, however, b D c=a by the real and “imaginary” parts
a1; a2 and c1; c2 of a D a1Cia2 ¤ 0 and of c D c1Cic2 .a1; a2; c1; c2 real numbers;
note that the “imaginary parts” a2; c2 are real, not imaginary numbers, ia2, ic2 are
imaginary numbers). We could do this “by brute force” but the concept of conjugate
complex number, which is rather useful anyway, can make the riding smoother.

The “conjugate complex number” of a D a1Cia2 is Na D a1�ia2 (same real part,
imaginary part multiplied by (�1), see Fig. 1.14; if written in trigonometric form,
a D r.cos� C i sin�/, then

Na D r.cos� � i sin �/ D r.cos.��/C i sin.��//;

same absolute value, amplitude multiplied by (�1)). Important is that

Naa D aNa D .a1 C ia2/.a1 � ia2/ D a21 C a22 D jaj2 .D r2/;

that is, the product of a complex number with its conjugate is the square of their
common absolute value. (Compare: the inner product of a vector with itself was the
square of its norm; the product, in the sense of multiplication of complex numbers,
of a complex number with its conjugate is the square of its absolute value, that is,
the square of its norm.)
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Fig. 1.14 Conjugate complex numbers

Now, multiplying c D ab by Na, we get Nac D Naab D jaj2 b. Since jaj2 ¤ 0 is real,
we can multiply by 1/jaj2, as in Sect. 1.4, and obtain

c

a
D b D Nac

jaj2 D .a1 � ia2/.c1 C ic2/

a21 C a22
D a1c1 C a2c2

a21 C a22
C i

a1c2 � a2c1
a21 C a22

as formula for c=a D .c1 C ic2/=.a1 C ia2/ in terms of the real and imaginary parts
a1 2 R, a2 2 R, c1 2 R, c2 2 R, when a ¤ 0.

Not only the equation az D c (with a; c in C and a ¤ 0) but, as mentioned before,
every equation

apzp C ap�1zp�1 C : : :C a1z C a0 D 0 .a0; a1; : : : ; ap 2 CI ap ¤ 0/

has a complex solution (a complex number z which satisfies it).
As is well known the numbers

z1 D b C .b2 � c/1=2 and z2 D b � .b2 � c/1=2

are the (only) solutions of the equation z2�2bzCc D 0. If b and c are real but c > b2

then the conjugate complex numbers z1 D bCi.c�b2/1=2, z2 D Nz1 D b�i.c�b2/1=2

are the solutions of z2 � 2bz C c .c > b2/.
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Since

c C d D c1 C ic2 C d1 C id2 D .c1 C d1/� i.c2 C d2/

D c1 � ic2 C d2 � id2 D Nc C Nd;
cd D .c1 C ic2/.d1 C id2/

D .c1d1 C c2d2/ � i.c1d2 C c2d1/ D .c1 � ic2/.d1 � id2/ D NcNd;

if a complex number z is a solution of apzp C : : : C a1; z C a0 D 0 with real
“coefficients” a0; a1; : : : ; ap; then Nz is also a solution.

1.7.4 Tangent, Cotangent

At least two “relatives” of sine and cosine are often important, the tangent and the
cotangent and the cotangent abbreviated as tan and cot:

tan � WD sin �

cos�
if cos� ¤ 0; cot� WD cos�

sin �
if sin � ¤ 0:

(Sometimes 1/cos � and 1/sin � are also given separate names, sec and cosec,
respectively; note, by the way, that cot �=1/tan � if tan � ¤ 0.) For two–component
real vectors z, that is for complex numbers z D r.cos� C i sin �/, the real number
tan � D sin�

cos � (if sin � ¤ 0) is called the “slope of the vector” z (or of the complex
number z), and, more generally, if a straight line forms an angle � with the positive
horizontal axis, then tan� is the slope of that straight line.

From our formulas for the cosine and the sine, and from the above definition of
the tangent and cotangent, we get easily that, whenever the denominator is not 0,
then

tan.� C  / D tan� C tan 
1 � tan� tan ; cot.� C  / D tan � cot � 1

cot� C cot ;

tan.� �  / D tan � � tan 
1C tan� tan ; cot.� �  / D cot� cot C 1

cot � cot� ;

tan 2� D 2 tan�
1 � tan2 �

; cot 2� D cot2 � � 1
2 cot� ;

tan
�
�
2

� �
�

D cot�; cot
�
�
2

� �
�

D tan �;

tan 0 D cot.�=2/ D 0;

while tan.�=2/ and cot 0 are not defined, since cos.�=2/ D sin 0 D 0, and neither
are cot.k�/, tan..2k C 1/�=2/ with k 2 Z defined.
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1.7.5 Exercises

1. For the complex numbers a D 2i, b D �3 C i, c D 4 � 5i determine
(a) ab, (b) ac (c) bc, (d) bNc,
(e) Nbc, (f) abc, (g) aNb C Nac, (h) a.b C c/,
(i) .a C b/c, ( j) a2, (k) b3, (l) c4,
(m) a=b, (n) b=c, (o) c=a, ( p) a=.b C c/.

2. Show that complex multiplication satisfies cancellativity.
3. Determine the absolute values of the complex numbers

(a) 5C i � 12, (b) .1C i7/=.1C i/, (c) .�3C 2i/4.
4. Write the following complex numbers in their trigonometric form:

(a) 1C i, (b) 1 � i, (c)
p
8 � i

p
8.

5. For the complex numbers x D 3.cos 2
3
� C i sin 2

3
�/ and y D 4.cos 3

5
� C i sin�/

determine
(a) xy, (b) x=y, (c) y=x, (d) xNx,
(e) yNy, (f) x5, (g) 1=x5, (h) x=y2.

6. Solve the equations
(a) .3C 4i/z D �1C i, (b) z2 � .8 � 2i/z C 23 � 2i D 0.

7. Determine all complex numbers z that solve
(a) z3 � .4C i/z2 C .13C 4i/z � 13i D 0,
(b) z4 � 2z3 C 6z2 � 2z C 5 D 0.

Hint: In both cases, one of the solutions is z D i. Hence the left hand sides in (a)
and (b) can be written in the forms .z�i/.z2CazCb/ and .z�i/.zCi/.z2CczCd/,
respectively. For (b), z D �i is also a solution.

8. Show that the triangle inequality

ja C b C cj < jaj C jbj C jcj

holds for the complex numbers defined in Exercise 1.
9. Draw the complex numbers a D 5 C 2i and b D 1 C 3i as vectors in the

complex plane. With the aid of these vectors construct the vector that represents
the complex number ab. (Hint: see Fig. 1.11.)

1.7.6 Answers

1. (a) �2 � i6, (b) 10 C i8, (c) �7 C i19, (d) �17 � i11,
(e) �17 C i11, (f) �38 � i14, (g) �8 � i14, (h) 8 C i2,
(i) 3 C i27, ( j) �4, (k) �18 C i26, (l) �1519 C i720,
(m) (1 � i3)/5, (n) �(17Ci11)/41, (o) �(5 C i4)/2, ( p) (�8 C i2)/17.

2. Multiplying both sides of the equation xz D yz (x; y; z complex numbers, z D
z1 C iz2 ¤ 0) by Nz D z1 � iz2 yields x.z21 C z22/ D y.z21 C z22/. Both sides of this
equation can be divided by the real number z21 C z22 ¤ 0. Hence x D y.

3. (a) 13, (b) 5, (c) 169.
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4. (a)
p
2.cos �

4
C i sin �

4
/ D p

2. 1p
2

C ip
2
/,

(b)
p
2.cos .��

4
/C i sin .�

4
// D p

2.cos �
4

� i sin �
4
/ D p

2. 1p
2

� ip
2
/,

(c) 4.cos .��
4
/C i sin .��

4
// D 4. 1p

2
� ip

2
/ D 4.

p
2
2

� i
p
2
2
/ D 2

p
2.1 � i/.

5. (a) 12.cos 19
15
�/C i sin. 19

15
�/ D 12.� cos 4

15
� � i sin 4

15
�/,

(b) 3
4
.cos �

15
C i sin �

15
/,

(c) 4
3
.cos. �

15
/C i sin. �

15
// D 4

3
.cos �

15
� i sin �

15
/,

(d) 9, (e) 16,
(f) 243.cos 10

3
� C i sin 10

3
�/ D 243.� cos �

3
� i sin �

3
/,

(g) 1
243
.� cos �

3
C i sin �

3
/,

(h) �3
16
.cos C i sin �

5
/.

6. (a) z D 1
25
.1C 7i/, (b) z1 D 3C 2i, (c) z2 D 5 � 4i.

7. (a) z1 D i, z2 D 2C 3i, z3 D 2 � 3i,
(b) z1 D i, z2 D �i, z3 D 1C 2i, z4 D 1 � 2i.
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SIGN IN AN OFFICE

2.1 Introduction

In Chap. 1 we introduced, among others, the concepts of sets, numbers and vectors.
In this chapter we start to apply them to fundamental definitions, formulation of
problems, indicating also elementary and intuitive methods for solving them. We
will get acquainted with concepts like production system, production process, tech-
nology, efficiency and optimisation. The knowledge gained from Chap. 1 suffices
already for formulating basic problems of efficiency of production of goods and
services and some ideas for their (approximative) solution. These are optimisation
problems, in particular linear optimisation problems.

An example of linear optimisation is the following. A company is willing to
spend at most $30 000 for buying machines to produce a certain product. Two types
of machines are available, one costs $1 000 the other $3 000. But the second machine
produces twice as many items as the first during the same time span. Moreover, in
experience, the first machine stands still an average 50 hours a year for repairs while
the second only 30 hours. On the other hand, these repairs are expected to cost $300
or $400 a year per machine of the first or second type, respectively. The company
does not want to spend more than $5 000 per year for repairs and wants the total
time-off for all machines be at most 650 hours a year. How many machines of each
type would be best for the company to buy?

© Springer International Publishing Switzerland 2016
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If it buys x1 and x2 pieces of the first and the second machine, respectively, then
the problem is to

maximise x1 C 2x2
under the conditions

1 000 x1C 3 000 x2 � 30 000;

50 x1 C 30 x2 � 650;

300 x1C 400 x2 � 5 000:

We will solve this problem in Sect. 2.4 by geometric methods.

2.2 Basics

A real-world economic system is called a production system if

(a) it consists of persons and things and produces goods and services and
(b) it exists in an environment from which it can obtain and to which it can deliver

such goods and services.

Products are goods and services produced in a production system by aid of
production factors, that is, of goods and services which are used in the production.

Vectors a D .a1; : : : ; an/ 2 RnC which consist of amounts (“quantities”)
a1; : : : ; an of n production factors are called input vectors. Similarly, a vector
b D .b1; : : : ; bm/ 2 RmC, is an output vector if its components are quantities of
products.

A production process (process, for short) consists of an input vector a 2 RnC and
of an output vector b 2 RmC written as

.a;b/ D ..a1; : : : ; an/; .b1; : : : ; bm// 2 RnCm
C : (2.1)

It expresses that the output vector b can be produced from the input vector a

(i) in a given production system,
(ii) at a certain stage of technical progress, and

(iii) during a given time span.

In (2.1) we wrote row vectors; we will write the same later as column vectors.
The set T of all production processes possible in a production system, given the state
of technical progress and the time at disposal, is called technology (of the production
system).

If two production processes (a,b) and (c,d) of the same technology T satisfy the
inequalities a<D c, b � d or a � c, b>D d (see Sect. 1.4), which can be condensed
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into

.�a;b/ � .�c;d/; (2.2)

then, roughly speaking, the process (a,b) “produces more from less”, So the
production process (c,d) should, as a rule, not be “run” at all, since it is economically
“inefficient”. Accordingly, we say that a process (c,d) is efficient in a technology T
if no process .a;b/ 2 T exists for which (2.2) holds.

Since, as we saw in Sect. 1.4, the vectors in Rn .n � 2/ are not totally ordered
under the relation �, it may happen that all production processes in a technology T
are efficient.

Example 1 For instance, the five processes of the technology

T D f..1; 2/; .3; 4// ; ..2; 1/; .3; 4// ;
..1; 2/; .4; 3// ; ..2; 1/; .4; 3// ; ..3; 3/; .5; 5//g

are all efficient.

It is also possible that none of the processes in technology is efficient.

Example 2 Neither of the infinitely many processes

.a0;b/ D ..a01; : : : ; a
0
n/; .b1; : : : ;bn//

in the following technology T is efficient:

T D ˚
..a01; : : : ; a

0
n/; .b1; : : : ; bn//

ˇ
ˇ a0k � bk < b0k .k D 1; : : : ; n/

�
;

where a01; : : : ; a
0
n; b

0
1; : : : ; b

0
n are given positive numbers (a0k < b0k). This T

contains indeed infinitely many processes, because the bk .k D 1; : : : ; n/may
take any value between a0k and b0k .

Looking for efficient processes is only the first step in the search for optimal
production processes in the technology T. A process is optimal if in that process
either the costs are minimal, given the output vector, or the value of the output
vector is maximal, given the input vector, or the profit is maximal.

Cost, output and profit are, of course, measured by prices.
Lack of optimality makes some efficient processes uninteresting from the point

of view of economics. So the following optimisation problems arise:
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Optimisation problem 1 Let T be a technology, with processes as in (2.1) and p D
. p1; : : : ; pn/ 2 RnCC the vector of input prices (that is, the prices of the production
factors in the input vector; no input factor of 0 price is considered here). If we want
to produce at least the quantities (components) in the output vector b� 2 RmC with
greatest cost-efficiency then we have to find an a D a� 2 RnC for which .a;b/ 2 T,
b>D b�, and the inner product a � p D a1p1C: : :Canpn (see Sect. 1.4) is the smallest
possible. (We wrote b>D b� since at least b� should be produced.)

This is an optimisation problem. Every solution a� of this problem is called an
optimal input vector or a minimal cost combination for producing at least the output
vector b� in the price situation p.

Optimisation problem 2 Similarly, an optimal output vector or a maximal revenue
combination b 2 RmC from the input vector Oa 2 RnC in the output price situation

q 2 RmCC is obtained by finding some b D Ob 2 RmC for which .a;b/ 2 T, a<D Oa and
the inner product b � q D b1q1 C : : : C bmqm is the greatest possible. (Similarly
as in optimisation problem 1, here we wrote a<D Oa because the input should be
at most Oa.)

If the input and output price vectors p 2 RnCC, q 2 RmCC are given, then we
may try to solve the following optimisation problem.

Optimisation problem 3 Determine those processes .a;b/ 2 T for which the profit

b � q � a � p D b1q1 C : : :C bmqm � a1p1 � : : : � anpn

is maximal.

Take, for instance, the technology in Example 1 with the price vectors p D .4; 4/,
q D .1; 5/. Then the two processes ((1,2),(3,4)) and ((2,1),(3,4)) are optimal in the
sense of optimisation problem 3, since the profit

.3; 4/ � .1; 5/� .1; 2/ � .4; 4/ D .3; 4/ � .1; 5/� .2; 1/ � .4; 4/
D 3 � 1C 4 � 5 � 2 � 4 � 1 � 4 D 11

is maximal within T. The remaining processes furnish smaller profits 6 and 7. We see
that also more than one process in a technology can be optimal. On the other hand,
if for the technology in Example 1 the price vectors are p D .1; 1/ and q D .1; 5/,
then the profit of the process ((3,3),(5,5)),

.5; 5/ � .1; 5/� .3; 3/ � .1; 1/ D 5 � 1C 5 � 5� 3 � 1 � 3 � 1 D 24;

is maximal. Indeed, in this case the other processes yield profits 16 and 20.
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2.2.1 Exercises

1. Take a technology T given by the production processes

..3; 2; 1/; .5; 7//; ..2; 1; 1/; .3; 8//; ..4; 2; 1/; .5; 6//;

..2; 2; 2/; .2; 8//; ..5; 5; 5/; .6; 9//; ..6; 5; 5/; .5; 6//:

Which of these are efficient?
2. In the technology T in Exercise 1 let the input prices p D . p1; p2; p3/ and the

output prices q D .q1; q2/ be
(a) p D .1; 2; 3/, q D .4; 5/, (b) p D .4; 4; 4/, q D .7; 6/.
Which processes are optimal with respect to (a) and which with respect to (b)?

3. For the technology T in Exercise 1 determine an input price vector p D
. p1; p2; p3/ and an output price vector q D .q1; q2/ such that the process
((5,5,5),(6,9)) is optimal.

4. Define a technology T, different from Example 1, which is given by five
production processes such that each of these processes is efficient.

5. Define a technology T given by seven production processes such that exactly one
of the processes is efficient.

2.2.2 Answers

1. ..3; 2; 1/; .5; 7//, ..2; 1; 1/; .3; 8//, ..5; 5; 5/; .6; 9//.
2. (a) ..3; 2; 1/; .5; 7//, ..2; 1; 1/; .3; 8//, profit in both cases is 45,

(b) ..3; 2; 1/; .5; 7//, profit D 53.
3. For the price vectors p D .1; 2; 3/ and q D .20; 20/ the profit under

process ..5; 5; 5/; .6; 9// is 270, while the profit under the two processes
..3; 2; 1/; .5; 7// and ..2; 1; 1/; .3; 8//, efficient processes as
..5; 5; 5/; .6; 9//, are 230 and 213, respectively.

2.3 Linear Production Models, Linear Optimisation Problems

Production models are (often simplified) images of relations in a production system
S. Their main purpose is to get information about “the” (or one) “best possible” way
of production in S. They consist of statements and assumptions about the relations
in S, as informative and as easy to check as possible. Production models can refer to
technologies, as defined in Sect. 2.2.

A technology T is additive if, with any pair of processes, say

..a1; : : : ; an/; .b1; : : : ; bm// D .a;b/ and
..c1; : : : ; cn/; .d1; : : : ; dm// D .c;d/;
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also their vector sum (see Sect. 1.5.1)

.a;b/C .c;d/ D .a C c;b C d/

belongs to T. Explicitly: A technology T is additive if, with the sum of input vectors
of any two processes in T, as input of a new process, the sum of the output vectors
of the original processes can be produced as output. This is the case, in particular,
if in a production system the processes can run parallel, independent of each other.

A technology T is (positively) linearly homogeneous if it contains with any
process ..a1; : : : ; an/; .b1; : : : ; bm// D .a;b/ also its multiple by any x 2 RC, that
is, the process

x.a;b/ D .xa; xb/ D ..xa1; : : : ; xan/; .xb1; : : : ; xbm// D .a;b/x:

To put it otherwise: If the output vector b can be produced by use of the input vector
a then the output xb can be produced by the input xa.

A technology and thus its production model is linear if it is both additive and
linearly homogeneous. In what follows, we will be interested in linear technologies
which can be generated by a finite number (say r) of its production processes.
Writing this time column vectors, this means that there exist
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B
B
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a11
:::
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b11
:::
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2 T

such that every process

�
a
b

�

2 T is a linear combination (as in Sect. 1.5.1 but

here with nonnegative coefficients) of

�
a1

b1

�

; : : : ;

�
ar

br

�

, that is, to every

�
a
b

�

2 T

there exist multiplicators (“intensities”) x1 2 RC; : : : ; xr 2 RC such that

�
a
b

�

D
�

a1

b1

�

x1 C : : :C
�

ar

br

�

xr:

Suppose that in such a technology we have at most the inputs a� D .a�
1 ; : : : ; a

�
n /

(united into the input vector) at our disposal. We want to produce at least the outputs
b� (again united into a vector) with minimal expenses for the input items, given the
vector p D . p1; : : : ; pn/ of the input prices. Then the input aj costs p � aj . j D
1; 2; : : : ; r/ and the input

a WD a1x1 C : : :C arxr
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costs accordingly

p � a D .p � a1/x1 C : : :C .p � ar/xr:

Since a1 2 RnC; : : : ; ar 2 RnC and p 2 RnC are constant, so the inner products

c1 WD p � a1; : : : ; cr WD p � ar

are nonnegative constants. Therefore, if we wish to minimise the input expenses in
producing at least the output .b�

1 ; : : : ; b
�
m/ D b�, we have the following.

Linear optimisation problem 1 Determine the minimum of

p � a D c1x1 C : : :C crxr .c1 � 0; : : : ; cr � 0/ (2.3)

by appropriate choice of the intensities

x1 � 0; : : : ; xr � 0 (2.4)

under the further conditions

a1x1 C : : :C arxr
<D a�; b1x1 C : : :C brxr

>D b� (2.5)

or, in components,

a11x1 C : : :C a1r xr � a�
1 ;

:::
:::

an1x1 C : : :C anr xr � a�
n ;

b11x1 C : : :C b1r xr � b�
1 ;

:::
:::

bm1x1 C : : :C amrxr � b�
m:

(2.6)

We say that p � a in (2.3), which assigns to the input vector a its cost, is the
objective function (see more about functions in Chap. 3 and later), c1; : : : ; cr are its
coefficients and the r C n C m conditions (2.4) and (2.6) form a linear system of
inequalities (linear because the left hand sides in (2.4) and (2.6) are linear in the
above sense and in the sense of Sect. 4.2).

If q D .q1; : : : ; qm/ is the vector of output prices (here taken as constants) then
the revenue obtained through the output vector

b WD b1x1 C : : :C brxr
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is

q � b D .q � b1/x1 C : : :C .q � br/xr DW �1x1 C : : :C �rxr (2.7)

where �1 WD q � b1; : : : ; �z WD q � br are nonnegative constants.
If, using at most input .a�

1 ; : : : ; a
�
n / D a�, one wishes to maximise revenue in the

above model, then one has to solve the following.

Linear optimisation problem 2 Find the maximum of

q � b D �1x1 C : : :C �rxr

under the conditions

x1 � 0; : : : ; xr � 0I a1x1 C : : :C arxr
<D a�: (2.8)

Finally, if we want to maximise the profit in the model while limiting the input by
a�, we have the following.

Linear optimisation problem 3 Determine the maximum of

q � b � p � a D .�1 � c1/x1 C : : :C .�r � cr/xr (2.9)

under the conditions

x1 � 0; : : : ; xr � 0; a1x1 C : : :C arxr
<D a�:

Note that, different from (2.3) and (2.7) here in (2.9) we may have negative
coefficients.

Notice also the relation of the linear optimisation problems 1, 2, 3 to the
optimisation problems 1, 2, 3 in Sect. 2.1.

2.3.1 Exercises

1. Consider a linear technology T that can be generated by the following three of
its production processes:

.a;b/ D ..2; 3; 4/; .1; 7; 5; 6//;

.c;d/ D ..8; 2; 5/; .3; 9; 7; 4//;

.g;h/ D ..3; 3; 3/; .6; 6; 6; 6//:

Do the processes
(a) .r; s/ D ..33; 19; 32/; .15; 57; 43; 38//,
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(b) .t;u/ D ..48; 29; 46/; .29; 83; 65; 58// belong to T?
(c) Does there exist a y 2 R such that

.v;w/ D ..33; 19; 32/; .16; y; y; y//

belongs to T?
2. For the technology T defined in Exercise 1 let the inputs be limited by (51,70,92).

Is it possible to produce, within T, output vectors b D .b1; b2; b3; b4/ which are
greater than or equal to

(a) (102,102,102,102), (b) (97,103,101,102),
(c) (103,100,100,100), (d) (20,161,110,130)?

3. Formulate the linear optimisation problems 1, 2, 3 for the technology T defined
in Exercise 1.

4. Define a technology T consisting of infinitely many processes which is neither
additive nor linearly homogeneous.

5. Define a technology T consisting of infinitely many processes which is linearly
homogeneous but not additive.

2.3.2 Answers

1. (a) Yes, 4.a;b/C 3.c;d/C 1
3
.g;h/ D .r; s/.

(b) Yes, 5.a;b/C 4.c;d/C 2.g;h/ D .t;u/.
(c) No, there do not exist any real numbers y; x1; x2; x3 such that .a;b/x1 C

.c;d/x2 C .g;h/x3 D .v;w/.
2. (a) 17..3; 3; 3/; .6; 6; 6; 6// D ..51; 51; 51/; .102; 102; 102; 102//.

(b) Yes, ..2; 3; 4/; .1; 7; 5; 6// C 16..3; 3; 3/; .6; 6; 6; 6// D ..50; 51; 52/;

.97; 103; 101; 102//.
(c) No, there does not exist any vector .x1; x2; x3/ such that the fourth component

of .a;b/x1C.c;d/x2C.e; f/x3 is 103 and the first one is smaller than or equal
to 51.

(d) Yes, 23..2; 3; 4/; .1; 7; 6; 5// D ..46; 69; 92/; .23; 161; 115; 138//.
4. See T in Example 2, Sect. 2.2.
5. T WD f�..1; 2/; .3; 4//; �..5; 6/; .7; 8// j � 2 RCC g is linearly homogeneous,

but the sum ..6; 8/; .10; 12// of the processes ..1; 2/; .3; 4// 2 T and
..5; 6/; .7; 8// 2 T does not belong to T.

2.4 Simple Approaches to Linear Optimisation Problems

We use the problem formulated in the introduction to this chapter as an example
of linear optimisation problems of type 2 or 3 in the case r D 2 (see Sect. 2.3).
After cancellations (division of both sides of the inequalities by 1,000, 10 or 100,
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respectively) our problem is the following. Maximise

x1 C 2x2 (2.10)

under the conditions x1 � 0; x2 � 0 and

x1 C 3 x2 � 30;

5 x1 C 3 x2 � 65;

3 x1 C 4 x2 � 50:

(2.11)

A solution .x1; x2/ D .x�
1 ; x

�
2 /
<D 0 of (2.11) is optimal for which (2.10) is maximal,

that is,

x1 C 2x2 � x�
1 C 2x�

2

for all solutions .x1; x2/ >D 0 of (2.11).
In Fig. 2.1, the first straight line segment, starting at the point (0,10) (the mark 10

of the vertical axis), is described by the equation

x1 C 3x2 D 30;

Fig. 2.1 Geometrical representation of the problem of maximizing x1C2x2 by nonnegative x1; x2
satisfying (2.11). The shaded region contains the points .x1; x2/ 2 R2

C for which (2.11) holds.
The parallel line segments marked Ck represent those .x1; x2/ 2 R2

C for which x1 C 2x2 D Ck

.k D �1; 0; 1; 2; 3/. Since C�1 < C0 < C1 < C2 < C3, we see that for C0 D 22 one has the line
segment with maximal Ck which has nonempty intersection with the shaded area. The intersection
is a single point, so the linear optimization problem (2.10), (2.10) has exactly one solution



2.4 Simple Approaches to Linear Optimisation Problems 55

the adjoining straight line segment (from the point (6,8) to the point (10,5)) by the
equation

3x1 C 4x2 D 50

and the last segment (connecting the points (10,5) and (13,0)) by the equation

5x1 C 3x2 D 65:

Therefore, the points .x1; x2/ with x1 � 0, x2 � 0 satisfying the inequalities (2.11)
lie under these straight line segments, in the shaded area bordered by them and the
vertical and horizontal axes.

The parallel lines with the C�1;C0;C1;C2;C3 marks have the equations

x1 C 2x2 D Ck .k D �1; 0; 1; 2; 3/:

As we see from Fig. 2.1, x1 C 2x2, that is (2.10), is maximal on the set of points
satisfying (2.11) and x1 � 0; x2 � 0, that is in the shaded area, at the single point
.x�
1 ; x

�
2 / D .6; 8/ and the maximal value is

x�
1 C 2x�

2 D 22:

(Fortunately, we got integers as solutions; the company could hardly buy, for
instance, 30/7 pieces of the first and 60/7 pieces of the second kind of machine.
But this is another story of approximation).

If, however, we replace (2.10) by x1C3x2 or 3x1C4x2 or 5x1C3x2 as values to be
maximised under the same conditions (2.11) (and x1 � 0; x2 � 0) then, as Fig. 2.2
shows, there are infinitely many solutions, those represented by the first, second or
third line segment, respectively on the upper border of the shaded area.

As we see, there is a simple geometric way to solve linear optimisation problems
in the case r D 2. For the case r D 3 we would need spatial images and for r > 3

the capacity of most of us to “see” in r-dimensional space runs out. In Sect. 5.2 we
will introduce an “algorithm”, the “simplex method” for solving linear optimisation
problems like problems 1, 2, 3.

Here, however, we mention another method which approximates but does not
necessarily yield the optimal processes.

We consider the following linear optimisation problem.
Maximise

c1x1 C : : :C crxr (2.12)
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Fig. 2.2 Geometric representation of the problem of maximizing x1C3x2 or 3x1C4x2 or 5x1C3x2
by nonnegative x1; x2 satisfying (2.11). In each case there are infinitely many solutions, namely
those represented by the line segments from (0,10) to (6,8), from (6,8) to (10,5), or from (10,5) to
(13,0), respectively

under the conditions

x1 � 0; : : : ; xr �0;
a11 x1 C : : : C a1r xr � b1;
:::

:::

an1 x1 C : : : C anr xr � bn;

(2.13)

where

.c1; : : : ; cr/ � 0;
.b1; : : : ; bn/ > 0;

ak WD .ak1 ; : : : ; akr/ � 0 .k D 1; : : : ; n/:
(2.14)

Notice that in (2.13) and (2.14) below we have �, not >D , that is, compare Sect. 1.4,
we exclude the 0 vector. If

Qx D .Qx1; : : : ; Qxr/ � 0 (2.15)

satisfies the conditions (2.13) and c1 Qx1 C : : :C cr Qxr is the greatest possible solution
of (2.12) under these conditions then we have a solution of the linear optimisation
problem. If not and if

ak � Qx < bk .k D 1; : : : ; n/ (2.16)
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then there exists a � > 1 such that

x D .x1; : : : ; xr/ D �.Qx1; : : : ; Qxr/ .� 0/ (2.17)

still satisfies (2.13) but gives a greater c1x1 C : : : C crxr. Indeed, then by (2.15)
and (2.14),

c1x1 C : : :C crxr D �.c1Qx1 C : : :C cr Qxr/ > c1 Qx1 C : : :C cr Qxr

(a positive number increases when multiplied by � > 1) while, by (2.15), (2.14)
and (2.16), there is space for � > 1 but sufficiently close to 1 so that

ak � x D �.ak � Qx/ � bk .k D 1; : : : ; n/ (2.18)

that is, (2.13) still holds. For every � > 1 (in particular, for the largest � > 1) for
which (2.18) is valid,

.x1; : : : ; xr/ D �.Qx1; : : : ; Qxr/ D �Qx

is a better approximation than Qx to the solution of the linear approximation
problem (2.12), (2.13). Of course, there may be .x1; : : : ; xr/ with greater value
of (2.12) but we have described how to get the greatest value for vectors of the
form (2.17).

In order to find a solution (2.15) of (2.19), (2.20) and (2.21) in the case where
bk > 0, akj � 0; cj � 0 .k D 1; : : : ; nI j D 1; : : : ; r/, we can proceed as follows.
Since

.x1; : : : ; xr/ D �.c1; : : : ; cr/ (2.19)

satisfies (2.13) if � D 0 (though then .x1; : : : ; xr/ D 0 and not � 0, therefore, for
small enough positive �, (2.19) will be a solution of (2.13):

ak1 C : : :C akrxr D �.ak1c1 C : : :C akrcr/ � bk .k D 1; : : : ; n/:

(This and the above discussion of (2.18) are called “continuity arguments”; we will
discuss continuity in detail from Sect. 5.3 on). If we take in (2.19) the largest � for
which (2.13) is still satisfied we get the “best solution of (2.13) in the direction”
.c1; : : : ; cr/.

We apply these considerations to the optimisation problem (2.10), (2.11);
compare Fig. 2.3, where the “best solution in the direction (1,2)” gives for x1 C
2x2, that is (2.10), the value 150/7, while the solution of the optimisation prob-
lem (2.10), (2.11) is (6,8), yielding x1 C 2x2 D 22 > 150=7.
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Fig. 2.3 Geometric representation of the inequalities (2.11) and of their “best solution in the
direction (1,2)”. The vector (1,2) is orthogonal to the straight line

˚
.x1; x2/ 2 R2 j x1 C 2x2 D 22

�

Notice that c1x1 C c2x2 D 0 is the equation of a straight line (compare Fig. 2.3),
c1x1 C c2x2 C c3x3 D 0 is the equation of a plane and so are

c1x1 C c2x2 D C; c1x1 C c2x2 C c3x3 D C (2.20)

for all real C. The vector .c1; c2/ is orthogonal to the line with equation c1x1 C
c2x2 D 0 and .c1; c2; c3/ is orthogonal to the plane with equation c1x1 C c2x2 C
c3x3 D 0. More exactly, they are orthogonal to the vectors in the sets

˚
.x1; x2/ 2 R2 j c1x1 C c2x2 D 0

�
;

˚
.x1; x2; x3/ 2 R3 j c1x1 C c2x2 C c3x3 D 0

�
;

by the definition of orthogonality in Sect. 1.5:

.c1; c2/ � .x1; x2/ D c1x1 C c2x2 D 0;

.c1; c2; c3/ � .x1; x2; x3/ D c1x1 C c2x2 C c3x3 D 0:

Since the lines and planes with Eq. (2.20) are parallel to this line and this plane, the
vectors .c1; c2/; .c1; c2; c3/ are orthogonal to the lines and planes with the Eq. (2.20),
too. By the same argument, in general the vector .c1; : : : ; cr/ is orthogonal to the set

f.x1; : : : ; xr/ 2 Rr j c1x1 C : : :C crxr D C g (2.21)

for all C 2 R. These sets are called “hyperplanes”. So, what we described above is
the “best solution of (2.13) in the direction orthogonal to the hyperplane (2.21)”.
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Notice also that c1x1 C : : : C crxr in (2.21) is exactly (2.12), the largest value of
which under the conditions (2.13) we were looking for. Of course, as also Fig. 2.3
shows, this “best solution” of (2.13) in the direction orthogonal to (2.20) need not
be a solution of the linear optimisation problem (2.12), (2.13). It may be a solution,
however: in the situations represented in Fig. 2.2, it is a solution (but not the only
one).
Remark For approximating a solution of (2.13), we could have started in (2.19)
with an arbitrary vector .Qc1; : : : ; Qcr/ in place of .c1; : : : ; cr/. We chose the latter in
order to establish a connection with (2.12): In absence of other preferences one may
wish to advance on the shortest path to the lines (planes, hyperplanes) on which the
expression (2.12) to be maximised is constant. As in the two-dimensional space, so
also in three and more dimensional spaces this shortest path is orthogonal to that
plane or hyperplane, respectively. One may think of climbing a mountain on the
path orthogonal to the lines of equal height, that is, on the steepest path in order to
gain height on the shortest way. As in “real life” this may or may not lead to the
summit of the mountain—it certainly leads to considerable height. This approach is
called the “method of steepest ascent”.

2.4.1 Exercises

1. Maximise x1 C 3x2 under the conditions

x1 C 2x2 � 110;

x1 C 4x2 � 160;

x1 C x2 � 100;

x1 � 0; x2 � 0:

2. Maximise 3x1 C 4x2 under the conditions

3x1 C 2x2 � 21;

x1 C 2x2 � 12;

2x1 C 3x2 � 19;

x1 � 0; x2 � 0:

3. Minimise 5x1 C 7x2 under the conditions

2x1 C 4x2 � 12;

2x1 C x2 � 6;

4x2 � 4;

x1 � 0; x2 � 0:
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4. What is the best solution
(a) of optimisation problem 1 in the direction (1,3),
(b) of optimisation problem 2 in the direction (3,4),
(c) of optimisation problem 3 in the direction (5,7)?

5. What is the best solution
(a) of optimisation problem 1 in the direction (3,1),
(b) of optimisation problem 2 in the direction (4,3),
(c) of optimisation problem 3 in the direction (7,5)?

2.4.2 Answers

1. Maximum D 135 at x1 D 60, x2 D 25.
2. Maximum D 27 at x1 D 5, x2 D 3.
3. Maximum D 24 at x1 D 2, x2 D 2.
4. (a) 1600

13
D 123:08 at x1 D 160

13
D 12:31, x2 D 480

13
D 36:92,

(b) 475
18

D 26:39 at x1 D 19
6

D 3:17, x2 D 38
9

D 4:22,
(c) 444

17
D 26:12 at x1 D 30

17
D 1:76, x2 D 42

17
D 2:27,

5. (a) 132 at x1 D 66, x2 D 22,
(b) 273

11
D 24:82 at x1 D 63

11
D 5:73, x2 D 21

11
D 1:91,

(c) 24:6 at x1 D 2:4, x2 D 1:8.
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That flower of modern mathematical
thought—the function.

THOMAS J. MCCORMACK (�1900)

3.1 Introduction

While we have dealt till now with just a few basic notions in mathematics
and economics, we have several times encountered, though not emphasised, the
fundamental concept of mapping. This is the situation, where certain objects are
mapped to others, that is, the latter are assigned to the former, following specific
instructions. Rather than an abstract definition, we give examples:

1. The norm in Sect. 1.4 maps a vector x 2 Rn to a nonnegative number jjxjj
(the length of x). In particular, for n D 1 (Sect. 1.2) and for n D 2 (Sect. 1.7.2)
the absolute value maps the real or complex number z, respectively, again to a
nonnegative number, namely jzj.

2. The distance in Sect. 1.6 (for n D 1 in Sect. 1.2) maps a pair of vectors x 2
Rn; y 2 Rn to one nonnegative number d.x; y/.

3. Addition of vectors in Sect. 1.5.1 maps a pair of vectors x 2 Rn, y 2 Rn to the
vector x C y 2 Rn.

4. Multiplication of a vector by a scalar in Sect. 1.5.1 maps a pair consisting of a
vector x 2 Rn and a scalar � 2 R to the vector �x 2 Rn.

5. The linear combination of vectors, also in Sect. 1.5.1, maps a 2p-tuple consist-
ing of p scalars �k 2 R and p vectors xk 2 Rn .k D 1; 2; : : : ; p/ to the vector
�1x1 C : : :C �pxp 2 Rn.

6. The inner product in Sect. 1.5.3 assigns to a pair of vectors x 2 Rn, y 2 Rn the
scalar x � y 2 R. As mentioned there, the price level, important in economic
statistics, is the inner product of the quantity vector x D .x1; : : : ; xn/ 2 RnC and
of the price vector p D . p1; : : : ; pn/ 2 RnCC for a basket of goods.

© Springer International Publishing Switzerland 2016
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7. Multiplication of complex numbers in Sect. 1.7.1 maps a pair of complex
numbers a D a1 C ia2 2 C; b D b1 C ib2 2 C to the complex number
ab D .a1b1 � a2b2/C i.a1b2 C a2b1/ 2 C.

8. The conjugation of a complex number in Sect. 1.7.3 maps a D a1 C ia2 2 C to
Na D a1 � ia2 2 C.

9. The cosine and sine in Sect. 1.7.2 map an angle (measured, say, in
radians) � 2 R to cos� or sin�, respectively; both are real numbers
between �1 and 1. The cotangent in Sect. 1.7.4 maps the angles (in
radians) � 2 R n fk� j k D 0;˙1;˙2; : : : g (all angles except those of
the form k� , where k 2 Z) to cot� 2 R. Similarly, the tangent maps
� 2 R n f.2k C 1/�=2 j k D 0;˙1;˙2; : : : g to tan� 2 R.

10. For the purpose of comparison of the efficiency of k technologies T1, : : :, Tk,
as in Sect. 2.2, it would be nice to know the mapping which assigns to each
Tj . j D 1; 2; : : : ; k/ the set of its efficient production processes.

This example shows that the instructions defining a mapping may be quite
involved. This is even more so in the following example, where an optimisation
problem has to be solved before we know what is mapped to what.

11. In the framework of the linear optimisation problem 1 in Sect. 2.4 we assign to
each vector p D . p1; : : : ; pn/ 2 RnC of input prices the set of those intensity
vectors .x1; : : : ; xn/ 2 RnC which solve the linear optimisation problem 1, that
is, which result in minimal cost.

Here are some further examples of mappings from economics:
12. Utility. Here a vector x 2 RnCC of quantities of goods and services is mapped

to a real number, its utility, say for a person or for an “average household”.
13. Price index. Take again a vector x 2 RnCC of quantities of goods (and services)

and let the components of the price vectors p0 D . p01; : : : ; p
0
n/ 2 RnCC and

p D . p1; : : : ; pn/ 2 RnCC be the prices of these goods at a base time or
at a comparison time (usually the present), giving the cost of this “basket of
goods” as the inner products x � p0 and x � p respectively. These three vectors
are mapped to the price index

x � p
x � p0

2 RnCC:

This quotient provides information on the change of price levels (for the given
basket of goods) between the base time and the comparison time. (There are
also other price indices, see Sect. 3.7.)

14. The gross national product maps all goods and services produced in a country
to a real number. Of course, one has to state also the method by which the value
of the various goods and services are calculated, which are included and which
not, and so on.

15. Purchasing power. A vector p 2 RnCC of prices in a “basket of goods” and an
amount M 2 RCC of money are given. If the question is what quantities x D
.x1; : : : ; xn/ 2 RnC of goods (and services) from this basket of goods the amount
of money M can buy, then the mapping assigns to the pair p 2 RnCC; M 2 RCC
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the set

fx j x � p � M g:

16. If we are interested in the production potential of a production system (compare
Sect. 2.2), we need the mapping which assigns to each input vector x 2 RnC of
the system the set of output vectors in RmC which can be produced in the system
from x during a given time interval at the present state of technical progress.
Conversely, another mapping (in a sense the “inverse mapping” of the previous
one) assigns to each output vector x 2 RmC the set of all input vectors in RnC
which can produce u in the system during that time with the given technology.

We emphasise that in the Examples 10, 11, 15 and 16 the mapping assigns
to an object (vector, pair consisting of a vector and a scalar) a whole set of
objects (in these examples: a set of processes or a set of vectors). This is
somewhat different from the mappings in the other examples which assign a
single object to the given object. Of course “object” is not defined and we could
also consider the sets in Examples 10, 11, 15, and 16 as “single objects”. But
we may recognise the difference if we compare the situation in Example 16 to
the special case where the production system happens to be kept so rigid that
each input vector x 2 RnC can produce just one output vector u 2 RmC during the
given time with the given technology. In this case the mapping again assigns to
each object (vector) just one object (vector) or, alternatively, a set having only
one element (which, as we saw in Sect. 1.3, is not quite the same thing).

Another variation on the theme of Example 16 is the following.
17. Maximal production potential. If just one good is produced in a production

system, that is m D 1, then we may be interested in the mapping which assigns
to each input vector x 2 RnC of the system the maximal quantity u 2 RC of
the only output good, which can be produced using the input vector x during
the given time with the given technology (if such a maximal quantity exists).
Notice that normally it would not make sense to ask for a maximal output vector
u 2 RmC if m > 1 because, as we have seen in Sect. 1.4, vectors of more than
one component are not ordered in general.

We could give many more examples but we hope that already those above
show what a central role mappings play in mathematics and economics. In a
certain sense this entire book deals with mappings.

3.2 Basics. Domains, Ranges, Images (Codomains). Mappings
(Binary Relations), Functions, Injections, Surjections,
Bijections. Graphs

In Sect. 3.1 we described what some specific mappings do to individual objects,
even though we indicated most of the time from what sets these objects are taken.
In what follows we treat these matters somewhat more systematically.
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We start with two sets, S the domain and T the range. A mapping (or a binary
relation) assigns to each element of S an element of T (at least one element of T).
(More formally, a binary relation is a set of ordered pairs .s; t/ where s 2 S; t 2 T,
in this case such that each element of S has to be used as s, but not all elements
of T need to come up as second element in an .s; t/.) If the mapping (or binary
relation) assigns to each element of S exactly one element of T (it maps each s 2 S
into exactly one t 2 T; still all elements of S but not necessarily all elements of
T have to be “used up”) then we speak of a function. We note here that the usage
of these names is not uniform, sometimes what we called “function” is called also
“mapping” or “single-valued function” while what we called “mapping” is often
called “function” or “multivalued function” or the words “mapping” and “function”
are used interchangeably. Be it as it may, if t is the element (or, in case of mappings
or multivalued functions, one of the elements) of T assigned to an element s of S
then t is the (or a) function value belonging to s, or, if the function itself is denoted
by f (one uses also g; h; �;  ; F; G; : : : and many other letters to denote functions),
then the function value belonging to s is t D f .s/. Even though this is not always
done, it is preferable to distinguish between the function f and its value f .s/ (for
one or more s 2 S) otherwise ambiguities result. (For instance, what does f .s/ D 0

mean then? does f .s/ equal zero for one s 2 S? for several? for all s 2 S? f D 0

certainly means the latter.) If it is inconvenient to introduce a function symbol as,
for instance the square, one can write

s 7�! s2

or the function defined by t D s2. (On the other hand, it is quite all right to call, for
instance, the function y 7! cos y, just “cos” or “cosine” or “cosine function”.) Note
the funny arrow 7! in the above notation; the simple arrow �! is used to connect
the function domain and range, so:

f W S �! T

(while the double arrow ) means that one statement implies the other, again
something completely different). The fact that S is the domain of f is often expressed
so: “f is defined on Sn” (and on every subset of S).

As we emphasised above, not all elements of the range T need to be function
values belonging to some elements of the domain. This is convenient, because that
way we need not calculate in advance what all possible function values of a given
f are. For instance, as we saw in Sect. 1.7.2 the function cos W R ! R can perfectly
well be defined on the domain R before we know that its values have to lie between
�1 and 1 (these values included), see also Sect. 3.1, Example 9. (In some cases, as
in Examples 10, 11, 12, 13, 14, 15, 16 and 17 of Sect. 3.1 it is not even obvious or
simple to determine what all possible function values are.) But we define also the
set of all values of a function f on the domain S, called the “image”, the range, or
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the “codomain” of S under f . The definition and notation is:

f .S/ WD ft j 9s 2 S W f .s/ D t g:

Clearly, f .S/ � T. One can define exactly the same way the image under f of every
subset A of S by f .A/ D ft j 9s 2 A W f .s/ D t g (the colon serves in these formulas
to avoid the confusion of a second bar j; both mean “such that”).

If, however, T D f .S/, that is, if every element of T is a value of f belonging to
some s 2 S, then f W S ! T is a surjection (or: is “surjective” or “the mapping f is
onto T”, while otherwise or if we do not know, then it is “into” T).

For instance, the square t 7! t2, defined on R is not surjective to R, it is “into
R but not onto R”; however it is “onto” RC. (Note that previously we wrote that a
mapping maps an individual object “into” another one, this does not interfere with
this “mapping into a set”.)

If, for f W S ! T, given any t 2 T, the equation t D f .s/ is satisfied by at most
one s 2 S, then f is an “injection” (or “injective”). Equivalently, for each t 2 f .S/
there is then exactly one s 2 S so that t D f .s/, t is the function value of f at s. For
instance, the square s 7! s2 with domain R and range, say, RC is not injective (for
example 4 D 22 D .�2/2) but the square s 7! s2 with domain RC and range, say,
R is injective (for every real number t 2 RC there is exactly one number s 2 RC
such that t D s2, namely s D p

t; obviously, for t 2 R�� such an s does not exist).
If f W S ! T is both surjective and injective then it is “bijective” or a “bijec-

tion” (in older terminology “one-to-one” or “1–1” for short; but there was some
ambiguity; some people meant by “one-to-one” sometimes “injective” rather than
“bijective”; that may be the reason why the new terminology has been introduced).
In other words the function f W S ! T is called bijective if, for every t 2 T, there
exists exactly one s 2 S for which t D f .s/. Clearly s 7! s2 W RC ! RC and
s 7! s3 W R ! R are bijections.

For bijective functions f W S ! T there exists an “inverse function” which, by
definition, assigns to every t 2 T that (in case of bijections unique) s 2 S for which
f .s/ D t. This function is usually denoted by f �1 W T ! S, so t D f .s/ is equivalent
to s D f �1.t/. The inverse function can be defined also for injective functions but
then it will not be defined outside f .S/, because only for t 2 f .S/ does exist a (but
then unique) s 2 S such that t D f .s/. This is clear also if we recognise that every
injection f W S ! T is a bijection if the range is confined to the image f .S/ of S:
f W S ! f .S/; then f �1 W f .S/ ! S.

By the way, for every function (or, for that matter, for every mapping) there
exists an “inverse mapping”, that is an inverse (possibly) multivalued function: for
f W S ! f .S/ this inverse mapping f �1 W f .S/ ! S assigns to each t 2 f .S/ all s 2
S for which f .s/ D t (that is why possibly f �1 is not a “single-valued” function
anymore).

Figures 3.1, 3.2, 3.3, 3.4 and 3.5 schematically show mappings, functions,
injections, surjections and bijections respectively. The elements of S and T are
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Fig. 3.1 Mapping
(multivalued function): To
each element of S an element
of T is assigned but not all
elements of T need to be
assigned to any element of S
and several elements of T
may be assigned to one
element of S and an element
of T may be assigned to
several elements of S

S T

Fig. 3.2 (Single-valued)
function: Representation as in
Fig. 3.1 but only each element
of the set T can be assigned to
one element of S. In general
inverse (single-valued)
functions cannot be defined,
but inverse mappings (inverse
multivalued functions) can
always be defined

S T

Fig. 3.3 Injection: To each
element s 2 S exactly one
element t D f .s/ 2 T is
assigned, but not all elements
of T need to be so assigned.
Every t 2 f .S/ is assigned to
exactly one s 2 f .S/. Inverse
function f �1 W f .S/ ! S
exists

S

T

represented by the indicated points. The instruction assigning an element (point)
of S to an element (point) of T is indicated by an arrow. These arrows thus represent
the mapping, that is, multivalued function or (single-valued) function. We get the
inverse mapping or function by inverting the direction of the arrows.
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Fig. 3.4 Surjection: Every
element of T is assigned to an
element of S but it may be
assigned to more than one. In
general no inverse function
exists (only inverse
multivalued function)

S

T

Fig. 3.5 Bijection: To each
element of S an element of T
is assigned and every element
of T is assigned to exactly
one of S. Inverse function
f �1 W T ! S exists

S

T

At least if the domain is a subset of R (or of R2) and the range is R, the so-called
graph is a much more intuitive picture of the function (or of the mapping, that is,
“multivalued function”) but graphs can be defined for any function or mapping by

G. f / WD f.s; t/ j s 2 S; t D f .s/ 2 f .S/g:

The graph of the inverse mapping (whether this inverse is a single-valued or a
“multivalued function”) is clearly

G. f �1/ D f.t; s/ j s 2 S; t D f .s/ 2 f .S/g:

For functions (or “mappings”) mapping subsets of R into R, the graph is a subset
of the plane R2 which we identify with the Cartesian plane (see Sect. 1.4). If, for
instance, S D f�3;�2;�1; 0; 1; 2; 3g and the “instruction” defining the function
f is

t D f .s/ D s3 � 8s � 1;

then the graph of this function is

G. f / D ˚
.s; t/

ˇ
ˇ s 2 f�3;�2;�1; 0; 1; 2; 3g; t D s3 � 8s � 1

�
;
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Fig. 3.6 Graph of the
function given by Table 3.1

Table 3.1 Values for the
function in Fig. 3.6

s �3 �2 �1 0 1 2 3

t �4 7 6 �1 �8 �9 2

Fig. 3.7 Graph showing the
inverse mapping of the
function whose graph is
shown in Fig. 3.6

or simply

G. f / D f.�3;�4/; .�2; 7/; .�1; 6/; .0;�1/; .1;�8/; .2;�9/; .3; 2/g:

This can be represented either by plotting these points on R2 (Fig. 3.6) or by a
Table 3.1. By the definition of G. f �1/ above we get the graph of the inverse
mapping, namely

G. f �1/ D f.�4;�3/; .7;�2/; .6;�1/; .�1; 0/; .�8; 1/; .�9; 2/; .2; 3/g:

We represent this graph on R2 in the same coordinate system into which we
plotted the points of G. f /; see Fig. 3.7. Notice that we get Fig. 3.7 from Fig. 3.6 by



3.2 Basics. Domains, Ranges, Images (Codomains). Mappings (Binary. . . 69

exchanging the roles of s and t, that is, of the horizontal axis (“X-axis”) and the
vertical axis (“Y-axis”); see Sect. 1.4.

We present now the graphs of some functions that, in contrast to the examples
above, are defined on infinitely many points or real numbers. Figures 3.8, 3.9, 3.10,
3.11 and 3.12 show the graphs of the functions

(i) x 7�! x W R �! R (“identity function”),
(ii) x 7�! c W R �! fcg c 2 R, fixed (“constant function”),

(iii) x 7�! x2 W RC �! RC (“square function”),
(iv) x 7�! p

x W RC �! RC (“square root function”),
(v) cos W R �! R (“cosine function”, see Sect. 1.7.2),

Fig. 3.8 (Parts of the) graphs
of the (i) identity, (ii)
constant, (iii) square and (iv)
square root function

Fig. 3.9 (Part of the) graph
of the (v) cosine function

Fig. 3.10 (Part of the) graph
of the (vi) sine function
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Fig. 3.11 (Part of the) graph
of the (vii) cotangent function

Fig. 3.12 (Part of the) graph
of the (viii) tangent function

(vi) sin W R �! R (“sine function”, see Sect. 1.7.2),
(vii) cot W R n fk� j k 2 Zg �! R (“cotangent function”, see Sect. 1.7.4)

(viii) tan W R n ˚.2k C 1/�
2

j k 2 Z
� �! R (“tangent function”, see Sect. 1.7.4).

We get again the graph of the inverse function or mapping by interchanging the
horizontal and vertical axes. The square root is the inverse function of the square, the
identity function is its own inverse; the sine, cosine, tangent and cotangent functions
have only multivalued functions (mappings) as inverses (but see also Sect. 9.2):
These functions and their inverse functions (and mappings) have R and subsets of R
as domains and ranges. Important subsets of R are the intervals defined as follows
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Fig. 3.13 Intervals

(see also Fig. 3.13). Let a 2 R; b 2 R be such that a < b. Then

Œa; b� WD fx 2 R j a � x � b g (closed interval);
�a; bŒ WD fx 2 R j a < x < b g (finite open interval);
Œa; bŒ WD fx 2 R j a � x < b g
�a; b� WD fx 2 R j a < x � b g (finite half–closed intervals);
Œa;C1Œ WD fx 2 R j x � ag
� � 1; b� WD fx 2 R j x � bg (infinite half–closed intervals);
�a;C1Œ WD fx 2 R j x > bg
� � 1; bŒ WD fx 2 R j x < bg (infinite open intervals).

(Often Œa; bŒ is denoted by Œa; b/ and �a; bŒ by .a; b/, and so on. Because of the danger
of confusing the latter with the point .a; b/ 2 R2, we prefer the above notation).

For instance RC; R� are infinite half-closed intervals, RCC; R�� are infinite
open intervals. In addition, R itself is considered an interval (infinite open) and so
is a set consisting of a single point. The singleton fag may be considered a closed
interval Œa; a�. We see that the image ofR under the constant function s 7! c . f .s/ D
c for all s 2 R; or on any other set) is the singleton fcg, the domains of cot and tan
are

1[

kD�1
�k�; .k C 1/�Œ and

1[

kD�1
�.2k � 1/

�

2
; .2k C 1/

�

2
Œ;

respectively, where

1[

kD�1
Sk WD fs j s 2 S0 or s 2 S1 or s 2 S�1 or s 2 S2 or s 2 S�2; : : : g:
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The images of R under sin and cos are the closed interval [�1,1]:

sinR D cosR D Œ�1; 1�:

3.2.1 Exercises

1. Consider the functions

(a) f W R �! R; x 7�! x3, (b) g W R �! R; x 7�! x4,
(c) h W R �! RC; x 7�! x4, (d) cos W R �! R,
(e) sin W R �! Œ�1; 1�, ( f) cot W R n fk� j k 2 Zg �! R,
(g) � W RCC �! R; x 7�! 1=x,

State for each whether it is surjective, injective or bijective, whether its inverse
is single-valued or multivalued, and whether its range equals the image of its
domain.

2. Determine the inverse functions of the functions

(a) f W R �! R; x 7�! �x; (b) g W R �! R; x 7�! x3;
(c) h W RC �! RC; x 7�! x C x2; (d) p W RC �! RC; x 7�! p

x C x2;

3. Draw the graphs of the functions

(a) f W Œ�3�; 3�� �! R; x 7�! x cos x,
(b) g W Œ0; 3�� �! R; x 7�! x � sin x,
(c) h W � � �

2
; �
2
Œ �! R; x 7�! x2 C tan x,

(d) p W Œ�2�; 2�� �! R; x 7�! 4.cos x/.sin x/.

4. Determine the images of the functions given in Exercise 3.
5. Draw the graph of the inverse functions determined in Exercise 2.

3.2.2 Answers

1. (a) surjective, injective, bijective, inverse is single valued, range D image,
(b) injective, inverse is multivalued,
(c) surjective, injective, inverse is multivalued, range D image,
(d) injective, inverse is multivalued,
(e) surjective, injective, inverse is multivalued, range D image,
( f) surjective, injective, inverse is multivalued, range D image,
(g) injective, inverse is singlevalued,
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2. (a) f �1 W R ! R; x 7! �x,
(b) g�1 W R 7! R ! R; x 7! x1=3

(c) h�1 W RC ! RC; x 7! � 1
2

C 1
2
.1C 4x/1=2,

(d) p�1 W RC ! RC; x 7! � 1
2

C .1C 4x2/1=2.
4. (a) Œ�3�; 3��, (b) Œ0; 3��, (c) R, (d) Œ�2; 2�.

3.3 Functions of n Variables, n–Dimensional Intervals,
Composition of Functions

As we saw in Sect. 3.1, function values may be, among others, real or complex
numbers or vectors. Then we have real-, complex- or vector-valued functions. In
the Examples 10, 11, 15 and 16 of Sect. 3.1, a function (or mapping) has assigned
to each element of its domain S a set as function value. In this case the range is a
set of sets (a set whose elements are sets) and we talk about set-valued functions
or correspondences. Such correspondences play important roles in production and
utility theory; for examples see Sect. 9.

Also the domains may be different. Of particular interest for us are the cases
when they are subsets of R; Rn or C: in these cases we speak about functions of
one or n real variables (or of one n-component vector variable) or of a complex
variable, respectively. Functions of n real variables are particular cases of functions
defined on a subset of the Cartesian product S1 � S2 � : : :� Sn (see Sect. 1.4),which
are also called functions of n variables or n-place functions. Vector-valued functions
of vector variable(s) are often called vector–vector functions.

The role of intervals as domains of functions of a real variable are often played by
n-dimensional intervals for the functions of n real variables. Let a D .a1; : : : ; an/ 2
Rn; b D .b1; : : : ; bn/ 2 Rn be such that a < b. Closed n-dimensional intervals are
the sets

Œa;b� D Œ.a1; : : : ; an/; .b1; : : : ; bn/� WD f.x1; : : : ; xn/ j ak � xk � bk gI

half-open, open, and/or infinite n-dimensional intervals are similarly defined (com-
pare Sects. 3.5 and 3.13). Note that an n-dimensional interval may be open in one
variable, half open or closed in another, finite in one variable, infinite in another.
The two-dimensional closed interval Œ.a; c/; .b; d/� is the rectangle with vertices
.a; c/; .a; d/; .b; c/; .b; d/.

Real-valued functions of two real variables .F W S ! T; S � R2; T � R/ can
be represented in R3 (their graph is a subset of R3), where the point .x1; x2; y/
represents the value y of the function F at .x1; x2/ 2 R2. While such a representation
by a three-dimensional model is quite possible (but cumbersome, even as a
hologram), one prefers drawings in the plane by perspective as in Fig. 3.14. The
“production surface” is the graph of the maximal output quantity as function of the
two-component input vector (in the two-dimensional interval Œ.0; 0/; .b; d/�) which
produces it (in the production period).
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Fig. 3.14 A production surface. Keeping x1 or x2 constant, that is, intersecting the surface parallel
to the .X1; Y/–plane or the .X2; Y/–plane, respectively, gives total product curves similar to those
of Fig. 3.18

Fig. 3.15 Contour-line representation of a real-valued function .F W R2
C ! RC) of two variables

Another geometric representation of real-valued functions of two real variables
is done by “contour-lines” (Fig. 3.15); these are defined for F W S ! R .S � R2/ by

f.x1; x2/ 2 S j F.x1; x2/ D c 2 F.S/g:

All these “lines” (for all c 2 F.S/) together form the contour-line representation.
Of course, in Fig. 3.15 we could draw only finitely many of them but, with some
practice, one gets from them an impression of the behaviour of F. They play an
important role in nomography. If F is a utility function (assigning to inputs x1; x2
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Fig. 3.16 Extension of the graph in Fig. 3.6 (and of the function which it represents)

the utility F.x1; x2/ then the contour-lines are called “indifference curves”, if F is a
production function then they are called “isoquants”.

The functions whose graphs were drawn in Figs. 3.6 and 3.7 are somewhat dif-
ferent from those in Figs. 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15 because their
domain consists of finitely many points (numbers) rather than (unions of) intervals.
While, as mentioned, points (“singletons”) may be considered as (“degenerated”)
intervals, one often connects the points (elements) of the (plane representation of
the) graph by a curve as, for instance, in Fig. 3.16. We emphasise that there are
many possibilities of connecting the same points even by pretty “smooth” curves.
But when we connected them in some way then we extended therewith also the
function, in this case to the whole closed interval. A function Of defined on a domain
OS, is an extension of a function f defined on a set S � OS, if Of .s/ D f .s/ for all
s 2 S. But one has to be careful because the extended function may not make the
same sense as the original. For instance, the output of textile produced by 3 factories
makes sense, that produced by

p
2 factories does not.

Exactly in economics, the “instructions” describing a function (or mapping) are
often themselves not formulas but (“empirical” or machine-generated) curves or
surfaces representing the graph of this function (or mapping) (see for instance
Figs. 3.14, 3.17, 3.18 and 3.19). As those mentioned above, these are also extensions
and should be handled with the caution just emphasised.

The identity function s 7! s can be defined on any domain S. The importance
of domains and ranges (in particular images or codomains) becomes highly visible
in composition of functions as in Fig. 3.20. If we have two functions f W S ! T and
g W U ! V then they can be composed, that is, the composite function g ı f W S ! V
can be defined, by

s 7�! g ı f .s/ WD gŒ f .s/� .s 2 S/;
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Fig. 3.17 Curve describing the market share of an improved product in percent as function
of time. The curve extends the graph of the “market share function” that is only defined at
t D 1; : : : ; 10 (time periods, for instance months). We assume that the market share was actually
measured only for these t

Fig. 3.18 Total product curve showing the maximal output quantity which can be obtained from
the quantity x of one input factor when all other inputs are held constant. If the curve is the graph
of the function f then the domain of f is S D Œ0; Nx�, its range is f .S/ D Œ0; Nu� � RC

Fig. 3.19 The total cost curve corresponding to the total product curve in Fig. 3.18. In a situation,
where every variable, except the input quantity x is fixed, it shows how the minimal cost of
production of an output depends on its quantity u. The domain is S D Œ0; Nu� and the range is
T D Œ0; Nv�
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Fig. 3.20 Composition of mappings f W S ! T and g W U ! V The sets S, T [ U and V consist
of the points indicated on the three segments. Obviously, t does not belong to U and therefore
s D f �1.t/ does not belong to the domain of g ı f

only if f .S/ � U (if the image of S under f is a subset of U). Actually, also if f .S/
and U have one or more common elements, that is, if

I WD f .S/\ U ¤ ;;

then gıf can be defined, but only on the set f �1.I/, where f �1 is the inverse mapping,
that is, the inverse, possibly multivalued function of f . Even if g ı f exists, the
function f ıg, defined by f ıg.u/ WD f Œg.u/� .u 2 U/ may not exist, among others
because S and U may be completely different sets and, even if both f ı g and g ı f
exist, they are usually different. For example for f .s/ D � cos s; g.u/ D u2 we have
f ı g ¤ g ı f because for instance

f ı g.0/ D � cos.02/ D �1 ¤ 1 D .� cos 0/2 D g ı f .0/:

In the rest of this chapter we introduce some particular classes of functions,
domains, and ranges, which are important for applications.

3.3.1 Exercises

1. Draw three contour–lines for each of the following functions F, G, H:
(a) F W R2C �! RC, .x; y/ 7�! F.x; y/ D p

xy=.x C y/,
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(b) G W R2C �! RC, .x; y/ 7�! G.x; y/ D x
p

y=.x C y/,
(c) H W R2C �! RC, .x; y/ 7�! H.x; y/ D xy=.

p
x C y/.

2. Represent the functions F, G, H defined in Exercise 1 by drawings in the plane
by perspective.

3. Consider the functions f W R �! R; x 7�! x3,
g W R �! R; x 7�! x4,
h W R �! RC; x 7�! x4,
cos W R �! R,
sin W R �! Œ�1; 1�,
� W RCC �! R; x 7�! 1=x,
 W R2CC �! RCC; .x; y/ 7�! 1

xCy ,
Determine the composite functions of functions

(a) f and g, (b) g and cos, (c) h and sin,
(d) cos and �, (e) � and h, ( f)  and f ,

on the largest sets on which they can be defined.
4. For the function F W R2 ! R, .x; y/ 7! x2 C y2 C 3x C 2, determine a function

g W RCC ! R such that the composite function g ı F W R2 ! R is .x; y/ 7!
1=..x C 1/.y C 2/C y2/.

5. For the function g W RC ! RC, x 7! pjsin xj, determine a function f W R ! RC
such that the composite function g ı F W RC ! RC is x 7! .sin x/2.

3.3.2 Answers

3. (a) g ı f W R ! R; x 7! x12,
(b) cos ı g W R ! R; x 7! cos x4,
(c) sin ı h W R ! Œ�1; 1�; x 7! sin x4,
(d) � ı cos W fxj cos x > 0g ! R; x 7! 1

cos x ,
(e) h ı � W RCC ! RC; x 7! 1

x4
,

( f) f ı  W R2CC ! R; .x1; x2/ 7! 1
.x1Cx2/3

.
4. g W RCC ! R, x 7! 1=x.
5. f W R ! RC, x 7! x4.

3.4 Monotonic and Linearly Homogeneous Functions.
Maxima andMinima

A function f W S ! R, where S is a set of real numbers .S � R/ is increasing on a
subset X of S (X � S) if, for all x 2 X; x0 2 X with x < x0,

f .x/ � f .x0/I (3.1)
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it is decreasing on X if, again for all x 2 X; x0 2 X with x < x0 we have

f .x/ � f .x0/: (3.2)

If in (3.1) or (3.2) we have < resp. > for all x 2 X; x0 2 X with x < x0 then
f is strictly increasing or strictly decreasing, respectively. Figures 3.17, 3.18 and
3.19 are examples of graphs of strictly increasing functions on Œ0; 10�; Œ0; Nx�; Œ0; Nu�,
respectively. Often strictly increasing (strictly decreasing) functions are called
“increasing” (“decreasing”) while, what we called increasing (decreasing) is
called “nondecreasing” (“non-increasing”). There exist functions which are neither
increasing (or strictly increasing) nor decreasing (or strictly decreasing) as, for
instance, the functions the graphs of which are drawn in Figs. 3.6, 3.7, 3.9, 3.10
and 3.16. So “nondecreasing” and “non-increasing” may lead to misunderstanding
and we will not use these words. Note that constant functions (x 7! c; c a constant
real number) and only those are both increasing and decreasing, but neither strictly
increasing nor strictly decreasing.

A function is monotonic on X � R if it is either increasing on all of X or
decreasing on all of X. It is strictly monotonic on X if it is either strictly increasing
or strictly decreasing on X (these names are universally accepted). In Fig. 3.7 the
function f whose graph is represented there is strictly increasing on f�3;�2g and
f2; 3g, and strictly decreasing on f�2;�1; 0; 1; 2g. The extension of (the graph
of) this function represented in Fig. 3.16 obviously has its maximum at some real
number in the interval Œ�2;�1� and its minimum at some real number in the interval
Œ1; 2�:

The general definition is the following. A function f W X ! R, where X � R,
has at xM a maximum on X if

f .xM/ � f .x/ for all x 2 X: (3.3)

It has at xm a minimum on X if

f .xm/ � f .x/ for all x 2 X: (3.4)

If we have > in (3.3) or < in (3.4) for all x ¤ xM resp. for all x ¤ xm then the
maximum or minimum is sharp (or strict). Of course, if the (non-sharp) maximum
and minimum of f on X are equal, then f is constant on X.

If a function on an interval I 2 R first increases till xM , where it has a maximum,
then decreases thereafter, or if it first decreases till xm, where it has a minimum, and
increases thereafter, then the function is unimodal on I. Unimodal functions play
an important role for instance in statistics. The functions represented in Figs. 3.21
and 3.22 are unimodular, those in Figs. 3.23 and 3.24 are not.

Note however that, for instance on a closed interval I, the maximum or minimum
needs not be inside the interval, it can be at the left or right end: in Fig. 3.23 both
the maximum and the minimum are at the ends, in Fig. 3.24 the minimum is at the
left end, the maximum inside. There is no complete analogue of monotonicity for
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Fig. 3.21 Graph of a
unimodal function. Maximum
at xM

Fig. 3.22 Graph of a
unimodal function. Minimum
at xM

Fig. 3.23 Graph of a
function which has maximum
at the left end of I and
minimum at the right end

Fig. 3.24 Graph of a
function with minimum at the
left end of I and maximum in
the interior of I, at xM

multi-place functions, not even for functions of two real variables, because, as we
have seen in Sect. 1.3, Rn for n > 1 is not totally ordered under either of the usual
orderings .>;�; >D /. However, there are several partial analogues.

We will deal here with real-valued functions of n � 2 real variables, in other
words, with real-valued multi-place functions. (For m-component vector-valued
functions .m � 2/, in particular complex-valued functions, the above mentioned
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lack of total ordering, this time on the range, would make things so complicated that
one usually does not define monotonicity for them.)

Let S � Rn. The function F W S ! R is increasing on X � S if

F.x/ � F.x0/ (3.5)

whenever x 2 X; x0 2 X and x � x0 (as defined in Sect. 1.3: x D .x1; : : : ; xn/ �
x0 D .x0

1; : : : ; x
0
n/ if xk � x0

k for all k 2 f1; : : : ; ng but, at least for one `; x` < x0̀ ; ` 2
f1; : : : ; ng). The function F W S ! R (often, but not always, one denotes multi-place
functions by capital letters) is decreasing on X � S if

F.x/ � F.x0/ (3.6)

whenever x 2 X; x0 2 X and x � x0. If, in (3.5) or (3.6) < resp. > stands then F is
strictly increasing or strictly decreasing, respectively.

Again the name covering both increasing and decreasing is “monotonic”, that
covering both strictly increasing and strictly decreasing is “strictly monotonic”. An
example of a monotonic (here: increasing) scalar-valued function on R2C is partly
given by the graph in Fig. 3.25. Notice that this function is strictly increasing on
R2CC.

Of course, most functions are not monotonic on most domains. For instance, the
function F W Œ.0; 0/; .b; d/� ! RC whose graph (“production surface”) is drawn in
Fig. 3.14 is not increasing (or decreasing) on its domain Œ.0; 0/; .b; d/�. But notice

Fig. 3.25 Part of the graph of an increasing function F defined on R2
C (strictly increasing on

R2
CC)
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that it is strictly increasing on every ray running from the origin (0,0) within RCC �
RCC to the boundary of the interval Œ.0; 0/; .b; d/�.

Again we define the maximum and minimum: The function F W X ! R;

X � Rn, has at xM a maximum, at xm a minimum on X if

F.xM/ � F.x/; F.x/ � F.xm/ for all x 2 X;

respectively. If here > stands instead of � for all x ¤ xM or x ¤ xm, respectively,
then the maximum or minimum is strict (or sharp).

If F is (strictly) increasing on X; X � Rn, then �F .x 7! �F.x// is (strictly)
decreasing there and the same is true the other way round (this follows from the
definition because, if F.x/ > F.x0/ then �F.x/ < �F.x0//.

Another way of formulating monotonicity, say increasing, is the requirement that,
holding all but one variable fixed, the function of this one variable is increasing. In
formula , F is increasing on X if

F.x1; : : : ; xk�1; xk; xkC1; : : : ; xn/ � F.x1; : : : ; xk�1; x0
k; xkC1; : : : ; xn/

.k D 1; : : : ; n/;

whenever .x1; : : : ; xk; : : : ; xn/ 2 X; .x1; : : : ; x0
K ; : : : ; xn/ 2 X and xk < x0

k. (Show that
this is equivalent to the above definition!) Often this is expressed by saying that the
functions

xk 7! F.x1; : : : ; xk�1; xk; xkC1; : : : ; xn/ or F.x1; : : : ; xk�1; �; xkC1; : : : ; xn/

are increasing .k D 1; : : : ; n/. Geometrically, in the case n D 2, this means
that all “cuts” of the graph, “parallel” to the .X1;Y/ and to the .X2;Y/-planes are
graphs of increasing functions of one real variable. Note, however that for F to be
monotonic xk 7! F.x1; : : : ; xk�1; xk; xkC1; : : : ; xn/ has to be either increasing for all
k.D 1; : : : ; n/ or decreasing for all k. Figure 3.26 shows (part of) the graph of the
function F W R2 ! R given by F.x1; x2/ D x21 � x22. If we are only interested in the
restriction of F to R2C, say QF, then x1 7! x21�x22 is strictly increasing for all x2 2 RC,

Fig. 3.26 Graph of (part of)
.x1; x2/ 7! x21 � x22 on R2. For
the restriction of this function
and its graph to R2

C, all cuts
parallel to the .X1; Y/-plane
are graphs of strictly
increasing functions, all cuts
parallel to the .X2; Y/-plane
are graphs of strictly
decreasing functions. Notice
the “saddle point” at (0,0)
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Fig. 3.27 The ray going
through x� D .x�

1 ; x
�
2 /

while x2 7! x21 � x22 is strictly decreasing for all x1 2 RC, but QF is not monotonic.
In connection with Fig. 3.14 we introduced the name “ray” (see also Fig. 3.25). For
x� 2 Rn the set

ftx� j t 2 R; t > 0 g

is a ray (the name “ray going through x�”; for n D 2 see Fig. 3.27). If the function

t 7! F.tx�/; x� 2 Rn; t 2 RCC (3.7)

is monotonic (strictly monotonic, increasing, strictly increasing, decreasing, strictly
decreasing) on every ray in Rn or on the intersection (see Sect. 1.2) of every
ray with a set X � Rn then F is ray-monotonic (strictly ray-monotonic, ray-
increasing, strictly ray-increasing, ray-decreasing, strictly ray-decreasing) on Rn

or on X, respectively. As we have mentioned already, the function F, whose graph
is in Fig. 3.14, is strictly ray–increasing on the interval X D Œ.0; 0/; .b; d/� (but
not increasing there). In particular, for this F, and also for that in Fig. 3.25, the
function (3.7) is linear (compare Sect. 4.1) for all x� in the interval. Functions F, for
which the mapping (3.7) has this property, are called linearly homogeneous.

The general definition is: A function F W X ! R .X � Rn) is positively linearly
homogeneous, “linearly homogeneous” for short, on X � Rn if

F.tx/ D tF.x/ whenever t 2 RCC; x 2 X and tx 2 X: (3.8)

In the case of production functions we speak about “constant returns to scale”
if (3.8) is satisfied. There is a quite imaginative argument that, if all variables
(“productions factors”, “input quantities”) are taken into consideration then every
production function is linearly homogeneous, at least for t 2 N or even t 2 QCC
in (3.8): If the production process were developed in exactly the same way in t .2 N/

identical factories (say) then all input quantities would increase t-fold, and so would
the production output, that is, (3.8) would hold for t 2 N. But, if (3.8) holds for
t D n, then it holds also for t D 1=n. To see this just put into

F.nx/ D nF.x/ .x 2 X; nx 2 X/ (3.9)
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y D nx to get

F.y/ D nF

�
1

n
y
� �

1

n
y 2 X; y 2 X

�

Combining this with (3.9) (for m in place of n) we indeed get

F
�m

n
x
�

D m

n
F.x/

�
m 2 N; n 2 NI x 2 X;

m

n
x 2 X

�
;

that is, (3.8) for t 2 QCC. About linearly homogeneous and, more generally,
homogeneous functions see also Sects. 4.2, 4.3 and 6.12.

3.4.1 Exercises

1. Consider the functions
(a) f W Œ�1; 1� �! R; x 7�! x2,
(b) f W Œ�1; 1� �! R; x 7�! x3,
(c) f W Œ1; 3� �! R; x 7�! 1=x,
(d) f W Œ�3;�1� �! R; x 7�! x3 � x C 1,
(e) f W Œ1; 4� �! R; x 7�! x3 � x C 1,
( f) f W Œ�3; 0� �! R; x 7�! x3 � x C 1.
State which are unimodal, which have maximum inside domain, which have
minimum inside domain, which are strictly increasing, and which are strictly
decreasing.

2. Consider the functions
(a) F W R2 �! R; .x1; x2/ 7�! 2x1 C 3x2,
(b) F W R2 �! R; .x1; x2/ 7�! 2x1 � 3x2,
(c) F W R2CC �! R; .x1; x2/ 7�! x21=x2,
(d) F W R2CC �! R; .x1; x2/ 7�! x1x2,
(e) F W R2C �! R; .x1; x2/ 7�! p

x1x2,
( f) F W R2CC �! R; .x1; x2/ 7�! 1=.x1 C x2/.
State which are linearly homogeneous, monotonic, strictly monotonic.

3. Draw the graph of a function F W X ! R where X � R2, such that
(a) F is strictly increasing,
(b) F is strictly decreasing,
(c) F is strictly ray-increasing, but not strictly increasing,
(d) F is positively linearly homogeneous, but not monotonic,
(e) x1 7�! F.x1; x2/ and x2 7�! F.x1; x2/ are unimodal.

4. Draw the graph of a function F W X ! R, where x � R2 is a two–dimensional
closed interval, such that
(a) F has both a sharp maximum and a sharp minimum inside X,
(b) F has both a maximum and a minimum on the boundary of X.



3.5 Convex (Concave) Functions. Convex Sets 85

5. Draw the graph of a function F W X ! R, where X � R2, which has a maximum
at exactly two points x1 2 X, x2 2 X and a minimum at exactly three points
x1 2 X, x2 2 X, x3 2 X. Are these maxima and minima sharp?

3.4.2 Answers

1. (a) unimodal, minimum inside domain,
(b) strictly increasing, (c) strictly decreasing,
(d) strictly increasing, (e) strictly increasing,
( f) unimodal, maximum inside domain.

2. (a) linearly homogeneous, strictly monotonic (increasing),
(b) linearly homogeneous, (c) linearly homogeneous,
(d) strictly monotonic (increasing),
(e) monotonic (increasing), linearly homogeneous,
( f) strictly monotonic (decreasing).

3.5 Convex (Concave) Functions. Convex Sets

For many real valued functions of one or several real variables in economics,
questions of convexity are of great importance. A function f W S ! R .S � R/

is convex from below on an interval I � S if

f .�u C .1 � �/v/ � �f .u/C .1 � �/f .v/

for all u ¤ v in I and for all � 2�0; 1Œ.
If here � is replaced by <; � or > then we have the definitions of functions

strictly convex from below, convex from above or strictly convex from above on I,
respectively. As we see from Fig. 3.28, the graphs of functions strictly convex from
below or above are kind of “arched” downwards or upwards, respectively (the arc
between any two points is below or above the chord, respectively), while convex
but not strictly convex ones may have straight stretches. As we just did, we call a
function convex on I if it is convex either from below on I or from above on I, strictly
convex on I if it is either strictly convex from below on I or strictly convex from above
on I. This is one of the advantages of our way of using the word convex. Actually,
in mathematics and economics functions convex (strictly convex) from below are
often called simply convex (strictly convex) while those convex (strictly convex)
from above are called concave (strictly concave). We may use these expressions
occasionally but there are two kinds of troubles with them: In some fields, for
instance in engineering, these names are used exactly in the opposite sense (concave
D convex from below, etc.) and in either case there is no common name covering
both convex and concave.
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Fig. 3.28 Graphs of functions strictly convex and convex from below (first two graphs) and above
(last two graphs) (strictly convex, convex, strictly concave, concave) on an interval in R

Affine functions x 7! ax C b (see also Sect. 4.1) whose graphs are straight lines
(straight line segments) and only these are convex both from below and from above
(see also the graphs over I� in Fig. 3.28) but they are, of course, not strictly convex.

Again, most functions on most intervals are not convex either from above or from
below. Those in Figs. 3.17 and 3.18 are strictly convex from below on Œ0; t��; Œ0; x��,
respectively, strictly convex from above on the rest of their domain. The function
whose graph is in Fig. 3.16 is strictly convex from above on Œ�3; 0�, strictly convex
from below on Œ0; 3�. The points 0; t�; x�; u� (see Figs. 3.16, 3.17, 3.18 and 3.19),
where a segment convex from one side meets a segment convex from the other side,
are “points of inflection”.

For functions of several real variables, the role played above by intervals is taken
over by convex sets. A set X � Rn is convex if, with any two of its points u 2 X; v 2
X, the whole “straight line segment connecting u and v”, that is (Fig. 3.29, see also
Fig. 1.7 in Sect. 1.5) the set

fx D �u C .1 � �/v j� 2 Œ0; 1�g

“belongs to X” (meaning here that it is a subset of X). For n D 1 the only convex sets
are the (one-dimensional) intervals (including single points (“singletons”) and the
whole R). The following examples show that there are many more kinds of convex
sets in Rn for n > 1.
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Fig. 3.29 The point
�u C .1� �/v, where
� 2 Œ0; 1�, lies on the straight
line connecting u and v. As �
goes through [0,1], the whole
segment is covered

1. Open balls in Rn (for n D 2: interior of a circle; compare to Sect. 6.11):

fx 2 Rn j jjx � ajj < rg

(for the distance jjx � ajj see Sects. 1.3 and 1.5), where a 2 Rn (centre of the
ball), r 2 RCC (radius) are constants.

2. Closed balls in Rn (for n D 2: circle and its interior):

fx 2 Rn j jjx � ajj � rg;

where a 2 Rn, r 2 RCC are again constants.
3. Interiors of ellipses in R2, of ellipsoids in R3 (with centres at 0):

n
x D .x1; x2/ 2 R2

ˇ
ˇ
ˇ

x21
a21

C x22
a22
< 1

o
;

n
x D .x1; x2; x3/ 2 R3

ˇ
ˇ
ˇ

x21
a21

C x22
a22

C x23
a23
< 1

o

with constant a1; a2; a3 in RCC.
4. The empty set ;: Note that the definition of a convex set X says that “for any pair

u 2 X; v 2 X we should have f�u C .1 � �/v j� 2 Œ0; 1�g � X”. But X D ; has
no element so the statement in parentheses is trivially (vacuously) true.

5. n-dimensional intervals (compare Sect. 3.1):
(i) closed intervals as Œa;b� WD fx 2 Rn j a � x � bg,

(ii) open intervals as �a;bŒWD fx 2 Rn j a < x < bg,
(iii) half open intervals as Œa;bŒWD ˚

x 2 Rn
ˇ
ˇ a<D x < b

�

or �a;b� WD ˚
x 2 Rn

ˇ
ˇ a < x<D b

�
,
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(iv) other finite intervals as, for instance,

˚
.x1; x2; : : : ; xn/ 2 Rn

ˇ
ˇ a1 � x1 � b1; aj < xj < bj . j D 2; : : : ; n/

�
;

(v) infinite intervals as, for instance,

Œa;1ŒWD ˚
x 2 Rn

ˇ
ˇ x>D a

�
; �1;bŒWD fx 2 Rn j x < bg;

and

f.x1; x2; : : : ; xn/ 2 Rn j x1 > a1; x2 � b2; a` � x` < b` .` D 3; : : : ; n/g;
where a D .a1; : : : ; an/ 2 Rn; b D .b1; : : : ; bn/ 2 Rn are constants,
ak < bk .k D 1; : : : ; n/.

6. The convex hull of p points (vectors) x1; : : : ; xp in Rn (for n D 2: hull of polygons,
see Fig. 3.30; for n D 1: closed intervals):

fx D �1x1 C : : :C �pxp 2 Rn j�j 2 Œ0; 1�; . j D 1; : : : ; p/; �1 C : : :C �p D 1g:

In Sect. 1.4 we called �1x1 C : : : C �pxp linear combinations of x1; : : : ; xp;
there �1; : : : ; �p were arbitrary real numbers. If we restrict �1; : : : ; �p so that
�j 2 Œ0; 1� . j D 1; : : : ; p/ and �1 C : : : C �p D 1 we have the convex
linear combinations of x1; : : : ; xp. So the convex hull of the p points (vectors)
x1; x2; : : : ; xp is the set of all convex linear combinations of x1; x2; : : : ; xp. For
this set we prove that it is a convex set. Indeed, for any two of its points, u D
�1x1C: : :C�pxp and v D 
1x1C: : :C
pxp .�1C: : :C�p D 
1C: : :C
p D 1/

we have

�u C .1 � �/v

D �.�1x1 C : : :C �pxp/C .1 � �/.
1x1 C : : :C 
pxp/

D .��1 C .1 � �/
1/x1 C : : :C .��p C .1 � �/
p/xp:

Fig. 3.30 Convex hull of the
six points (vectors) 0, a, b, c,
d, e in the plane R2. The
convex hull H is the shaded
area. Notice that the polygon
limiting H belongs to H, and
that H is also the convex hull
of o, a, b, c, d, that is, the
point (vector) e which lies in
the interior of H has no
influence on the shape of H
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But here the scalar coefficients ��j C .1 � �/
j . j D 1; : : : ; p/ are in Œ0; 1�
(because �; �1; : : : ; �p; 
1; : : : ; 
p are there) and they add up to 1:

.��1 C .1 � �/
1/C : : :C .��p C .1 � �/
p/

D �.�1 C : : :C �p/C .1 � �/.
1 C : : :C 
p/

D �C .1 � �/ D 1;

so �u C .1 � �/v belongs to the same set, as asserted. In Sect. 3.2 we defined
rays as sets f�xj j� 2 RCCg. The following example is a generalisation of rays.
It is the set of all linear combinations with nonnegative coefficients of p vectors
x1; : : : ; xp, that is:

7. The cone generated by the vectors x1; : : : ; xp:

fx D �1x1 C : : :C �pxp j� 2 RC . j D 1; : : : ; p/g

(Notice that here neither �j � 1 . j D 1; : : : ; p/ nor �1C: : :C�p D 1 is supposed.
Prove that, nevertheless, this is a convex set).

Having defined convex sets in Rn, we can now define convex functions of n real
variables: A function F W S ! R .S � Rn/ is convex from below on the convex set
X � S if

F.�u C .1 � �/v/ � �F.u/C .1 � �/F.v/ (3.10)

for all u ¤ v in X and for all � 2�0; 1Œ.
(We see from the left hand side why we needed that the set X be convex.) If here

� is replaced by >; � or >, we get the definitions of functions strictly convex from
below, convex from above, strictly convex from above on X, respectively. Again,
functions (strictly) convex from above are sometimes called (strictly) concave. For
n D 1 these definitions, of course, reduce to those given above for functions of one
real variable. Moreover, if we remember (Fig. 3.29) that the geometric meanings of
the set f�u C .1��/v j� 2 Œ0; 1�g is the straight line segment connecting the points
u and v, we see that (3.10) reduces the definition of convex functions of n variables
to that of convex functions in a single variable � (from above and similarly, from
below, strictly or otherwise). For n D 2, for instance, this means that F is strictly
convex from below on X � R2 if, and only if, on all “vertical cuts” of its graph, the
arc between any two points is under the chord.

It is easy to show (do it!) that, if on a convex set X � Rn the functions
F1 W S1 ! R and F2 W S2 ! R .X � S1, X � S2/ are convex from below (that is,
they satisfy (3.10)) then so is their linear combination with nonnegative coefficients
(compare Sect. 1.4 for a similar concept) F D a1F1 C a2F2 W S1 \ S2 ! R

(where a1; a2 are arbitrary nonnegative constants), that is, also F satisfies (3.10)
on X. Notice that F is defined on S1 \ S2 by F.x/ WD a1F1.x/ C a2F2.x/. Similar
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statements hold, of course, for functions strictly convex from below or convex or
strictly convex from above (as long as F1;F2 belong to the same class).

We can write (3.10) as

F

�
q1u1 C q2u2

q1 C q2

�

� q1F.u1/C q2F.u2/
q1 C q2

(3.11)

for all u1 2 X,u2 2 X and for all q1 2 RCC, q2 2 RCC.
Through u WD u1; v WD u2; � WD q1=.q1 C q2/ this is reduced to (3.10). This can

be connected to the convex hull of polyhedra, which we introduced in Example 6
above. Indeed we get from (3.10) or from (3.11), which is called two–term Jensen
inequality, by induction (see Appendix) the p-term Jensen inequality

F

�
q1u1 C : : :C qpup

q1 C : : :C qp

�

� q1F.u1/C q2F.u2/
q1 C : : :C qp

(3.12)

for all u1 2 X, up 2 X and for all q1; : : : ; qp 2 RCC,
or, equivalently (�j D qj=.q1 C : : :C qp/; j D 1; 2; : : : ; p),

F.�1u1 C : : :C �pup/ � �1F.u1/C : : :C �pF.up/ (3.13)

whenever u1 2 X; : : : ;up 2 X, �1 2�0; 1Œ; : : : ; �p 2�0; 1�, �1 C : : :C �p D 1.
Indeed, (3.12) holds for p D 2 (that was our initial inequality (3.11)) and, if it

holds for 2 and for p then it holds also for p C 1:

F

�
q1u1 C : : :C qpup C qpC1upC1

q1 C : : :C qp C qpC1

�

D F

0

B
B
@

.q1 C : : :C qp/
q1u1 C : : :C qpup

q1 C : : :C qp
C qpC1upC1

.q1 C : : :C qp/C qpC1

1

C
C
A

�
.q1 C : : :C qp/F

�
q1u1 C : : :C qpup

q1 C : : :C qp

�

C qpC1F.upC1/

.q1 C : : :C qp/C qpC1

�
.q1 C : : :C qp/

q1F.u1/C : : :C qpF.up/

q1 C : : :C qp
C qpC1F.upC1/

q1 C : : :C qp C qpC1

D q1F.u1/C : : :C qpF.up/C qpC1F.upC1/
q1 C : : :C qp C qpC1

;

as asserted (for the first � we used (3.11), the second � followed from (3.12)).
So (3.11) indeed implies (3.12) (and (3.10) implies (3.13)). Of course, again similar
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results hold for functions strictly convex from below and for functions convex from
above, strictly or otherwise.

The only functions of n variables convex both from above and from below are
the affine functions

.x1; : : : ; xn/ 7! a1x1 C : : :C anxn .a1; : : : ; an real constants/

(compare to Sects. 4.1 and 4.2). They are not strictly convex. For n D 2 their graphs
are planes.

It is clear from the definition that, if F is (strictly) convex from below on X then
�F W x ! �F.x/ is (strictly) convex from above on X and the other way round.

Surfaces separating sets where a function is strictly convex from one side from
sets where it is strictly convex from the other side are called surfaces of inflection,
in particular for n D 2 lines of inflection (see, for instance, Fig. 3.31).

Convex functions play important roles in the social sciences. However,
as we have seen just now and before, the functions whose graphs are in
Figs. 3.14, 3.17, 3.18, 3.19 and 3.25 and which are important in economics, are
not convex (neither from below nor from above) or are convex only on a part of
their domains. But they are quasi-convex, as will be defined in the next section.

Fig. 3.31 Graph of a function F W Œ.a; c/; .b; d/� ! R. On the left from the line L it is strictly
convex from below, on the right of L strictly convex from above, that is, L is a line of inflection
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3.5.1 Exercises

1. Consider the functions

(a) f W R ! R; x 7! 3x � 1, (b) f W R ! R; x 7! x2,
(c) f W R ! R; x 7! x3, (d) f W RC ! R; x 7! p

x,
(e) f W R ! R; x 7! sin x, ( f) f W Œ0; �� ! R; x 7! sin x,
(g) f W�0; �Œ! R; x 7! cot x,
(h) f W Œ�3; 1� ! R; x 7! x3 � 8x � 1,
(i) f W R2 ! R; .x1; x2/ 7! x21 C x22,
( j) f W R2C ! R; .x1; x2/ 7! p

x1x2.

State which of them are convex from below, convex from above, strictly convex
from below, strictly convex from above.

2. Which of the following sets are convex:
(a) Œ�3; 1Œ [ Œ0; 1�,
(b) Œ�3; 1Œ \ Œ2; 5�,
(c) fx 2 Rn j jx � aj < r; a 2 Rn; r 2 RCC g

\ fx 2 Rn j jx � bj < s; b 2 Rn; s 2 RCC g,
(d) Œ.0; 0/; .2; 2/� [ Œ.0; 0/; .1; 3/�,
(e) Œ.0; 0/; .2; 2/� [ Œ.0; 0/; .2; 3/�.

3. Show that, if the functions F W X ! R and G W X ! R are convex from below
on the convex set X � Rn then so is their linear combination aF C bG DW H on
X .a 2 RC; b 2 RC constants).

4. Draw the graph of a function F W X ! R, where X � R2 is convex, such that
F is
(a) strictly convex from below and strictly increasing,
(b) strictly convex from below and strictly decreasing,
(c) strictly convex from above and strictly increasing,
(d) strictly convex from above and strictly decreasing,
(e) strictly convex from below and not monotonic,
( f) strictly convex from above and not monotonic.

5. For which values of the real parameter a are the following functions convex from
below:
(a) f W R ! R; x 7! 1C x C ax2,
(b) F W Rn ! Rn; x 7! ax21 C x22 C : : :C x2n.

3.5.2 Answers

1. (a) convex from below, convex from above,
(b) convex from below, strictly convex from below,
(d) convex from above, strictly convex from above,
( f) convex from above, strictly convex from above,
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(i) convex from below, strictly convex from below,
( j) convex from above.

2. The sets (a), (c), (e) are convex.
3. If F W X ! R and G W X ! R are convex from below on the convex set X � Rn,

that is, if for all u 6D v in X and all � 2 �0; 1Œ we have

F.�u C .1 � �/v/ � �F.u/C .1 � �/F.v/;

G.�u C .1 � �/v/ � �G.u/C .1 � �/G.v/;

then the linear combination aF C bG DW H (a 2 RC, b 2 RC constants) is also
convex from below:

H.�u C .1 � �/v/ D aF.�u C .1 � �/v/C bG.�u C .1 � �/v/
� a�F.u/C a.1� �/F.v/C b�G.u/C b.1� �/G.v/

D �.aF.u/C bG.u//C .1 � �/.aF.v/C bG.v//

D �H.u/C .1 � �/H.v/:

5. (a) a 2 RC, (b) a 2 RC.

3.6 Quasi-convex Functions

A consequence of the definition (3.10) of functions convex from below on a convex
set X � Rn is

F.�u C .1 � �/v/ � maxfF.u/; F.v/g
for all u ¤ v in X and for all � 2 �0; 1Œ ; (3.14)

where, in R (or in any other totally ordered set, compare Sect. 1.3) maxfa; bg is the
greater of a and b. (Similarly maxfa1; : : : ; ang is the greatest among a1; a2; : : : ; an;
in general, max S is the greatest, min S the smallest element of S � R—according to
the order of magnitude of reals—if there exist a greatest and/or smallest element; in
sets with infinitely many elements there may be but need not be a maximal and/or a
minimal element, for instance N or f.n � 1/=n j n 2 Ng have no greatest element—
1 is not an element of the latter set—but they have a minimal element minN D
1; minf.n � 1/=n j n 2 Ng D 0.) The inequality (3.14) is the definition of functions
quasi-convex from below on X. In (3.14) (just as in (3.10)) it would not be necessary
to exclude u D v and � D 0 or � D 1, in which cases obviously equality holds, but
the definition in the above form is more convenient to make the following definitions
short. If, in (3.14) � is replaced by < then F is strictly quasi-convex from below. A
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function F W S ! R .S � Rn/ is quasi-convex from above on the convex set X � S if

F.�u C .1 � �/v/ � minfF.u/; F.v/g
for all u ¤ v in X and for all � 2 �0; 1Œ ; (3.15)

and strictly quasi-convex from above on X if (3.15) holds with > in place of �.
Here too, all functions (strictly) convex from above are also (strictly) quasi-convex
from above. But the converse is not true. For instance, the functions represented in
Figs. 3.17, 3.18, 3.19 and 3.14 are strictly quasi-convex from above on Œ0; 10�, Œ0; Nx�,
Œ0; Nu� and on Œ.0; 0/, .b; d/�, respectively, but not convex from above. Again one can
say instead of (strictly) quasi-convex from below or from above just (strictly) quasi-
convex and (strictly) quasi-concave, respectively, but we prefer the above names
because then we can use (strictly) quasi-convex as covering name for both. Here
too, if F is (strictly) quasi-convex from above then �F is (strictly) quasi-convex
from below and the converse is also true.

Not only are, as we have seen, the convex functions particular cases of quasi-
convex ones (from above or below, strictly or otherwise) but, as we can see by
comparing (3.14) and (3.15) to (3.1) and (3.2), every (strictly) increasing and every
(strictly) decreasing function of one real variable on a real interval I is (strictly)
quasi-convex both from above and from below. (The unimodal functions on an
interval I � R, also defined in Sect. 3.2 as first increasing to a single maximum
and decreasing thereafter or first decreasing to a single minimum and increasing
thereafter are quasi-convex from above or below, respectively, see Figs. 3.21 and
3.22.) But real-valued monotonic functions of more than one real variable are not
necessarily quasi-convex (say, from above) anymore. The reason for this is that the
definition, say, of decreasing functions, (3.6), does not say anything about those
pairs x 2 Rn, x0 2 Rn which cannot be ordered in the sense of Sect. 1.5. For
instance, the function F W R2CC ! R defined by F.x1; x2/ D 1 � x1x2 is decreasing
(x1 7! 1 � x1x2 and x2 7! 1 � x1x2 both decrease for all x1 > 0; x2 > 0) but, for
instance for u D . 3

2
; 1
2
/, v D . 1

2
; 3
2
/, � D 1

2
, we have

F.�u C .1 � �/v/ D 1 �
�
1

2

3

2
C 1

2

1

2

��
1

2

1

2
C 1

2

3

2

�

D 0 <
1

4
D minf1

4
;
1

4
g D minfF.u/;F.v/g;

so, by (3.15), this F is not quasi-convex from above (Fig. 3.32).
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Fig. 3.32 Contour-line representation of the function F W R2
CC ! R given by F.x1; x2/ D

1 � x1x2 (see also Fig. 3.15). The restriction of F to the segment from u D .3=2; 1=2/ to v D
.1=2; 3=2/ has its maximum 1/4 at u and v and its minimum 0 at (1,1). Hence, F is not quasi-
convex from above

Quasi-convex functions relate to convex sets in more ways than one: A function
F W S ! R .S � Rn/ is quasi-convex from above on the convex set X � S if, and
only if, the upper level sets

L.t/ D fx 2 X j F.x/ � tg (3.16)

are convex sets for all t 2 R. (Notice the connection and difference between these
upper level sets and the contour lines defined at the end of Sect. 3.3.) These are the
sets of points in X for which the function value is not smaller than t (for n D 2). The
projection to the .X1;X2/-plane of the function values above the “horizontal plane”
y D t; see Fig. 3.33. (Production or utility functions are frequently assumed to have
such a form).

We prove first that the upper level sets (3.16) are convex sets for all functions
quasi-convex from above on the convex set X. Of course, for some t 2 R, the set
L.t/ may be empty or consist of a single point (singleton) but, as we have seen
in Sect. 3.5 (Example 4 and the first case of S with a D b), the empty set and the
singleton are convex sets. Let now L.t/ have at least two points (elements), u and
v, that is, F.u/ � t; F.v/ � t. Since X is a convex set, �u C .1 � �/v 2 X for all
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Fig. 3.33 Upper level set
L.t/ (Dshaded convex area)
for the graph of a function
F W Œ.0; 0/; .b; d/� ! RC

which is quasi-convex from
above

� 2 Œ0; 1�, and, since F is quasi-convex from above, by (3.15) we have (for � 2�0; 1Œ,
but also for � D 1 and � D 0 because F.u/ � t; F.v/ � t):

F.�u C .1 � �/v/ � t:

So the whole straight line segment

f�u C .1 � �/v j� 2 Œ0; 1�g

belongs to L.t/ which thus is a convex set for each t 2 R, as asserted.
Now we show that the convexity of all upper level sets L.t/ implies the quasi-

convexity of F from above. Let u ¤ v be any two points of X (if X had just one
point, then the statement would be trivially true) and define

� D minfF.u;F.v//g; which implies F.u/ � �; F.v/ � �;

so that u and v are in L.�/. Since L.�/ is a convex set, also �u C .1� �/v is in L.�/
for all � 2 �0; 1Œ, that is,

F.�u C .1 � �/v/ � � D minfF.u;F.v//g for all � 2 �0; 1Œ;

and F is quasi-convex from above on X, as asserted.
One proves similarly that F W S ! R .S 2 Rn/ is quasi-convex from below on the

convex set X � S if, and only if, the lower level sets, defined by

.t/ WD fx 2 X j F.x/ � tg;

are convex sets for all t 2 R. Notice that the intersection.t/\ L.t/ of a lower and
an upper level set belonging to the same t is a contour line as defined in Sect. 3.3.
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Fig. 3.34 Graph of a
function, which is strictly
quasi-convex from below on
[u,v]; the set .t/ D Œr; s� is
convex, the set
L.t/ D Œu; r�[ Œs; v� is not
convex. The function is
strictly convex from below on
Œw;w0�, from above on Œu;w�
and Œw0; v�

Fig. 3.35 The function with
this graph (note: at w its value
is 0, not a) is not
quasi-convex either from
above or below:
.t/ D Œu; r�[ Œw; s� and
L.t/ D Œr;w�[ Œs; v� are not
convex sets. But on Œu;wŒ and
Œw; v� it is convex both from
above and below

Fig. 3.36 Graph of a
function, which is strictly
quasi-convex from above on
Œu; v�, strictly convex from
above on Œw;w0�, from below
on Œu;w� and on Œw0; v�;
L.t/ D Œr; s� is convex,
.t/ D Œu; r�[ Œs; v� is not
convex

It may be worthwhile to draw the graphs of a few more quasi-convex (and not
quasi-convex) functions from below and from above and some of their (lower,
upper) levels sets, see Figs. 3.34, 3.35, and 3.36.

In production theory there has been a long dispute whether there exist linearly
homogeneous functions (see Sect. 3.2) F W RnC ! RC such that all “cuts” (compare
Sect. 3.2 and Figs. 3.14, 3.25)

xk 7! F.x1; : : : ; xk�1; xk; xkC1; : : : ; xn/ .k D 1; : : : ; n/ (3.17)

(called “partial factor variations” there) are

(i) strictly convex from below on Œ0; Nxk�, where Nxk depends on the variables: Nxk D
fk.x1; : : : ; xk�1; xkC1; : : : xn/, and

(ii) strictly convex from above on ŒNxk;1Œ.
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(Note that then the functions (3.17) would be strictly quasi-convex from above).
It turned out that such functions do not exist. This is suggested already by the
examples in Figs. 3.14 and 3.25 which represent the graphs of linearly homogeneous
functions, but, of course, examples, no matter how many, cannot give a general proof
of this statement.

We prove by contradiction (see Appendix), for the sake of simplicity for n D 2,
that such functions cannot exist. Indeed, suppose that there would be a linearly
homogeneous function F W R2C ! RC such that at least t 7! F.t; 1/ has the
properties (i) and (ii). For illustration see Fig. 3.25. Properties (i) and (ii) say that
for all � 2 �0; 1Œ

F.�s C .1 � �/t; 1/ < �F.s; 1/C .1 � �/F.t; 1/ (3.18)

for all s ¤ t in Œ0; Nx1�, and

F.�s C .1 � �/t; 1/ > �F.s; 1/C .1 � �/F.t; 1/ (3.19)

for all s ¤ t in ŒNx1;1�.
By the linear homogeneity we have

F.1; �u C .1 � �/v/ D .�u C .1� �/v/F

�
1

�u C .1 � �/v
; 1

�

D .�u C .1 � �/v/F

�
�u

�u C .1 � �/v
1

u
C .1 � �/v

�u C .1 � �/v
1

v
; 1

� (3.20)

for all u > 0; v > 0; � 2 Œ0; 1�. We choose now u ¤ v so that 1=u; 1=v are both in
�0; Nx1� (that is, u ¤ v are both in �1=Nx1;1Œ). Then, by the right-hand side of (3.20)
and by (3.18) (notice that the factors of 1=u and 1=v in (3.20) add up to 1),

F.1; �u C .1� �/v/

< .�u C .1 � �/v/
�

�u

�u C .1 � �/v
F

�
1

u
; 1

�

C .1 � �/v
�u C .1 � �/v

F

�
1

v
; 1

��

D �uF

�
1

u
; 1

�

C .1 � �/vF

�
1

v
; 1

�

D �F.1; �/C .1 � �/F.1; v/

(the latter again by the linear homogeneity). This shows that u 7! F.1; u/ is strictly
convex from below on �1=Nx1;1Œ which contradicts (ii) and proves our statement.

One can get similarly a contradiction to (i) from (3.19). Figure 3.25 shows that
the linear homogeneity of the graph drawn there

• with the convexity from below of x1 7! F.x1; 1/ on Œ0; Nx1� imply the convexity
from below of x2 7! F.1; x2/ on Œ1=Nx1;1Œ (what we proved generally),
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• with the convexity from above of x2 7! F.1; x2/ on Œ0; 1=Nx1� imply the convexity
from above of x1 7! F.x1; 1/ on ŒNx1;1Œ.

Notice that in Fig. 3.25 the function x1 7! F.x1; 1/ and x2 7! F.1; x2/ have the
points of inflection .Nx1; 1/ and .1; 1=Nx1/, respectively, and are strictly quasi-convex
from above. Compare, in this connection, Fig. 3.14 showing a similar graph of a
linearly homogeneous function whose “vertical cuts” x1 7! F.x1; x2/ and x2 7!
F.x1; x2/ are also strictly quasi-convex from above (but not all are strictly increasing
as those of the graph in Fig. 3.25). This does not necessarily mean that F itself
is quasi-convex from above, for the same reason that monotonic functions were
not necessarily quasi-convex: for functions F W RnC ! RC to be quasi-convex from
above not only the functions (3.17) but also all functions (“vertical cuts”)

� 7! F.�u C .1 � �/v/ for all u 2 RnC; v 2 RnC

have to be quasi-convex from above. In Sect. 6.12 we will present linearly homoge-
neous functions F W RnC ! RC whose “cuts” (3.17) all satisfy (i) and:

(iii) The cuts (3.17) are strictly increasing up to a maximum at a unique x�
k (which

depends on x1; : : : ; xk�1; xkC1; : : : ; xn), then strictly decreasing for all xk � x�
k

and, after a point of inflection, strictly convex from below.

As an example of a cut having the properties (i) and (ii) simultaneously, see in
Fig. 3.14 the vertical cut x1 7! F.x1; 1/ which assumes its maximum at x�

1 .

3.6.1 Exercises

1. (a) Which of the functions (a)–(h) in Exercise 3.1 are strictly quasi-convex from
below or above?

(b) Is f W Œ�3; 3� ! R x 7! x3 �8x �1 quasi-convex from below or from above?
2. Which of the following functions are quasi-convex from below:

(a) F W R2CC ! R, .x1; x2/ 7! 1 � x1x2,
(b) F W R2CC ! R, .x1; x2/ 7! x21 � x2,
(c) F W R2CC ! R, .x1; x2/ 7! x22 � x21.

3. Draw the graphs of functions
(a) f W Œ0; 10� ! R,
(b) F W Œ0; 10� � Œ0; 10� ! R.
Which are strictly quasi-convex from below, non-convex, and non-monotonic?

4. Draw the graphs of functions
(a) f W Œ0; 10� ! R,
(b) F W Œ0; 10� � Œ0; 10� ! R.
Which are strictly quasi-convex from above, non-convex, and non-monotonic?
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5. Draw the graph of a function F W Œ0; 10� � Œ0; 10� ! RC which is linearly
homogeneous, quasi-convex from above, and non-monotonic.

3.6.2 Answers

1. (a) Functions (c) and (g) (Exercises 3.3.1) are quasiconvex from below and from
above, function (h) is quasiconvex from above.

(b) No.
2. Functions (a) and (b) are quasiconvex from below, but not from above. Function

(c) is quasiconvex from above, but not from below.

3.7 Functions in the “Statistical Theory” of Price Indices

We mentioned in Example 13 of Sect. 3.1 the most frequently used price index
which was introduced (or the importance of which was recognised) by E. Laspeyres
(1834–1913) in 1871. It compares the cost of the usually consumed quantities
q01; : : : ; q

0
n of n “typical” goods and services (the basket of goods) at a base time

with their cost at a comparison time (usually the present). If these quantities are
united into a vector

q0 D .q01; : : : ; q
0
n/ 2 RnCC

and so are their prices p01; : : : ; p
0
n and p1; : : : ; pn at the base time and at the

comparison time, respectively:

p0 D . p01; : : : ; p
0
n/ 2 RnCC; p D . p1; : : : ; pn/ 2 RnCC

then the costs are

q01p
0
1 C : : :C q0np0n D q0 � p0 2 RC and q01p1 C : : :C q0npn D q0 � p 2 RC

respectively, and Laspeyres’s price index value is defined by

q0 � p
q0 � p0

D q01p1 C : : : q0npn

q01p
0
1 C : : : q0np0n

2 RCC:

This is the function value L.q0;p0;p/ D q0 � p=q0�0 of Laspeyres’s price index
(function) L W RnCC � RnCC � RnCC ! RCC.

Of course, one may ask whether the quantities of “typical” goods remain
unchanged between the base and the comparison time; we know that they do
not: circumstances and tastes change (in particular prices influence the quantities
consumed): Actually even some “typical” goods, like top-hats and services like
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horse-shoeing may disappear or become atypical and new ones like compact disc
players and computing emerge; we disregard this, supposing for convenience that
only a relatively short time passed between the base and the comparison points
in time. However, it seems just as justified to take the quantities q1; : : : ; qn at
comparison time, united again into a vector

q D .q1; : : : ; qn/ 2 RnCC

and take

q � p
q � p0

D q1p1 C : : :C qnpn

q1p01 C : : :C qnp0n
2 RCC

as price index value. That is what H. Paasche (1851–1925) has done in 1874, so
this is called the (value of the) Paasche price index (function). Clearly, it also has a
blemish, opposite to that of the Laspeyres index: here the quantities at the base time
are ignored. As we will see the two can be combined in more than one “reasonable”
way.

Before we give, as further examples, such “reasonable” price indices, we say
what we mean by “reasonable”. We can do this in common sense mathematical
terms by stating those requirements (assumptions) which seem natural for a
reasonable price index to fulfill.

Here are some of these assumptions (“axioms”) for the price index function

P W RnCC � RnCC � RnCC � RnCC ! RCC

with function value

P.q0;p0;q;p/ 2 RCC .q0 2 RnCC;p0 2 RnCC;q 2 RnCC;p 2 RnCC/ W

A1. Monotonicity. The price index function is strictly increasing in p, strictly
decreasing in p0 (compare to Sects. 1.5 and 3.4):

P.q0;p0;q;p/ > P.q0;p0;q; Qp/

for all q0;p0;q;p; Qp in RnCC with p � Qp, and

P.q0;p0;q;p/ < P.q0; Qp0;q;p/

for all q0;p0; Qp0;q;p in RnCC with p0 � Qp0.
A2. Proportionality. If all prices change (usually increase, unfortunately) �–fold

between the base time and the comparison time, then the (value of the) price
index equals just this �, whatever q0;p0;q are:

P.q0;p0;q; –p0/ D � for all � 2 RCC; q0 2 RCC;p0 2 RCC;q 2 RCC;
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A3. Price extension invariance (often called “price dimensionality axiom”). If the
prices both at the base time and at the comparison time change �-fold then the
value of the price index (function) remains unchanged:

P.q0; –p0;q; –p/ D P.q0;p0;q;p/

for all � 2 RCC; q0 2 RCC;p0 2 RCC;q 2 RCC:

A4. Price-quantity compensation (often called “commensurability axiom”). If the
prices p0k ; pk change �k-fold, but also the quantities q0k ; qk change .1=�k/-fold
.k D 1; : : : ; n/ then (the costs and therefore) the (value of the) price index
(function) remains unchanged:

P.q01=�1; : : : ; q
0
n=�n; �1p01; : : : ; �np0n; q1=�1; : : : ; qn=�n; �1p1; : : : ; �npn/

D P.q01; : : : ; q
0
n; p

0
1; : : : ; p

0
n; q1; : : : ; qn; p1; : : : ; pn/

for all positive �k; q0k ; p
0
k ; qk; pk .k D 1; : : : ; n/.

It is easy to check that both the Laspeyres and the Paasche indices satisfy these
requirements, but so do several others, for instance the Marshall–Edgeworth index
given by

P.q0;p0;q;p/ D .q0 C q/ � p
.q0 C q/ � p0

and Fischer’s ideal index given by

P.q0;p0;q;p/ D
�

q0 � p
q0 � p0

q � p
q � p0

�1=2
;

the “geometric mean value” of the values of the Laspeyres and the Paasche index.
The above requirements (assumptions) were, however, chosen so that other

reasonable requirements follow, for instance we prove now that A1 and A2 together
imply

minf p1=p01; : : : ; pn=p0ng � P.q0;p0;q;p/ � maxf p1=p01; : : : ; pn=p0ng (3.21)

(minfx1; : : : ; xng is the smallest, maxfx1; : : : ; xng the greatest among the real num-
bers x1; : : : ; xn). This means that the value of the price index is between the smallest
and the greatest of the individual price quotients, a very reasonable requirement
indeed.
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In order to show that (3.21) follows from A1 and A2 we write for short

� D minf p1=p01; : : : ; pn=p0ng; M D maxf p1=p01; : : : ; pn=p0ng

and note that p0k multiplied by the smallest (resp. largest) of p1=p01; : : : ; pn=p0n cannot
be larger (resp. smaller) than pk .k D 1; : : : ; n/:

�p0 D �. p01; : : : ; p
0
n/
<D p D . p1; : : : ; pn/ � M. p01; : : : ; p

0
n/ D Mp0: (3.22)

We now apply each of the proportionality assumption A2 (with � and M in place of
�) and the monotonicity A1 twice:

� D P.q0;p0;q; �p0/ � P.q0;p0;q;p/ � P.q0;p0;q;Mp0/ D M;

(� not < because in (3.22) we had <D , not �; for the definitions see Sect. 1.5),
which is exactly (3.21).

In our opinion, every reasonable price index should satisfy (3.21), so any set of
assumptions from which (3.21) does not follow, is not complete. Price indices which
satisfy A1, A2 (whence (3.21)), A3 and A4 are called statistical price indices to
distinguish them from “economic price indices”. The latter take into consideration
the change in demand caused by the change of prices, that is, it is presumed that
people change their demands for goods and services so that the utility of those which
they can afford be maximal under the new prices.

3.7.1 Exercises

1. Show that, if the values of Laspeyres’ and Paasche’s index are different, then the
value of Fischer’s ideal index is smaller than the arithmetic mean of these two
values.

2. Show that Laspeyres’ index is not monotonic as a function of q0.
3. Show that Fischer’s ideal index is linearly homogeneous as a function of p.
4. Show that the indices of Laspeyres, Paasche, Marshall–Edgeworth and Fischer

satisfy the requirements A1, A2, A3 and A4.
5. Show that the so-called Walsh index defined by

P.q0;p0;q;p/ D
q

q01q1p1 C : : :Cp
q0nqnpn

q
q01q1p

0
1 C : : :Cp

q0nqnpn

satisfies the requirements A1, A2, A3 and A4.
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3.7.2 Answers

1. Let us denote the values of Laspeyres’ and Paasche’s index by a and b,
respectively. Then the value of Fisher’s ideal index is

p
ab. We have to show

that
p

ab < .a C b/=2 if a ¤ b. Let a ¤ b. Then 0 < .a � b/2, that is
4ab < .a � b/2 C 4ab D .a C b/2, whence 2

p
ab < a C b. ut

2. Let n D 2, p D .2; 3/, p0 D .1; 4/. Then the value of Laspeyres’ index is .2q01C
3q02/=.q

0
1 C 4q02/, and this is strictly increasing with q01 and strictly decreasing

with q02.
3.

P.q0; p0; q; �p/ D
s

q0 � .�p/

q0 � p0
q � .�p/

q � p0
D
s

�2
q0 � p

q0 � p0
q � p

q � p0

D �

s
q0 � p

q0 � p0
q � p

q � p0
D �P.q0; p0; q; p/:
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Happiness is thinking everything
is linear.
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4.1 Introduction

Consider the following question. A production plant (factory) produces with
maximal operating performance 56 units in 7 hours. How much does it produce
in 3 hours? What comes first to mind is: 8 units in 1 hour, so 24 unit in 3 hours and,
by extension,

y D 8t (4.1)

units in t hours. Such relations or mappings (of t into y) or functions (y as function
of t; compare Chap. 3) are called linear. But we did not say that the relation between
length of time and units produced during that time has to be linear (it probably is
not during very short or very long time intervals). So the above question may have
different answers, depending on the circumstances.

But, in absence of other information, we often do suppose that such a relationship
is linear or, at least, can be approximated by a linear function. In many economic
situations, for instance in the following, the assumption of linearity is more justified
than in others.

A supermarket chain is willing to buy for an extended time period two kinds of
detergent from a factory, say x1 weight units per week of the first detergent and x2
of the second, but not more than 100 weight units per week altogether:

x1 C x2 � 100: (4.2)
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The factory initially charged $6 per weight unit on the first, $9 on the second kind
of detergent and this contributes 60 and 90 cents per weight unit, respectively, to
its profit. The supermarket chain makes it clear that it does not want to spend more
than $720 a week for detergents, that is,

6x1 C 9x2 � 720 (4.3)

which means 60x1 C 90x2 � 7200 cents profit contribution. One could aim at
maximal quantity and profit for x1, x2 which then satisfy:

x1 C x2 D 100 and 6x1 C 9x2 D 720:

Such (and more general) systems of linear equations will be solved in Sects. 4.6
and 4.7. The solution is x1 D 60, x2 D 40.

The above involves both linear equation and inequalities. Its inequality aspect
leads to linear optimisation, which will be object of Sects. 5.1 and 5.2 in the
following Chap. 5. That will further expand the argument above. Section 4.5 in
the present Chap. 4 also deals with linear inequalities in the context of a couple
of important economic models.

The word linear is used often and in several contexts, both in mathematics and
in economics (and also in other sciences). We devote Chap. 4 to linear and to the
somewhat more general affine functions.

Actually, we have encountered linear objects in this book before: linear combi-
nations of vectors, their linear dependence and independence (Sect. 1.5), linearly
homogeneous and linear technologies and production models, linear optimisation
problems (Sect. 2.3) and general linearly homogeneous functions (Sect. 3.3).

As we will see in Sect. 4.3 (for m D n D 1 in Sect. 4.2), vector-vector functions
(mappings) f W Rn ! Rm, which are linearly homogeneous, that is,

f.�x/ D �f .x/ (4.4)

(for all x 2 Rn, � 2 R) and which are also additive, that is,

f.x C y/ D f.x/C f.y/ (4.5)

(for all x; y 2 Rn), are called linear. In this case it turns out (Sect. 4.3) that there exist
m � n real constants a11; : : : ; a1n; : : : ; am1; : : : ; amn (forming a matrix, see Sects. 4.3
and 4.4), such that

fj.x1; : : : ; xn/ D aj1x1 C : : :C ajnxn . j D 1; : : : ;m/ (4.6)

for all xk 2 R .k D 1; : : : ; n/, where f1; : : : ; fm and x1; : : : ; xn are the components of
f and x, respectively:

f.x/ D f.x1; : : : ; xn/ D . f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn// : (4.7)
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However, the linear homogeneity (4.4), additivity (4.5) and linearity make sense
also in more general spaces (as long as addition and multiplication by scalar are
defined), where (4.6) does not necessarily follow.

Somewhat more general are the affine functions, which are defined by
g.x/ D f.x/C b, where b is an arbitrary constant and f an (arbitrary) linear
function. So, in the above situation

g.x/ D g.x1; : : : ; xn/ D
D .a11x1 C : : :C a1nxn C b1; : : : ; am1x1 C : : :C amnxn C bn/:

Linear and affine functions will be applied in Sect. 4.5, as mentioned, to linear
(Leontief, von Neumann) models and, in Sect. 4.8, to aggregation in economics,
respectively. Later (Sects. 6.9 and 6.10) they will serve to explain differentials.

4.2 Proportionality, Linear and Affine Functions. Additivity,
Linear Homogeneity, Linearity

If there is a proportionality between the amount x 2 RC of the output of a
production process and the amount y 2 RC of the input, that is,

y D ax .x 2 RC/; (4.8)

where a is a positive constant, the production coefficient, then y is a linear function
of x. We speak of a linear function (in older terminology “homogeneous linear
function”) also if the above equation holds between other quantities, on intervals
other than RC (also multidimensional domains, see the next section) and with the
constant a not necessarily in RCC. The graph of the function given by

y D ax .x 2 R/ (4.9)

is clearly (Fig. 4.1) a straight line through the origin of the coordinate system. If the
domain is a subset of R then the graph consists of the part(s) of the straight line
above (or below) that subset. The coefficient a is the slope of the line.

Also the graph of the affine function (in older terminology “linear function”),
given by

y D ax C b

for x in R (or in parts thereof) is a straight line (or part thereof) with slope a (Fig. 4.2)
but not through the origin if b ¤ 0.

As substitution of f .x/ D ax immediately shows, the linear functions are additive

f .x1 C x2/ D f .x1/C f .x2/
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Fig. 4.1 (Part of the) graph
of the linear function with
slope a D 2

3

Fig. 4.2 (Part of the) graph
of the affine function
described by

y D 2
3 x�1.a D 2

3 ; b D �1/

for all x1 2 RC, x2 2 RC in case (4.8) and for all x1 2 R, x2 2 R in case (4.9).
An economic interpretation of this equation is the following. The input quantity
necessary to produce the sum x1C x2 of the output quantities x1 and x2 is the sum of
the input quantities y1 and y2 necessary to produce the output quantities x1 and x2,
respectively. The linear functions are also linearly homogeneous

f .�x/ D �f .x/

for all x 2 RC, � 2 RC in case (4.8) and for all x 2 R, � 2 R or all x 2 R, � 2 RCC
(positive linear homogeneity) in case (4.9). Additivity and linear homogeneity can
be condensed into the linearity equation

f .�1x1 C �2x2/ D �1 f .x1/C �2 f .x2/ (4.10)

with x1 2 R, x2 2 R or x1 2 RC, x2 2 RC and �1 2 R, �2 2 R or �1 2 RC,
�2 2 RC or �1 2 RCC, �2 2 RCC.

The question is natural whether the additivity and/or linear homogeneity charac-
terise the linear functions or are there other functions with these properties.
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Concerning linear homogeneity the answer is pretty easy. Suppose it first in the
form

f .�x/ D �f .x/ for all � > 0; x > 0:

Then, putting here x D 1 and calling a the constant f .1/, we already have

f .�/ D a� for all � > 0; that is, f .x/ D ax for all x 2 RCC;

so the linear functions are the only linearly homogeneous functions on RCC.
Obviously the result is the same for

f .�x/ D �f .x/ for all � 2 R; x 2 R or for all � 2 RC; x 2 RC

on R or RC, respectively. But for positive linear homogeneity

f .�x/ D �f .x/ .� 2 RCC; x 2 R/; (4.11)

while we still get x D 1, f .1/ D a

f .�/ D a� for � 2 RCC; that is, f .x/ D ax for x > 0;

this does not follow anymore for x < 0. For x D 0, Eq. (4.11) gives f .0/ D �f .0/
so, since � can be any positive number, f .0/ D 0, which still fits in with f .x/ D ax.
But for x < 0 this does not follow at all: Putting x D �1, f .�1/ D a0 into (4.11),
we have

f .��/ D a0� .� > 0/; that is, f .x/ D �a0x if x < 0:

So the solution of (4.11) is given (with Qa D �a0) as

f .x/ D
�

ax for x � 0;

Qax for x < 0;
(4.12)

where a and Qa may be different (they may also be equal). Substitution shows that
this function indeed satisfies (4.11), whatever a and Qa are:

f .�x/ D a�x D �f .x/ if x � 0; f .�x/ D Qa�x D �f .x/ if x < 0:

(Since � > 0, if x � 0 also �x � 0, if x < 0, also �x < 0.) The graph of this function
(Fig. 4.3) is a (possibly) broken line (broken at 0). The linear functions f .x/ D ax
are restored as only solutions if we suppose Eq. (4.10) (linearity) in the following
form:

f .�1x1 C �2x2/ D �1 f .x1/C �2 f .x2/ .x1; x2 2 R; �1; �2 2 RCC/
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Fig. 4.3

f .x/ D
�

ax for x � 0;

Qax for x < 0;

with a ¤ Qa satisfies pos-
itive linear homogeneity. (In
the figure we have a > Qa >

0:)

or, what is the same, positive linear homogeneity

f .�x/ D �f .x/ .x 2 R; � 2 RCC/

and additivity

f .x1 C x2/ D f .x1/C f .x2/ for all x1 2 R; x2 2 R (4.13)

(not if (4.13) is supposed only for x1 2 RC, x2 2 RC).
Indeed substitute (4.13) into (4.12) with x1 D 2; x2 D �1:

a.2 � 1/ D 2a C .�1/Qa; that is a D 2a � Qa; Qa D a; f .x/ D ax for all x 2 R:

Now we look at the additivity (4.13) alone. This is also called the Cauchy functional
equation. (A functional equation is an equation where the unknown is a function).
Without further supposition it certainly does not characterise the linear function, it
has much crazier solutions than (4.12): their graphs cannot even be drawn because
they are “everywhere dense” in the plane. But very weak conditions (to which we
can attribute the purpose to eliminate these “crazy” solutions) already guarantee that
the linear functions are the only solutions.

One such condition is that there exist numbers M1 and M2 (no matter how large)
so that on an interval (no matter how small), say on Œ 0; 1�, we have

� M1 � f .x/ � M2 for all x 2 Œ 0; 1� (4.14)

(that is, f is locally bounded, in this particular case bounded on Œ 0; 1�, compare to
Sect. 6.2). If (4.13) and (4.14) are satisfied then there exists a constant a such that

f .x/ D ax for all x 2 R:

Of course, the converse is also true: this function obviously satisfies (4.13) and
also (4.14), say with M1 D 0, M2 D a � 0 or M1 D a < 0, M2 D 0.
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If it exists, what would this a be? From f .x/ D ax we would clearly have

a D f .1/;

so we have to prove that

f .x/ D f .1/x;

that is, the function g, defined by

g.x/ D f .x/ � f .1/x (4.15)

is identically 0. Clearly also g satisfies the Cauchy functional equation (is additive):

g.x1 C x2/ D f .x1 C x2/� f .1/.x1 C x2/

D f .x1/C f .x2/� f .1/x1 � f .1/x2 D g.x1/C g.x2/;

(where we applied (4.13)). The function g is also bounded on Œ 0; 1�: with

M0
1 D M1 C j f .1/j; M0

2 D M2 C j f .1/j

we get

�M1 � j f .1/j � f .x/ � j f .1/j � f .x/ � f .1/x � M2 C j f .1/j for x 2 Œ 0; 1�

(because of (4.14) and since 0 � x � 1, �j f .1/j � f .1/ � j f .1/j), so

�j f .1/j � f .1/x � j f .1/j for x 2 Œ 0; 1�

that is,

� M0
1 � g.x/ � M0

2 for x 2 Œ0; 1�: (4.16)

Now, a consequence of the definition (4.15) is that g.1/ D 0 and, applying the
additivity of g

g.x C 1/ D g.x/C g.1/ D g.x/ for all x 2 R;

that is, g is a periodic function with period 1, in other words, the stretch
of values of g on Œ 0; 1� keeps repeating on Œ 1; 2�, Œ 2; 3�; : : : and also on
Œ�1; 0�, Œ�2;�1�; : : : ( just as the values of sin x on Œ 0; 2�� keep repeating on
Œ 2�; 4��; Œ 4�; 6��; : : : ; Œ�2�; 0�; Œ�4�;�2��; : : :). Therefore g.x/ cannot have
values for any x 2 R which it does not have already on [ 0,1]. So (4.16) has to be
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on true all R, g is bounded on all R:

�M0
1 � g.x/ � M0

2 for all x 2 R:

On the other hand, from the additivity g.x1 C x2/ D g.x1/C g.x2/ of g we get

g.2x/ D 2g.x/ .x1 D x2 D x/; g.3x/ D 3g.x/ .x1 D 2x; x2 D x/;

and so on (by induction, see Appendix), for all positive integer n and for all x 2 R

g.nx/ D ng.x/:

We prove now g.x/ D 0 by contradiction: if there were even one x0 2 R such
that

g.x0/ ¤ 0; say g.x0/ > 0

then, by what we have just proved, we would have

g.nx0/ D ng.x0/ for all n D 1; 2; 3; : : :

If we chose n large enough (in particular n > M0
2=g.x0/) then this would give

g.nx0/ > M0
2

which is a contradiction to the g.x/ � M0
2 for all x 2 R part of (4.16). (If we had

g.x0/ < 0 then we would get into contradiction with the �M0
1 � g.x/ for all x 2 R

part). So we have to have g.x/ 	 0 and, by (4.15), f .x/ D f .1/x D ax .x 2 R/.
Thus, the only additive functions, bounded on an interval, are the linear

functions.

4.2.1 Exercises

1. The graphs of each of six affine functions given by y D ax C b contain the
following pairs of points. Determine a and b.

(a) .0; 4/; .�1; 1/, (b) .�1;�3/; .�5; 5/,
(c) .2; 3/; .1;�3/, (d) .1; 7/; .9;�1/,
(e) .�1;�3/; .1; 5/, (f) .0; 0/; .2;�6/.

2. Determine a for the affine function given by y D ax C 2 whose graph contains
the point

(a) .�1; 6/, (b) .1; 9/, (c) .�2; 8/, (d) .2;�4/, (e) .0; 2/.
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3. Determine b for the affine function given by y D 5x C b whose graph contains
the point

(a) .1; 2/, (b) .�2; 6/, (c) .1;�2/, (d) .�3;�6/, (e) .0; 3/.

4. Determine the point which belongs both to the graph of x 7! ax C b and of
x 7! cx C d .a ¤ c/.

5. For which values of the real parameters a, b, c, d is the function f W R ! OR,
x 7! a C bx C cx2 C dx3

(a) additive,
(b) not linear?

4.2.2 Answers

1. (a) a D 3, b D 4, (b) a D �2, b D �5,
(c) a D 6, b D �9, (d) a D �1, b D 8,
(e) a D 4, b D 1, ( f) a D �3, b D 0.

2. (a) a D �4, (b) a D 7, (c) a D 5,
(d) a D �3, (e) a any arbitrary number.

3. (a) b D �3, (b) b D 4, (c) b D �7,
(d) b D 9, (e) b D 3.

4.

�
d � b

a � c
;

ad � bc

a � c

�

5. (a) b 2 R an arbitrary constant, a D c D d D 0.
(b) f is not linear if at least one of the parameters a, b, c is different from zero.

4.3 Additivity, Linear Homogeneity, Linearity of Vector-Vector
Functions, Matrices

In the previous section we considered functions where both the variables and the
function values were real numbers (scalars). For many applications this is not
enough. So we will also deal with vector-vector functions, that is with functions
f W Rn ! Rm defined on the n-dimensional real space with values in the m-
dimensional real space, in other words with n-component vectors as variables and
m-component vectors as function values. We can consider

f.x/

also as compressing the values of m functions of n real variables (n-place functions)

f1.x1; x2; : : : ; xn/

f2.x1; x2; : : : ; xn/
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:::

fm.x1; x2; : : : ; xn/

into one symbol.
Such a vector-vector function is additive if

f.x C y/ D f.x/C f.y/ for x 2 Rn; y 2 Rn (4.17)

(sometimes f is defined or this equation required only for x, y in a subset of Rn). It
is linearly homogeneous if

f.�x/ D �f.x/ for x 2 Rn; � 2 R

(if this equation is required only for � > 0 then we speak again of positive linear
homogeneity). These equations can be condensed into the linearity equation

f.�x C �y/ D �f.x/C �f.y/ .� 2 R; � 2 RI x 2 Rn; y 2 Rn/: (4.18)

We determine now all vector-vector functions satisfying (4.18). If we introduce the
unit vectors of Rn (the “basis” of Rn):

e1 D

0

B
B
B
B
B
B
B
B
@

1

0

0
:::

0

0

1

C
C
C
C
C
C
C
C
A

; e2 D

0

B
B
B
B
B
B
B
B
@

0

1

0
:::

0

0

1

C
C
C
C
C
C
C
C
A

; : : : ; en D

0

B
B
B
B
B
B
B
B
@

0

0

0
:::

0

1

1

C
C
C
C
C
C
C
C
A

(it will be convenient to write column vectors here and in what follows), we can
represent (see Sect. 1.4) every vector

x D

0

B
B
B
@

x1
x2
:::

xn

1

C
C
C
A

2 Rn

as

x D x1e1 C x2e2 C : : :C xnen:

Since f maps every vector in Rn into a vector in Rm, we have in particular f.ej/ 2 Rm

. j D 1; 2; : : : ; n/. We write also the unit vectors in Rm (the basis of Rm) as column



4.3 Additivity, Linear Homogeneity, Linearity of Vector-Vector Functions,. . . 115

vectors:

v1 D

0

B
B
B
B
B
@

1

0
:::

0

0

1

C
C
C
C
C
A
; v2 D

0

B
B
B
B
B
@

0

1
:::

0

0

1

C
C
C
C
C
A
; : : : ; vm D

0

B
B
B
B
B
@

0

0
:::

0

1

1

C
C
C
C
C
A
:

The f.ej/ (as all m-component vectors) can be written as linear combinations (with
scalar coefficients) of v1; v2; : : : ; vm:

f.e1/ D a11v1 C a21v2 C : : :C am1vm;

f.e2/ D a12v1 C a22v2 C : : :C am2vm;
:::

:::
:::

:::

f.en/ D a1nv1 C a2nv2 C : : :C amnvm

.aij 2 RI i D 1; 2; : : : ;mI j D 1; 2; : : : ; n/.
From the linearity equation (4.18)

f.�1z1 C �2z2 C : : :C �pzp/ D �1 f .z1/C �2 f .z2/C : : :C �pf .zp/

.zj 2 Rn; �j 2 RI j D 1; 2; : : : ; p/

follows (by induction, see Appendix), so

f.x/ D f.x1e1 C x2e2 C : : :C xnen/

D x1f.e1/C x2f.e2/C : : :C xnf.en/

D .a11x1 C a12x2 C : : :C a1nxn/v1
C .a21x1 C a22x2 C : : :C a2nxn/v2
:::

:::
:::

:::

C .am1x1 C am2x2 C : : :C amnxn/vm

D

0

B
B
B
@

a11x1 C a12x2 C : : :C a1nxn

a21x1 C a22x2 C : : :C a2nxn
:::

am1x1 C am2x2 C : : :C amnxn

1

C
C
C
A
:

This, with arbitrary constants aij .i D 1; 2; : : : ;mI j D 1; 2; : : : ; n/, is the
general solution of (4.18). (One can easily verify by substitution that it indeed
satisfies (4.18).)
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We write the result in the short form

f.x/ D Ax;

where

A D

0

B
B
B
@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
:::

am1 am2 : : : amn

1

C
C
C
A

is a matrix and, by definition,

Ax D

0

B
B
B
@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
:::

am1 am2 : : : amn

1

C
C
C
A

0

B
B
B
@

x1
x2
:::

xn

1

C
C
C
A

D

0

B
B
B
@

a11x1 C a12x2 C : : :C a1nxn

a21x1 C a22x2 C : : :C a2nxn
:::

am1x1 C am2x2 C : : :C amnxn

1

C
C
C
A
: (4.19)

The function f W Rn ! Rm, described by f.x/ D Ax is called a linear function or
linear transformation ofRn into Rm, both because the above form is a generalisation
of the linear function f .x/ D ax from R into R and because, as we have just proved,
it is the general solution of the linearity equation (4.18) or, what is the same, the
linear functions are the only additive and linearly homogeneous functions. (We note
that, just as in the previous section for m D n D 1, here too the linear function is the
only locally bounded solution of (4.17)), that is, the only locally bounded additive
function; see (Sect. 4.8).

So, once the unit vectors (the bases) in Rn and Rm are chosen, the matrix
A completely determines the linear transformation and vice versa. The aij .i D
1; 2; : : : ;mI j D 1; 2; : : : ; n/ are the components of the matrix A. Two matrices are
equal if their respective components are equal.

Here the components were real numbers but one can form matrices also from
complex numbers or elements of more general sets.

Again the functions given by f.x/ D Ax C b (b a vector) are called affine.
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4.3.1 Exercises

1. Determine the vector f.x/ D Ax C b for

(a) A D
0

@
�2 4 �3 5

7 �6 1 �8
9 �5 �2 0

1

A ; x D

0

B
B
@

3

2

�1
5

1

C
C
A ; b D

0

@
�28
35

�12

1

A,

(b) A D
�

u v w
r s t

�

; x D
0

@
�2
6

3

1

A ; b D
�

2u � 3w
4r � 6s � 3t

�

.

2. Determine the vector x for which Ax D b holds if

(a) A D
�
1 2

3 4

�

; b D
�
1

5

�

; x D
�

x1
x2

�

,

(b) A D
��2 3

5 �6
�

; b D
�

4

�7
�

; x D
�

x1
x2

�

,

(c) A D
��3 �4

�5 �6
�

; b D
��1

�3
�

; x D
�

x1
x2

�

.

3. Determine at least two vectors x for which Ax D b holds if

(a) A D
�
4 3 2

1 6 5

�

; b D
�
9

12

�

; x D
0

@
x1
x2
x3

1

A,

(b) A D
0

@
3 6

2 4

4 8

1

A ; b D
0

@
0

0

0

1

A ; x D
��2

1

�

.

4. Show that Ax D b does not have any solution x if

A D
0

@
1 2

3 4

0 5

1

A ; b D
0

@
1

5

2

1

A ; x D
�

x1
x2

�

.

5. For which values of x1, x2, y1, y2 does there exist a solution of the equation
0

B
B
@

2 �3
4 1

5 6

7 8

1

C
C
A

�
x1
x2

�

D

0

B
B
@

8

2

y1
y2

1

C
C
A?

4.3.2 Answers

1. (a) f.x/ D
0

@
2

3

7

1

A, (b) f.x/ D
�
6v

2r

�

.
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2. (a) x D
�

3

�1
�

, (b) x D
�
1

2

�

, (c) x D
��1

�3
�

.

3. (a) x D
0

@
1

1

1

1

A, x D
0

@
8=7

1=7

2

1

A, (b) x D
��2

1

�

, x D
�
0

0

�

.

4. x D
�

3

�2
�

is the unique solution of

�
1 2

3 4

��
x1
x2

�

D
�
1

5

�

(see Exercise 4.2.1 2. (a)). With this x one obtains

0

@
1 2

3 4

0 5

1

A
�

3

�1
�

D
0

@
1

5

�5

1

A ¤
0

@
1

5

2

1

A :

5. x1 D 1, x2 D �2, y1 D �7, y2 D �9.

4.4 Matrix Algebra

By (4.19) we have already defined the product of a matrix and a vector. In this
section we define other operations for matrices. Most will be derived from (4.19).

1. Product of matrices. Let f W Rn ! Rm and g W Rp ! Rn be linear (vector-
vector) functions, say

f.y/ D Ay D

0

B
B
B
@

a11y1 C a12y2 C : : :C a1nyn

a21y1 C a22y2 C : : :C a2nyn
:::

am1y1 C am2y2 C : : :C amnyn

1

C
C
C
A
;

g.x/ D Bx D

0

B
B
B
@

b11x1 C b12x2 C : : :C b1pxp

b21x1 C b22x2 C : : :C b2pxp
:::

bn1x1 C bn2x2 C : : :C bnpxp

1

C
C
C
A
;

that is,

g1.x/ D b11x1 C b12x2 C : : :C b1pxp

g2.x/ D b21x1 C b22x2 C : : :C b2pxp
:::

:::
:::

:::

gn.x/ D bn1x1 C bn2x2 C : : :C bnpxp

for the components of g.x/.
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Then their composition (see Sect. 3.2) f ı g W Rp ! Rm is defined by

f ı g.x/ D fŒg.x/� D A.Bx/:

Since f and g are additive, f ı g must be additive too:

f ı g.x C y/ D fŒg.x C y/� D fŒg.x/C g.y/�

D fŒg.x/�C fŒg.y/� D f ı g.x/C f ı g.y/:

Similarly, since both f and g are linearly homogeneous, so is f ı g:

f ı g.–x/ D fŒg.–x/� D fŒ–g.x/� D –fŒg.x/� D –f ı g.x/:

As we have seen at the end of the previous section, it follows that also
f ı g W Rp ! Rm is a linear function:

f ı g.x/ D Cx D

0

B
B
B
@

c11 c12 : : : c1p

c21 c22 : : : c2p
:::

:::
:::

cm1 cm2 : : : cmp

1

C
C
C
A

0

B
B
B
@

x1
x2
:::

xp

1

C
C
C
A

D

0

B
B
B
@

c11x1 C c12x2 C : : :C c1pxp

c12x1 C c22x2 C : : :C c2pxp
:::

cm1x1 C cm2x2 C : : :C cmpxp

1

C
C
C
A
:

On the other hand, from the definition of f; g and f ı g:

f ı g.x/ D fŒg.x/� D f

2

6
6
6
4

0

B
B
B
@

b11x1 C b12x2 C : : :C b1pxp

b21x1 C b22x2 C : : :C b2pxp
:::

bn1x1 C bn2x2 C : : :C bnpxp

1

C
C
C
A

3

7
7
7
5

D

0

B
B
B
@

a11g1.x/ C a12g2.x/ C : : :C a1ngn.x/
a21g1.x/ C a22g2.x/ C : : :C a2ngn.x/

:::

am1g1.x/C am2g2.x/C : : :C amngn.x/

1

C
C
C
A
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D

0

B
B
B
@

a11.b11x1 C : : :C b1pxp/ C : : :C a1n.bn1x1 C : : :C bnpxp/

a21.b11x1 C : : :C b1pxp/ C : : :C a2n.bn1x1 C : : :C bnpxp/
:::

am1.b11x1 C : : :C b1pxp/C : : :C amn.bn1x1 C : : :C bnpxp/

1

C
C
C
A

D

0

B
@

.a11b11 C : : :C a1nbn1/x1 C : : :C .a11b1p C : : :C a1nbnp/xp
:::

.am1b11 C : : :C amnbn1/x1 C : : :C .am1b1p C : : :C amnbnp/xp

1

C
A

D

0

B
@

a11b11 C : : :C a1nbn1 : : : a11b1p C : : :C a1nbnp
:::

:::

am1b11 C : : :C amnbn1 : : : am1b1p C : : :C amnbnp

1

C
A

0

B
@

x1
:::

xp

1

C
A :

Comparing the two expressions for f ı g we see that

cik D ai1b1k C ai2b2k C : : :C ainbnk D ai � bk for i D 1; 2; : : : ;mI k D 1; 2; : : : ; p;

where ai � bk is the inner product (scalar product) of ai and bk as defined in Sect. 1.5.
We say that the matrix C is the product of the matrices A and B, C D AB, that

is,

A.Bx/ D Cx D .AB/x (4.20)

that is,

0

B
@

c11 : : : c1p
:::

:::

cm1 : : : cmp

1

C
A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A

0

B
@

b11 : : : b1p
:::

:::

bn1 : : : bnp

1

C
A

D

0

B
@

a11b11 C : : :C a1nbn1 : : : a11b1p C : : :C a1nbnp
:::

:::

am1b11 C : : :C amnbn1 : : : am1b1p C : : :C amnbnp

1

C
A ; (4.21)

which defines the product of matrices.
Matrices with m rows and n columns are also called m�n matrices. Notice that an

m � n and a q � p matrix can be multiplied only if n D q. Actually, if we consider n-
component column vectors as n �1 matrices then the formula (4.20) of the previous
section was already an example of matrix multiplication. So is the inner product of
two n-component vectors a and b but only if a is written as row vector (as 1 � n
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matrix) and b as column vector (as n � 1 matrix):

a D .a1; : : : ; an/; b D

0

B
@

b1
:::

bn

1

C
A ; a � b D .a1; : : : ; an/

0

B
@

b1
:::

bn

1

C
A D a1b1 C : : :C anbn:

We will now compose functions repeatedly and use the notations (compare
Sect. 3.2)

.f ı g/x D .f ı g/.x/ D f ı g.x/ D fŒg.x/�:

From

Œ.f ı g/ ı h�x D .f ı g/Œh.x/� D f.gŒh.x/�/ D fŒg ı h.x/� D Œf ı .g ı h/�x

and from the definition

.f ı g/x D ABx D A.Bx/ D fŒg.x/�

it follows that

Œ.AB/C�x D .AB/.Cx/ D ŒA.BC/�x

for all vectors x. Developing this according to (4.21) and comparing the coefficients
of x1; x2; : : : ; xn we get

.AB/C D A.BC/;

that is, matrix multiplication is associative. However, it is in general not commuta-
tive, that is, AB D BA does not always hold. Take for instance

A D
�
0 1

2 3

�

; B D
�
3 0

1 2

�

W

Then

AB D
�
0 � 3C 1 � 1 0 � 0C 1 � 2
2 � 3C 3 � 1 2 � 0C 3 � 2

�

D
�
1 2

9 6

�

;

BA D
�
3 � 0C 0 � 2 3 � 1C 0 � 3
1 � 0C 2 � 2 1 � 1C 2 � 3

�

D
�
0 3

4 7

�

¤ AB:

Actually, if A is an m � n and B a q � p matrix, the equality AB D BA would make
even formal sense only if m D n D q D p that is, A and B have the same number of
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elements and both are square matrices, that is, the number of rows and columns is
equal. That AB ¤ BA is possible even under these circumstances, shows also that
it is possible that both composite functions f ıg and gı f exist but they are not equal.

2. Product of a scalar and a matrix. From the linear homogeneity

f.�x/ D �f.x/

of the linear function f.x/ D Ax we get

A.�x/ D �.Ax/:

The left hand side is, according to (4.19),

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A

0

B
@

�x1
:::

�xn

1

C
A D

0

B
@

�a11x1 C : : :C �a1nxn
:::

�am1x1 C : : :C �amnxn

1

C
A

If, similarly to (4.20), we define the product of a scalar � and a matrix A by

.�A/x D �.Ax/

then, by the previous two equations, we have as definition

�A D �

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A D

0

B
@

�a11 : : : �a1n
:::

:::

�am1 : : : �amn

1

C
A : (4.22)

Actually, this too is a special case of (4.21) if we consider scalars � as diagonal
matrices with � at all places of the main diagonal (a matrix B is diagonal if bij D 0

for i ¤ j, that is, if all components of B are 0 except those in the main diagonal,
going from the left top to the right bottom):

�A D

0

B
B
B
@

� 0 : : : 0

0 � : : : 0
:::
:::
: : :

:::

0 0 : : : �

1

C
C
C
A

0

B
B
B
@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
:::

am1 am2 : : : amn

1

C
C
C
A

D

0

B
B
B
@

�a11 �a12 : : : �a1n

�a21 �a22 : : : �a2n
:::

:::
:::

�am1 �am2 : : : �amn

1

C
C
C
A
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D

0

B
B
B
@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
:::

am1 am2 : : : amn

1

C
C
C
A

0

B
B
B
@

� 0 : : : 0

0 � : : : 0
:::
:::
: : :

:::

0 0 : : : �

1

C
C
C
A

D A�:

(Notice that first we identified � with an m � m then with an n � n diagonal matrix.
In this sense, this special product �A is commutative.)

3. Sums and linear combination of matrices. In general one defines the sum of
two functions (which have a domain in common), in particular of two linear
functions by

. f C g/.x/ D f .x/C g.x/:

So, for all vectors x, by the rules for adding vectors, we have

.A C B/x D Ax C Bx

D

0

B
@

a11x1 C : : :C a1nxn
:::

am1x1 C : : :C amnxn

1

C
AC

0

B
@

b11x1 C : : :C b1nxn
:::

bm1x1 C : : :C bmnxn

1

C
A

D

0

B
@

.a11 C b11/x1 C : : :C .a1n C b1n/xn
:::

.am1 C bm1/x1 C : : :C .amn C bmn/xn

1

C
A

(A and B have to be both m � n matrices). Comparing the coefficients of
x1; : : : ; xn, we get

A C B D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
AC

0

B
@

b11 : : : b1n
:::

:::

bm1 : : : bmn

1

C
A

D

0

B
@

a11 C b11 : : : a1n C b1n
:::

:::

am1 C bm1 : : : amn C bmn

1

C
A :
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That is, by definition, matrices are added component wise. This nicely conforms
with (4.22), since from both

2A D 2

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A D

0

B
@

2a11 : : : 2a1n
:::

:::

2am1 : : : 2amn

1

C
A :

Combined with (4.22) we get for linear combinations of two m � n matrices

�A C �B D �

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
AC �

0

B
@

b11 : : : b1n
:::

:::

bm1 : : : bmn

1

C
A

D

0

B
@

�a11 C �b11 : : : �a1n C �b1n
:::

:::

�am1 C �bm1 : : : �amn C �bmn

1

C
A :

(this is similar but not the same as (4.18)!). In particular, for the difference of two
matrices:

A � B D A C .�1/B D

0

B
@

a11 � b11 : : : a1n � b1n
:::

:::

am1 � bm1 : : : amn � bmn

1

C
A :

4.4.1 Exercises

1. For the matrices

A D
0

@
3 �5 4

�2 1 0

4 2 �6

1

A ; B D
0

@
4 3 1

2 4 6

1 5 8

1

A ; C D
0

@
1 0 1

0 1 0

1 0 1

1

A

calculate

(a) AB, (b) AC, (c) BC, (d) BA,
(e) CA, (f) CB, (g) .AB/C, (h) A.BC/,
(i) 9A � 8B C 7C, ( j) 3.AB/C � 5BA.
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2. For the matrices

A D
�

2 3 �4
�6 1 0

�

; B D
0

@
7 3

1 9

4 8

1

A ; C D
�

2 1

�1 �1
�

calculate

(a) AB, (b) BA, (c) BC, (d) CA,
(e) .AB/C, (f) A.BC/.

3. Determine x, y, z such that

(a)

�
2 x
y 3

��
x y 0
z z z

�

D
�
7 13 5

19 31 15

�

, [1.0ex]

(b)

0

@
x 2

1 z
�2 y

1

A
�
5 z
z 3

�

D
0

@
6 6

14 12

14 18

1

A, [1.0ex]

(c)

�
x y

�y x

��
x �y
y x

�

D
�

z2 0
0 z2

�

. [1.0ex]

(d) Calculate x in (c) if z D 5 and y D 4.
4. From the definition of A � B at the end of Sect. 4.4, prove that .A � B/C B D A.

5. Construct two matrices A D
�

a b
c d

�

, B D
�

r s
t u

�

where the components a, b,

c, d, r, s, t, u are real numbers none of them 0, no two of them equal, such that
AB D BA.

4.4.2 Answers

1. (a)

0

@
6 9 5

�6 �2 4

14 �10 �32

1

A, (b)

0

@
7 �5 7

�2 1 �2
�2 2 �2

1

A, (c)

0

@
5 3 5

8 4 8

9 5 9

1

A,

(d)

0

@
10 �15 10

22 6 �28
25 16 �44

1

A, (e)

0

@
7 �3 �2

�2 1 0

7 �3 �2

1

A, (f)

0

@
5 8 9

2 4 6

5 8 9

1

A,

(g)

0

@
11 9 11

�2 �2 �2
�18 �10 �18

1

A, (h)

0

@
11 9 11

�2 �2 �2
�18 �10 �18

1

A,

(i)

0

@
2 �69 35

�34 �16 �48
35 �22 �111

1

A, (j)

0

@
�17 102 �17

�116 �36 134

�179 �110 �166

1

A.
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2. (a)

�
1 1

�41 �9
�

, (b)

0

@
�4 24 �28
�52 12 �4
�40 20 �16

1

A, (c)

0

@
11 4

�7 �8
0 �4

1

A,

(d)

��2 7 �8
4 �4 4

�

, (e)

�
1 0

�73 �32
�

, ( f)

�
1 0

�73 �32
�

.

3. (a) x D 1, y D 4, z D 5, (b) x D 0, y D 8, z D 3,

(c) z2 D x2 C y2, whence, e.g., x D 3, y D 4, z D 5

(d) x D 3.

4. For A D

0

B
@

a11 : : : a1n
:::

:::

an1 : : : ann

1

C
A, B D

0

B
@

b11 : : : b1n
:::

:::

bn1 : : : bnn

1

C
A we have

.A � B/C B D

0

B
@

a11 � b11 : : : a1n � b1n
:::

:::

an1 � bn1 : : : ann � bnn

1

C
AC

0

B
@

b11 : : : b1n
:::

:::

bn1 : : : bnn

1

C
A

D

0

B
@

a11 � b11 C b11 : : : a1n � b1n C b1n
:::

:::

an1 � bn1 C bn1 : : : ann � bnn C bnn

1

C
A

D

0

B
@

a11 : : : a1n
:::

:::

an1 : : : ann

1

C
A D A:

5. A D
�
1 2

3 4

�

, B D
�
5 6

9 14

�

. AB D
�
23 34

51 74

�

D BA.

4.5 Linear Economic Models: Leontief, von Neumann

In what follows, we introduce the input-output model of W. A. Leontief (1906;
Nobel laureate of 1973).

We start with an ‘input-output table’ (Table 4.1). The table informs of the values
(say in $) put into and taken out of the individual producing and service industries
(‘sectors’) in an open economy, that is an economy with exports (Ex) and imports
(Im). The j-th column represents the input vector of the j-th sector ( j D 1; 2; : : : ; n)
and the i-th row lists how much value the i-th sector (i D 1; 2; : : : ; n) has supplied
to the different user industries and to the final demand of the economy (private
and government consumption, delivered and self-produced products, changes in
inventories, exports). The sum of numbers in the i-th row, Xi, is the value of the
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Table 4.1 Input–output table of an economy

Demand for inputs Final demand for goods and

from the sectors services from the economy
Receiving sectors ! Sector 1 Sector 2 � � � Sector n C C* P Ch Ex Gross

Supplying sectors # output

Sector 1 A11 A12 � � � A1n C1 C�
1 P1 Ch1 Ex1 X1

Sector 2 A21 A22 � � � A2n C2 C�
2 P2 Ch2 Ex2 X2

:
:
:

:
:
:

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Sector n An1 An2 � � � Ann Cn C�
n Pn Chn Exn Xn

Imports Im1 Im2 � � � Imn

Depreciation D1 D2 � � � Dn

Indirect taxes T1 T2 : : : Tn

minus subsidies �S1 �S2 �Sn

Wages, salaries W1 W2 � � � Wn

Other income I1 I2 � � � In

Sum of amounts

per column X1 X2 � � � Xn

= gross output

C = private consumption

C� = government

consumption

P = delivered and self–

produced products

Ch = changes in inventories

Ex = exports

gross output of the i-th sector; the sum of numbers in the i-th column has to be the
same. This is achieved by adding, for bookkeeping purposes, the “other income” to
the j-th input values in order to get Xj as the sum of the numbers in the j-th column
( j D 1; : : : ; n).

Leontief’s production model for any economy with n sectors (industries) consists
of n production processes, written as column vectors (see Sects. 1.4 and 2.3):

v1 D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

A11
A21
:::

An1

X1
0
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

; v2 D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

A12
A22
:::

An2

0

X2
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

; : : : ; vn D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

A1n

A2n
:::

Ann

0

0
:::

Xn

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (4.23)
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The first n components of the j-th vector represent the inputs which flow from all n
industries into the j-th ( j D 1; : : : ; n). The .n C j/-th component of the same vector
is Xj, the gross output of the j-th industry (see Table 4.1).

An example of distinguishing n D 14 sectors could be: (1) agriculture and
fishery, (2) power-supply industry and mining, (3) chemical industry, rock, stone
and related minerals, (4) iron and steel industry, nonferrous metals, (5) mechanical
engineering, vehicles construction, (6) electrical engineering, (7) timber, paper,
leather, textile industry, (8) food, beverages, and tobacco industry, (9) construction
industry, (10) trade, (11) transport(ation) and communication, (12) other services,
(13) government, (14) private households and private no-gain organisations.

Leontief assumes that in that particular economy not only the production
processes (4.23) but also their linear combinations (compare Sects. 1.5 and 2.3) with
nonnegative coefficients

�1v1 C : : :C �nvn D

0

B
B
B
B
B
B
B
B
B
@

�1A11 C : : :C �nA1n
:::

�1An1 C : : :C �nAnn

�1X1
:::

�nXn

1

C
C
C
C
C
C
C
C
C
A

.�j 2 RCI j D 1; 2; : : : ; n/

and only these can be “run” as production processes. So this is a linear technology
generated by the above n production processes and thus we have a linear production
model (compare to Sect. 2.3).

We call Leontief processes the (proportionally) reduced production processes
(each component divided by the row sum in Table 4.1):

`1 D v1
X1

D

0

B
B
B
B
B
B
B
B
B
B
B
@

A11=X1
:::

An1=X1
1

0
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

a11
:::

an1

1

0
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
A

; : : : ; `n D vn

Xn
D

0

B
B
B
B
B
B
B
B
B
B
B
@

A1n=Xn
:::

Ann=Xn

0

0
:::

1

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

a1n
:::

ann

0

0
:::

1

1

C
C
C
C
C
C
C
C
C
C
C
A

;

where we wrote aij D Aij=Xj .i D 1; : : : ; nI j D 1; : : : ; n/, that is, Aij D aijXj. Just
as a was in (4.8), also these aij are called production coefficients. There a showed
how much input was needed for a unit value of output, here aij is the value of input
needed from the industry or sector i in order to produce a unit value of (gross) output
in industry or sector j.

If we want to produce in sector j a gross output of value xj (“intensity”, which
at this stage, is a variable) instead of 1, we have to multiply the column vector
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(Leontief process) `j by xj . j D 1; : : : ; n/:

xj`j D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1jxj
:::

anjxj

0
:::

xj
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

. j D 1; : : : ; n/:

This vector represents the contributions of all sectors i D 1; : : : ; n to the gross output
value xj of sector j . j D 1; : : : ; n/. The sum

x1`1 C : : :C xn`n D x1
v1
X1

C : : :C xn
vn

Xn
D

0

B
B
B
B
B
B
B
B
B
@

a11x1 C : : :C a1nxn
:::

an1x1 C : : :C annxn

x1
:::

xn

1

C
C
C
C
C
C
C
C
C
A

(4.24)

of these vectors represents therefore, in its first n components, the contributions of
all sectors i D 1; : : : ; n to the gross output values x1; : : : ; xn of all sectors.

That part of the gross output of industry i, which is needed by all sectors as input
from sector i, is given in (4.24) by ai1x1 C : : :C ainxn. The “rest” of the gross output
of sector i satisfies other demands, namely the final demand for sector i’s goods and
services (see Table 4.1).

Let the final demands c1; : : : ; cn (measured, say, in $) be given. Remember
that we did not fix the “intensities” x1; : : : ; xn but considered them as variables.
In production theory, the question is with what intensities x1; : : : ; xn must the
production process (4.24) “run” so that the gross output values of the individual
sectors minus the deliveries to all sectors, be not smaller than the final demands
c1; : : : ; cn of the economy.

The corresponding mathematical problem is determining x1; : : : ; xn 2 RC, so
that

x1 � a11x1 � : : : � a1nxn � c1;
:::

xn � an1x1 � : : : � annxn � cn:
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If there should be no surplus, then this system of equalities is replaced by the system
of equations

x1 � a11x1 � : : : � a1nxn D c1;
:::

xn � an1x1 � : : : � annxn D cn:

(4.25)

The first question to ask is whether for every final demand vector

0

B
@

c1
:::

cn

1

C
A .ck � 0I k D 1; : : : ; n/;

there exist solution vectors

0

B
@

x1
:::

xn

1

C
A .xk � 0I k D 1; : : : ; n/

of the above systems of Eqs. (4.25). We will answer this question for equations in
the next two sections.

With the notations

A D

0

B
@

a11 : : : a1n
:::

:::

an1 : : : ann

1

C
A ; x D

0

B
@

x1
:::

xn

1

C
A ; c D

0

B
@

c1
:::

cn

1

C
A ; I D

0

B
B
B
@

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

1

C
C
C
A

(the latter called a unit matrix), and with the operations defined in the previous
section, we can write the above systems of inequalities and equations as

.I � A/x>D c or .I � A/x D c:

The matrix .I � A/ is called the Leontief matrix. In the terminology of Sect. 4.2, we
are looking for those x 2 RnC for which the values of the linear function defined by
f.x/ D .I � A/x 2 Rn will be >D c or D c, respectively.

In the following model too, the input vector ak and the output vector bk have
the same number of components. In particular ajk and bjk are amounts (this time not
values) of the same good or service . j D 1; 2; : : : ; n/. Such processes are called
von Neumann production processes (J. VON NEUMANN, 1903–1957). They are not
necessarily representing sectors (industries) like in Leontief’s model. It is assumed
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that the economy consists of r such production processes:

�
a1
b1

�

D

0

B
B
B
B
B
B
B
B
B
@

a11
:::

an1

b11
:::

bn1

1

C
C
C
C
C
C
C
C
C
A

2 R2nC : : :
�

ar

br

�

D

0

B
B
B
B
B
B
B
B
B
@

a1r
:::

anr

b1r
:::

bnr

1

C
C
C
C
C
C
C
C
C
A

2 R2nC :

So ajk and bjk are the quantities of the j-th good or service entering in or emerging
from the k-th process . j D 1; : : : ; nI k D 1; : : : ; r/.

The linear combination (see Sects. 1.5 and 2.3) of these processes, that is,
the linear technology (see Sect. 2.3) generated by these vectors with arbitrary
“intensities” x1; : : : ; xr 2 RC, namely

x1

�
a1
b1

�

C : : :C xr

�
ar

br

�

D
�

A
B

�

x; (4.26)

where

A D

0

B
@

a11 : : : a1r
:::

:::

an1 : : : anr

1

C
A ; B D

0

B
@

b11 : : : b1r
:::

:::

bn1 : : : bnr

1

C
A ; x D

0

B
@

x1
:::

xr

1

C
A

is a von Neumann technology. The production model thus represented is, under some
further assumptions, a von Neumann model of an expanding economy.

If the row vector p D . p1; : : : ; pn/ is the price vector (“price system”) for
the n goods, then the row vectors pA and pB give the values of the inputs and
outputs of the individual processes, respectively (with “intensity 1”) while the
scalars pAx and pBx are the values of the combined inputs and combined outputs
of the process (4.26).

Now we take also the “period” (denoted by a positive integer, t 2 N), that is the
time interval of always equal length into consideration in which the process runs,
and assume that the intensity vector x depends upon t W x.t/ and so do the input and
output quantities aj.t/ and bj.t/ of the j-th good or service. Then we have

aj.t/ D Ajx.t/ and bj.t/ D Bjx.t/ . j D 1; 2; : : : ; n/; (4.27)

where Aj and Bj are the j-th row vectors (the row vectors containing the components
in the j-th rows of the above matrices A and B, respectively; remember: a row vector
times a column vector is a scalar).
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In the next period, t C 1, the input aj.t C 1/ is less than or equal to the previous
output bj.t/. So, by (4.27),

aj.t C 1/ � Bjx.t/ . j D 1; 2; : : : ; n/: (4.28)

The growth rate (D growth rate in percent divided by 100) of the j-th good or service
is defined by

Oaj.t/ WD aj.t C 1/� aj.t/

aj.t/
;

so that, by (4.28) we get for the “growth factor” 1C Oaj.t/ the inequality

1C Oaj.t/ D aj.t C 1/

aj.t/
� Bjx.t/

Ajx.t/
:

One sees that, if x.t/ is replaced by �x.t/ with arbitrary � 2 RC, then the right hand
side of this inequality does not change, so that the direction rather than the length
of the vector x.t/ determines how large the grow rate Oaj.t/ can get.

The following are two problems originating from the von Neumann model:

Problem 1 Determine the intensity vector x.t/ 2 RnC so that we have a balance
of growth, that is the input of all goods and services grows with the same constant
growth rate:

1C Oaj.t/ D aj.t C 1/

aj.t/
D ˛ (constant) for all t 2 N and for j D 1; : : : ; n: (4.29)

J. von Neumann was also interested in finding the greatest possible growth factor ˛.
By (4.27) and (4.28) relation (4.29) implies for all t 2 N

˛aj.t/ D ˛Ajx.t/ � Bjx.t/ . j D 1; : : : ; n/;

that is,

˛Ax.t/ <D Bx.t/ (4.30)

or

.B � ˛A/x.t/ >D 0: (4.31)

Obviously, one has to look for that set S˛ 
 RrC which is mapped by the linear
function

x 7! f˛.x/ D .B � ˛A/x
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into RnC. Notice that condition (4.30) or (4.31) makes the model closed, that is, ˛
times the inputs for a given period are not larger than the outputs of the previous
period.

Problem 2 Which price vector p D . p1; : : : ; pn/ 2 RnC is compatible with the
existence of a constant ˇ 2 RC such that

ˇpA>D pB; that is; p.B�ˇA/ <D 0: (4.32)

(a row vector, that is, a 1 � n matrix multiplied by an n � r matrix is a 1 � r row
vector). Here it is also of interest to find the smallest ˇ for which there exists a p>D 0

satisfying the inequality (4.32).

The constant ˇ may be considered an interest factor (D 1 C interest rate D
1 C .interest rate in percent/=100). If ˇ is given the prices . p1; : : : ; pn/ D p have
to be established so that the vector ˇpA of the input values increased by interest
should not be smaller than the vector pB of output values. Then there does not exist
an extra profit in the economy. One can see that, whenever p satisfies (4.32), so does
�p with arbitrary � 2 RC, so that the length of the vector p is again irrelevant for
the validity of (4.32).

We can give Problem 2 a meaning similar to what we said about Problem 1:
We are looking for the set Sˇ 
 RnC which is mapped by the linear function p 7!
fˇ.p/ D p.B � ˇA/ into Rr�.

(Systems of )linear inequalities, like those in Problems 1 and 2 will be considered
again in Chap. 5.

4.5.1 Exercises

1. Take (4.23) with n D 2 (two sectors) and with

v1 D

0

B
B
@

50

75

250

0

1

C
C
A ; v2 D

0

B
B
@

15

60

0

150

1

C
C
A :

(a) Determine the Leontief processes `1 and `2.
(b) Determine all linear combinations (with nonnegative intensities x1, x2) of

these Leontief processes.
(c) Determine the Leontief matrix.

(d) Determine the intensities so that the final demand vector c D
�
215

60

�

will be

reached exactly.
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2. For the matrices A D
�
3 4

2 5

�

; B D
�
3:6 4:0

5:0 5:4

�

find vectors

�
x1
x2

�

2 R2C

and . p1; p2/ 2 R2C such that .B � ˛A/x>D 0 and p.B � ˇA/ <D 0 for

(a) ˛ D 1:05, ˇ D 1:05, (b) ˛ D 1:1, ˇ D 1:15,
(c) ˛ D 1:15, ˇ D 1:05, (d) ˛ D 1:05, ˇ D 1:1.

3. Determine the maximal ˛ and the minimal ˇ such that the inequalities in
Exercise 2 have solutions

�
x1
x2

�

2 R2C and . p1; p2/ 2 R2C

that are different from

�
0

0

�

.

4. Do Exercise 3 (with the inequalities in Exercise 2) for the following matrices

(a) A D
�
1 2

3 4

�

; B D
�
1:1 2:2

3:3 4:4

�

,

(b) A D
�
1 2

3 4

�

; B D
�
1:1 2:2

3:6 4:8

�

.

5. Do Exercise 3 (with the inequalities in Exercise 2) for the following matrices

(a) A D
�
2 3

4 1

�

; B D
�
2:2 3:6

4:2 1:2

�

,

(b) A D
�
2 3

4 1

�

; B D
�
2:2 3:6

4:2 1:1

�

.

4.5.2 Answers

1. (a) `1 D

0

B
B
@

0:2

0:3

1

0

1

C
C
A, `2 D

0

B
B
@

0:1

0:4

0

1

1

C
C
A, (b) x1`1 C x2`2 D

0

B
B
@

0:2x1 C 0:1x2
0:3x1 C 0:4x2

x1
x2

1

C
C
A,

(c) .I � A/ D
�
1 � 0:2 �0:1
�0:3 1 � 0:4

�

D
�
0:8 �0:1

�0:3 0:6

�

,

(d)

�
x1
x2

�

D
�
300

250

�

.

3. ˛ D ˇ D 1:2.
4. (a) ˛ D ˇ D 1:1, (b) ˛ D ˇ D 1:1.
5. (a) ˛ D ˇ D 1:2, (b) ˛ D ˇ D 1:1.
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4.6 Systems of Linear Equations. Solution by Elimination.
Rank. Necessary and Sufficient Conditions

We saw in the previous Sect. 4.5 that satisfying “without surplus” the “final demand”
of the economy leads in the Leontief model to the problem of finding that vector
(or those vectors) x 2 RnC for which the value of the linear function f W RnC ! RnC
defined by f.x/ D .I � A/x is the given final demand vector c 2 RnC. This was found
to be equivalent to solving the system of linear equations (4.25), that is, finding those
nonnegative numbers x1; : : : ; xn for which all equations in (4.25) are satisfied.

There we had the same number of equations .n/ as the number of the unknown
numbers x1; : : : ; xn (“unknowns” for short). In general in a (real) system of linear
equations there are m equations for n unknowns:

a11x1 C a12x2 C � � � C a1nxn D b1
a21x1 C a22x2 C � � � C a2nxn D b2

:::
:::

am1x1 C am2x2 C � � � C amnxn D bm:

Here the ajk 2 R . j D 1; 2; : : : ;mI k D 1; 2; : : : ; n/ are the coefficients,
b1; : : : ; bm the “constant terms” or “coefficients of -1” and, in general, we look
also for the “solutions” x1; : : : ; xn among the real numbers. (The x1; : : : ; xn are
“unknowns” before we determined their value, “solutions” when we know which
numbers they are but the distinction is not very important and the two words are
often used interchangeably.)

In vector-matrix notation, with

x D

0

B
@

x1
:::

xn

1

C
A ;A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A ;b D

0

B
@

b1
:::

bm

1

C
A ;

the above system of linear equations can be written as

Ax D b;

where A is the “matrix of coefficients” or “coefficient matrix”, x the “unknown
vector” and b the “constant vector”. If we introduce the “column vectors”

ak D

0

B
@

a1k
:::

amk

1

C
A .k D 1; : : : ; n/

of A, then we obtain another equivalent form of these equations:

a1x1 C : : :C anxn D b:
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(using, from Sect. 1.5, the rules for forming linear combinations of vectors). If in
these equations b D 0, that is b1 D : : : D bm D 0, then the system of equations is
“homogeneous”, otherwise “inhomogeneous”.

We are looking for necessary and sufficient conditions for the existence (and
uniqueness) of solutions x (or x1; : : : ; xn) and for ways to determine these solutions.

We begin with several examples and analyse them in order to get general
conditions and methods.

Example 1 is a system of three equations with three unknowns:

x1 C 2x2 D 2 2 �1
2

�5
4

x1 C 4x2 C x3 D 1 �1 1
2

1
2

3x1 C 2x2 C 2x3 D 12 1
4

(4.33)

(Notice that not every unknown has to figure in every equation, for instance,
there is no x3 in the first equation; there its coefficient is 0.) A time
honoured method is the “elimination of unknowns”. This consists of trying,
by multiplying equations by constants and adding them (that is, taking their
linear combinations), to transform this system into another, consisting of
equations, each of which contains just one unknown (later: as few unknowns
as possible). Then we can solve them individually as single linear equations
of one unknown each (we will try even to get the solutions explicitly in the
last step).

First we want to eliminate x2 from the first two equations. For this we multiply
the first equation by 2 and the second by .�1/ and add the resulting equations. We
can also eliminate x1 from these equations by multiplying the first by .�1=2/ and the
second by .1=2/ and again add the equations thus obtained. (We could also multiply
by .�1/ and by 1; we chose .�1=2/ and .1=2/ in order to get x2 with coefficient 1.
We listed the multipliers on the right of the equations above for better understanding
and easier checking.) So we get

2x1 C 4x2 D 4

�x1 � 4x2 � x3 D �1
x1 C 0x2 � x3 D 3

� 1
2
x1 � x2 D �1
1
2
x1 C 2x2 C 1

2
x3 D 1

2

0x1 C x2 C 1
2
x3 D 1

2
:

Getting x3 with coefficient 1 and as few unknowns as possible is somewhat more
complicated but multiplying the first equation by .�5=4/, the second by .1=2/, the
third by .1=4/ and adding up will do the trick (we will show later why we chose the
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multipliers as we did):

� 5
4
x1 � 5

2
x2 D � 5

2
1
2
x1 C 2x2 C 1

2
x3 D 1

2
3
4
x1 C 1

2
x2 C 1

2
x3 D 3

0x1 C 0x2 C x3 D 1 :

(The trick was to eliminate both x1 and x2, that is why we needed all three equations
in (4.33). The multipliers could have been .�5/, 2, 1; then we would have obtained
4x3 D 4, we divided the multipliers by 4 just for aesthetic reasons, to get x3 with
coefficient 1. But it is important that all equations in (4.33) were used in an essential
way.)

So we have already that x3 D 1 but we need this also to determine x1 and x2. We
have three new equations (those under the lines above):

x1 � x3 D 3 1

x2 C 1
2
x3 D � 1

2
1

x3 D 1 1 � 1
2
1 :

(4.34)

This time, in order to eliminate x3 from the first and third equation it is enough to
add them; to do the same from the second and third equation we add

�� 1
2

	
times the

third equation to the second:

x1 C 0x2 C 0x3 D 4

x2 C 0x3 D �1
x3 D 1 :

(The third equation we just copied from (4.34). Again we indicated in (4.34) the
multipliers on the right of the equations.) But now we have the solutions “served on
a plate”:

x1 D 4; x2 D �1; x3 D 1:

One checks readily that they satisfy the equations (4.33): 4 C 2 � .�1/ D 2, 4 C
4 � .�1/ C 1 D 1, 3 � 4 C 2 � .�1/C 2 � 1 D 12; of course they satisfy also (4.34)
and the process shows that there are no other solutions. In order to get just the right
solutions, it was important that all the time the “old” k’th equation should not be
omitted from the transformation yielding the “new” k’th equation (that is, in the
linear combination of old equations yielding the new k’th equation, the multiplier
of the old k’th equation should not be 0 .k D 1; 2; : : : ; n/).
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Let us register what happened during these transformations to the matrix of
coefficients in (4.33):

0

@
1 2 0

1 4 1

3 2 2

1

A 7!
0

@
1 0 �1
0 1 1=2

0 0 1

1

A 7!
0

@
1 0 0

0 1 0

0 0 1

1

A :

So we transformed it into the matrix I. The same transformations on the “constant
vector” on the right hand side of (4.33) had the effect of yielding the “solution
vector”:

0

@
2

1

12

1

A 7!
0

@
3

�1=2
1

1

A 7!
0

@
4

�1
1

1

A DW b�:

That is, Ax D b has been transformed into x D Ix D b�. This shows again that by
“solution vector” we mean the “unknown vector” after the value of its components
have been calculated. The first step in both chains of transformations was to multiply
the first row by 2 and add to it the second row multiplied by �1 (and the third row
multiplied by 0) in order to get the new first row, multiply the second row by .1=2/
and add to it the first row multiplied by .�1=2/ (and the third row multiplied by 0)
in order to get the new second row, and multiply the third row by .1=4/ and add to it
.1=2/ times the second row and .�5=4/ times the first row to get the new third row.

We can register these operations as

(i) replacing a row by a linear combination of rows as long as the coefficient
(multiplier) of the original row is not 0,
but it is more customary to break this in two:

(i0) multiplying any row by a nonzero number and
(i00) adding to a row a linear combination (also 0 coefficients permitted) of other

rows.

We did the same things in the second step: Added the first and third row to get
the new first row and added the second row to .�1=2/ times the third row to get
the new second row; the third row was left unchanged. We did not need any more
steps (transformations) since we already got the unit matrix and the solution vector.
In more complicated cases we may need more steps but the results would be similar
with the following variations.
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Example 2 First we consider a slight variation of (4.33)

x1 C 2x3 D 2 2 �1
2

�5
4

x1 C x2 C 4x3 D 1 �1 1
2

1
2

3x1 C 2x2 C 2x3 D 12 0 0 1
4
:

(4.35)

By the same transformations as for (4.33) (we wrote the multipliers again to the
right of the equations) we get in succession

x1 � x2 D 3 1 0 0
1
2
x2 C x3 D � 1

2
0 1 0

x2 D 1 1 � 1
2
1 ;

x1 D x1 C 0x2 C 0x3 D 4

x3 D 0x1 C 0x2 C x3 D �1
x2 D 0x1 C x2 C 0x3 D 1 ;

and the transformations on the “constant vector” are the same, while the coefficient
matrix undergoes these:

0

@
1 0 2

1 1 4

3 2 2

1

A 7!
0

@
1 �1 0
0 1

2
1

0 1 0

1

A 7!
0

@
1 0 0

0 0 1

0 1 0

1

A

and the result is not quite the unit matrix. If we multiply this matrix by the “unknown
vector” we see that it changes the order of components

0

@
1 0 0

0 0 1

0 1 0

1

A

0

@
x1
x2
x3

1

A D
0

@
x1
x3
x2

1

A ;

so Ax D b is changed into

0

@
x1
x3
x2

1

A D
0

@
1 0 0

0 0 1

0 1 0

1

A

0

@
x1
x2
x3

1

A D b� D
0

@
4

�1
1

1

A :

No big deal, we still got the (unique) solutions of (4.35). But we can also perform
a “cosmetic surgery” in order to get, at the end of the chain of transformations
of the coefficient matrix, the “nice” unit matrix. We “rename” the unknown x3 to
x2 and vice versa, which leads us back to (4.33) and on the matrix of coefficients
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of (4.35) results in the new operation (which, connected with interchanging also the
corresponding two components of the unknown vector will give us the “right” x1,
x2, x3):

(ii) interchanging two columns.

So the transformations of the coefficient matrix and of the constant vector in (4.35)
will now be:

0

@
1 0 2

1 1 4

3 2 2

1

A 7!
0

@
1 2 0

1 4 1

3 2 2

1

A 7!
0

@
1 0 �1
0 1 1

2

0 0 1

1

A 7!
0

@
1 0 0

0 1 0

0 0 1

1

A ;

0

@
2

1

12

1

A 7!
0

@
3

� 1
2

1

1

A 7!
0

@
4

�1
1

1

A ;

so that Ax D b is transformed into

0

@
x1
x3
x2

1

A D I

0

@
x1
x3
x2

1

A D
0

@
4

�1
1

1

A ;

that is, x1 D 4, x2 D 1, x3 D �1, as it should be. We check (4.35): 4C 2 � .�1/ D 2,
4C 1C 4 � .�1/ D 1, 3 � 4C 2 � 1C 2 � .�1/D 12; one should always check whether
the obtained “solutions” satisfy the equations.

Example 3 Now we examine another variation on the theme of (4.33), the
system of equations

x1 C 2x2 D 2 2 � 1
2

� 5
4

x1 C 4x2 C x3 D 1 �1 1
2

1
2

1

3x1 C 2x2 C 2x3 D 12 1
4

�1
2x1 � 2x2 C x3 D 11 1 :

(4.36)

We proceed as indicated by the multipliers at the right and get (the first three
rows are the same as for (4.33), we have only to check the fourth):

x1 C 0x2 � x3 D 3 1

0x1 C x2 C 1
2
x3 D � 1

2
1

0x1 C 0x2 C x3 D 1 1 � 1
2
1

0x1 C 0x2 C 0x3 D 0 1;

(continued)
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x1 C 0x2 C x3 D 4

0x1 C x2 C 0x3 D �1
0x1 C 0x2 C x3 D 1

0x1 C 0x2 C 0x3 D 0 ;

that is x1 D 4, x2 D �1, x3 D 1. After the first step, the last equation is
0 D 0, even though we have used the last equation of (4.36) essentially (with
multiplier 1 and just once). Nevertheless x1 D 4, x2 D �1, x3 D 1 which we
got previously from (4.33) here from the first three equations, satisfies also
this fourth in (4.36): 2 � 4 � 2 � .�1/ C 1 D 11. This means that the fourth
equation is redundant: it follows from the first three equations of (4.36): it is
obtained by subtracting the second equation from the third.

Example 4 We change now just one thing in (4.36): the right hand side of the
fourth equation:

x1 C 2x2 D 2 2 � 1
2

� 5
4

x1 C 4x2 C x3 D 1 �1 1
2

1
2

1

3x1 C 2x2 C 2x3 D 12 1
4

�1
2x1 � 2x2 C x3 D 14 1 :

(4.37)

We could get x1 D 4, x2 D �1, x3 D 1 (from the first three equations), but
they would not satisfy the fourth equation: this shows again how important
checking is. But, applying the same transformations as before, we get x1 �
x3 D 3, x2 C .1=2/x3 D �1=2, x3 D 1 and 0 D 3 (!).

The last equation is nonsense. That is because the system (4.37) is
contradictory. Indeed, if we subtract the second equation of (4.37) from the
third, we get 2x1 � 2x2 C x3 D 11 which contradicts the fourth equation. The
transformations on the matrices of coefficients (they are the same in (4.36)
and (4.37)) and on the constant vectors (which are different) are now

0

B
B
@

1 2 0

1 4 1

3 2 2

2 �2 1

1

C
C
A 7!

0

B
B
@

1 0 �1
0 1 1

2

0 0 1

0 0 0

1

C
C
A 7!

0

B
B
@

1 0 0

0 1 0

0 0 1

0 0 0

1

C
C
A

(continued)
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(the unit matrix extended by a (0, 0, 0) row),

0

B
B
@

2

1

12

11

1

C
C
A 7!

0

B
B
@

3

� 1
2

1

0

1

C
C
A 7!

0

B
B
@

4

�1
1

0

1

C
C
A

and

0

B
B
@

2

1

12

14

1

C
C
A 7!

0

B
B
@

3

� 1
2

1

3

1

C
C
A 7!

0

B
B
@

4

�1
1

3

1

C
C
A ;

respectively. So Ax D A

0

@
x1
x2
x3

1

A D b was transformed into

0

B
B
@

x1
x2
x3
0

1

C
C
A D

0

B
B
@

1 0 0

0 1 0

0 0 1

0 0 0

1

C
C
A x D b0;

possible if b0 D

0

B
B
@

4

�1
1

0

1

C
C
A but not if b0 D

0

B
B
@

4

�1
1

3

1

C
C
A.

Contrary to popular belief even if we have as many equations as variables, the
solution may not be unique.

Example 5 Take the system

x1 C 2x2 C 4x4 D 2 2 � 1
2

� 5
4

x1 C 4x2 C x3 C 3x4 D 1 �1 1
2

1
2

1

3x1 C 2x2 C 2x3 C 2x4 D 12 1
4

�1
2x1 � 2x2 C x3 � x4 D 11 1

(4.38)

(continued)
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which also bears some similarity with the previous ones. Again with the
multipliers indicated on the right, we get

x1 C 0x2 � x3 C 5x4 D 3 1

0x1 C x2 C 1
2
x3 � 1

2
x4 D � 1

2
1

0x1 C 0x2 C x3 � 3x4 D 1 1 � 1
2
1

0x1 C 0x2 C 0x3 C 0x4 D 0 1 ;

x1 C 2x4 D 4

x2 C x4 D �1
x3 � 3x4 D 1

0 D 0 :

This shows that the fourth equation of (4.38) is again redundant and there is
an arbitrary “parameter” (variable) x4 DW � in the solution. Indeed

x1 D 4 � 2�; x2 D �1 � �; x3 D 1C 3�; x4 D �

satisfies (4.38) for all � 2 R:

.4 � 2�/C 2.�1� �/C 4� D 2 ;

.4 � 2�/C 4.�1� �/C .1C 3�/C 3� D 1 ;

3.4� 2�/C 2.�1 � �/C 2.1C 3�/C 2� D 12 ;

2.4� 2�/� 2.�1 � �/C .1C 3�/� � D 11 :

We look again at the transformations of the matrices of coefficients and of the
constant vector:

0

B
B
@

1 2 0 4

1 4 1 3

3 2 2 2

2 �2 1 �1

1

C
C
A 7!

0

B
B
@

1 0 �1 5

0 1 1
2

� 1
2

0 0 1 �3
0 0 0 0

1

C
C
A 7!

0

B
B
@

1 0 0 2

0 1 0 1

0 0 1 �3
0 0 0 0

1

C
C
A ;

0

B
B
@

2

1

12

11

1

C
C
A 7!

0

B
B
@

3

� 1
2

1

0

1

C
C
A 7!

0

B
B
@

4

�1
1

0

1

C
C
A (the same as for (4.36)):

(continued)
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So Ax D A

0

B
B
@

x1
x2
x3
x4

1

C
C
A D b was transformed into

0

B
B
@

x1 C 2x4
x2 C x4
x3 � 3x4

0

1

C
C
A D

0

B
B
@

1 0 0 2

0 1 0 1

0 0 1 �3
0 0 0 0

1

C
C
A

0

B
B
@

x1
x2
x3
x4

1

C
C
A D

0

B
B
@

4

�1
1

0

1

C
C
A

which again gives

x1 D 4 � 2x4 D 4 � 2�; x2 D �1 � x4 D �1 � �;

x3 D 1C 3x4 D 1C 3�; x4 D �:

In most of these transformations we used the operations (i0) and (i00) (or,
equivalently, (i)). In our last example we will apply, in addition to (i) also (ii). It
will be a system of four equations for five unknowns. If the number of unknowns is
larger than the number of equations (and the system is not contradictory) then there
are always parameters in the solution (though, as we saw, this can happen also when
there are as many unknowns as equations).

Example 6 Take the system

x1 C 2x2 � x3 C 4x5 D 2 2 � 1
2

� 5
4

x1 C 4x2 � 5x3 C x4 C 3x5 D 1 �1 1
2

1
2

1

3x1 C 2x2 C 5x3 C 2x4 C 2x5 D 12 1
4

�1
2x1 � 2x2 C 10x3 C x4 � x5 D 11 1 :

(4.39)

With the indicated multipliers we get in succession

x1 C 0x2 C 3x3 � x4 C 5x5 D 3 1

0x1 C x2 � 2x3 C 1
2
x4 � 1

2
x5 D � 1

2
1

0x1 C 0x2 C 0x3 C x4 � 3x5 D 1 1 � 1
2
1

0x1 C 0x2 C 0x3 C 0x4 C 0x5 D 0 1 ;

(continued)
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x1 C 3x3 C 2x5 D 4

x2 � 2x3 C x5 D �1
x4 � 3x5 D 1

0 D 0 :

So the fourth equation is redundant also in (4.39) and in the solution of (4.39)
there are this time two arbitrary parameters x3 D �1 and x5 D �2. Indeed

x1 D 4 � 3�1 � 2�2; x2 D �1C 2�1 � �2;

x3 D �1; x4 D 1C 3�2; x5 D �2
(4.40)

satisfy (4.39), whatever �1 2 R; �2 2 R are (check!). With transformation of the
coefficient matrix we run into a situation as we had for (4.33):

0

B
B
@

1 2 �1 0 4

1 4 �5 1 3

3 2 5 2 2

2 �2 10 1 �1

1

C
C
A 7!

0

B
B
@

1 0 3 �1 5

0 1 �2 1
2

� 1
2

0 0 0 1 �3
0 0 0 0 0

1

C
C
A :

We interrupt the chain here because we see already that we cannot get this way our
accustomed

0

@
1 0 0

0 1 0

0 0 1

1

A

in the upper left corner since the third row starts with three 0’s. But we can remedy
this situation, as we saw for (4.33): We interchange the third and fourth column (and
simultaneously also the corresponding two components of the unknown vector):

0

B
B
@

1 0 �1 3 5

0 1 1
2

�2 � 1
2

0 0 1 0 �3
0 0 0 0 0

1

C
C
A 7!

0

B
B
@

1 0 0 3 2

0 1 0 �2 1

0 0 1 0 �3
0 0 0 0 0

1

C
C
A ;

0

B
B
@

2

1

12

11

1

C
C
A 7!

0

B
B
@

3

� 1
2

1

0

1

C
C
A 7!

0

B
B
@

4

�1
1

0

1

C
C
A :
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So Ax D b is transformed into

0

B
B
@

x1 C 3x3 C 2x5
x2 � 2x3 C x5

x4 � 3x5
0

1

C
C
A D

0

B
B
@

1 0 0 3 2

0 1 0 �2 1

0 0 1 0 �3
0 0 0 0 0

1

C
C
A

0

B
B
B
B
B
@

x1
x2
x4
x3
x5

1

C
C
C
C
C
A

D

0

B
B
@

4

�1
1

0

1

C
C
A ;

which, again with x3 DW �1, x5 DW �2, gives (4.40).
All the above suggests the concept of rank of a matrix. This is the number r of

linearly independent row vectors of the m � n matrix

A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A :

The row vectors of A are, of course, the vectors consisting of the rows of A which
played such an important role above:

a0
1 D .a11; : : : ; a1n/; : : : ; a0

m D .am1; : : : ; amn/:

One can show that the rank r equals also the number of linearly independent column
vectors in the matrix A. Clearly, r � m and r � n. The important thing is that the
rank of a matrix A does not change if the matrix undergoes the operations (i) (or
equivalently (i0) and (i00)) and (ii) or, more generally,

(I) replacing a row (or column) by a linear combination of the rows (columns) in
which the coefficient of the original row (column) is not different from 0,

which can be split into the following two:

(I0) multiplying any row or column by a nonzero number,
(II00) adding to a row (or column) a linear combination of other rows (columns) ,

and

(II) interchanging two rows or two columns.

Of course, (I), (I0); (I00), (II) differ from (i), (i0), (i00), (ii) only insofar that the same
operations are permitted either for rows or for columns. That the rank of the matrix
does not change (is “invariant”) under these operations, follows from the fact,
important in itself, that the rank of A is just the dimension of the space spanned
(see Sect. 1.5 2) by the row vectors of A (and also by its column vectors) and from
the fact, equally easy to see, that (I0), (I00) and (II) do not change this space.
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We have seen in our examples and it is true also in general, that every matrix can
be brought by (several applications of) the operations (I) and (II) to the form

C DW

0

B
B
B
B
B
B
B
B
B
B
B
@

1 0 : : : 0 c1;rC1 : : : c1;n
0 1 : : : 0 c2;rC1 : : : c2;n
:::
:::
: : :

:::
:::

:::

0 0 : : : 1 cr;rC1 : : : cr;n

0 0 : : : 0 0 : : : 0
:::
:::

:::
:::

:::

0 0 : : : 0 0 : : : 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(4.41)

(we put commas between the subscripts of c in order to avoid ambiguity).
Now we can give the promised necessary and sufficient condition for the

existence of a solution x of Ax D b:
The system of linear equations

a11x1 C : : : C a1nxn D b1
:::

:::

am1x1 C : : : C amnxn D bm

(4.42)

has a solution, if and only if, the matrices

A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A and B WD

0

B
@

a11 : : : a1n b1
:::

:::
:::

am1 : : : amn bm

1

C
A

have the same rank.
As mentioned at the beginning of this section, with help of the column vectors

a1; : : : ; an of A we can always write (4.42) as

a1x1 C : : :C anxn D b (4.43)

Note also that the space U spanned by the n vectors a1; : : : ; an is always a subset of
the space V spanned by a1; : : : ; an, b (because of the additional vector b): U � V .

A condition is sufficient for a statement to be true if the statement follows from
the condition, it is necessary if the condition follows from the statement. The
condition which follows “if ” is sufficient, that which follows “only if” is necessary
(see also Appendix).

So, we prove first that, if the ranks of A and B are equal, then (4.42) has a solution
(x1; : : : ; xn). The equality of the ranks of A and B means that the dimensions of U
and of V are equal. But, as we have seen, U is a subset of V . It is easy to see that
then U D V (remember that a set is its own subset, so U � V allows U D V as
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special case). But then the vector b, which is in V , is also in U, the space spanned by
a1; : : : ; an, so b is a linear combination of a1; : : : ; an, that is, there exist x1; : : : ; xn

such that b D x1a1 C : : :C xnan which is the (4.43) we wanted.
Now we prove that, if (4.42) has a solution .x1; : : : ; xn/, then the ranks of A

and B are equal. Indeed “(4.42) has a solution” means that there exist x1; : : : ; xn

satisfying (4.43) which means that b is a linear combination of a1; : : : ; an, that is, b
is in U. Since also a1; : : : ; an are in U, so V , the space spanned by a1; : : : ; an;b is a
subset of U. But we know already that U is a subset of V so U D V , therefore the
rank of A which is the dimension of U equals the rank of B, which is the dimension
of V , as asserted.

What we proved can be written briefly as: Ax D b has a solution x if, and only
if, rank A D rank B.

After having established this necessary and sufficient condition for the existence
of a solution, we proceed to determine these solutions. As we have seen in the
examples and is true also in general, the equation Ax D b (an equation between
vectors or, equivalently, a system of equations between scalars) is equivalent to
Cx� D d, where C is the matrix (4.41) obtained from A by applying (several times)
operations (I) and (II), x� is a “rearrangement” of x: has the same components as x
but in a different order made necessary by the operations (II), and d is the vector we
get by applying the same operations to b which we applied to A in order to get C.

We write the first r components of Cx� D d:

x�
1 C c1;rC1x�

rC1 C : : : C c1;nx�
n D d1

x�
2 C c2;rC1x�

rC1 C : : : C c2;nx�
n D d2

: : :
:::

:::
:::

:::

x�
r C cr;rC1x�

rC1 C : : : C cr;nx�
n D dr:

(4.44)

The remaining n � r equations are either the trivial 0 D 0 or if at least one of the
drC1; : : : ; dn is not 0 then the system was contradictory: rank A ¤ rank B (since the
ranks of the transformed matrices are different). Setting x�

rC1 DW �1, : : : ; x�
n DW �n�r

arbitrary, we have the general solution of Cx� D d, if it exists, as

x�
1 D d1 � �1c1;rC1 � : : : � �n�rc1;n

x�
2 D d2 � �1c2;rC1 � : : : � �n�rc2;n

:::
:::

x�
r D dr � �1cr;rC1 � : : : � �n�rc1;n

x�
rC1 D �1

:::

x�
n D �n�r ,

(4.45)

where �1; : : : ; �n�r are arbitrary parameters and the general solution of Ax D b is
the x obtained by rearranging the components of x� to their original order.
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We said that d is obtained from b by the same operations as C from A. The two
transformations can be made into one by transforming the “extended matrix”

0

B
@

a11 : : : a1n b1
:::

:::
:::

am1 : : : amn bm

1

C
A (4.46)

into

0

B
B
B
B
B
B
B
B
B
B
B
@

1 0 : : : 0 c1;rC1 : : : c1;n d1
0 1 : : : 0 c2;rC1 : : : c2;n d2
:::
:::
: : :

:::
:::

:::
:::

0 0 : : : 1 cr;rC1 : : : cr;n dr

0 0 : : : 0 0 : : : 0 drC1
:::
:::
: : :

:::
:::

:::
:::

0 0 : : : 0 0 : : : 0 dn

1

C
C
C
C
C
C
C
C
C
C
C
A

: (4.47)

We will show this transformation and how it gives the general solution (4.40)
in the Example 6, equations (4.39) in a moment, but first we state some important
special cases:

If r D n then the solution (which, as we have seen exists exactly if r D rank B)
is unique (x�

1 D d1; : : : ; x�
n D dn, no parameters).

If b D 0 (homogeneous system of equations) and r D n then the “trivial
solution” x1 D : : : D xn D 0 is the only solution (since x D 0 satisfies Ax D 0 and
as we have just seen, in the case r D n there is only one solution vector).

In the homogeneous case b D 0, if r < n then Ax D 0 has also other solutions
than 0 (“nontrivial solutions”).

One sees immediately, both from the above and directly, that the general solution
of the inhomogeneous equation Ax D b is the sum of one (“particular”) solution
of the inhomogeneous equation and of the general solution of the corresponding
homogeneous equation Ax D 0. In other words, given one solution x0 of Ax D b,
every solution x of this equation is the sum of x0 and a solution of Ax D 0. Indeed,
x0 being a solution of Ax D b, we have

Ax0 D b:

If x is any solution of

Ax D b

then, subtracting the first equation from the second, we get (because we can multiply
a difference of vectors by a matrix term by term, since f.x/ D Ax satisfies (4.18) in
Sect. 4.3) A.x � x0/ D 0, that is, x� WD x � x0 satisfies Ax� D 0 and so, for every
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solution x of Ax D b, there exists a solution x� of Ax D 0 such that x D x0 C x�,
as asserted.

Had we chosen to solve homogeneous equations first, this would give us the
general solution of inhomogeneous equations. But we solved both in one svelte (or
not so svelte) argument.

Notice that the general solutions (4.45) of (4.44) (which is a “rearrangement” of
the general solution x of Ax D b) can be written as

x� D

0

B
B
B
B
B
B
B
B
B
B
B
@

d1
:::

dr

0

0
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
A

C �1

0

B
B
B
B
B
B
B
B
B
B
B
@

�c1;rC1
:::

�cr;rC1
1

0
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
A

C �2

0

B
B
B
B
B
B
B
B
B
B
B
@

�c1;rC2
:::

�cr;rC2
0

1
:::

0

1

C
C
C
C
C
C
C
C
C
C
C
A

C � � � C �n�r

0

B
B
B
B
B
B
B
B
B
B
B
@

�c1;n
:::

�cr;n

0

0
:::

1

1

C
C
C
C
C
C
C
C
C
C
C
A

:

Here (check!) the first vector on the right is a (“particular”) solution of (4.44)
(and after rearrangement, a particular solution of Ax D b), while the rest is the
general solution of the corresponding system of homogeneous equations (which we
get from (4.44) by writing 0’s on the right hand sides) and; after rearrangement,
the general solution of Ax D 0. Notice further that this general solution of the
homogeneous equation is a linear combination of the .n � r/ column vectors of the
n � .n � r/ matrix formed from the upper right r � .n � r/ matrix in C (see (4.41)),
multiplied by .�1/ and from the .n � r/ � .n � r/ unit matrix put under it. Since
the �1 2 R; : : : ; �r 2 R are arbitrary, we can also say that the solutions of the
homogeneous equation form an r-dimensional space spanned by these r column
vectors.

In the case of (4.39), this representation of the general solution (4.40) is

0

B
B
B
B
B
@

x�
1

x�
2

x�
4

x�
3

x�
5

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

4

�1
1

0

0

1

C
C
C
C
C
A

C �1

0

B
B
B
B
B
@

�3
2

0

1

0

1

C
C
C
C
C
A

C �2

0

B
B
B
B
B
@

�2
�1
3

0

1

1

C
C
C
C
C
A

(4.48)

(we have already appropriately rearranged the left hand side).
We had obtained above the general solution by manipulating the equations

but we have also been “mirroring” these manipulations by transformations of the
“coefficient matrix” and the “constant vector”. We mentioned also that the latter two
steps can be reduced to one by manipulating the “extended matrix” (4.46) instead,
with the aim of bringing it to the form (4.47). Actually this alone gives the general
solution of the original system of linear equations, without having to manipulate the
equations themselves.
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We show now on the equations (4.39) our most complicated example, Example 6,
how this is done and explain also how the “multipliers”, which we used to write to
the right of the equations, can be found: For the system of linear equations (4.39)
the extended matrix is

0

B
B
@

1 2 �1 0 4 2

1 4 �5 1 3 1

3 2 5 2 2 12

2 �2 10 1 �1 11

1

C
C
A : (4.49)

In order to bring it to the form (4.47) the important thing is to obtain a unit matrix
in the upper left corner (the rest will take care of itself) through transformation of
the types (I) (or (I0), (I00)) and (II). We will use actually only (i) and (II), which we
repeat in the form needed here:

(i) Replace a row by a linear combination of the rows in which the coefficient of
the original row is not 0,

(II) interchange two columns (or two rows).

While the first row of (4.49) starts already with a 1, we want a 0 in its second
place. After some trial and error we see that multiplying it by 2 and the second row
by .�1/ and adding will do the trick (transformation (i)):

0

B
B
@

1 0 3 �1 5 3

1 4 �5 1 3 1

3 2 5 2 2 12

2 �2 10 1 �1 11

1

C
C
A :

We want the second row to start with 0 and 1. Now we have the advantage that
the first row starts with 1 0. Subtracting it from the second gives a 0 4 start, so a
multiplication by 1

4
seems to be appropriate. Therefore we do (i) by taking (1/4)

times the second row plus .�1=4/ times the first row. Everything else remains
unchanged, so we have now

0

B
B
@

1 0 3 �1 5 3

0 1 �2 1
2

� 1
2

� 1
2

3 2 5 2 2 12

2 �2 10 1 �1 11

1

C
C
A :

(Consider how we obtained the new first row from (4.49): we really have added
.�1=2/ of the first row to .1=2/ of the second row in (4.49).) So long, so good. We
want now the third to start with 0 0 followed, we hope, by 1. This is a bit more
complicated since we need in (i) the linear combination of three rows. But we have
again the advantage that the first two rows already start with 1 0 and 0 1, respectively.
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So we should subtract 3 times the first row and 2 times the second row from the third
row (again an (i) transformation):

0

B
B
@

1 0 3 �1 5 3

0 1 �2 1
2

� 1
2

� 1
2

0 0 0 4 �12 4

2 �2 10 1 �1 11

1

C
C
A :

(This third row is the linear combination .�5/ times the first row plus 2 times the
second plus the third in (4.49).) Oh - oh: the third row starts with 0 0 0: there is no
multiplier which would make 1 of the third 0. But here we can use the operation (II):
interchange the third and fourth column (remembering also to exchange, at the end
the third and fourth component of x). We do this because the fourth column has a
nonzero in the third row. (If everything were 0 in the third row, we would exchange
it with the fourth using the second part of (II) this time; this means only exchanging
the third and fourth equation; if both the third and the fourth row consisted of 0’s
only then we had already a matrix with all 0’s in the last two lines and leave them
alone). We think the reader will agree, to save time and space by multiplying the
new third row at the same time by .1=4/ in order to get 1 in its place (this results in
.�5=4/, .1=2/, .1=4/ as multipliers in (4.39)):

0

B
B
@

1 0 �1 3 5 3

0 1 1
2

�2 � 1
2

� 1
2

0 0 1 0 �3 1

2 �2 1 10 �1 11

1

C
C
A :

Now we try to start the fourth row with 0 0 0 and maybe have 1 in the fourth place.
Adding 2 times the second row and .�2/ times the first to the fourth row would give
0 0 at the first two places but 4 at the third. So we also add .�4/ times the third
row (which has 0 at the first two places); this still is a transformation (i) (in (4.49) it
would mean adding the second and fourth row and subtracting the third):

0

B
B
@

1 0 �1 3 5 3

0 1 1
2

�2 � 1
2

� 1
2

0 0 1 0 �3 1

0 0 0 0 0 0

1

C
C
A :

Now we have a situation mentioned above, where the last row consists of 0’s
only. So at no place of the last row could we get 1 by applying transformations (I)
and/or (II) (really (ii), excluding exchanges of rows). This last row is already as
in (4.47) (we have even dn D 0), so we leave it alone and just try to get 0’s at the
third places of the first and second row (in place of �1 and 1=2, respectively). Of
course we do this with aid of the third row, adding it to the first row and subtracting
.1=2/ times the third row from the second. We dare to do these two transformations
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of type (i) at once and get

0

B
B
@

1 0 0 3 2 4

0 1 0 �2 1 �1
0 0 1 0 �3 1

0 0 0 0 0 0

1

C
C
A : (4.50)

Incredible as this may sound, we are at the end of our journey: this is already of the
form (4.47).

Now our general solution (4.45) of (4.44) (see p. 150) gives instantly the general
solution of (4.39):

0

B
B
B
B
B
@

x�
1

x�
2

x�
4

x�
3

x�
5

1

C
C
C
C
C
A

D x� D

0

B
B
B
B
B
@

d1
d2
d3
0

0

1

C
C
C
C
C
A

C �1

0

B
B
B
B
B
@

�c14
�c24
�c34
1

0

1

C
C
C
C
C
A

C �2

0

B
B
B
B
B
@

�c15
�c25
�c35
0

1

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

4

�1
1

0

0

1

C
C
C
C
C
A

C �1

0

B
B
B
B
B
@

�3
2

0

1

0

1

C
C
C
C
C
A

C �2

0

B
B
B
B
B
@

�2
�1
3

0

1

1

C
C
C
C
C
A

which is exactly (4.48) (or (4.40) for that matter). We have n � r D 2 arbitrary �’s
in our solution since n D 5 (number of variables) and r D 3 (rank).

We repeat that, had we got d4 D dn D 0, then the system of linear equations
would have been contradictory.

Example 7 If the right hand side of the last equation in (4.39) were 14 instead
of 11, everything else being unchanged; this would give d4 D 3 and the system

x1 C 2x2 � x3 C 4x5 D 2

x1 C 4x2 � 5x3 C x4 C 3x5 D 1

3x1 C 2x2 C 5x3 C 2x4 C 2x5 D 12

2x1 � 2x2 C 10x3 C x4 � x5 D 14

is indeed contradictory, because subtracting the second equation from the
third would give

(continued)
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2x1 � 2x2 C 10x3 C x4 � x5 D 11

in contradiction to the fourth equation. (Note that, as it is, the fourth equation
in (4.39) is redundant, because the difference of the third and second gives
the same. That is why we had all 0’s in the last row of (4.50).)

The method which we presented here in considerable detail is, as we have seen,
both practical and leads to theoretical results. It is also both old and new: It used to
be called “elimination of unknowns” and that was how systems of equations were
solved for centuries. Then “determinants” were discovered which gave a simple
explicit formula (“Cramer’s rule”) for the solutions (we will present it briefly in the
next section). But calculating solutions with this formula turned out to be much
lengthier than the above method. So nowadays people and computers merrily use
this method again for solving systems of linear equations.

4.6.1 Exercises

1. Determine the rank of the matrices

(a)

0

@
3 �4 5

1 7 �6
8 �2 �3

1

A, (b)

0

@
3 �4 5 1

1 7 �6 2
8 �2 �3 3

1

A, (c)

0

@
5 6 �2
7 �3 1

8 �4 �5

1

A,

(d)

0

@
5 5 �2 �24
7 �3 1 31

8 �4 �5 7

1

A, (e)

0

B
B
@

1 2 3 �9 �15 18 28

�1 1 �1 �5 21 �18 �16
0 7 1 �29 41 �33 1

4 0 �2 10 �4 �6 8

1

C
C
A,

( f)

0

B
B
@

5 6 �2
7 �3 1

8 �4 �5
4 7 4

1

C
C
A, (g)

0

B
B
@

5 6 �2 �24
7 �3 1 31

8 �4 �5 7

4 7 4 0

1

C
C
A,

(h)

0

B
B
@

5 6 �2 �24
7 �3 1 31

8 �4 �5 7

4 7 4 1

1

C
C
A, (i)

0

B
B
@

3 �4 5

1 7 �6
8 �2 �3
1 1 1

1

C
C
A,

( j)

0

B
B
@

3 �4 5 1

1 7 �6 2
8 �2 �3 3
1 1 1 4

1

C
C
A, (k)

0

B
B
@

1 2 3 �9 �15 18

�1 1 �1 �5 21 �18
0 7 1 �29 41 �33
4 0 �2 10 �4 �6

1

C
C
A.
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2. Determine the rank of the matrix

0

@
1 1 1

1 2 3

2 3 a

1

A for a 2 R:

3. Solve

(a)
3x1 � 4x2 C 2x3 D 1

x1 C 7x2 � 6x3 D 2

8x1 � 2x2 � 3x3 D 3 ;

(b)
5x1 C 6x2 � 2x3 D �24
7x1 � 3x2 C x3 D 31

8x1 � 4x2 � 5x3 D 7 ;

(c)

5x1 C 6x2 � 2x3 D �24
7x1 � 3x2 C x3 D 31

8x1 � 4x2 � 5x3 D 7

4x1 C 7x2 C 4x3 D 0 :

4. Solve

(a)
x1 C x2 C x3 D 0

x1 C 2x2 C 3x3 D 0

2x1 C 3x2 C ax3 D 0 for a 2 R;

(b)

3x1 � 4x2 C 5x3 D 1

x1 C 7x2 � 6x3 D 2

8x1 � 2x2 � 3x3 D 3

x1 C x2 C x3 D 4 ;

(c)

5x1 C 6x2 � 2x3 D �24
7x1 � 3x2 C x3 D 31

8x1 � 4x2 � 5x3 D 7

4x1 C 7x2 C 4x3 D 1 :

5. Solve

x1 C 2x2 C 3x3 � 9x4 � 15x5 C 18x6 D 28

�x1 C x2 � x3 � 5x4 C 21x5 � 18x6 D �16
7x2 C x3 � 29x4 C 41x5 � 33x6 D 1

4x1 � 2x3 C 10x4 � 4x5 � 6x6 D 8 :

4.6.2 Answers

1. (a) r D 3, (b) r D 3, (c) r D 3, (d) r D 3,
(e) r D 3, (f) r D 3, (g) r D 3, (h) r D 4,
(i) r D 3, ( j) r D 4, (k) r D 3.

2. r D 3 for a ¤ 4, r D 2 for a D 4.
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3. (a)

0

@
x1
x2
x3

1

A D
0

@
1

1

1

1

A, (b)

0

@
x1
x2
x3

1

A D
0

@
2

�4
5

1

A, (c)

0

@
x1
x2
x3

1

A D
0

@
2

�4
5

1

A.

4. (a)

0

@
x1
x2
x3

1

A D
0

@
0

0

0

1

A for a ¤ 0,

0

@
x1
x2
x3

1

A D
0

@
1

�2
1

1

A for a D 4,

(b) und (c) have no solutions.
5.

0

B
B
B
B
B
B
B
@

x1
x2
x3
x4
x5
x6

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

6

�1
8

0

0

0

1

C
C
C
C
C
C
C
A

C �1

0

B
B
B
B
B
B
B
@

�2
4

1

1

0

0

1

C
C
C
C
C
C
C
A

C �2

0

B
B
B
B
B
B
B
@

5

�7
8

0

1

0

1

C
C
C
C
C
C
C
A

C �3

0

B
B
B
B
B
B
B
@

�3
6

�9
0

0

1

1

C
C
C
C
C
C
C
A

:

4.7 Determinant, Cramer’s Rule, Inverse Matrix

Let us try to do in general, what we derived only from examples (though from
several examples) in the previous section: solve systems of linear equations
explicitly; at least when m D n (same number of equations as unknowns), first
for m D n D 2 then for m D n D 3 and try to generalise to arbitrary m D n. We
solve the two equations with two unknowns

a11x1 C a12x2 D b1 a22 �a21
a21x1 C a22x2 D b2 �a12 a11;

that is,

Ax D b with A D
�

a11 a12
a21 a22

�

; b D
�

b1
b2

�

; x D
�

x1
x2

�

again by eliminating unknowns. Multiplying by the first or second column of
multipliers and adding we get

.a11a22 � a12a21/x1 D b1a22 � b2a12;

.a11a22 � a12a21/x2 D a11b2 � a21b1;
(4.51)
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respectively. We call a11a22 � a12a21 the determinant of the 2 � 2 matrix A D�
a11 a12
a21 a22

�

, in symbols

det A D det

�
a11 a12
a21 a22

�

D a11a22 � a12a21: (4.52)

Then, similarly,

b1a22 � b2a12 D det

�
b1 a12
b2 a22

�

D det A1;

a11b2 � a21b1 D det

�
a11 b1
a21 b2

�

D det A2;

where

A1 WD
�

b1 a12
b2 a22

�

; A2 WD
�

a11 b1
a12 b2

�

:

If det A D a11a22 � a12a21 ¤ 0 then we get x1 and x2 by dividing the two
equations (4.51) by det A.

So for n D 2 we have proved the following:
Cramer’s rule If A is an n � n square matrix and det A ¤ 0 then, for any column
vector b, Ax D b has a unique solution

x D 1

det A

0

B
@

det A1
:::

det An

1

C
A ; (4.53)

where the n � n matrix Ak is formed by replacing the k’th column vector of A by b
.k D 1; 2; : : : ; n/.

Let us see also the case n D 3 in detail. Now Ax D b reads as follows:

a11x1 C a12x2 C a13x3 D b1 a22a33 � a23a32 a23a31 � a21a33 a21a32 � a22a31
a21x1 C a22x2 C a23x3 D b2 a13a32 � a12a33 a11a33 � a13a31 a12a31 � a11a32
a31x1 C a32x2 C a33x3 D b3 a12a23 � a13a22 a13a21 � a11a23 a11a22 � a12a21 :
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With the multipliers on the right and summing up, we get three equations each
containing just one of the unknowns x1, x2, x3 and, defining

det A D det

0

@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1

A WD a11a22a33 C a12a23a31 C a13a21a32
�a11a23a32 � a12a21a33 � a13a22a31

; (4.54)

A1 WD
0

@
b1 a12 a13
b2 a22 a23
b3 a32 a33

1

A ; A2 WD
0

@
a11 b1 a13
a21 b2 a23
a31 b3 a33

1

A ; A3 WD
0

@
a11 a12 b1
a21 a22 b2
a31 a32 b3

1

A ;

we obtain

x1 D 1

det A
det A1; x2 D 1

det A
det A2; x3 D 1

det A
det A3:

This verifies Cramer’s rule (4.53) also for n D 3. We could proceed to n D 4 and
so on but it just may get tedious.

As we have seen here (and in the previous section), eliminating unknowns is
relatively easy, the problem is to find for the determinant det A of the n �n matrix A
a unified and reasonably understandable expression for all n. We give here such an
expression, not with general proof but by analysing the n D 2 and n D 3 cases (4.52)
and (4.54): In each term of these formulas the numbers 1; 2 or 1; 2; 3 (in general this
would be 1; 2; : : : ; n) figure as subscripts once in natural (increasing) order as first
subscript and once in the second subscript not always in increasing order anymore,
but still each number just figuring once. What we just described is a “permutation”
(or “rearrangement”) of the numbers 1; 2; : : : ; n and is usually denoted by˘ , which
can be considered as a bijection (see Sect. 3.2) with the domain f1; : : : ; ng, whose
range (or codomain) is the same set. If at the k’th place of the rearrangement the
number ` stands then ˘.k/ WD ` ( of course, permutations on the other sets can be
similarly defined). In (4.52) and (4.54) we have sums and differences of terms with
the numbers 1; 2; : : : in their natural order as first subscripts and a permutation of
these numbers as second subscript. We notice also that all possible permutations of
f1; 2; : : : ; ng figure as second subscripts, at least for n D 2 and n D 3 in (4.52)
and (4.54), respectively. We notice further that some terms in these expressions are
added, others subtracted: our expressions are so far of the form

X

˘

.˙/a1˘.1/a2˘.2/ : : : an˘.n/

(the ˘ under the summation sign means that we have to take the terms with all
possible permutations as sets of subscripts and sum up). The remaining question is
the ˙ sign: which terms should be added and which subtracted.
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We seek the answer by looking at the permutations in the second subscripts of
both the positive and the negative terms of, say, (4.54):

(C) second subscripts in C terms: 123, 231, 312,
(�) second subscripts in � terms: 132, 213, 321.

Maybe nothing is apparent at first sight. In order to see more, we introduce the
notion of inversion in a permutation ˘ : if ˘. j/ > ˘.k/ for j < k then we have
an inversion. The number of inversions in the three (C)-terms above is 0 (˘.1/ <
˘.2/ < ˘.3/), 2 (2 D ˘.1/ > ˘.3/ D 1, 3 D ˘.2/ > ˘.3/ D 1), and 2
(˘.1/ > ˘.2/, ˘.1/ > ˘.3/) and in the (�)-terms 1 (3 D ˘.2/ > ˘.3/ D 2), 1
(˘.1/ > ˘.2/), and 3 (˘.1/ > ˘.2/, ˘.1/ > ˘.3/, ˘.2/ > ˘.3/), respectively.

After some inspection we may notice that, if the number of inversions of the
permutation in the second subscripts in a term is an even number then we have
a “C” sign in front of the term and if it is an odd number then there is a “�” in
front. The same holds for (4.52): in .Ca11a22/ there is 0 inversion, in .�a12a21/ 1
inversion in the second subscripts. since .�1/1 D .�1/3 D .�1/5 D : : : D �1 and
.�1/0 D .�1/2 D .�1/4 D : : : D 1, we will define the determinant by

det A D det

0

B
@

a11 : : : a1n
:::

:::

an1 : : : ann

1

C
A WD

X
.�1/N.˘/a1˘.1/a2˘.2/ : : : an˘.n/;

where the summation is taken over all permutations˘ of (1; 2; : : : ; n) and N.˘/ is
the number of inversions in ˘ .

One can prove that, with this definition of the determinant, the Cramer rule holds
for all n.

We do not give examples for the use of Cramer’s rule to solve systems of linear
equations, because the method described in some detail in Sect. 4.6 is shorter (fewer
equations). Indeed the number of multiplications and additions needed to evaluate
the determinant of an n � n matrix becomes so large when n is large that, rather than
using determinants to solve systems of equations, one often uses the transformations
(I) and (II), applied to equations and matrices in the previous section, to evaluate
determinants. But the fact that the solution of systems of equations (when the
number of equations equals the number of unknowns) and a condition for the
existence of solutions can be written explicitly with help of determinants, is often
of importance.

In particular, comparing results of this and of the previous section, we see that a
system of n linear equations with n unknowns has exactly then a unique solution if
the coefficient matrix has the rank n (r D n) or equivalently, if the determinant of
the coefficient matrix is not 0.
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A third way of determining the (unique) solutions of Ax D b for n � n matrices
A with rank n, that is, with det A ¤ 0, is by the use of the inverse matrix A�1 of A.
This is defined as the (unique) n � n matrix which satisfies (I being the n � n unit
matrix)

A�1A D I (4.55)

We verify a little bit later that such a A�1 indeed exists but we first show how it helps
to solve Ax D b: Multiply Ax D b from the left by A�1, we get A�1.Ax/ D A�1b
or, since by (4.20) “the bracket can be moved”, .A�1A/x D A�1b. But, by (4.55),
.A�1A/x D Ix D x, therefore

x D A�1b:

So, if A is an n � n matrix of rank n then the only solution of Ax D b is x D A�1b.
We prove first that

AX D I (4.56)

has a solution X and that it is unique if det A ¤ 0. This equation clearly breaks up
into n equations of the type Axk D bk .k D 1; : : : ; n/:

Ax1 D

0

B
B
B
@

1

0
:::

0

1

C
C
C
A
; Ax2 D

0

B
B
B
@

0

1
:::

0

1

C
C
C
A
; : : : ;Axn D

0

B
B
B
@

0

0
:::

1

1

C
C
C
A
: (4.57)

Since det A ¤ 0, by Cramer’s rule, each of these equations has a unique solution.
These unique x1; x2; : : : ; xn are column vectors of the “unknown matrix” X which
is now known, so we have proved the existence and uniqueness of the solution X
of (4.56).

Now we show that this X satisfies also XA D I, so it can serve as A�1 in (4.55).
Indeed, multiplying (4.56) from the right by A and using the associativity of matrix
multiplication (see Sect. 4.4 1), we get

A.XA/ D .AX/A D IA D A:

Of course, also AI D A holds. But, since det A ¤ 0, the solution Y of AY D A is
unique, that is,

XA D I
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as asserted. Again there can be no two such X belonging to A. If there were another,
say Z, such that ZA D I then, since .X � Z/A D XA � ZA can easily be checked
(distributivity of matrix multiplication upon addition and subtraction), we would
have

.X � Z/A D 0:

Multiplied by X from the right we get, using the associativity of matrix multiplica-
tion (see Sect. 4.4 1)

0X D ..X � Z/A/X D .X � Z/.AX/

But 0X D 0 and by (4.56), AX D I. Furthermore, of course .X � Z/I D X � Z, so
we have 0 D X � Z, that is, Z D X. Thus there exists a unique A�1 (the X which
we have just determined), satisfying (4.55) and we see that this inverse A�1 satisfies
also

AA�1 D I

(from (4.56)—not from (4.55) because, as seen in Sect. 4.4 1, matrix multiplication
is not always commutative; what we have just proved shows that A and A�1
commute: AA�1 D A�1A—and that A is the inverse of A�1: inverse of the inverse
is the original matrix: .A�1/�1 D A).

In order to calculate the inverse matrix, we have to remember that its column
vectors are the solution of (4.57). As we have seen in Sect. 4.6, we calculate them
by transforming the matrices

0

B
B
B
@

a11 : : : a1n 1

a21 : : : a2n 0
:::

:::
:::

an1 : : : ann 0

1

C
C
C
A
;

0

B
B
B
@

a11 : : : a1n 0

a21 : : : a2n 1
:::

:::
:::

an1 : : : ann 0

1

C
C
C
A
; : : : ;

0

B
B
B
@

a11 : : : a1n 0

a21 : : : a2n 0
:::

:::
:::

an1 : : : ann 1

1

C
C
C
A

to the forms (no 0-rows, because, as we know, the rank of th n � n matrix A has to
be n in order for A�1 to exist):

0

B
B
B
@

1 0 : : : 0 a0
11

0 1 : : : 0 a0
21

:::
:::
: : :

:::
:::

0 0 : : : 1 a0
n1

1

C
C
C
A
;

0

B
B
B
@

1 0 : : : 0 a0
12

0 1 : : : 0 a0
22

:::
:::
: : :

:::
:::

0 0 : : : 1 a0
n2

1

C
C
C
A
; : : : ;

0

B
B
B
@

1 0 : : : 0 a0
1n

0 1 : : : 0 a0
2n

:::
:::
: : :

:::
:::

0 0 : : : 1 a0
nn

1

C
C
C
A
;
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respectively. Note that the dj’s from Sect. 4.6 are now denoted by a0
jk in the case of

the k’th matrix .k D 1; 2; : : : ; n/. Transforming the whole matrix

0

B
B
B
@

a11 : : : a1n 1 0 : : : 0

a21 : : : a2n 0 1 : : : 0
:::

:::
:::
:::
: : :

:::

an1 : : : ann 0 0 : : : 1

1

C
C
C
A

to the form

0

B
B
B
@

1 0 : : : 0 a0
11 : : : a0

1n

0 1 : : : 0 a0
21 : : : a0

2n
:::

: : :
:::
:::

:::

0 0 : : : 1 a0
n1 : : : a0

nn

1

C
C
C
A

clearly gives the same a0
jk’s . j D 1; 2; : : : ; nI k D 1; 2; : : : ; n/ and is much simpler.

The transformation goes through the same chain of operations which we saw in
Sect. 4.6.

Example We determine the inverse of

A D
0

@
1 2 0

1 4 1

3 2 2

1

A

(the coefficient-matrix of (4.33)) by transforming, as indicated, the following
extended matrix:

0

@
1 2 0 1 0 0

1 4 1 0 1 0

3 2 2 0 0 1

1

A 7!
0

@
1 0 �1 2 �1 0
1 4 1 0 1 0

3 2 2 0 0 1

1

A 7!
0

@
1 0 �1 2 �1 0
0 4 2 �2 2 0

3 2 2 0 0 1

1

A

7!
0

@
1 0 �1 2 �1 0
0 1 1=2 �1=2 1=2 0
3 2 2 0 0 1

1

A 7!
0

@
1 0 �1 2 �1 0
0 1 1=2 �1=2 1=2 0
0 0 4 �5 2 1

1

A

7!
0

@
1 0 �1 2 �1 0

0 1 1=2 �1=2 1=2 0

0 0 1 �5=4 1=2 1=4

1

A 7!
0

@
1 0 0 3=4 �1=2 1=4

0 1 0 1=8 1=4 �1=8
0 0 1 �5=4 1=2 1=4

1

A :

So

A�1 D
0

@
3=4 �1=2 1=4

1=8 1=4 �1=8
�5=4 1=2 1=4

1

A

(continued)
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and indeed, calculating the product of matrices as in Sect. 4.4 1,

AA�1 D
0

@
1 2 0

1 4 1

3 2 2

1

A

0

@
3=4 �1=2 1=4

1=8 1=4 �1=8
�5=4 1=2 1=4

1

A D
0

@
1 0 0

0 1 0

0 0 1

1

A D I;

AA�1 D
0

@
3=4 �1=2 1=4

1=8 1=4 �1=8
�5=4 1=2 1=4

1

A

0

@
1 2 0

1 4 1

3 2 2

1

A D
0

@
1 0 0

0 1 0

0 0 1

1

A D I:

We note that the solution X of a matrix equation of the form (A an m � n, B
an m � p matrix)

AX D B

can be calculated (and conditions for existence and uniqueness determined)
in the way we calculated here the inverse matrix as the solution of AX D I.

Inverse matrices help us to determine, in the Leontief production model (see
Sect. 4.5 and the beginning of Sect. 4.6), the intensity vector x which satisfies the
given final demand c “without surplus”. This means (compare (4.25)) that we want
to solve

.I � A/x D c

for x. Since A and thus I � A are n � n matrices, a unique solution

x D .I � A/�1c (4.58)

exists if the rank of (I � A) is n. In applications to economics this is usually the case
because the “production coefficients” ajk are small compared to 1, which is in the
diagonal of the unit matrix

I D

0

B
B
B
@

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

1

C
C
C
A
;
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and, it can be proved that this is enough to make rank .I � A/ D n. Moreover, it can
be shown that all components of .I � A/�1 are nonnegative; they cannot be all zero,
since 0 is not the inverse matrix of any matrix (0B D 0, not I, for all B). Since the
components of the final demand c are, of course, positive, from (4.58) the intensities
are nonnegative and not all 0, as it should be.

4.7.1 Exercises

1. Write the sum (of the 24 terms) on the right-hand side of

det

0

B
B
@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1

C
C
A D

X

˘

.�1/N.˘/a1˘.1/a2˘.2/a3˘.3/a4˘.4/:

2. Apply Cramer’s rule to solve Ax D b for x D
�

x1
x2

�

and

(a) A D
�
3 4

2 �5
�

; b D
�
10

�1
�

;

(b) A D
��1 �6

7 9

�

; b D
�
14

1

�

:

3. Apply Cramer’s rule to solve Ax D b for x D
0

@
x1
x2
x3

1

A and

(a) A D
0

@
5 �2 4

�6 3 2

7 �5 9

1

A ; b D
0

@
9

7

4

1

A ;

(b) A D
0

@
�6 7 2

3 �8 �5
4 �9 �3

1

A ; b D
0

@
7

2

5

1

A.

4. Determine A�1 for the matrices A in Exercises 2 and 3.

5. For I D
0

@
1 0 0

0 1 0

0 0 1

1

A, A D
0

@
1=3 1=6 2=7

1=5 1=6 3=8

1=3 2=9 1=4

1

A, c D
0

@
15

12

10

1

A determine x=

0

@
x1
x2
x3

1

A

such that .I � A/x D c.
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4.7.2 Answers

1.

a11a22a33a44 C a11a23a34a42 C a11a24a32a43
� a11a22a34a43 � a11a23a32a44 � a11a24a33a42
C a12a21a34a43 C a12a23a31a44 C a12a24a33a41
� a12a21a33a44 � a12a23a34a41 � a12a24a31a43
C a13a21a32a44 C a13a22a34a41 C a13a24a31a42
� a13a21a34a42 � a13a22a31a44 � a13a24a32a41
C a14a21a33a42 C a14a22a31a43 C a14a23a32a41
� a14a21a32a43 � a14a22a33a41 � a14a23a31a42:

2. (a)

�
x1
x2

�

D
�
2

1

�

, (b)

�
x1
x2

�

D
�
4

�3
�

.

3. (a)

0

@
x1
x2
x3

1

A D
0

@
3

7

2

1

A, (b)

0

@
x1
x2
x3

1

A D
0

@
�4
�3
2

1

A.

4. 1
23

�
5 4

2 �3
�

, 1
33

�
9 6

�7 �1
�

, 1
85

0

@
37 �2 �16
68 17 �34
9 11 3

1

A, 1
59

0

@
�21 3 �19
�11 10 �24
5 �26 27

1

A.

5. x1 D 60, x2 D 54, x3 D 56.

4.8 Applications of Functions of Vector Variables:
Aggregation in Economics

Before proceeding from systems of linear equations (Sects. 4.6, 4.7) to systems of
linear inequalities and to linear optimisation in Chap. 5, we show applications of
functions of vector variables which, under certain conditions turn out to be linear or
affine. They have to do with aggregation in economics and in other social sciences.
The first is an aggregation result for an allocation problem. Suppose a certain (fixed)
amount s of money or of some resource (for example energy and/or some materials)
has to be allocated (distributed) among n projects. Each member of a group of
m decision makers (“advisers”) makes recommendations, the j-th allocating the
amount xjk to the k-th project (j D 1; : : : ;mI k D 1; : : : ; n), see Table 4.2. These
should be aggregated (“synthesised”, unified) into a final allocation.

For the sake of easier notation, we introduce the column vectors

xk D

0

B
@

x1k
:::

xmk

1

C
A .k D 1; : : : ; n/



166 4 Affine and Linear Functions and Transformations (Matrices), Linear Economic. . .

Table 4.2 Aggregating recommendations by m decision makers on allocating the amount s among
n projects

Decision Projects
makers 1 2 . . . k . . . n Sums

1 x11 x12 . . . x1k . . . x1n s
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

j xj1 xj2 . . . xjk . . . xjn s
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

m xm1 xm2 . . . xmk . . . xmn s

Column vectors x1 x2 . . . xk . . . xn

0

B
B
@

s
:
:
:

s

1

C
C
A D s1

Aggregated allocations g1.x1/ g2.x2/ . . . gk.xk/ . . . gn.xn/

and suppose that the aggregated allocation for the k-th project is

gk.xk/ .k D 1; : : : ; n/:

This notation shows the assumption that the aggregated allocation for the k-th
project depends only upon the allocations recommended by the advisers for that
project. But the aggregator functions gk

gk W Œ0; s�m �! Œ0; s� (4.59)

may at this stage be different for each project. This notation again shows another
assumption, though a pretty natural one: neither the recommended nor the aggre-
gated allocation can or should be negative. The only remaining assumption is the
“consensus on rejection”:

gk.0/ D 0 .k D 1; : : : ; n/; (4.60)

that is, “if all advisers recommend rejection of a project, then no resource will be
allocated to that project”. This is again rather plausible, but see later reservations
about both.

The essential and also reasonable assumption is that the entire amount s will be
allocated, so from

x1 C : : :C xn D s1 it follows that g1.x1/C : : :C gn.xn/ D s: (4.61)
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We will first deal with the case of at least three projects: n > 2. The impli-
cation (4.61) can be written as a functional equation which contains n unknown
functions g1; : : : ; gn:

g1.s1 � x2 � : : : � xn/ D s � g2.x2/� : : : � gn.xn/: (4.62)

Putting herein x2 D : : : D xn D 0 and using (4.60) we get

g1.s1/ D s and similarly gk.s1/ D s for all k D 1; : : : ; n;

which could be called “consensus on overwhelming merit”. We take (4.60) also into
consideration when putting x3 D : : : D xn D 0 and, say, x2 D z into (4.62):

g1.s1 � z/ D s � g2z: (4.63)

Now we use both this and (4.60) when substituting x4 D : : : D xn D 0 and, say,
x2 D y, x3 D z into (4.62):

s � g2.y/� g3.z/ D g1.s1 � y � z/ D s � g2.y C z/;

(here is where we made use of n > 2), that is,

g2.y C z/ D g2.y/C g3.z/:

Now, this is an interesting equation because, putting here y D 0, we get, in view of
g2.0/ D 0,

g2.z/ D g3.z/;

that is, g2 and g3 is the same function. But the subscripts 2 and 3 have no privileged
role in (4.61) (all subscripts 1; : : : ; n in (4.61) are interchangeable), so g1; : : : ; gn

are all equal:

g1 D : : : D gn DW g; (4.64)

that is, we can omit the subscripts, also in our above “interesting equation”:

g.y C z/ D g.y/C g.z/: (4.65)

This means that g is additive (compare Sect. 4.3).
But all additive functions g W Œ0; s�m 7! Œ0; s� (compare (4.59) and (4.64)) are

linear that is, of the form

g.x/ D g.x1; x2; : : : ; xm/ D a1x1 C a2x2 C : : :C amxm; (4.66)
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where a1; a2; : : : ; am are nonnegative constants ((4.66) can also be written as g.x/ D
a � x using the inner product, see Sect. 1.5 3). We have mentioned this in Sect. 4.3
(under the condition of local boundedness) but we can also reduce it here right away
to the result in Sect. 4.2:

From (4.65),

g.x1; x2; : : : ; xm/ D g.x1 C 0; 0C x2; : : : ; 0C xm/

D g.x1; 0; : : : ; 0/C g.0; x2; : : : ; xm/ D : : :

D g.x1; 0; : : : ; 0/C g.0; x2; 0; : : : ; 0/C : : :C g.0; : : : ; 0; xm/

D
mX

jD1
g.0; : : : ; 0; xj; 0; : : : ; 0/ (4.67)

and

g.0; : : : ; 0; yj C zj; 0; : : : ; 0/ D g.0; : : : ; 0; yj; 0; : : : ; 0/C g.0; : : : ; 0; zj; 0; : : : ; 0/:

So xj 7! g.0; : : : ; 0; xj; 0; : : : ; 0/ is an additive real-valued function of a real
variable, bounded on Œ0; s� from below by 0 and from above by s because of (4.59).
So, by the result in Sect. 4.2, g.0; : : : ; 0; xj; 0; : : : ; 0/ D ajxj and we have to have
aj � 0 in order that ajxj be nonnegative . j D 1; : : : ;m/. Further, by (4.67), we have
indeed (4.66):

g.x/ D g.x1; : : : ; xm/ D
mX

jD1
ajxj .aj � 0/:

Finally we use the “consensus on overwhelming merit” property which becomes, in
view of (4.64),

g.s1/ D g.s; s; : : : ; s/ D s:

So, from (4.66), we have

a1s C a2s C : : :C ams D s

and (since s ¤ 0)

a1 C a2 C : : :C am D 1:

Linear functions (4.66) with aj � 0 . j D 1; : : : ;m/ and a1 C a2 C : : :C am D 1 are
weighted arithmetic means (a1; a2; : : : ; am are the weights). Using (4.64) and (4.66)
again we get

g1.x1; : : : ; xm/ D : : : D gn.x1; : : : ; xm/ D a1x1 C : : :C amxm

with aj � 0 . j D 1; : : : ;m/ and a1 C : : :C am D 1:
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Straightforward checking shows that, conversely, if each gj . j D 1; : : : ;m/ is the
same weighted arithmetic mean, then all our conditions (4.59), (4.60) and (4.61) are
satisfied.

The result in Sect. 4.2, which we used here, is about functions additive for all
reals (there (4.13) had to hold for all x1 2 R, x2 2 R). Here all variables (and also
the function values) have to stay in the interval Œ0; s�. However, that result is true
also in this case. (This is not very difficult to show but we will not do it here, the
reader may wish to prove it).

So we obtained here the result that under the rather plausible assumptions (4.59),
(4.60) and (4.61), for n > 2 projects, the aggregator function for each project has
to be the same weighted arithmetic mean—and every weighted arithmetic mean
will do. (The a1; : : : ; am can be considered to be the “weights of influence” of the
individual adviser, which may be different but, as a consequence of our result, they
cannot change from project to project).

The “hidden assumption” that the aggregated allocation for the k-th project
depends only upon the recommended all cations for that project, which, as we
mentioned is implicit in the notation gk.xk/ is rather restrictive. It is not that we
cannot solve the problem if each aggregated allocation may depend upon the whole
matrix

X D

0

B
@

x11 : : : x1n
:::

:::

xm1 : : : xmn

1

C
A

of recommended allocations, on the contrary, we get too many solutions: In this
situation we have in place of (4.61) and (4.59)

g1.X/C g2.X/C : : :C gn.X/ D s (4.68)

for all m � n matrices X with components in Œ0; s�, for which the sum of each row is
s. We have also gk.X/ 2 Œ0; s� .k D 1; 2; : : : ; n/.

With the latter restriction (and further two to follow), we can choose g2; : : : ; gn

arbitrarily and just define

g1.X/ D s � g2.X/� : : : � gn.X/

to get a solution. Actually, as we see, we have to have also g2.X/C : : :C gn.X/ � s
but this does not restrict the choice of g2; : : : ; gn too much. Neither does the
assumption corresponding to (4.60): if the k-th column of X is 0 then gk.X/ D 0

.k D 1; 2; : : : ; n/. Denoting the column vectors of X by x1; x2; : : : ; xn this means

gl.x1; : : : ; xl�1; 0; xlC1; : : : ; xn/ D 0 .l D 2; : : : ; n/

and, in view of (4.68),

g2.0; x2; : : : ; xn/C : : :C gn.0; x2; : : : ; xn/ D s;
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which still leaves plenty of freedom in the choice of g2; : : : ; gn. Even in our original
formulation, it is possible that the assumption (4.59) has to be modified and (4.60)
even omitted. The former is the case when all allocations are constrained to be
between a prescribed minimum and a maximum. This changes the domain and range
in (4.59) but not the boundedness which was essential in solving (4.65). On the other
hand, the “consensus on rejection” condition (4.60) is not so self-evident anymore
if the final decision is made by an external person (or persons) who may ignore
even such a categorical recommendation of rejection. Then also the “consensus on
overwhelming merit” equation does not follow and therefore a1 C : : : C an need
not be equal 1 anymore. But, by a somewhat different method one still gets that
g1; : : : ; gn will be, if not linear, at least affine functions gk.x1; : : : ; xn/ D a1x1 C
: : :C anxn C bk .k D 1; : : : ; n/ (as we see g1 D g2 D : : : D gn may get lost too; see
also below).

All this, except (4.68), was for n > 2. The case n D 1 (just one project) is com-
pletely trivial. We show that in the case n D 2, even under the original assumptions,
about as much freedom of choice is left as, under different circumstances, in the
solution of (4.68). Then (4.61) reduces to the statement that

from x1 C x2 D s1 it follows that g1.x1/C g2.x2/ D s

and the solution is again simple: choose g2 W Œ0; s�m ! Œ0; s� arbitrarily and
g1 W Œ0; s�m ! Œ0; s�, as determined by (4.62):

g1.x1/ D s � g2.s1 � x1/:

So, also the values of the function g1 will automatically be in Œ0; s� and,
clearly, (4.59) and (4.60) are satisfied. In order to satisfy also (4.60), the only
restrictions on the choice of g2 will be g2.0/ D 0, and g2.s1/ D s (“consensus” both
“on rejection” and “on overwhelming merit”) which leaves it still pretty arbitrary
but establishes also g1.0/ D 0. And that is all there is to it.

We now sketch a second aggregation problem. Suppose that m “agents” for
instance producers, use (at least) n kinds of goods and services. Let xjk be the input
quantity used by the j-th producer from the k-th good or service .k D 1; : : : ; n/
and let yj be the maximal output value (in market prices) which this j-th producer
. j D 1; : : : ;m/ can establish from these goods and services (other inputs fixed). Or
let m households buy n kinds of goods and services, the j-th household the quantity
xjk of the k-th good or service .k D 1; : : : ; n/ and let yj be the utility for the j-th
household . j D 1; : : : ;m/ of all these quantities xj1; : : : ; xjn of goods and services
bought. Many more situations in economics and other social sciences follow this
scheme, described by Table 4.3.
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Table 4.3 Aggregation of input or purchase quantities which establish output value or utility

Maximal output

values or utilities

(microeconomic

Goods and services production or
Agents (producers Row utility

or households) 1 � � � k � � � n vectors functions)

1 x11 � � � x1k � � � x1n x1 y1 D f1.x1/
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

j xj1 � � � xjk � � � xjn xj yj D fj.xj/

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

m xm1 � � � xmk � � � xmn xm ym D fm.xm/

Column
vectors

x0
1 � � � x0

k � � � x0
n y0

Aggregates
(aggregator
functions)

z1 D
g1.x0

1/
� � � zk D

gk.x0
k/

� � � zn D
gn.x0

n/
z

F.z/ D G.y0/
00Aggregation

equation00

It will again be of advantage to introduce the column vectors but this time we
denote them by

x0
k D

0

B
@

x1k
:::

xmk

1

C
A .k D 1; : : : ; n/;

because we will denote the row vectors by xj:

xj D .xj1; : : : ; xjn/ . j D 1; : : : ;m/:

In both the above examples the supposition that yj depends only upon the
quantities xj1; : : : ; xjn of goods and services, that is, upon xj:

yj D fj.xj/ . j D 1; : : : ;m/;

is more plausible than in the allocation problem. The problem is, whether aggregates
of the quantities in the columns, that is

zk D gk.x0
k/ D gk.x1k; : : : ; xmk/ .k D 1; : : : ; n/
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and

Y D G.y0/ D G.y1; : : : ; ym/

can be determined (again g1; : : : ; gn and G W RmC ! RC are the aggregator func-
tions) so that z1; : : : ; zn act as “aggregate quantities” producing the “aggregate
maximal output” or having the “aggregate utility” Y. If so, then clearly one more
function F W RnC ! RC has to exist so that the functional equation (“aggregation
equation”) F.z/ D G.y0/, that is,

F.g1.x0
1/; : : : ; gn.x0

n// D G. f1.x1/; : : : ; fm.xm// (4.69)

be satisfied.
In this case we say that, for the aggregator functions g1; : : : ; gn and the

“microeconomic correlations” (functions) f1; : : : ; fm, there exist a “macroeconomic
aggregator function” G and a “macroeconomic correlation” (function) F such that
F assigns to the aggregates z1 D g1.x0

1/; : : : ; zn D gn.x0
n/ exactly the value

Y D F.z/, aggregated from the microeconomic function (correlation) values y1 D
f1.x1/; : : : ; ym D fm.xm/, whatever the original xjk . j D 1; : : : ;mI k D 1; : : : ; n/
were. In our above example of producers, this common value Y is the maximal total
output value, in the example about households it is the total utility (equal, by (4.69),
to G.y0/, the aggregate maximal output or the aggregate utility, respectively). In the
case of producers the functions f1; : : : ; fm;F are “production functions”, in the case
of households they are “utility functions”.

If all inputs (goods and services) considered in Table 4.3 could be “totally
separated” so that there is no overlap, then it would seem reasonable to take

gk.x0
k/ D gk.x1k; : : : ; xmk/ D x1k C : : :C xmk .k D 1; : : : ; n/; (4.70)

that is, we would have the case where all aggregator functions are sums (where
aggregation is done by adding up the quantities). A further assumption could be that

G.y0/ D G.y1; : : : ; ym/ D y1 C : : :C ym; (4.71)

that is, the maximal output values or utilities also add up. Then (4.69) becomes

F.x11 C : : :C xm1; : : : ; x1n C : : :C xmn/

D f1.x11; : : : ; x1n/C : : :C fm.xm1; : : : ; xmn/;

that is,

F.x1 C : : :C xm/ D f1.x1/C : : :C fm.xm/: (4.72)
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This equation is similar to (4.62) (put into (4.62) F.x/ WD s � g1.s1 � x// and is
solved in a similar way: Remembering that all functions f1; : : : ; fm; F map RnC into
RC, we put into (4.72) x2 D : : : D xm D 0 and get

F.x1/ D f1.x1/C f2.0/C : : :C fm.0/:

We write bj WD fj.0/ . j D 1; : : : ;m/ (this time we do not necessarily have fj.0/ D 0,
since, for instance, inputs not considered in Table 4.3 may be used with (fixed)
positive quantities). Then (4.72) with x1 D x2 D : : : D xm D 0 gives

F.0/ D b1 C b2 C : : :C bm DW b: (4.73)

So we have f2.0/C : : :C fm.0/ D b � b1 and f1.x/ D F.x/C b1 � b. Similarly,

fj.x/ D F.x/C bj � b . j D 1; 2; : : : ;m/: (4.74)

Putting this back into (4.72) we obtain

F.x1 C x2 C : : :C xm/

D F.x1/C b1 � b C F.x2/C b2 � b C : : :C F.xm/C bm � b

D F.x1/C F.x2/C : : :C F.xm/C b � mb

which, with

h.x/ WD F.x/� b; (4.75)

becomes

h.x1 C x2 C : : :C xm/ D h.x1/C h.x2/C : : :C h.xm/:

From (4.73) and (4.75), h.0/ D 0 so that, putting x3 D : : : D xm D 0 gives

h.x1 C x2/ D h.x1/C h.x2/ .x1 2 RnC; x2 2 RnC/:

This is essentially the same equation as (4.65) (but the domain is different).
Moreover, by definition, F.x/ � 0 .x 2 RnC/ so, by (4.75), h.x/ � �b, that is,
h is bounded from below on RnC. But then we know that

h.x/ D a1x1 C : : :C anxn D a � x

and, by (4.75), (4.74) and (4.73),

F.x/ D a � x C b D a � x C b1 C : : :C bm;

fj.x/ D a � x C bj . j D 1; : : : ;m/;
(4.76)
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where a � x D a1x1 C : : : C anxn is again the inner product. Now fj.x/ � 0 for
x 2 RnC, in particular fj.0/ D bj � 0 . j D 1; : : : ;m/. If any of the a1; : : : ; an were
negative, say a` D �˛ < 0 .˛ > 0/, then we would have

fj.0; : : : ; 0; x`; 0; : : : ; 0/ D �˛x` C bj < 0 for x` >
bj

˛
2 RC

while fj should be nonnegative on RnC. So ak � 0 for all k D 1; : : : ; n. On the
other hand, (4.76) satisfies (4.72). Furthermore, if a D .a1; : : : ; an/ with ak � 0

.k D 1; : : : ; n/ and if also bj � 0 . j D 1; : : : ;m/, then the f1; : : : ; fm; F in (4.76) are
nonnegative, as required.

So we proved that, if all aggregator functions are sums (including the macroe-
conomic G) then the microeconomic functions f1; : : : ; fm and the macroeconomic F
are affine functions:

fj.x/ D a1x1 C : : :C anxn C bj . j D 1; : : : ;m/;

F.x/ D a1x1 C : : :C anxn C b1 C : : :C bm

with ak � 0 .k D 1; : : : ; n/, bj � 0 . j D 1; : : : ;m/. Notice that here the f1; : : : ; fm
are not equal anymore but they are “almost equal”: they differ only in constants.
In many cases in practice the empirically determined functions (for instance the
production functions in our example of maximal output of producers) are not affine,
so the above assumptions, in particular (4.70) and (4.71), may be too restrictive.

The aggregation equation (4.69) is much more general and has many non-
affine solutions. Even so, there is no guarantee that to given (empirical) production
functions there exist aggregation functions which satisfy (4.69). If there exist such
aggregation functions they are not always what we would have expected (for
instance not sums). In these cases one can say that there is a “deficit”: a nonzero
difference between the two sides of (4.69).

4.8.1 Exercises

1. Four decision makers A, B, C, D allocate the amount 100K (D $100; 000) among
ten projects as follows:

Projects

1 2 3 4 5 6 7 8 9 10

A 10 10 10 10 10 10 10 10 10 10

B 8 8 9 9 10 10 11 11 12 12

C 2 2 6 6 10 10 14 14 18 18

D 1 3 5 7 9 11 13 15 17 19
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The aggregation process follows the assumption made in Sect. 4.8.The aggre-
gated allocations are
(a) 5:25 5:75 7:5 8 9:75 10:25 12 12:5 14:25 14:75,
(b) 4:4 5:2 7 7:8 9:6 10:4 12:2 13 14:8 15:6,
(c) 3:6 4:4 6:6 7:4 9:6 10:4 12:6 13:4 15:6 16:4.
Determine the aggregator functions.

2. For the aggregator function g.x1; x2; x3; x4/ D a1x1 C a2x2 C a3x3 C a4x4, where
a1 D a2 D 1=4, determine a3, a4 so that in the situation described in Exercise 1
(a) projects 1 and 10 get 5.1 and 14.9, respectively,
(b) projects 3 and 8 get 7.25 and 12.75, respectively.

3. In Table 4.3 let

yj D fj.xj/ D cj

nY

kD1
xjk .cj 2 RCC; j D 1; : : : ;m/

and

zk D gk.x0
k/ D dk

mY

jD1
xjk .dk 2 RCC; k D 1; : : : ; n/:

Determine a pair F;G of aggregator functions such that F.z1; : : : ; zn/ D
G.y1; : : : ; ym/ for all xjk 2 RC.

4. In Table 4.3 let m D 2, n D 3 and

y1 D x11 C 2x12 C 3x13; y2 D x21 C 4x22 C 9x23;

z1 D x11 C 1

4
x21; z2 D x12 C 1

2
x22; z3 D x13 C 3

4
x23:

(a) Do there exist aggregator functions F;G of the form

F.z1; z2; z3/ D z1 C az2 C bz3 .a 2 RCC; b 2 RCC/;

G.y1; y2/ D cy1 C dy2 .c 2 RCC; d 2 RCC/

such that

F.z1; z2; z3/ D G.y1; y2/ for all xjk 2 RC . j D 1; 2I k D 1; 2; 3/‹

(b) Same question, if the coefficient of x12 in the first equation is different from 2.
5. Compare Tables 4.2 and 4.3. Specify the rows and columns of Table 4.3 so that

it gets transformed into Table 4.2.
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4.8.2 Answers

1. (a) g.x1; x2; x3; x4/ D 1
4
.x1 C x2 C x3 C x4/,

(b) g.x1; x2; x3; x4/ D 1
5
.x1 C x2 C x3 C 2x4/,

(c) g.x1; x2; x3; x4/ D 1
10
.x1 C 2x2 C 3x3 C 4x4/.

2. (a) a3 D 1=10, a4 D 4=10, (b) a3 D 0, a4 D 1=2.
3. F.z1; : : : ; zn/ D .cz1z2 � � � zn/, G.y1; : : : ; ym/ D .dy1y2 � � � ym/, where c D

c1c2 � � � cmd=d1d2 � � � dn.
4. (a) Yes, if and only if a D 2, b D 3, c D 1, d D 1=4,

(b) No, there exist no such aggregator functions.
5. The sum of the elements of each of the m rows should equal s, the fj.xj/ in

Table 4.3 should be fj.xj/ D xj1 C xj2 C � � � C xjn D s . j D 1; 2; : : : ;m/, Y0 D s1
should hold, where 1 D .1; 1; : : : ; 1/.
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For when the One Great Scorer comes
To write against your name,
He marks—not that you won or lost—
But how you played the game.

GRANTLAND RICE (1880–1954)
AMERICAN SPORTS JOURNALIST AND POET

5.1 Introduction

In Sect. 4.1 we discussed (and solved) the following simple linear optimisation
problem. A supermarket chain intends to keep buying some, say x1, weight units
of one kind and x2 units of a second kind of detergent but not more than 100 weight
units for not more then $720 a week. The factory originally charged $6 and $9
per weight unit of the first respectively the second detergent which would have
contributed 60 or 90 cents, respectively, all together 60x1 C 90x2 � 7200 cents
to its weekly profit. This leads to the inequalities

x1 C x2 � 100; (5.1)

6x1 C 9x2 � 720: (5.2)

If these are the only constraints then maximal quantity would give maximal profit
and we had to solve the system of linear equations

x1 C x2 D 100;

6x1 C 9x2 D 720;

which we did. We got x1 D 60, x2 D 40 (7200 cents D $72 per week contribution
to the profit of the factory).

© Springer International Publishing Switzerland 2016
W. Eichhorn, W. Gleißner, Mathematics and Methodology for Economics,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-23353-6_5
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But now the factory owners make a new offer. They give a discount of 20 and 10
cents per weight unit of the first or second detergent (that is, the profit contribution
from them to the profit of the factory is just 40 and 80 cents, respectively) if they (the
factory owners) can determine the quantities x1 and x2 of the two kinds of detergents
within the confines of condition (5.1). (That is, if they deliver x1 units of the first
kind then they cannot deliver more then 100�x1 units of the second kind.) Since the
factory would clearly gain most by delivering 100 units of the second and none of
the first detergent, the supermarket chain specifies that it accepts at most 60 weight
units of the second detergent:

x2 � 60: (5.3)

Moreover, to be one the safe side, the supermarket owners want also the condi-
tion (5.2) upheld (notice that x1 D 40, x2 D 60 would contradict this condition).
The question is, what quantities x1 and x2 should the factory deliver of the two kinds
of detergent in order to maximise its profit (in cents)

H.x1; x2/ D 40x1 C 80x2 (5.4)

under conditions (5.1), (5.2) and (5.3).
This is clearly a linear optimisation problem of the kind we discussed in Sect. 2.4

and will discuss in more detail in Sects. 5.2 and 5.3. In Sect. 5.2 we will solve a
problem equivalent to maximising (5.4) under conditions (5.2), (5.3), (5.4) (and
x1 2 RC, x2 2 RC). This will yield a solution different from the one above: x1 D 30,
x2 D 60 as optimal quantities and thus 40 � 30 C 80 � 60 D 6000 (cent D $60) as
maximal profit.

We discussed in Sect. 2.2 the “economic efficiency rule”, according to which one
strives to achieve a goal with lowest cost or to maximise the output with given
amounts of inputs. As we saw there this leads to linear optimisation problems.
There, as here, this is the case in such simple production systems as linear
technologies. In Sect. 2.4 we have shown by means of an example how linear
optimisation problems in two variables can be solved geometrically. The same
would be difficult for such problems in three variables and, for lack of more than
three dimensional geometric intuition, for practical purposes all but impossible in
the case of four or more variables.

Therefore we introduced already there a process of numerical approximation,
the “method of steepest ascent” for solving linear optimisation problems in any
number of variables (the name still has a geometric connotation). This method leads
to “close to optimal” values—if there exist optimal values at all.

By now we have acquired mathematical tools which make the application
and understanding of further methods for solving linear approximation problems
possible. The classical and still fundamental method is called “simplex algorithm”.
We will see in Sect. 5.2 on an example how and why it works.
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This will be followed by the notion of duality in linear optimisation (Sect. 5.3)
which is useful, among others, in the theory of two-person zero-sum games and will
give us occasion to have an insight into that theory (Sect. 5.4).

5.2 Linear Optimisation Problems

Linear optimisation problems 1, 2 and 3 in Sect. 2.2 are of the following form.
A problem of linear optimisation is to determine where a linear function

F W Rs ! R, given by

F.x1; : : : ; xs/ D c1x1 C : : :C csxs; (5.5)

is maximal (or minimal), if also the conditions

aj1x1 C : : :C ajsxs � bj . j D 1; : : : ;m1/; (5.6)

aj1x1 C : : :C ajsxs � bj . j D m1 C 1; : : : ;m2/; (5.7)

aj1x1 C : : :C ajsxs D bj . j D m2 C 1; : : : ;m3/; (5.8)

are satisfied (ck; bj; ajk .k D 1; : : : ; s/ are real constants). The function F is the
objective function.

Sometimes some variables are supposed to be nonnegative, say

xk � 0 .k D 1; : : : ; tI t � s/: (5.9)

These are clearly of the form (5.7) too (but often listed separately). Also, affine
functions, given by

QF.x1; : : : ; xs/ D c1x1 C : : :C csxs C d

(d a real constant), have their maxima and minima at the same place where (5.5), so
admitting them would not be an essential generalisation. Moreover, one can simplify
the above formulation by asking only where (5.5) is maximal under the conditions
or restrictions

aj1x1 C : : :C ajsxs � bj . j D 1; : : : ; 2m3 � m2/: (5.10)

Indeed, if the problem were to minimise (5.5) we can instead maximise

.�c1/x1 C : : :C .�cs/xs

which is of the same form. Similarly, (5.7) can be replaced by

.�aj1/x1 C : : :C .�ajs/xs � �bj . j D m1 C 1; : : : ;m2/;
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which are of the form (5.10) and, finally, Eqs. (5.8) are equivalent to twice as many
inequalities

aj1x1 C : : :C ajsxs � bj and � aj1x1 � : : : � ajsxs � bj;

also of the form (5.10). (We see now why we let j in (5.10) go from 1 to m2C2.m3�
m2/ D 2m3�m2.) Often those .x1; : : : ; xs/which satisfy (5.10) are called the feasible
solutions and those among them which maximise (5.5) the optimal solutions of the
linear optimisation problem.

We stated above the obvious way how to write, in form of inequalities (5.10), the
restrictions which had been given as Eqs. (5.8). We will use them in this form later.
Now we note, however, that conversely, one can replace all inequalities (5.10) by
equations and by special inequalities of the form (5.9), if one increases the number
of variables. Indeed, by introducing q WD 2m3 � m2 “slack variables”

xsCj WD bj � aj1x1 � : : : � ajsxs . j D 1; : : : ; q/

one can reduce (5.10) to

xsCj � 0 and aj1x1 C : : :C ajsxs C xsCj D bj . j D 1; : : : ; q/;

that is, to inequalities of the form (5.9) and to equations of the form (5.8). One may
even require (5.9) to hold for all variables by increasing the number of equations of
the form (5.8) and also again the number of variables. Indeed if, for instance, xk is
permitted to take any real value, we can substitute xk D x0

k � x00
k and add the two

inequalities x0
k � 0; x00

k � 0 which are of the form (5.9). This gives the following
“canonical form” of linear optimisation problems.

Maximise

G.x1; : : : ; xn/ D c1x1 C : : :C cnxn (5.11)

under the conditions (restrictions)

aj1x1 C : : :C ajnxn D bj . j D 1; : : : ;m/; (5.12)

xk � 0 .k D 1; : : : ; n/: (5.13)

With the vector and matrix notations of Sects. 1.3, 1.4, 4.2 and 4.3 (including the
inner product in 1.3 3), this can be written as follows. Find

x D

0

B
@

x1
:::

xn

1

C
A 2 Rn
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which maximises

G.x/ D c � x

under the conditions

Ax D b; x>D 0; (5.14)

where

c D

0

B
@

c1
:::

cn

1

C
A 2 Rn; b D

0

B
@

b1
:::

bm

1

C
A 2 Rm; A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A 2 Rmn

are constant vectors and matrices.
The set of feasible solutions of this problem is a polyhedron (since all conditions

are affine) and is convex (see Sect. 3.3), since x1 and x2 satisfying

Ax1 D b; x1 >D 0; Ax2 D b; x2 >D 0

implies, for all � 2 �0; 1Œ,

A.�x1 C .1 � �/x2/ D A�x1 C A.1 � �/x2 D
D �Ax1 C .1 � �/Ax2 D �b C .1 � �/b D b

and of course,

�x1 C .1 � �/x2 >D 0:

Example 1 The example on which we introduce the simplex algorithm will
again, as in Sect. 2.3, contain only two (genuine) variables, in order that
we can check the results on a figure, but we will be careful to describe
the algorithm so that its applicability to any number of variables become
eventually clear. The problem (equivalent to that in Sect. 4.1) is: Maximise

F.x1; x2/ D x1 C 2x2 (5.15)

under the conditions

x1 C x2 � 100; (5.16)

(continued)
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6x1 C 9x2 � 720; (5.17)

x2 � 60; (5.18)

x1 � 0; (5.19)

x2 � 0: (5.20)

As expected, we see in Fig. 5.1 that the set of feasible solutions is a convex
polygon. We see also that if this polygon is finite (bounded) then at least one of
the vertices of this polygon will be an optimal solution: Just move the contour lines

f.x1; x2/ j F.x1; x2/ D x1 C 2x2 D cg

Fig. 5.1 Set of feasible solutions (shaded area) and contour lines (the three parallel lines) of the
linear optimisation problem(5.15), (5.16), (5.17), (5.18), (5.19), and (5.20)
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parallely by increasing c. (Note that, if one of the sides of the polygon were parallel
to the contour lines, then more than one vertex and not only vertices would be
optimal solutions.)

The canonical form (5.11), (5.12), (5.13) of this problem is as follows. Maximise

G.x1; x2; x3; x4; x5/ D c1x1 C c2x2 C c3x3 C c4x4 C c5x5

D x1 C 2x2 C 0x3 C 0x4 C 0x5 (5.21)

.D F.x1; x2//

under the restrictions

x1 C x2 C x3 D 100; (5.22)

6x1 C 9x2 C x4 D 720; (5.23)

x2 C x5 D 60; (5.24)

x1 � 0; x2 � 0; x3 � 0; x4 � 0; x5 � 0: (5.25)

In order to decide which vertex or vertices (in case of more than one also the
sides between them) are optimal, let us tabulate their impact (Table 5.1).

This shows that C is an optimal solution among the vertices. But F is strictly
increasing in both variables x1 and x2, so no other (non-vertex) points of the feasible
set can be optimal. Actually, in this case the “method of steepest ascent”, presented
in Sect. 2.3, happens to yield the optimal solution of the linear optimisation problem.
Indeed, the direction of steepest ascent for F.x1; x2/ D x1 C 2x2 is (compare
Sect. 2.3) that of the vector .1; 2/, so the lines of steepest ascent through .0; 0/
consists of the points

.x1; x2/ D .�; 2�/:

Here � � 0 by (5.19) and 24� � 720, that is, � � 30 by (5.17). Since F.x1; x2/ D
x1 C 2x2 strictly increases both with x1 and x2, thus with �, the maximal value of F
on this line of steepest ascent is reached for � D 30, that is at

C D .30; 60/

Table 5.1 Slack variables and function values at the vertices in Fig. 5.1

Values of variables Variables Feasible solution point Value of

Vertex different from 0 equal to 0 .x1; x2; x3; x4; x5/ G there

A D .0; 0/ x3 D 100, x4 D 720, x5 D 60 x1; x2 .0; 0; 100; 720; 60/ 0

B D .0; 60/ x2 D 60, x3 D 40, x4 D 180 x1; x5 .0; 60; 40; 180; 0/ 120

C D .30; 60/ x1 D 30, x2 D 60, x3 D 10 x4; x5 .30; 60; 10; 0; 0/ 150

D D .60; 40/ x1 D 60, x2 D 40, x5 D 20 x3; x4 .60; 40; 0; 0; 20/ 140

E D .100; 0/ x1 D 100, x4 D 120, x5 D 60 x2; x3 .100; 0; 0; 120; 60/ 100
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which clearly satisfies also (5.16), (5.18) and (5.20). As pointed out in Sect. 2.3, the
line of steepest ascent from a given point does not always reach the (or an) optimal
point. Actually it is the single line ascent from the origin, not the advance orthogonal
to the contour lines (planes, hyperplanes) what is restrictive. In order to find a
more broadly efficient method, let us look more thoroughly at the conditions (5.16),
(5.17), (5.18), (5.19), and (5.20) in the form (5.22), (5.23), (5.24), and (5.25), as
illustrated by Fig. 5.1 and Table 5.1.

On the sides BC, CD and DE there has to be equality in one of the inequali-
ties (5.16), (5.17), and (5.18)—in exactly one, because none of Eqs. (5.22), (5.23),
and (5.24) is redundant or contradictory, since the matrix of coefficients in their
system of linear equations,

A D
0

@
1 1 1 0 0

6 9 0 1 0

0 1 0 0 1

1

A ;

has rank 3 (see Sect. 4.5), for instance the last three column vectors are linearly
independent. But equality in (5.16), (5.17) or (5.18) means, by the definition of
slack variables, that

x3 WD 100� x1 � x2 or x4 WD 720� 6x1 � 9x2 or x5 WD 60� x2;

respectively, is zero. On the sides AB and AE, of course, x1 D 0 or x2 D 0,
respectively. Accordingly, at each of the vectors A, B, C, D, E exactly two among
x1, x2, x3, x4 and x5 are zero.

In general, for (5.12) and (5.13), n � m variables will be 0 at the “vertices”.
It can be shown that linear optimisation problems have their solutions at these
vertices. More exactly: If a linear function G has a maximum at all on the convex set
described by (5.12) and (5.13) then it assumes it on one of its vertices. (We did not
say only there. Actually, the set of optimal solutions is convex, since G.x1/ D G.x2/
implies

G.�x1 C .1 � �/x2/ D c1.�x11 C .1 � �/x21/C : : :C cn.�x1n C .1 � �/x2n/
D �G.x1/C .1 � �/G.x2/ D G.x1/

for all � 2 Œ0; 1�). So we may restrict ourselves to vertices. This is another reason
why we considered only vertices in Table 5.1. In general, however, it would also be
prohibitively too much work to calculate, as we have done in Table 5.1, the values
of the objective function even at all vertices and find the largest among them.

The simplex algorithm permits to move from the .trivial/ vertex A D .0; 0/ with
less calculation (in the case (5.21), (5.22), (5.23), (5.24), and (5.25) in “three easy
steps”) right away to the .or one/ vertex yielding the optimal solution (in this case
to C D .30; 60/ and so to 150 maximum).
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On (5.21), (5.22), (5.23), (5.24), and (5.25) it works as follows. Since the slack
variables have been defined there by

x3 D 100� x1 � x2; x4 D 720� 6x1 � 9x2; x5 D 60� x2 (5.26)

(see (5.22), (5.23) and (5.24), respectively), in the point A, that is for x1 D x2 D 0,
we get

x3 D 100; x4 D 720; x5 D 60 and G.0; 0; 100; 720; 60/D 0: (5.27)

Of course, we want to do better (we hardly could have done worse) in getting a
larger value of G in (5.21). That is not difficult. For instance, keeping x1 D 0, we
may increase x2 (the “entering variable”) and get larger values of G. How far can we
increase x2? Because of (5.25), x1, x3, x4, x5 are nonnegative, so we have by (5.24)
x2 � 60, by (5.22) x2 � 100, and, by (5.23) 9x2 � 720, that is, x2 � 80. Clearly,
x2 � 60 is the most stringent of these restrictions and thus x2 D 60 is the best (gives
the greatest G-value) among the feasible solutions with x1 D 0. This yields the next
solution (use also (5.26) and (5.21)):

x1 D 0; x2 D 60; x3 D 40; x4 D 180; x5 D 0

and G.0; 60; 40; 180; 0/D 120;
(5.28)

certainly much better. (Actually we happened to arrive at vertex B in Fig. 5.1, see
also Table 5.1.) The variable x5, which became 0, now “leaves”.

What is the simplest way to improve this further? In the first step it was helpful
that in (5.27) two of the variables (x1 and x2) were 0. We kept one zero and increased
the second so far as we could (keeping the solution feasible) thus increasing the
value of G. But there are two 0 variables in (5.28) too: x1 and x5 (there have to be
since we decreased at least one of the quantities in (5.26) to 0). The essential thing is
to treat all variables in the canonical form (5.21), (5.22), (5.23), (5.24), and (5.25)
in the same way. Only now we must replace (5.26) by equations containing x1 and
x5 rather than x1 and x2 on the right. This is easy, the following equations are clearly
equivalent to (5.26):

x2 D 60� x5; x3 D 40� x1 C x5; x4 D 180� 6x1 C 9x5: (5.29)

With these we get a new form of the objective function, namely,

G.x1; x2; x3; x4; x5/ D 120C x1 � 2x5: (5.30)

Note that the increase in x5 would decrease the value of G (that is why x5 had to
“leave”), so we have no choice (we had in the first step: we could have increased
x1 rather than x2; we chose x2 because (5.21) grows faster in x2 than in x1): the
right-hand side variable to increase is x1 (this is the entering variable). So, keeping
x5 D 0, we increase G by increasing x1. How much can we increase x1? Since now
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x5 D 0 and still x3 � 0, x4 � 0, we get from (5.29) x1 � 40 and x1 � 180=60 D 30.
The latter being the stronger restriction, the greatest feasible value of x1 is 30. This
gives x4 D 0, so x4 is the next (and last) leaving variable. With (5.29) and (5.30) we
get

x1 D 30; x2 D 60; x3 D 10; x4 D 0; x5 D 0

and G.30; 60; 10; 0; 0/D 150:
(5.31)

Actually, we arrived at the vertex C in Fig. 5.1 (compare Table 5.1), so we know
that we got the optimal solution: We needed just the three vertices A,B and C. They
span a triangle, which is a simplex in R2. A simplex in Rn is a convex polyhedron
(compare Sect. 3.3 6) spanned by .n C 1/ points. That is where the name simplex
algorithm comes from. But we are not finished yet, because we know only from
inspection of Fig. 5.1 or from the longer calculation above that we reached the (or
an) optimal solution. However, we can recognise this also by the same procedure
which we used already twice to improve the solution: Also in (5.31) there stand 0’s
for two variables, x4 and x5. Expressing first x1 then x2, x3 and finally, the function
value in terms of x4 and x5, we get from (5.29) and (5.30)

x1 D 30� 1

6
x4 C 3

2
x5; x2 D 60 � x5; x3 D 10C 1

6
x4 � 1

2
x5; (5.32)

G.x1; x2; x3; x4; x5/ D 150� 1

6
x4 � 1

2
x5: (5.33)

It is clear from the last equation that, among nonnegative x4, x5, the values x4 D 0,
x5 D 0 (and so x1 D 30, x2 D 60, x3 D 10) give the greatest value of G
and that is 150. But this was (5.31), so no improvement is possible, the linear
approximation problem is solved. This procedure, which is considerably shorter
than putting Table 5.1 together and at least as simple to describe, is the simplex
algorithm.

What we will do now is to describe, using appropriate terminology, this simplex
algorithm for the general linear optimisation problem written, with the aid of “slack
variables”, in the form (5.11), (5.12), and (5.13). If r is the rank of the matrix

A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A

of coefficients in the system of linear equations

aj1x1 C : : :C ajnxn D bj . j D 1; : : : ;m/ (5.34)
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then (see Sect. 4.5) r � m, r � n. A particular solution of this system, in which
n � r of the variables x1; : : : ; xn are 0 (and the rest is nonnegative) is called a
basic feasible solution. The r variables, which we did not choose to be 0 are
the basic variables in this set-up or “dictionary”. If we let the other variables
vary again then the basic variables can be expressed with them, if we solve the
system of linear equations (5.34) with respect to these r (basic) variables (note that
rank A D r, compare Sect. 4.5). In the systems of equations thus obtained (such
as (5.26), (5.29) and (5.32)), the r basic variables are on the left hand side and linear
combinations (with constant coefficients) of the non-basic variables and of 1 are on
the right (compare (4.45) here the non-basic variables are the parameters). Systems
of equations set up like this are called dictionaries. Clearly the different dictionaries
belonging to the same problem (differing only in the choice of the basic variables)
are equivalent, because they are all equivalent to (5.34).

So, after writing the general linear optimisation problem in the form (5.11),
(5.12), and (5.13), we choose, say, the last n � r variables as basic variables, express
them with aid of the first r, non-basic, variables, thus get our first dictionary and
substitute this into the objective function. If we choose 0’s as the values of the non-
basic variables, we get the first basic feasible solution. Looking at the objective
function in terms of varying non-basic variables again, we choose one of the (non-
basic) variables, that with the largest positive coefficient as entering variable and
keep it varying, while putting 0’s for the remaining non-basic variables. From the
dictionary we get the largest feasible value of our non-basic variable, making (at
least) one other, the leaving variable 0. We obtain also the values of all basic
variables and of the objective function. This gives our second basic feasible solution.
Necessarily (at least) n � r variables will be 0 in it. We choose these as the new non-
basic variables of our problem and keep repeating this procedure till all (non-basic)
variables in the objective function have nonpositive coefficients (as in (5.33)). Then
the linear optimisation problem is solved.

We do not dwell here upon the details of when and why this happens, the example
may be instructive enough. However we present a simplified writing of (5.21),
(5.22), (5.23), (5.24), (5.25), (5.26), (5.27), (5.28), (5.29), (5.30), (5.31), (5.32),
and (5.33). We repeat these equations in a slightly changed but clearly equivalent
form while indicating in the left column the basic variable or function value which
the equation serves to determine (Table 5.2): (Because of the way we wrote the
operation(s) determining G, the algorithm ends when all coefficients in it are
nonnegative). In Table 5.3 we convert the above into a skeleton array by omitting
the variables (keeping just the coefficients) and the second occurrences of G. We list
also the basic solutions.

The maximum is 150 and so, in the problem in Sect. 4.1, the maximum profit
contribution is 40 � 150 D 6000 (cents).

Table 5.3 consists of the (three) simplex tableaus; it forms the tableau format
belonging to the linear optimisation problem (5.21), (5.22), (5.23), (5.24), and
(5.25).
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Table 5.2 Simplex tableau for a zero-sum game

x3 x1 C x2 C x3 = 100

x4 6x1 C 9x2 C x4 = 720

x5 x2 C x5 = 60

G G � x1 � 2x2 = 0

x3 x1 C x3 � x5 = 40

x4 6x1 C x4 C 9x5 = 180

x2 x2 C x5 = 60

G G � x1 C 2x5 = 120

x3 x3 � 1
6
x4 C 1

2
x5 = 10

x1 x1 C 1
6
x4 � 3

2
x5 = 30

x2 x2 C x5 = 60

G G C 1
6
x4 C 1

2
x5 = 150

Table 5.3 Simplex tableaus: the tableau format and its use for solving the linear optimisation
problem (5.21), (5.22), (5.23), (5.24), and (5.25)

Basic variables

and function Coefficients of Constants on the

values determined x1 x2 x3 x4 x5 right hand side Basic feasible solutions

x3 1 1 1 100 First: x3 D 100,

x4 6 9 1 720 x4 D 720, x5 D 60;

x5 1 1 60 x1 D x2 D 0;

G �1 �2 0 G.0; 0; 100; 720; 60/ D 0

x3 1 1 �1 40 Second: x2 D 60,

x4 6 1 �9 180 x3 D 40, x4 D 180,

x2 1 1 60 x1 D x5 D 0;

G �1 2 120 G.0; 60; 40; 180; 0/ D 120

x3 1 � 1
6

1
2

10 Third: x1 D 30,

x1
1
6

� 3
2

30 x2 D 60, x3 D 10,

x2 1 60 x4 D x5 D 0;

G 1
6

1
2

150 G.30; 60; 10; 0; 0/ D 150

Solving the problem (5.21), (5.22), (5.23), (5.24), and (5.25) can be completely
mechanised (or computerised) by transforming each, in our case four-line tableau—
of which the first immediately corresponds to the original problem with slack
variables—into the next, as follows.

Step 1. Ignore the last two columns (“Basic feasible solutions” and “Constants
on the right hand side”). If (as in the third tableau in Table 5.3) all numbers in
the last (fourth) row are nonnegative then stop: the tableau describes an optimal
solution. Otherwise find (one of) its minimal numbers (�2 for the first, �1 for
the second tableau in Table 5.3). The column in which it appears is that of the
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entering variable (x2, resp. x1 in Table 5.3) called pivot column. We frame it.
For the first and second tableau of our example we get (see Table 5.3)

1 1 1 0 0 1 0 1 0 �1
6 9 0 1 0 6 0 0 1 �9
0 1 0 0 1 0 1 0 0 1

�1 �2 0 0 0 �1 0 0 0 2 :

Step 2. For each row (except the last, G), whose entry, say ˛, in the pivot column
is positive, look up the entry, say ˇ, in the (previously omitted) “constants in
the right hand side” column. The row with the smallest ratio ˇ=˛ is that of the
leaving variable (x5, resp. x4) called the pivot row. (If all entries of the pivot
column are nonpositive then the problem is unbounded, see Example 3). We
frame this row too. The number at the intersection of the pivot row and pivot
column is the pivot number. Divide every entry in the pivot row by the pivot
number.

The pivot numbers of our first and second tableau in Table 5.3 are 1 and 6,
respectively:

1 1 1 0 0 100 1 0 1 0 �1 40
6 9 0 1 0 720 [6] 0 0 1 �9 180
0 [1] 0 0 1 60 0 1 0 0 1 60

�1 �2 0 0 0 0 �1 0 0 0 2 120 .

Step 3. Add (compare Sect. 4.5 (I)) a (positive or negative) multiple of the pivot
row to each other row so that 0’s should stand as entries in the pivot column
(except for the pivot number). Now apply Step 1 to the new tableau.
In our example we obtain so from the first tableau written down with Step 2 the
second one and from that the third and the last simplex tableau of Table 5.3:

0 0 1 �1=6 1=2 10

1 0 0 1=6 �3=2 30

0 1 0 0 1 60

0 0 0 1=6 1=2 150:

It is the last tableau since the entries in the last row are all nonnegative.It
describes the optimal solution of our example; see Step 1. The reader can easily
check how the operations on the tableaus correspond to those on the equations.

The application of this algorithm, that is the simplex algorithm or simplex
method, to the cases of more equations and of more variables should be equally
clear. It is not always free of problems, however. Three kinds of problems may
occur:
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(i) The “origin” (zero vector); in the above example x1 D 0, x2 D 0 may not be a
feasible solution. In this case (and if there exists a feasible solution at all) one
starts with a feasible solution point, preferably close to the suspected optimal
solution point. (We can do this even if the origin is a feasible solution point).
Often introducing further dummy variables helps. We do not go into details.

(ii) The simplex algorithm may “go in circles” (compare Sects. 6.7 and 11.1),
the first dictionary reappears, an optimal solution is not reached even if an
optimal solution exists. This happens rarely but it can happen. For instance
all variables of a basic (feasible) solution may have the value 0. Changing
(“perturbing”) the right hand sides of the conditions by different (independent)
quantities �1; : : : ; �m, solving the new linear optimisation problem and then
ignoring �1; : : : ; �m in the solution (replacing them by 0) is a possible way to
get out of this dilemma. We do not go into these details either.

(iii) There may not exist an optimal solution or even a feasible solution at all.

Example 2 The linear optimisation problem: maximise

2x1 C 3x2 (5.35)

under the conditions

x1 C 2x2 � 4; (5.36)

�x1 � 4x2 � �12; (5.37)

x1 � 0; x2 � 0 (5.38)

has no feasible solution, so also no optimal solution: Indeed (see Fig. 5.2)
there exist no nonnegative x1, x2 which satisfy both (5.36) and (5.37).

Fig. 5.2 The two sets A D f.x1; x2/ 2 R2
C j x1 C2x2 � 4g and B D f.x1; x2/ 2 R2

C j x1 C4x2 �
12g have no point in common, so the pair of inequalities x1 C 2x2 � 4;�x1 � 4x2 � �12 has no
nonnegative solutions
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Example 3 The linear optimisation problem: maximise

F.x1; x2/ D 5x1 � 2x2

under the conditions

�x1 C x2 � �2;
�x1 � 3x2 � �3;
x1 � 0; x2 � 0

has feasible solutions (for instance x1 D 4, x2 D 1) but no optimal solution.
Indeed the pairs .x1; x2/ satisfying all three conditions are represented in
Fig. 5.3 by the points (elements) of the sets L \ M. The contour lines (see
Sect. 3.1) of F are given by 5x1 � 2x2 D c. In Fig. 5.3 these are drawn for
c D 5; 20 and 35. Clearly, arbitrary large c-values greater than or equal to
10.75 (D F.9=4; 1=4)), compare Fig. 5.3 can be reached within L \ M.

Of course nonexistence or existence of an optimal solution and its value can be
determined without recourse to figures (we showed this explicitly for Example 1
by the simplex method) and similar statements can be proved for more than two
variables, but the proofs are often more difficult.

Fig. 5.3 The set L \ M, where L D f.x1; x2/ 2 R2
C j � x1 C x2 � �2g and M D f.x1; x2/ 2

R2
C j x1 C 3x2 � 3g, represents all feasible solutions of the linear optimisation problem in

Example 3. The three parallel straight lines through .1; 0/, .4; 0/ and .7; 0/ are the contour lines
f.x1; x2/ 2 R2

C j 5x1 � 2x2 D cg of F for c D 5, c D 20, and c D 35, respectively
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In all such problems consideration of the dual problem may help and lead further
to the solution if it exists.

5.2.1 Exercises

Solve, by establishing the simplex tableaus, the following linear optimisation
problems.

1. Maximise G.x1; x2; x3; x4/ D 6x1 C 4x2 under the restrictions

x1 C 2x2 � 8; 3x1 C x2 � 9; x1 � 0; x2 � 0:

2. Minimise G.x1; x2; : : : ; x6/ D �2x1 C x2 under the restrictions

�3x1 C 2x2 � 6; x1 C 5x2 � 32; x1 C x2 � 12; 3x1 C x2 � 30;

x1 � 0; x2 � 0:

3. Maximise G.x1; x2; : : : ; x6/ D 2x1 C x2 under the restrictions in Exercise 2.
4. Minimise G.x1; x2; : : : ; x5/ D x1 C 2x2 under the restrictions

x1 C x2 � 4;�2x1 C x2 � 1;�x1 C 2x2 � 8; x1 � 0; x2 � 0:

5. Maximise G.x1; x2; : : : ; x5/ D 20x1 C 10x2 under the restrictions

x1 C x2 � 100; 9x1 C 6x2 � 720; x1 � 60; x1 � 0; x2 � 0:

5.2.2 Answers

1. It follows the simplex tableau:

x1 x2 x3 x4 Basic feasible solutions

x3 1 2 1 8 First: x3 D 8, x4 D 9;

x4 [3] 1 1 9 x1 D x2 D 0;

G �6 �4 0 G.0; 0; 8; 9/ D 0

x3


5
3

�
1 � 1

3
5 Second: x1 D 3, x3 D 5;

x1 1 1
3

1
3

3 x2 D x4 D 0;

G �2 2 18 G.3; 0; 5; 0/ D 18

x2 1 3
5

� 1
5

3 Third (= optimal solution):

x1 1 � 1
5

2
5

2 x1 D 2, x2 D 3, x3 D x4 D 0;

G 6
5

8
5

24 G.2; 3; 0; 0/ D 24
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2. First basic feasible solution:

x3 D 6; x4 D 32; x5 D 12; x6 D 30I x1 D x2 D 0I
G.0; 0; 6; 32; 12; 30/D 0:

Second basic feasible solution (= optimal solution):

x1 D 10; x3 D 32; x4 D 22; x5 D 2I x2 D x6 D 0I
G.10; 0; 36; 22; 2; 0/D �20:

3. First basic feasible solution: same as in Exercise 2.
Second basic feasible solution: same as in Exercise 2, but this time we do not

get an optimal solution.
Third basic feasible solution (= optimal solution):

x1 D 9; x2 D 3; x3 D 27; x4 D 8I x5 D x6 D 0I
G.9; 3; 27; 8; 0; 0/D 21:

4. First basic feasible solution:

x3 D �4; x4 D �1; x5 D 8I x1 D x2 D 0I
G.0; 0;�4;�1; 8/ D 0:

Second basic feasible solution:

x1 D 4; x4 D �9; x5 D 12I x2 D x3 D 0I
G.4; 0; 0; 9; 12/D 4:

Third basic feasible solution (= optimal solution):

x1 D 1; x2 D 3; x5 D 3I x3 D x4 D 0I
G.1; 3; 0; 0; 3/ D 7:

5. First basic feasible solution:

x3 D 100; x4 D 720; x5 D 60I x1 D x2 D 0I
G.0; 0; 100; 720; 60/D 0:

Second basic feasible solution:

x1 D 60; x3 D 40; x4 D 180I x2 D x5 D 0I
G.60; 0; 40; 180; 0/D 1200:
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Third basic feasible solution (= optimal solution):

x1 D 60; x2 D 30; x3 D 10I x4 D x5 D 0I
G.60; 30; 10; 0; 0/D 1500:

5.3 Duality

We introduce duality using the example of the linear optimisation problem (5.15),
(5.16), (5.17), (5.18), (5.19), and (5.20). Going back to the interpretation we gave
in Sect. 4.1 to this problem (there (4.1), (4.2), (4.3), and (4.4) for .x1; x2/ 2 R2C),
suppose that, as a first approach, the factory owners want only a realistic estimation
of the maximal profit they can attain under the conditions set by the supermarket
chain. Of course, any feasible solution gives a lower estimate of the maximum. For
instance, as we have seen, x1 D 60, x2 D 40 satisfy (5.16), (5.17), (5.18), (5.19),
and (5.20). They give

H.60; 40/D 40F.60; 40/D 40.60C 80/ D 5600

as a lower estimate of the maximum. (We happen to know that the maximum is
6000). A better (because larger) lower estimate of the maximum is furnished by
x1 D 45, x2 D 50, which also satisfy (5.16), (5.17), (5.18), (5.19), and (5.20) and
give

H.45; 50/ D 40.45C 100/ D 5800:

As to the estimation of the maximum from above, (5.16) gives 2x1 C 2x2 �
200, so

H.x1; x2/ D 40.x1 C 2x2/ � 40.2x1 C 2x2/ � 8000

(we used also x1 � 0, that is, (5.19)). We get a better (because smaller) upper
estimate of the maximum, if we multiply (5.17), that is 6x1 C 9x2 � 720, by 2/9:
.4=3/x1 C 2x2 � 160. This and x1 � 0 give

H.x1; x2/ D 40.x1 C 2x2/ � 40

�
4

3
x1 C 2x2

�

� 6400:

Clearly we can use a linear combination with coefficients of the inequali-
ties (5.16), (5.17) and (5.18) to get upper estimates of the maximum. The question
is, which coefficients are best. These will give not just an upper estimate, but exactly
the maximum.
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For easier reference, we restate the problem. Maximise

F.x1; x2/ D x1 C 2x2 (5.39)

(or H.x1; x2/ D 40F.x1; x2/) under the conditions

x1 C x2 � 100; (5.40)

6x1 C 9x2 � 720; (5.41)

x2 � 60; (5.42)

x1 � 0; (5.43)

x2 � 0: (5.44)

We now multiply (5.40), (5.41) and (5.42) by y1 � 0, y2 � 0, and y3 � 0,
respectively, and add the inequalities so obtained (which we can do), that is, we
take a linear combination of (5.40), (5.41) and (5.42) with nonnegative coefficients:

y1.x1 C x2/C y2.6x1 C 9x2/C y3x2 � 100y1 C 720y2 C 60y3: (5.45)

Rearrangement gives

.y1 C 6y2/x1 C .y1 C 9y2 C y3/x2 � 100y1 C 720y2 C 60y3: (5.46)

We want to choose y1, y2, y3 so that F.x1; x2/ D x1C2x2 be smaller than or equal
to the left hand side of (5.46). When y1, y2, y3 will be chosen accordingly, we will
use the right hand side as an upper estimate (really the value) of the maximum of
x1 C 2x2. So we look for y1, y2, y3 such that

F.x1; x2/ D x1 C 2x2 � .y1 C 6y2/x1 C .y1 C 9y2 C y3/x2
.� 100y1 C 720y2 C 60y3/:

(5.47)

This can hold for all (or sufficiently many) x1 and x2 only if

y1 C 6y2 � 1;

y1 C 9y2 C y3 � 2:

So, if the nonnegative y1, y2, y3 satisfy these inequalities then 100y1C 720y2 C60y3
is an upper bound of F.x1; x2/. We try of course to make this as small as possible
which then gives the maximum of F.x1; x2/ (the equality of the least upper bound
to the maximum is not completely obvious, compare Sect. 6.2). So our problem is
now: minimise

f .y1; y2; y3/ D 100y1 C 720y2 C 60y3 (5.48)
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under the conditions

y1 C 6y2 � 1; (5.49)

y1 C 9y2 C y3 � 2; (5.50)

y1 � 0; y2 � 0; y3 � 0: (5.51)

As we see, this is a linear optimisation problem too, the dual problem to the primal
problem (5.39), (5.40), (5.41), (5.42), (5.43), and (5.44). Notice that the coefficients
in (5.48) are the right hand sides in (5.40), (5.41), and (5.42) while the right hand
sides in (5.49), (5.50) are the coefficients in (5.39). The coefficient matrix of (5.49)
and (5.50) is the transposed of that in (5.40), (5.41), and (5.42) (rows and columns
interchanged).

We present an intuitive way to the situation of the dual problem (5.48), (5.49),
(5.50), and (5.51) which is faster than that of the primal problem. Since we want to
minimise (5.48), the smaller y1, y2, y3 are the better. So let us replace � in (5.49)
and (5.50) by D and see whether there are nonnegative solutions. The system of
linear equations

y1 C 6y2 D 1; (5.52)

y1 C 9y2 C y3 D 2 (5.53)

can be solved by the method in Sects. 4.5 and 4.6, for instance by elimination.
Subtract (5.52) from (5.53):

3y2 C y3 D 1:

Now multiply (5.52) by 3=2 and subtract (5.53):

1

2
y1 � y3 D �1

2
:

These give

y1 D 2� � 1; y2 D 1 � �
3

with y3 D �; (5.54)

which indeed satisfy (5.52) and (5.53) for every �.
But, by (5.51),y1 D 2�� 1 � 0 and y2 D .1 � �/=3 � 0, that is,

1

2
� � � 1
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(then also y3 D � > 0). Substitute (5.54) into (5.48):

f .y1; y2; y3/ D f

�

2� � 1; 1 � �
3

; �

�

D 100.2�� 1/C 720
1� �
3

C 60� D 140C 20�:

Since � � 1=2, the right hand side will be smallest for � D 1=2, that is
(see (5.54)), for

y1 D 0; y2 D 1

6
; y3 D 1

2
(5.55)

and the minimum of f .y1; y2; y3/, thus the maximum of F.x1; x2/ will be 140C10 D
150, in accordance with what we have found before. (However, the x1, x2 which give
F.x1; x2/ D 150 and satisfy (5.16), (5.17), (5.18), (5.19), and (5.20) have still to be
determined. We saw before that they are x1 D 30; x2 D 60.)

The (y1 D 0 and) y2 D 1=6, y3 D 1=2 of (5.55) in the above solution are
called “shadow prices” or “opportunity costs” for the following reason. We go back
to the original formulation of our linear optimisation problem in Sect. 4.1 and ask
what would happen if the supermarket chain were willing to increase, say by t, the
$720 bound on what it intended to spend per week for the two kinds of detergents
(see (5.17) and (5.2)).

Then system (5.16), (5.17), (5.18), (5.19), and (5.20) of inequalities in our
original problem changes to

x1 C x2 � 100; (5.56)

6x1 C 9x2 � 720C t (5.57)

x2 � 60 (5.58)

x1 � 0; (5.59)

x2 � 0; (5.60)

while we still want to maximise the factory’s profit (really (1=40) times the profit)

F.x1; x2/ D x1 C 2x2: (5.61)

Every feasible solution of this problem satisfies

F.x1; x2/ D x1 C 2x2
D 0.x1 C x2/C 1

6
.6x1 C 9x2/C 1

2
x2

� 1
6
.720C t/C 1

2
60

D 150C 1
6
t:

(5.62)
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(Compare this to (5.45) and (5.47) with (5.55)). The connection is not accidental, as
we will see below in rule .v/ of duality theory. So the extra profit will never exceed
.1=6/. In fact, the factory has the opportunity to increase its profit by .1=6/t with
0 � t � 60 (in order to satisfy (5.56)) by choosing

x1 D 30C 1

6
t; x2 D 60:

(Remember, x1 D 30, x2 D 60 was the solution of our original problem). Indeed,
then x2 > 0, x1 > 0, x2 � 60 and

x1 C x2 D 30C 1
6
t C 60 D 90C 1

6
t � 100 (because t � 60/;

6x1 C 9x2 D 6
�
30C 1

6
t
	C 540 D 720C t;

so (5.60), (5.59), (5.58), (5.56) and (5.57) are satisfied, while F.x1; x2/ D x1C2x2 D
150 C .1=6/t for (5.61) (compare (5.62)). A similar result applies if we want to
change 100 in (5.56) or 60 in (5.58) (or two or all three).

In (5.45) and (5.46), as in our original problem, x1 and x2 were weight units, so
their coefficients y1; y2; y3 can be considered prices (as 6 and 9 in (5.56), (5.41)
and (5.2)). If, as in (5.62) and (5.55), they are chosen as solutions of the dual
problem then they are called “shadow prices”. Of course, linear optimisation and
duality applies to many other practical matters, not just to prices.

In general, duality can be formulated as follows. The primal linear optimisation
problem: maximise

F.x1; : : : ; xn/ D c1x1 C : : :C cnxn (5.63)

under the conditions

aj1 C : : :C ajnxn � bj . j D 1; : : : ;m/; (5.64)

xk � 0 .k D 1; : : : ; n/ (5.65)

has the dual problem: minimise

f .y1; : : : ; ym/ D b1y1 C : : :C bmym (5.66)

under the conditions

a1ky1 C : : :C amkym � ck .k D 1; : : : ; n/ (5.67)

yj � 0 . j D 1; : : : ;m/: (5.68)

So, also in this general situation, in the dual problem we have to minimise a
linear function (5.66) whose coefficients are the right hand sides (upper bounds)
in the conditions (5.64) of the primal problem, while the right hand sides (lower
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bounds) in the conditions (5.67) of the dual problem are the coefficients of the linear
function (5.63) which was to be maximised in the primal problem. Finally, the matrix
of coefficients in the conditions (5.67) of the dual problem is the transposed matrix

AT D

0

B
@

a11 : : : am1
:::

:::

a1n : : : amn

1

C
A of the matrix A D

0

B
@

a11 : : : a1n
:::

:::

am1 : : : amn

1

C
A

in the conditions (5.64) of the primal problem. In vector-matrix form (Sects. 1.4, 4.2,
and 4.3) with the usual notations

x D

0

B
@

x1
:::

xn

1

C
A ; y D

0

B
@

y1
:::

yn

1

C
A ; b D

0

B
@

b1
:::

bn

1

C
A ; c D

0

B
@

c1
:::

cn

1

C
A ;

the primal problem is

maximise F.x/ D c � x under the conditions Ax<D b; x>D 0; (5.69)

while the dual problem is

minimise f .y/ D b � y under the conditions ATy>D c; y<D 0: (5.70)

Of course, one may interchange “maximise” with “minimise” and “upper bound”
with “lower bound”.

The duality theory consists of results like the following.

(i) The dual problem of the dual problem is the primal problem.
(ii) If the dual problem has a feasible solution Oy then the primal problem has a

feasible solution Ox and they satisfy (see (5.69) and (5.70))

F.Ox/ D c � Ox � b � Oy D f .Oy/: (5.71)

(iii) If the dual problem has an optimal solution Oy then the primal problem has an
optimal solution Ox and they satisfy

F.Ox/ D c � Ox D b � Oy D f .Oy/: (5.72)

(iv) If feasible solutions Ox, Oy of the primal and dual problems satisfy (5.72) then
they are optimal.

(v) If the primal problem (5.69) has a (nondegenerate) optimal solution x D Ox then
there is a positive � with the following property: If jtkj � � for k D 1; : : : ; n
then the problem maximise F.x/ D c �x under the conditions Ax<D bCt, x>D 0,
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(where t D .t1; : : : ; tn/) has an optimal solution and its value (maximum) is

F.Ox/C Oy � t;

where y D Oy is the optimal solution of the dual problem (5.70) of (5.69).

The result (iii) is often called the duality theorem. It is proved in general
essentially the same way as we did for the duality between (5.39), (5.40), (5.41),
(5.42), (5.43), and (5.44) and (5.48), (5.49), (5.50), and (5.51). Of course, (ii) and
(iii) imply that, if the primal problem has no feasible or no optimal solution then the
dual problem has no such solution either.

The result (i) is obvious (.AT/T D A). We prove here only a weaker form of (ii)
(and (iv) and (v) not at all), namely, we suppose that (5.69) and (5.70) have feasible
solutions Ox and Oy and show that they satisfy (5.72). The scalar product Ox � z D
Ox1z1C : : :C Oxnzn of two nonnegative vectors Ox>D 0 (see (5.69)) and z D ATy �c>D 0
(see (5.70)) is nonnegative: 0 � Ox � z D Ox � .AT Oy � c/ D Ox � AT Oy � Ox � c, so

Ox � AT Oy>D Ox � c D c � Ox D F.Ox/: (5.73)

On the other hand, by (5.69), AOx<D b, that is

aj1Ox1 C : : :C ajnOxn � bj . j D 1; : : : ;m/:

But then (we use also Oy>D 0, see (5.70))

Ox � AT Oy D C

0

B
@

Ox1
:::

Oxn

1

C
A �

0

B
@

a11 Oy1 C : : :C am1Oym
:::

a1n Oy1 C : : :C amnOym

1

C
A

D Ox1.a11 Oy1 C : : :C am1Oym/C : : :C Oxn.a1n Oy1 C : : :C amnOym/

D .a11 Ox1 C : : :C a1nOxn/Oy1 C : : :C .am1Ox1 C : : :C amnOxn/Oym

� b1 Oy1 C : : :C bmOym D b � Oy D f .Oy/:

In view of (5.73), we proved (5.72):

F.Ox/ D c � Ox � Ox � AOy � b � Oy D f .Oy/:

5.3.1 Exercises

Formulate the dual problem of the linear optimisation problem presented in

1. Exercise 1 (Sect. 5.1),
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2. Exercise 2 (Sect. 5.1),
3. Exercise 3 (Sect. 5.1),
4. Exercise 4 (Sect. 5.1),
5. Exercise 5 (Sect. 5.1).
6. Show that the minima or maxima determined as solutions of Exercises 1–5 are

the maxima or minima of Exercises 1–5 in Sect. 5.1, respectively.

5.3.2 Answers

1. Minimize g.y1; y2/ D 8y1 C 9y2 under the restrictions

y1 C 3y2 � 6; 2y1 C y2 � 4; y1 � 0; y2 � 0:

2. Maximize g.y1; y2; y3; y4/ D �6y1 � 32y2 � 12y3 � 30y4 under the restrictions

3y1 � y2 � y3 � 3y4 � �2; �2y1 � 5y2 � y3 � y4 � 1;

y1 � 0; y2 � 0; y3 � 0; y4 � 0:

3. Minimize g.y1; y2; y3; y4/ D 6y1 C 32y2 C 12y3 C 30y4 under the restrictions

�3y1 C y2 C y3 C 3y4 � 2; 2y1 C 5y2 C y3 C y4 � 1;

y1 � 0; y2 � 0; y3 � 0; y4 � 0:

4. Maximize g.y1; y2; y3/ D 4y1 C y2 � 8y3 under the restrictions

y1 � 2y2 C y3 � 1; y1 C y2 � 2y3 � 2; y1 � 0; y2 � 0; y3 � 0:

5. Minimize g.y1; y2; y3/ D 100y1 C 720y2 C 60y3 under the restrictions

y1 C 9y2 C y3 � 20; y1 C 6y2 � 10; y1 � 0; y2 � 0; y3 � 0:

5.4 Two-Person Zero-SumGames

The methods of linear optimisation and, in particular, duality theory have important
applications in game theory. The following describes a simple “game”. There are
two “players”, P and Q, who have the sets of “strategies” S D fs1; : : : ; smg and
T D ft1; : : : ; tng, respectively. Each strategy is a sequence (ordered set, see Sects. 1.3
and 3.1) of “moves” which take into consideration the prior moves of both players. If
P applied the strategy sj 2 S and Q the strategy tk 2 T then, at the end of the game,
P receives the payoff ajk 2 R (it may be positive, 0, or negative) and Q receives
the payoff �ajk . j D 1; : : : ;mI k D 1; : : : ; n/. Since there are just two players and
the sum of the payoff is 0, this is called a two-person zero-sum game. It can be
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Table 5.4 Matrix of payoffs
ajk for the player P. The
payoffs for the player Q are
�ajk

Strategies Strategies of Q

of P t1 t2 . . . tn

s1 a11 a12 . . . a1n

s2 a21 a22 . . . a2n

:
:
:

:
:
:

:
:
:

:
:
:

sm am1 am2 . . . amn

Table 5.5 Example of a
payoff matrix of a
deterministic game

t1 t2 t3 ˛j

s1 �2 1 �3 �3 minfajkjk D 1; 2; 3g
s2 5 4 6 4 ˛j

Ak 5 4 6

Ak D maxfajkj j D 1; 2g

represented by the matrix A D .ajk/ of payoffs for P (see Table 5.4). The matrix of
payoffs for Q is �A.

If the player P chooses the strategy sj, he gets at least the payoff

aj WD minfajkjk D 1; : : : ; ng:

He can obtain the maximum of these minima by a strategy sj� for which

˛j� D maxf˛jjj D 1; : : : ;mg:

Such an sj� is called a maximin-strategy for P and the payoff aj� which this strategy
offers to P is the lower game value. In the example in Table 5.5

˛1 D �3; ˛2 D 4; and ˛j� D ˛2 D 4:

Similarly, choosing the strategy tk, the player Q looses at most

Ak WD maxfajkjj D 1; : : : ;mg:

She will have to pay the least if she chooses the strategy tk� for which

Ak� D minfAkjk D 1; : : : ; ng:

Such a strategy, which minimises the maximal loss is called a minimax-strategy for
Q and Ak� is the upper game value. In Table 5.5

A1 D 5; A2 D 4; A3 D 6; and Ak� D A2 D 4:
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If P uses the strategy sj� and Q the strategy tk� in the same play then, by the
definition of the ˛0

j s and A0
ks as minima and maxima, respectively,

˛j� D aj�k� � Aj� : (5.74)

If, as in Table 5.5,

˛j� D aj�k� � Ak� (5.75)

then we say that the game is deterministic, aj�k� is the game value in pure strategies
and the pair .sk� ; tk�/ of strategies a saddle point of the game. The name “saddle
point” is used because

aj�k� � aj�k for k D 1; : : : ; n and aj�k� � ajk� for j D 1; : : : ;m;

so that, as with (horizontal) saddle points of functions of two variables (see Fig. 3.26
in Sect. 3.2 and, later, Fig. 8.6 in Sect. 8.3) in one direction (here the row) of the
matrix A there are no smaller values than aj�k� , in another (here the columns)
there are no greater values than aj�k� . The strategies .sj� ; tk�/ (in Table 5.5 .s2; t2/)
themselves are called equilibrium strategies because it is of no advantage to move
away from them (as long as the other sticks with it).

We now consider the game represented by Table 5.6.
It is not deterministic because the lower game value ˛1 D �2 is not equal to

the upper game value A1 D 4. Clearly there exist no equilibrium strategies. In each
of the possible confrontations .s1; t1/, .s2; t2/, .s2; t1/, .s2; t2/ there exists a more
favourable strategy for at least one player (.s1; t2/ better for Q than .s1; t1/, .s2; t2/
better for P than .s1; t2/, .s1; t1/ better for P than .s2; t1/, .s2; t1/ better for Q than
.s2; t2/).

The pairs of strategies .s1; t1/,.s1; t2/, .s2; t1/, .s2; t2/, can be described also
by .0; 0/, .0; 1/, .1; 0/, .1; 1/. These are pure strategies. If the game is played
several times then it is reasonable to assume that strategies are used with certain
probabilities. If Q plays always her strategy t1 while P plays his strategy s1 with
probability p 2 Œ0; 1� and so his strategy s2 with probability 1�p, then the expected
value of his payoff will be 4p C .�7/.1�p/. This expected value as function of p is
represented by the straight line segment connecting .0;�7/ with .1; 4/ (Fig. 5.4).

Similarly, if Q always plays strategy t2 and P plays as before, then the expected
value of P’s payoff is .�2/p C 8.1 � p/, represented by the segment connecting
.0; 8/ and .1;�2/.

Table 5.6 The payoff matrix
of a non-deterministic game

t1 t2
s1 4 �2 �2

s2 �7 8 �7

Ak 4 8
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Fig. 5.4 Expected value of
payoff as function of p for the
first player in Table 5.6, when
first player plays s1 with
probability p, s2 with
probability 1� p while the
second player sticks to t1 or
to t2

The two straight lines intersect at p D 5=7 since 4.5=7/ C .�7/.2=7/ D
.�2/.5=7/C 8.2=7/ D 6=7. So, if P plays his strategies s1 and s2 with probabilities
5=7 and 2=7, respectively, while Q sticks to t1 or to t2, then the expected value of
his minimal payoff will be maximal (equal to 6=7).

With aid of duality theory we will prove that the greatest (expected) minimal
payoff for the second player, Q, who plays her strategies t1 and t2 with probabilities
q and 1 � q, respectively (while P sticks to s1 or to s2) will be �6=7, so her
smallest maximal loss will be 6=7, attained for q D 10=21. Of course, we could
show this by the same direct way, but the duality theorem will show that Q’s
“maximal expected minimal payoff” in the second situation necessarily equals .�1/
times that of P in the first. In such situations we say that P and Q play mixed
strategies (for pure strategies the probabilities are 0 or 1) and 6=7 is the value of
the game played by mixed strategies, while the pairs of probabilities .5=7; 2=7/
or .10=21; 11=21/, which yield them, are the equilibrium probabilities (strategies)
under mixed strategy.

We set up the two linear optimisation problems as follows. The first player, P,
wants to maximise his minimal expected payoff x1�x2 (written so because the payoff
may be negative but the variables have to be nonnegative) by playing his strategies s1
and s2 with probabilities p1 and p2 D 1 � p, respectively, (we wrote above p1 D p).
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So, in the first linear optimisation problem the variables are p1; p2 (we use them as
separate variables with p1 C p2 D 1 as condition; in the case of n probabilities this
makes the calculation easier) and x1; x2. The “objective function” F depends only
upon the third and fourth variables

F. p1; p2; x1; x2/ D x1 � x2: (5.76)

This has to be maximised under the conditions (see Table 5.6)

4p1 � 7p2 � x1 � x2 (5.77)

(for the second player, Q, playing t1),

� 2p1 C 8p2 � x1 � x2 (5.78)

(for Q playing t2) and

p1 C p2 D 1; (5.79)

p1 � 0; p2 � 0; x1 � 0; x2 � 0: (5.80)

We have to bring the conditions (5.77), (5.78) to the form (5.64):

�4p1 C 7p2 C x1 � x2 � 0;

2p1 � 8p2 C x1 � x2 � 0:

We replace the equality (5.79), as we did with (5.8), by two inequalities:

p1 C p2 � 1;

�p1 � p2 � �1:

The condition (5.80) is already in the form (5.65):

p1 � 0; p2 � 0; x1 � 0; x2 � 0:

We could solve this, for instance, by the simplex method, but we have solved it
above and got

Op1 D 5

7
; Op2 D 2

7
; F.Op1; Op2; Ox1; Ox2/ D Ox1 � Ox2 D 6

7

as optimal solutions.
On the other hand the second player also wants to maximise her minimum

expected payoff, say y2�y1, that is, minimise her maximum expected loss y1�y2, by
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playing her strategies t1 and t2 with probabilities q1 and q2 D 1 � q1, respectively.
So the variables are q1, q2, y1, y2 and we have to minimise

f .q1; q2; y1; y2/ D y1 � y2

under the conditions (we write the losses, that is, the negatives of the payoffs)

4q1 � 2q2 � y1 � y2;�7q1 C 8q2 � y1 � y2; q1 C q2 D 1; (5.81)

that is,

�4q1 C 2q2 C y1 � y2 � 0;

7q1 � 8q2 C y1 � y2 � 0;

q1 C q2 � 1;

�q1 � q2 � �1;
q1 � 0; q2 � 0; y1 � 0; y2 � 0:

We see (compare (5.63), (5.64), (5.65), (5.66), (5.67), and (5.68)) that this second
linear optimisation problem is dual to the first, so, by the “duality theorem” (iii), for
their optimal solution we have, as asserted,

Oy1 � Oy2 D f .Oq1; Oq2; Oy1; Oy2/ D F.Op1; Op2; Ox1; Ox2/ D Ox1 � Ox2 D 6

7
: (5.82)

(The minimal loss of the second player equals the maximal gain of the first). The
values of Oq1; Oq2 can be determined from (5.81) and (5.82):

4Oq1 � 2Oq2 � 6

7
; �7Oq1 C 8Oq2 � 6

7
; Oq1 C Oq2 D 1:

If we write for simplicity Oq1 D q then Oq2 D 1 � q and we have

4q � 2.1� q/ � 6

7
; that is, q � 10

21

and

�7q C 8.1 � q/ � 6

7
; that is, q � 10

21
:

So indeed

Oq1 D q D 10

21
; Oq2 D .1 � q/ D 11

21
;

as we stated above.
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This method works also with arbitrary (but finite) numbers m, n of strategies
(compare Table 5.4) for two-person zero-sum games and leads to similar results,
whether they are deterministic or not deterministic (as in Table 5.6). One finds that
the following result holds:

Every two-person zero-sum game with m strategies for the first and n for the
second player (these are “pure” strategies) has a value Oz in mixed strategies, so
that there exists at least one mixed strategy with probabilities .Op1; : : : ; Opm/ for the
first and with probabilities .Oq1; : : : ; Oqn/ for the second player which guarantees a
minimal expected payoff (“gain”) Oz for the first and �Oz for the second player. This
means “maximal expected loss” Oz for the second player but notice that Oz may be
negative, in which case the second expects to gain at least �Oz and the first expects
to loose at most Oz.

We have used different methods above even for problems which could be solved
in the same way in order to acquaint the reader with several methods.

While two-person zero-sum games are important basic notions in game theory
and have applications, for instance to parlour games and to very simple situations
in economics, competitive situations in economics are better described by more
general, not (or not necessarily) zero-sum “games” with two or more “players”.
Their discussion is done by methods beyond linear optimisation theory. We will
deal with some of them in Sect. 8.6.

5.4.1 Exercises

Consider the matrix A D
�
3 2 4

1 4 0

�

as the payoff matrix of player P in a two-person

zero-sum game.

1. Determine the lower and the upper game value.
2. Change one of the elements (payoffs) of A so that the changed game is

deterministic with game value D 2.
3. With the above A determine equilibrium probabilities (strategies) under mixed

strategies for player P.
4. Do the same for the second player Q.
5. Determine the value of the game.

5.4.2 Answers

1. Lower game value D 2, upper game value D 3.
2. Insert, for instance, 2 for the number 3 in A.
3. p1 D p D 3=4, p2 D .1 � p/ D 1=4.
4. q1 D 1=2, q2 D 1=2, q3 D 0.
5. Game value D 5=2.



6Functions, Their Limits and Their Derivatives

Hold infinity in the palm of your hand.

WILLIAM BLAKE (1757–1827)

6.1 Introduction

Many concepts in the social sciences, in particular in economics, such as marginal
productivity, marginal costs, marginal profit, marginal rate of substitution, elasticity
(for instance price–elasticity of demand, elasticity of substitution) cannot be well
defined without the notion of derivative (or, what is the same, differential quotient).
The following example may show what we mean.

Example A nursery produces strawberries in its greenhouses. It calculated
that, other conditions being equal, the dependence of the volume y of
strawberry production upon the amount x of a fertiliser is described by the
curve from A to D in Fig. 6.1. (Of course, in practice only a finite number
of points on the curve are obtained from the data, the curve is then drawn
to connect, “interpolate” them smoothly, see also Sect. 3.2). The increases
by four or by one metric ton of the output quantity at x D 10 or x D 11,
respectively, could be called the marginal returns for increase by one hundred
gallons each of the fertiliser amount from ten to eleven hundred or from eleven
to twelve hundred gallons, respectively. This notion is inadequate since the
amount of marginal return would depend upon the volume unit of fertiliser
(here hundred gallons). In order to avoid this unpleasantness, we consider,
for instance at the point of the curve belonging to x D 10, instead of the

(continued)
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slope of the chord BC (4=1 D 4), the slope of the tangent to the curve at the
point B D .10; 28/ as the marginal yield at x D 10. If this tangent exists (it
does not always; see Sect. 6.4) then its slope is the “limit” of the slopes of the
chords BC, BC1, BC2; : : : as the points C, C1, C2; : : : of the curve “converge”
to B. In Fig. 6.1 the slope of the tangent at B is the “limit” of the “difference
quotients”

f .10C 1/� f .10/

.10C 1/� 10 D f .11/� f .10/;

f .10C h1/ � f .10/

.10C 1/� 1 D f .10C h1/� f .10/

h1
;

f .10C h2/ � f .10/

.10C h2/ � 10 D f .10C h2/� f .10/

h2
; : : :

as the “sequence” of quantities h0 D 1 D 100 gallons, h1, h2 “tends
to 0”. Economists call this limit the marginal product (for the production
function f ) on applying 1;000 gallons of the fertiliser. Mathematicians call
it the derivative of the function f at x D 10. Economists call the j-th term of
the above defined sequence the marginal productivity of f at x D 10 with step
hj . j D 0; 1; 2; : : :/.

Fig. 6.1 Graph describing
the production of strawberries
as function f of the quantity x
of the fertiliser
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6.2 Limits, Infinity as Limit, Limit at Infinity, Sequences:
Trigonometric Functions, Polynomials, Rational Functions

As we have just seen, in order to calculate derivatives, we first have to know how to
handle limits.

On the other hand, in Chap. 3 we have seen that functions may be defined on
several different kinds of sets, their domains. If the domain of a function is a
(possibly infinite) real interval or the union of real intervals, then we will call open
intervals (intervals which do not contain their endpoints, if any) neighbourhoods.
Notice that we did not exclude infinite intervals. If the open interval is not bounded
from above (it goes to infinity on the right), in symbol �q;1Œ (short for �q;C1Œ),
it is a neighbourhood of C1 (Fig. 6.2a), if not bounded from below (infinite to
the left; in symbol � � 1; q/ then it is a neighbourhood of �1 (Fig. 6.2b) if the
open interval is finite, we usually consider it a neighbourhood of its midpoint p, in
particular, if its length is 2" (that is, we deal with the open interval �p � "; p C "Œ,
Fig. 6.2c) then we call it the "-neighbourhood of p.

We often permit a slight anomaly: we remove the point p itself from its neigh-
bourhood (which thus splits into two open intervals) and speak about a punctured
neighbourhood (to be exact, the punctured "-neighbourhood of p, Fig. 6.2d). As
defined, every neighbourhood of C1 or of �1 is punctured.

Functions defined on the positive (or nonnegative) integers (sometimes also those
defined on all integers) are called sequences. For the set N of positive integers we
also consider the set of all integers greater than a given M a neighbourhood of C1.

As far as the graph representing a function is concerned, we are still on the
“X–axis”. Neighbourhoods can, of course, be defined also on the “Y–axis”. Let p
be a point on the X–axis and ` one on the Y–axis. Take a function f , which may not
be defined at p but is defined on some punctured neighbourhood of p. We say that `
is the limit of f at p, and write

` D lim
x!p

f .x/

Fig. 6.2 Neighbourhoods
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Fig. 6.3 Continuity

Fig. 6.4 f(x) = 2x sin. 1x / .x ¤ 0/

if, for every "–neighbourhood of `, say N", there exists a punctured ı–
neighbourhood nı of p where f is defined and such that f .x/ is in N" whenever
x is in nı (Fig. 6.3).

In formulas:

8" 9ı W x 2 nı H) f .x/ 2 N" or
8" 9ı W 0 < jx � pj < ı H) j f .x/ � `j < ": (6.1)

Of course, ı may be (and usually is) different for different ". We always suppose
" > 0, ı > 0. We can verbalise (6.1) as “f .x/ tends to ` as x approaches p”.

Example 1 We show our point on the nontrivial example of the function
defined by

f .x/ D 2x sin
1

x
for all real x except x D 0

(see Sect. 1.7 2 and Fig. 6.4). The above formula shows that f .0/ is not defined
(while we could define f .0/ to be 0, or anything else, it is even less clear how

(continued)
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to define g.x/ D sin.1=x/ for x D 0: its graph undergoes infinitely many
fluctuations in every (punctured) neighbourhood of 0, see Fig. 6.5).
But this function has the limit ` D 0 at 0. In formula

lim
x!0

2x sin
1

x
D 0:

Indeed, if

0 < jx � 0j < ı

then

j f .x/ � 0j D
ˇ
ˇ
ˇ
ˇ2x sin

1

x

ˇ
ˇ
ˇ
ˇ D 2 jxj

ˇ
ˇ
ˇ
ˇsin

1

x

ˇ
ˇ
ˇ
ˇ � 2 jxj < 2ı;

so that (6.1) is satisfied for ı D "
2

(here ` D 0, p D 0), that is, there indeed
exists a ı > 0 to every " > 0 so that 0 < jx � 0j < ı ) ˇ

ˇ2x sin 1
x � 0

ˇ
ˇ < ",

namely ı D "
2

(also every smaller positive ı). The function given by g.x/ D
sin .1=x/ has, as mentioned above, clearly no limit at 0 (Fig. 6.5).

Using neighbourhoods in the above generality also has the advantage that
we can define limits at infinity and C1 or �1 as limit in a quite similar
manner: If some function f is defined on a punctured neighbourhood of p then
f has the limit C1 at p, that is,

lim
x!p

f .x/ D C1

if, for every neighbourhood Nq D �q;1Œ of C1, there exists a punctured
neighbourhood nı of p so that f .x/ is in Nq whenever x is in nı. In formulas
this can be written again as

8q 9ı W x 2 nı ) f .x/ 2 Nq;

which now means

8q 9ı W 0 < jx � pj < ı ) f .x/ > q:

The limit �1 can be defined similarly.
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Fig. 6.5 g.x/ D sin.1=x/
.x ¤ 0/

Fig. 6.6 f .x/ D x�2

1

2

3

4

5

6

7

1 2 3 41234

Example 2 f .x/ D 1=x (see Fig. 6.6); lim
x!0

1=x2 D C1, because

if 0 < jx � 0j < ı; then
1

x2
>
1

ı2

(here p D 0) so that f .x/ D 1=x2 > q is satisfied if q � 1=ı2, that is, there
indeed exists a ı .� 1=

p
q/ for every q such that

0 < jx � 0j < ı H) 1

x2
> q:

Similarly, if f .x/ is defined at least for large enough x, then it has the limit
` at C1 if, for every neighbourhood N" of ` there exists a neighbourhood nq

(continued)
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of C1 so that f .x/ is in N" if x is in nq. In formula:

8" 9q W x 2 nq ) f .x/ 2 N":

This can clearly be elaborated in the following form:

8" 9q W x > q ) j f .x/ � `j < ": (6.2)

Then we write

` D lim
x!1 f .x/;

where we wrote for short x ! 1 instead of x ! C1. The limit at �1,
limx!�1f .x/ can be defined similarly.

Example 3 Let f .x/ D 2x
x�3 be defined for x > 3 ( f .x/ can be defined also for

x < 3 but we are not obliged to do so):

lim
x!1

2x

x � 3
D lim

x!1

�

2C 6

x � 3
�

D 2;

because, if x > q > 3, then

j f .x/ � 2j D 6

x � 3 <
6

q � 3
(here ` D 2; for jx � 3j we wrote x � 3 because x > 3) so that j f .x/ � 2j < "
is satisfied if 6

q�3 < " or, what is the same, q � 3 > "
6
, that is, q > "

6
C 3.

Thus there indeed exists a q for every " > 0 such that

x > q H)
ˇ
ˇ
ˇ
ˇ
2x

x � 3
� 2

ˇ
ˇ
ˇ
ˇ < ":

The functions f2.x/ D 1
x2

, f3.x/ D 2x
x�3 in Examples 2, 3 (the subscripts serve to

distinguish the two functions) are examples of rational functions. The general form
of a rational functions is

x 7! apxp C a p�1x p�1 C � � � C a1x C a0
bqxq C bq�1xq�1 C � � � C b1x C b0

D R p;q.x/:
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Here the coefficients a0, a1, : : :, ap and b0, b1, : : :, bq are real or complex numbers.
We assume ap ¤ 0, bq ¤ 0. The rational functions are defined everywhere,
where the denominator is not zero. Both the numerator and the denominator are
polynomials. As polynomial of degree q, bqxq C bq�1xq�1 C � � � C b1x C b0 has at
most q different real zeros (x-values for which the value of the polynomial is 0). The
fundamental theorem of algebra states that every polynomial has at least one (real
or complex) zero. The zero may be complex, even if the coefficients, bq, bq�1, : : :, b1,
b0 of the above polynomial are real. (For instance the only zeros of the polynomial
x2 C 1 are i and �i.) It is a consequence of the fundamental theorem of algebra that
every polynomial or rational function with p < q can be written in the following
forms (products or partial fractions):

bqxq C � � � C b1x C b0 D .x � x1/
q1 .x � x2/

q2 � � � .x � xs/
qs

and

R p;q.x/ D ˛1

.x � x1/
C ˛2

.x � x1/2
C � � � C ˛q1

.x � x1/q1

C ˇ1

.x � x2/
C � � � C ˇq2

.x � x2/q2
C � � �

C �1

.x � xs/
C � � � C �qs

.x � xs/qs
;

respectively, where q1 C � � � C qs D q, and x1; : : : ; xs are the (possible complex,
possibly multiple) zeros of “multiplicities” q1; : : : ; qs of the polynomial bqxq C� � �C
b1x C b0 (or of the denominator of the rational function R p;q satisfying p < q).
Here we prove neither the fundamental theorem of algebra—which would be quite
difficult—nor this consequence.

In Sects. 6.3, 6.5, 6.7, and 6.9 we will return to polynomials and rational
functions, giving in Sect. 6.9 also a method to approximate the real zeros of
polynomials (with real coefficients), and of the other functions.

The above definitions of neighbourhoods of infinity, adapted to sequences,
permits us also to define the limit of a sequence. As mentioned above, sequences
are functions defined on the positive (or nonnegative) integers. They are denoted by
ff .n/g or fang or fa1; a2; : : :g (or fa0; a1; a2; : : :g). That the sequence fang has ` as
limit, in symbols

lim
n!1 an D `;

can be written in the same way as (6.2):

8" 9q W n > q ) jan � `j < ":
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Fig. 6.7 Graphs of sin x,
cos x

1

1

1

1

For example,

lim
n!1

2n

n C 3
D 2;

The proof is the same as in Example 3 above.
The a1, a2, : : :, an, : : : (or a0, a1, a2, : : :) are the terms of the sequence fang. If a

sequence has a finite limit, we say it is convergent. We see from all these definitions
and examples that, intuitively, the limit is a value to which the function (or sequence)
gets as close as we want it to get.

In Example 1, the sine function (sin x) figured prominently. We may remember
(Sect. 1.7 2) that both it and the cosine function (cos x) can be defined for every real
x (Fig. 6.7; see also Fig. 1.12, where the function of the sine and the cosine function
values are illustrated for x D 0,  , �=2, � , � �  , � , .�=2/�  ).

As in Fig. 1.12, x can be regarded as an angle. If we add to an angle x another
full period of 2� (and also if we subtract one), both the sine and the cosine function
(values) remain unchanged.

As mentioned in Sect. 1.7 2 and as we will see, it is very convenient to measure
the angles in radians, that is, by the length of the arc belonging to them on the unit
circle. For instance, the right angle will be �=2, the full angle (full turn) is 2� .
(The last sentence of the previous paragraph can then be stated as: sin and cos are
periodic with period 2� .) If we want to measure the angle in degrees (right angle
D 90ı, full angle D 360ı or “decimal degrees” (right angle D 100ı), we have to use
other symbols in place of sin and cos (otherwise e.g. cos 7 would yield completely
different values in radians, degrees and decimal degrees), for instance sin and cos.
We also define

tan x D sin x= cos x; cot x D cos x= sin x D 1= tan x

(and similarly tan x = sin x/cos x, cot x = cos x/sin x if x is measured in degrees).
Notice that tan and cot are not defined where the denominators cos and sin are 0.
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Fig. 6.8 sin x � x � tan x
(x � 0)

sin x

-sin x

tan x

-tan x

1

A

x

-x

B

D

E

C

F

An important limit is

lim
x!0

sin x

x
D 1: (6.3)

(This again would not be true if the angle x were measured in anything but radians.)
The usual proof of this relies on Fig. 6.8.

Since the area of the union of the two triangles ABC and ACD is 2 sin x�1
2

D sin x
if x is positive (we do not have to worry about x’s greater than �=2 since the limit at
0 is influenced only by small neighbourhoods of 0), which is not greater (actually,
smaller, except if x D 0) than the area of sector ABCD of the circle, that is 1�2x

2
D x,

and this is not greater (is smaller) than the area 2 tan x�1
2

D tan x of the triangle AEF,
we have sin x � x � tan x D sin x

cos x , that is, sin x
x � 1 and sin x

x � cos x or, in a single
chain of inequalities,

cos x � sin x

x
� 1 (6.4)

if x is positive. If x is negative then, as we saw in Sect. 1.7, Fig. 1.12, the following
holds cos.�x/ D cos x, sin.�x/ D � sin x, so (6.4) remains valid also for negative
x. Now, it is obvious that the limit of a constant function c (here c D 1) is c and one
can prove that limx!0 cos x D 1 (while we emphasised above that the function need
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not be defined at the place where we take its limit, it may be defined; in this case
cos 0 D 1 is defined). Furthermore, if

f .x/ � g.x/ � h.x/

in a neighbourhood of p and both lim
x!p

f .x/ and lim
x!p

h.x/ exist and are equal:

lim
x!p

f .x/ D lim
x!p

h.x/ D L

then also lim
x!p

g.x/ exists and is the same:

lim
x!p

g.x/ D L

(“squeeze rule”), so we get from the chain (6.4) of inequalities

lim
x!0

sin x

x
D 1:

(of course also limx!0 1 D 1; the limit of the constant function c is c everywhere),
which proves (6.3). Actually, also negative x’s in punctured neighbourhoods of 0
should be considered but these give the same since sin.�x/

�x D sin x
x .

As hinted above, if the angle x were measured in any other unit than radians, say

in degrees, lim
x!0

sin x

x
would still exist but not be 1.

There is a certain circularity in the above reasoning: Equation (6.3) states roughly
that “the arc approximately equals the chord, the smaller the arc, the more so”.
We “proved” it by use of the area of circular sectors .x=2/ of arc length x in unit
circle. Most readers, if at all, have seen this (just as the area of the whole circle)
“proved” at high school exactly by use of this “small arcs are approximately equal
to chords” principle (approximating areas of circles and sectors by those of polygons
with many small sides). There are ways to get around this difficulty but we will not
go into their details here.

We will need the following facts, which are easy to prove:

If the limits of two functions exist at a point then so does, at the same point, the limit of
their sum, difference, product and quotient (if the limit of the denominator is not 0) and
they equal the sum, difference, product or quotient, respectively, of the limits of those two
functions.

For functions of several real or one (or several) complex variables, limits can
be defined similarly. Only the neighbourhood will be the interiors of rectangles,
parallelepipeds, of circles, spheres, etc. For instance, a function f of two variables,
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defined on a punctured .C;D/-neighbourhood of .a; b/, that is, for all x 2 �a�C; aC
CŒ , y 2 �b � D; b C DŒ except possibly at .a; b/, has the limit ` at .a; b/, in symbol

` D lim
x!a
x!b

f .x; y/;

if, for every "-neighbourhood of ` (Fig. 6.2c), say N", there exists a punctured .�; ı/-
neighbourhood n�;ı of .a; b/ .� � C; ı � D/ such that f .x; y/ is in N" whenever
.x; y/ is in n�;ı. In formulas:

8" 9 �; ı W 0 < jx � aj < �; 0 < jy � bj < ı ) j f .x/ � `j < ":

For the use of circles and spheres as neighbourhoods to define limits, see Sect. 6.10.

6.2.1 Exercises

1. Determine

(a) lim
x!1

x2 � 1
x � 1

, (b) lim
x!�2

x2 � x � 6

x C 2
, (c) lim

x!0

sin 2x

sin x
,

(d) lim
x!0

tan x

sin x
, (e) lim

x!1

x3 � 7x C 6

x2 C 2x � 3 , (f) lim
x!�3

x3 � 7x C 6

x2 C 2x � 3
,

(g) lim
x!0

.2C x/2 � 4

x
, (h) lim

x!�=4
sin x, (i) lim

x!1
3x2 C 2

10x2 � 3x
,

( j) lim
x!�1

x2 � 7

3C 4x2
, (k) lim

x!1
cos x

x
, (l) lim

x!�1
x4 � 3 sin x

3x C 5x5
.

2. Write the first four terms of the sequence f f .n/g, n D 1; 2; 3; : : : ; when

(a) f .n/ D 3n2 � 4
n2 C 2n C 5

, (b) f .n/ D �3C n � 1
n2 � 1

,

(c) f .n/ D 1

1C n C n2 C n3
, (d) f .n/ D 5n3 C 7

n4 � n C 3
.

3. Determine the limits of the sequences given in Exercise 2.
4. Let the first three terms of a sequences be 3, 5, 7. Obviously, the sequence f f .n/g,

where f .n/ D 2n C 1 .n D 1; 2; 3; : : :/, starts with these terms. Find two other
sequences fg.n/g, fh.n/g whose first three terms are also 3, 5, 7.

5. Write the following polynomials in their product form:
(a) D.x/ D x4 C 4x3 � 16x � 16,
(b) N.x/ D x3 C x2 � x � 1.
Hint: Obviously, D.2/ D D.�2/ D 0, N.1/ D 0.

6. Write the rational function R3;4.x/ D N.x/

D.x/
(see Exercise 5) in its partial fraction

form.
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6.2.2 Answers

1. (a) 2; (b) �5; (c) 2; (d) 1; (e) �1; (f) �5;
(g) 4; (h)

p
2=2; (i) 3=10; ( j) 1=4; (k) 0; (l) 0:

2. (a) �1
8
;
8

13
;
23

20
;
44

29
; (b) �5

2
; �8

3
; �11

4
; �14

5
;

(c)
1

4
;
1

15
;
1

40
;
1

85
; (d) 4;

47

17
;
142

81
;
109

85
:

3. (a) 3, (b) �3, (c) 0, (d) 0.
4. For example, g.n/ D n3 � 6n2 C 13n � 5, h.n/ D the n-th prime number

following 2.
5. (a) D.x/ D .x C 2/3.x � 2/,

(b) N.x/ D .x C 1/2.x � 1/.

6. R3;4.x/ D 55=64

.x C 2/
� 25=16

.x C 2/2
C 3=4

.x C 2/3
C 9=64

.x � 2/
.

6.3 Continuity, Sectional Continuity, Left and Right Limits

If f has a limit at a point, is defined at that point, and its value is equal to that limit,
then f is continuous at that point. This definition works equally well for functions
of one or several real or complex or vectors variables.

When a function is continuous at all points of a set (for one real variable
usually one or several intervals, for complex, vector variables, or several real
variables usually one or several connected domains) then we say that the function
is continuous on that set. One can prove that polynomials, the sine and cosine
functions are continuous on the whole real line, rational functions are continuous
at every point where the denominator is not 0 and, similarly, the tangent and
cotangent functions are continuous everywhere, where the cosine or the sine is
not 0, respectively. If two functions are continuous at a point, so are their sums,
differences, products and, if the denominator is not 0 there, also their quotient. If f
is continuous at p and g at f . p/ then the composite functions g ı f .x 7! gŒ f .x/�/ is
continuous at p.

From the above definition and the preceding ones in Sect. 6.2 we should get the
intuitive meaning that a function is continuous (on a set) if we can keep the changes
of its values arbitrarily small as long as we confine the variable(s) to sufficiently
small changes. However, maybe the word “continuous” suggests a “continuous
flow”, for functions of one real variable a curve “which can be drawn without lifting
the pen”. This is not so bad but one has to be careful: the function similar to one
mentioned before (in Sect. 6.2, Example 1), defined by

f1.x/ D
8
<

:
2x sin

1

x
for all x ¤ 0;

0 for x D 0;
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makes (Fig. 6.4) infinitely many waves, so “cannot be drawn without lifting the pen”
but it is everywhere continuous on the real line: at points x ¤ 0 because of the above
rules on products, quotients and substitution of continuous functions into continuous
functions and at x D 0 because we have shown in Example 1 of Sect. 6.2 that the
limit

lim
x!0

2x sin
1

x

exists and is 0 and now we defined f1.x/ so that its value should be 0 at x D 0 which
by the above definition means exactly f1 is continuous also at 0.

Functions which are not everywhere continuous, can also have important roles
in economics (some may play even more important roles that continuous ones), for
example the following.

Example 1 (Cost function) In a factory 1,000 pieces of a commodity are
produced during a shift. The “fixed cost” for a shift is $500. The “variable
cost” is $1.5 per piece. Then the cost function will be given by

C.x/ D

8
ˆ̂
<

ˆ̂
:

5P;000C 15x for 0 � x � 1;000;

10;000C 15x for 1;000 < x � 2;000;

15;000C 15x for 2;000 < x � 3;000;

. . . . . . . . . . . . . . . . . . .

(see Fig. 6.9). This function is discontinuous at the “jump points” 1;000,
2;000, 3;000; : : : .

This function and similar ones in applications are “not very discontinuous” (a
function is discontinuous at a point if it not continuous there) it is sectionally (or
piecewise) continuous: every finite interval for the variable can be divided into
finitely many parts in the interior of which the function is continuous and even at the
dividing and endpoints left and right limits exist. Finite open intervals with a on their
left end or b on their right end are right neighbourhoods of a or left neighbourhoods
of b, respectively. A function has the right limit ` at the point a (left limit ` at the
point b), in symbols

` D lim
x!aC f .x/ D lim

x!a
x>a

f .x/ .or ` D lim
x!b� f .x/ D lim

x!b
x<b

f .x//;

if, for every "-neighbourhood of `, say N", there exists a right-neighbourhood of a
(left neighbourhood of b) nı so that

f .x/ is in N" whenever x is in nı:
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Fig. 6.9 A discontinuous
cost function

In formulas, ` D lim
x!aC f .x/ if

8" 9ı W 0 < x � a < ı ) j f .x/� `j < "

and ` D lim
x!b� f .x/ if

8" 9ı W 0 < b � x < ı ) j f .x/� `j < "

Notice that these differ from the definition (6.1) in Sect. 6.2 of the (two-sided) limit,
since there the condition with ı also contained an absolute value sign .jx � pj < ı/.
Notice also that f needs not be defined at a or b, respectively.

A function is left continuous at a or right continuous at b if f .a/, f .b/ exist and

f .a/ D lim
x!aC f .x/ or f .b/ D lim

x!b� f .x/; (6.5)

respectively. Functions defined (considered) on an interval starting with (and includ-
ing) a point a or ending with (and including) a point b (that is, not stretching to �1
or C1, respectively), are called continuous on that interval if they are continuous
in the interior of the interval and right continuous at a and/or left continuous at b,
respectively. (This is just a clarification of the definition of continuity on an interval
finite and closed on at least one side: since the function may not be defined outside
the interval, two-sided continuity at the boundary may make no sense.)
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Fig. 6.10 Œx� for 1 � x � 4

Example 2 The “integer part function” (“entire”), ordering to each real
number x the largest integer not greater than x (Fig. 6.10), denoted by Œx�, is
another example of a sectionally continuous function. At 2 the left and right
limits are

lim
x!2� f .x/ D 1; lim

x!2C f .x/ D 2 while f .2/ D 2

(the function is clearly discontinuous at 2 and at all other integers, it has not
even a limit there but, by (6.5), it is left continuous at all integers).

Functions continuous on closed intervals have particularly attractive properties.
We state them here without proof but point out why they are not so obvious as they
may sound (for 1 and 2 see Fig. 6.11).

1. Every function continuous on a closed interval is bounded both from above and
from below on that interval (that is, there exist numbers m and M such m �
f .x/ � M for all x in the interval). This is not true for open or half-open intervals:
For instance f .x/ D 1=x is continuous on �0; 1Œ (or on �0; 1�), but not bounded
from above (Fig. 6.12).

2. Every function continuous on a closed interval assumes its greatest and smallest
value on that interval, that is, there exist x1 and x2 such that f .x1/ � f .x/ � f .x2/
for all x in that interval. This again is not true for open or half-open intervals:
Even such a simple function as that given by f .x/ D x does assume neither
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Fig. 6.11 For the continuous
function f W Œa; b� ! R given
by this graph, m and M are
lower and upper bounds,
respectively, and f assumes
its smallest value at x1 and its
greatest value at x2 D b

Fig. 6.12 f .x/ D 1=x is
continuous on �0; 1�, but there
exist no M such that M > 1=x
for all x 2 �0; 1�

its greatest nor its smallest value on any open interval, for instance on �0; 1Œ
(Fig. 6.13) because neither 0 nor 1 belongs to the intervals.
Even the following simple fact (Fig. 6.14) would need proof.

3. Every function continuous on Œa; b� assumes every value between f .x/ and f .b/
(that is, if f .a/ � C � f .b/, then there exists a c 2 Œa; b� for which f .c/ D C).
Continuous functions can also be defined just on the rational numbers, say in
Œ0; 1�, but for those this is not true.

There are similar results for functions of several variables.
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Fig. 6.13 f .x/ D x is
continuous on �0; 1Œ , but
assumes neither its greatest
nor its smallest value

Fig. 6.14 Property 3

6.3.1 Exercises

1. In which points of the real line are the functions (a)–(d) not continuous?

(a) x 7!
8
<

:

1C x

2x � 3x2 C x3
if x … f0; 1; 2; 3g

2=3 if x D 0 or x D 1 or x D 2;

(b) x 7!
8
<

:

1

sin x
if x ¤ k

2
�

1 if x D k
2
�;

.k 2 Z/

(c) x 7!
�

tan x if x ¤ k
2
�

0 if x D k
2
�;

.k 2 Z/

(d) x 7!
�

cot x if x ¤ k
2
�

0 if x D k
2
�;

.k 2 Z/
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2. Which of the following functions are continuous at x D 1?

(a) f W R ! R, x 7! x2 C x C 1

x � 1 , 1 7! 3,

(b) g W R ! R, x 7! x3 C 4x2 C x � 6
.x � 1/.x C 2/

, 1 7! 4,

(c) h W R ! R, x 7! x3 � x cos x,

(d) x 7! x2 C x � 3
x � 1 , 1 7! 2.

3. (a) Draw a function f W Œ0; 4� ! R which is discontinuous at x D 1, x D 2 and
x D 3.

(b) Draw a function F W Œ.0; 0/; .3; 4/� ! R which is discontinuous at .x1; x2/ D
.1; 1/ and .x1; x2/ D .2; 2/.

4. Determine, for a 2 RCC, lim
x!aC

f .x/ for

(a) f W �a;1Œ ! R, x 7! .x � a/=
p

x � a,

(b) f W �a; 3aŒ ! R, x 7! x3 C ax2 � 5a2x C 3a3

.x � a/2
.

5. Determine lim
x! �

2 �
x � x.sin x/2

1 � sin x
.

6.3.2 Answers

1. (a) x D 0, x D 1, x D 2,

(b) x D k� and x D 2k C 3

2
� (k 2 Z),

(c) x D k
�

2
.k 2 Z/,

(d) x D k� .k 2 Z/.
2. The functions f , g and h defined in (a), (b) and (c), respectively, are continuous,

the function given in (d) is not.
4. (a) 0, (b) 4a.
5. � .

6.4 Derivative, Derivation

Having got acquainted with limits, we can now better understand and make exact
the notion of derivatives introduced in Sect. 6.1. Moreover, we have now tools to
calculate derivatives.

Let the real-valued function f of a real variable be defined on a neighbourhood
of x0. Then

f 0.x0/ D lim
x!x0

f .x/ � f .x0/

x � x0
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Fig. 6.15 Graph of a
function f W Œa; b� ! R.
Difference quotient f .x/�f .x0/

x�x0
and derivative at x0: the slope
of the tangent at x0

is the derivative of f at x0, if the (finite) limit on the right hand side exists. The
fraction f .x/�f .x0/

x�x0
is the difference quotient.

As we saw in Sect. 6.1, the difference quotient is the slope of the chord
connecting .x0; f .x0// with .x; f .x// (Fig. 6.15) and, as x approaches x0, it tends to
f 0.x0/, the slope of the tangent at x0, if it exists.

Example 1 f .x/ D x2. The difference quotient is

f .x/� f .x0/

x � x0
D x2 � x20

x � x0
D .x � x0/.x C x0/

x � x0
D x C x0:

(The last step is valid only for x ¤ x0—we must not divide by 0—but,
as we have seen in Sect. 6.2, the value of a function at x0 or whether it is
defined there at all, does not interfere with the existence and value of the
limit. Therefore in calculating the derivative at x0 we may always suppose
x ¤ x0 in the difference quotient.)

The limit of the right hand side as x approaches x0 exists and is 2x0. So

f 0.x0/ D 2x0:

The above function f is defined for all real x and, as we have just seen, its
derivative can be determined at every x0 2 R. Of course, its value depends on
x0, we can consider it a function of x0. This function is the derivative function
(derivative, for short); writing x for x0 we have f 0.x/ D 2x as derivative
function in this case. In general the derivative function assigns the values

(continued)
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Fig. 6.16 f .x/ D jxj is not
differentiable at 0

Fig. 6.17 jxj =x D 1 for
x > 0, D �1 for x < 0, not
defined and no limit at 0

of the derivative to those points where the derivative exists, if any. There may
be points where a function has no derivative, is not differentiable.

Example 2 f .x/ D jxj (Fig. 6.16). Let us try to calculate the derivative at 0.
The difference quotient

f .x/ � f .0/

x � 0 D jxj
x

D
�

1 if x > 0;
�1 if x < 0:

This clearly has no limit (the left limit is �1, the right limit is 1; see
Fig. 6.17). So this f .x/ is not differentiable at 0. (It is differentiable at every
other point: f 0.x/ D �1 if x < 0, f 0.x/ D 1 if x > 0, see also Example 4.) But
it is easy to see that it is continuous.

Another example of a continuous function which is not everywhere differentiable
comes from taxation (Fig. 6.18).

There even exist function which are nowhere differentiable, indeed also functions
which are (everywhere defined but) nowhere continuous:
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Fig. 6.18 Germany’s 1998 average tax rate approximatively represented as a continuous function
of taxable income. This function is not differentiable at 12;096

Example 3

f .x/ D
�

1 if x is rational;
�1 if x is irrational:

is a such function. Of course, its graph cannot be drawn but a little contem-
plation shows that it indeed can not have even a limit anywhere (in every
neighbourhood, no matter how small, of every point, there are both rational
and irrational numbers, so f .x/ could not stay in an "-neighbourhood with
" < 1 of either 1 or �1 or of any other number). As consequence, this function
is nowhere differentiable. Indeed, we have the following result:

Theorem If a function is differentiable at a point then it is also continuous there.

(So, a function which is not continuous at one point or at many, is not
differentiable there either.)

Proof If f is differentiable at x0 then it is defined on a neighbourhood of x0 and

lim
x!x0

f .x/� f .x0/

x � x0
D f 0.x0/:
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Define 	.x/ D f .x/�f .x0/
x�x0

� f 0.x0/ for x ¤ x0. As a consequence (since the limit of a
constant is itself),

lim
x!x0

	.x/ D 0 and f .x/ D f .x0/C . f 0.x0/C 	.x//.x � x0/:

So, by the rules on limits,

lim
x!x0

f .x/ D f .x0/C f 0.x0/ � 0 D f .x0/

which means exactly that f is continuous at x0, as asserted.
The above Example 2 shows that the converse is not true: a function can be

continuous but not differentiable.
We give now two trivial examples, where the derivative function is constant.

Example 4 f .x/ D x. The limit in the definition of the derivative clearly exists
everywhere:

f 0.x0/ D lim
x!x0

f .x/ � f .x0/

x � x0
D lim

x!x0

x � x0
x � x0

D lim
x!x0

1 D 1

(remember, the value of x�x0
x�x0

at x D x0 its existence or no existence does not
influence the limits). So for f .x/ D x the derivative function is f 0.x/ D 1 (at
every point x; the derivative function is constant).

Example 5 f .x/ D c (any constant). The difference quotient

f .x/� f .x0/

x � x0
D c � c

x � x0
D 0 for all x ¤ x0;

so its limit is 0,

f 0.x/ D 0 for all x:

The operation assigning to a function its derivative function is called
derivation. We often write the results of Examples 1, 4, and 5 as

.x2/0 D 2x; .x/0 D 1; .c/0 D 0;

and similarly for other derivatives.
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We move now to somewhat more sophisticated examples.

Example 6 f .x/ D 1=x. This function is not defined (even less continuous) at
0 so it cannot be differentiable there. For all other x0 the difference quotient is

1
x � 1

x0

x � x0
D

x0�x
xx0

x � x0
D � 1

xx0
.x ¤ x0; x0 ¤ 0; x ¤ 0/:

So the derivative at x0 is � 1
x02

and the derivative function is

�
1

x

�0
D � 1

x2
.x ¤ 0/:

Since x�1 D 1
x , x0 D x and x1 D x, Examples 6, 5, 4 and 1 suggest

.xn/0 D nxn�1:

This is indeed true for all (positive, 0, negative) integers, also for rational n
(see Sect. 6.5) and even for irrational ones (see Sect. 7.2, where xn will be
defined for irrational n in the first place).

For our next example we need from Sect. 6.2 the result (6.3) (we use t in place of
x; that makes no difference):

lim
t!0

sin t

t
D 1: (6.6)

We will need also some consequences of sin.˛Cˇ/ D sin˛ cosˇC cos˛ sinˇ.
The first is

sin.˛ � ˇ/ D sin˛ cosˇ � cos˛ sinˇ

(because sin.�ˇ/ D � sin.ˇ/, cos.�ˇ/ D cosˇ). The second results from
subtraction of these two equations:

sin.˛ C ˇ/ � sin.˛ � ˇ/ D 2 cos˛ sinˇ:

If we write here ˛ D xCy
2

, ˇ D x�y
2

, then we get

sin x � sin y D 2 cos
x C y

2
sin

x � y

2
for all real x; y:
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Now we are ready for the derivative of the sine function:

Example 7 f .x/ D sin x. The difference quotient is, by what we have just
shown,

sin x � sin x0
x � x0

D
2 cos

x C x0
2

sin
x � x0
2

x � x0
D cos

x C x0
2

sin
x � x0
2

x � x0
2

:

By (6.6), the limit, as x approaches x0, of the second factor on the right is 1
(put t D x�x0

2
); by the cosine function, the limit of the first factor is cos x0 as x

approaches x0 and so xCx0
2

approaches x0. As stated near the end of Sect. 6.2,
the limit of a product of two functions is the product of their limits, so

f 0.x0/ D lim
x!x0

sin x � sin x0
x � x0

D cos x0

and

.sin x/0 D cos x:

Similarly one could prove

.cos x/0 D � sin x

but we will derive this in the next section from a general rule.
In general, nice as these proofs are, it would be tiresome to calculate the

derivative of each function as it comes up. The general rules in the next section
make the determination of derivatives (the process of derivation) easier and
almost mechanical.

We note here also that a derivative function may be differentiable too,
giving the second derivative f 00.x/ and further

f 000.x/; f .4/.x/; : : : ; f .n/.x/:

6.4.1 Exercises

1. In which points of their domains are the following functions not differentiable.
(a) f W R ! R, x 7! jsin xj,
(b) g W R ! R, x 7! ˇ

ˇx2 � x � 6
ˇ
ˇ,
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(c) h W R ! R, x 7! jxj C x2,
(d) ' W R ! R, x 7! ˇ

ˇx3
ˇ
ˇC jx � 1j.

2. Define four functions which are continuous in their domains but not differen-
tiable at all points of the domains.

3. Determine the derivative of the following functions at x D 2.
(a) x 7! x3, (b) x 7! x�2.

4. Determine the derivative f 0 of the function f W R ! R; x 7! a0Ca1xCa2x2C
a3x3 (a0, a1, a2, a3 real constants).

5. Determine the derivative g0 of the function g W RCC ! R; x 7! b0C b1x�1 C
b2x�2 (b0, b1, b2 real constants).

6.4.2 Answers

1. (a) x D k� .k 2 Z/, (b) x D �2, x D 3,
(c) x D 0, (d) x D 1.

3. (a) 12, (b) �1
4

.

4. f 0.x/ D a1 C 2a2x C 3a3x2.
5. g0.x/ D �b1x�2 � 2b2x�3.

6.5 Rules Which Make Derivation Easier

1. Derivation of linear combinations. We leave the easy proof of our first rule to the
reader as an exercise:

.c1 f1.x/C c2 f2.x/C � � � C cn fn.x//
0 D c1 f 0

1.x/C c2 f 0
2.x/C � � � C cn f 0

n.x/

(c1, c2; : : : ; cn and c below are constants). In particular

. f .x/C g.x//0 D f 0.x/C g0.x/;

. f .x/� g.x//0 D f 0.x/ � g0.x/;

.cf .x//0 D cf 0.x/:

We emphasise that these and all following rules hold where all derivatives on the
right hand sides of the equations are defined. If we know already that

.xn/0 D nxn�1 .n D 0; 1; 2; : : :/ (6.7)
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then our first rule gives the derivatives of all polynomials:

.anxn C an�1xn�1 C � � � C a1x1 C a0/
0 D nanxn�1 C .n � 1/an�1xn�2 C � � � C a1:

2. We can obtain (6.7) from the derivation rule for products:

Œ f .x/g.x/�0 D f 0.x/g.x/C f .x/g0.x/:

We prove this by forming, as usual, the difference quotient, and then transforming
it a bit:

f .x/g.x/� f .x0/g.x0/

x � x0

D f .x/g.x/� f .x0/g.x/C f .x0/g.x/� f .x0/g.x0/

x � x0

D f .x/ � f .x0/

x � x0
g.x/ C f .x0/

g.x/� g.x0/

x � x0
:

The rules near the end of Sect. 6.2 guarantee that this has a limit:

lim
x!x0

f .x/g.x/� f .x0/g.x0/

x � x0

D lim
x!x0

f .x/� f .x0/

x � x0
lim

x!x0
g.x/C f .x0/ lim

x!x0

g.x/� g.x0/

x � x0

D f 0.x0/g.x0/C f .x0/g
0.x0/;

as asserted (g being differentiable, it is also continuous at x0, so indeed
lim

x!x0
g.x/ D g.x0/).

We apply this to derive further cases of (6.7) from Examples 1 and 4 of
Sect. 6.4:

.x3/0 D .x2 � x/0 D 2x � x C x2 � 1 D 3x2;

.x4/0 D .x3 � x/0 D 3x2 � x C x3 � 1 D 4x2;

and so on; it should be clear by now that (6.7) indeed holds for all positive n
(an exact proof would use induction). For n D 0, (6.7) is the c D 1 case of the
trivial rule (Example 5 in Sect. 6.4) that the derivative of the constant function
f .x/ D c is everywhere zero. Moreover, as mentioned before, a rule similar
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to (6.7) holds also for negative exponents. Indeed, applying Example 6 from the
previous section and our present rule, we get

.x�2/0 D
�
1

x
� 1

x

�0
D
�

� 1

x2

�

� 1
x

C 1

x
�
�

� 1

x2

�

D 2

x3
D �2x�3;

.x�3/0 D
�
1

x2
� 1

x

�0
D
�

� 2

x3

�

� 1
x

C 1

x2
�
�

� 1

x2

�

D � 3

x4
D �3x�4;

and so on, .x�m/0 D �mx�m�1 .m D 1; 2; : : :/.
3. Derivation of fractions. A little thinking can reduce the amount of calculation:

Let

f .x/ D h.x/

g.x/
; then h.x/ D f .x/g.x/;

(of course, at places where g.x/ ¤ 0).
By the above rule 2 (derivation of products),

h0.x/ D f 0.x/g.x/C f .x/g0.x/; that is; f 0.x/ D h0.x/ � f .x/g0.x/
g.x/

Recalling f .x/ D h.x/
g.x/ , we get

�
f .x/

g.x/

�0
D h0.x/g.x/� h.x/g0.x/

g.x/2
;

and this is the derivation rule for fractions (quotients).
This rule permits the derivation of all rational functions (at the points where their
denominators are not 0). A further application is the following derivation of the
tangent

.tan x/0 D
�

sin x

cos x

�0
D .sin x/0 cos x � sin x.cos x/0

.cos x/2

D cos x cos x � sin x.� sin x/

cos2 x
D cos2 x C sin2 x

cos2 x
D 1

cos2 x
;

(The cotangent can be similarly derived but we will do it in another way below.)
4. Chain rule (derivation of composite functions). Let f be differentiable at x0 and

g be (defined and) differentiable at f .x0/. Then the difference quotient of the
composite function x 7! gŒ f .x/� (often denoted by g ı f ) at x0 is

gŒ f .x/� � gŒ f .x0/�

x � x0
D gŒ f .x/� � gŒ f .x0/�

f .x/ � f .x0/

f .x/ � f .x0/

x � x0
:
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Since f is differentiable at x0, it is also continuous, so t D f .x/ tends to f .x0/ as
x approaches x0. So the first factor will tend to g0Œ f .x0/� and

lim
x!x0

gŒ f .x/� � gŒ f .x0/�

x � x0
D g0Œ f .x0/� f 0.x0/:

Thus we get the chain rule

.gŒ f .x/�/0 D g0Œ f .x/� f 0.x/:

Often the derivative f 0.x/ is denoted by df .x/
dx , or by dt

dx if t D f .x/, and called the
“differential quotient”. Then the chain rule can be written in the following form,
if t D f .x/, y D g.t/ D gŒ f .x/�:

dy

dx
D dy

dt

dt

dx
:

While the “differentials” dx, dy, df , dg can be defined exactly (compare Sect. 6.8),
here they serve rather as a memory aid and for actual calculations we recommend
returning to the complete form.

Example 1 The derivative of the cosine. Since

cos x D sin
��

2
� x

�
and .sin t/0 D cos t;

��

2
� x
�0 D �1;

therefore

.cos x/0 D � cos
��

2
� x
�

D � sin x:

Example 2 Derivative of the cotangent:

.cot x/0 D
�

1

tan x

�0
D
�

� 1

.tan x/2

�
1

.cos x/2

D � .cos x/2

.sin x/2
1

.cos x/2
D � 1

.sin x/2
:

5. Derivatives of inverse functions. Let f be differentiable on a interval I (not
necessarily closed). Then, by the Theorem of Sect. 6.4, it is also continuous
there and, by the result 3 of Sect. 6.3, the function assumes all values of an
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I

J

I

J

Fig. 6.19 Strictly increasing and strictly decreasing continuous functions assume every value just
once

interval, say J. This is so because, by property 3, with every pair of values also
every value in between belongs to J. However, as the Fig. 6.14 accompanying
property 3 shows, numbers in J may be values of f at several points in I. If f is
strictly monotonic on I (strictly increasing: x1 < x2 ) f .x1/ < f .x2/ or strictly
decreasing: x1 < x2 ) f .x1/ > f .x2/ for x1, x2 in I) then f assumes every value
in J exactly once (Fig. 6.19). So, if y D f .x/ is given in J, the value x can be
uniquely determined. This assigns to every y in J a unique x (in I), so every x in
I can be considered a function value for a y in J. This new function g, described
by x D g.y/, is the inverse function of f and is denoted by f �1 W g.x/ D f �1.x/ is
equivalent to f Œg.x/� D x (cf. Sect. 3.2).

We differentiate both sides of the last equation using the chain rule:

f 0Œg.x/�g0.x/ D 1; that is; g0.x/ D 1

f 0Œg.x/�
:

So the derivative of the inverse function is

Œ f �1.x/�0 D 1

f 0Œ f �1.x/�

or, with, the “differential quotient” notation:

dx

dy
D 1

dy
dx

:

This is sometimes stated as “the derivative of the inverse function is the reciprocal
of the derivate of the original function” but one has to be careful: .x3/0 D 3x2 and



6.5 Rules WhichMake Derivation Easier 239

3
p

x is the inverse of x3 but . 3
p

x/0 is not 1
3x2

but

. 3
p

x/0 D 1

3. 3
p

x/2
D 1

3
x�2=3

(see the following Example 3).

Example 3 The root n
p

x for x 2 RCC. This is the inverse of xn for x 2 RCC
(if x D yn then y D n

p
x). So

. n
p

x/0 D 1

n. n
p

x/n�1 D 1

nx.n�1/=n
D 1

n
x
1
n �1;

where we used also (6.7). Combined with the chain rule 4 we get the
following.

Example 4 Powers with rational exponents:

.xm=n/0 D .. n
p

x/m/0 D m. n
p

x/m�1 1
n

x
1
n �1 D m

n
x

m�1
n x

1
n �1 D m

n
x

m
n �1

(x 2 RCC) and this is true also if m is a negative integer. So a rule similar
to (6.7) indeed holds for all rational exponents.

Example 5 Inverse sine (Arc sine) function. The sine function is strictly
monotonic (increasing) on Œ��

2
; �
2
� (but not, for instance, on Œ 0; � �; see

Fig. 6.20). Its inverse function, defined on Œ�1; 1 � is denoted by arc sin, that
is, y D arc sin x implies x D sin y for y 2 Œ��

2
; �
2
� so sin.arc sin x/ D x.

Therefore

.arc sin x/0 D 1

cos.arc sin x/
D 1
p
1� .sin.arc sin x//2

D 1p
1 � x2

:
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Fig. 6.20 The sine, the Arc sine and other inverse sine (arc sine) functions. The (graphs of the)
arc sine functions are parts of the dotted curve, the Arc sine function is the bold-faced part

arc sin is the “main branch of the inverse sine function”. The sine (Fig. 6.20) is
strictly monotonic (decreasing) also on Œ �

2
; 3�
2
�, on Œ� 3�

2
; �
2
� and so on. Different

inverse functions (all called arc sin) belong to these, but each has either �1=p1 � x2

or 1=
p
1 � x2 as derivative.

Since we get the inverse function f �1 by exchanging x and y in y D f .x/ .x D
f .y/ , y D f �1.x//, f �1 is represented by a graph which is a reflexion, on the
45ı ��

4

	
-line, of the graph of f .
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Fig. 6.21 The cosine
(strictly decreasing on Œ 0; � �)
and the (dotted graph of the
Arc cosine)

Example 6 Inverse cosine (Arc cosine) function. The cosine is strictly mono-
tonic decreasing on Œ 0; � �. Its inverse function, defined on Œ�1; 1 �, is denoted
by arc cos (Fig. 6.21); y D arc cos x ) x D cos y for y 2 Œ 0; � �, so
cos.arc cos x/ D x and

.arc sin x/0 D 1

� sin.arc cos x/
D � 1

p
1 � .cos.arc cos x//2

D � 1p
1 � x2

:

Again, there are other inverse cosine functions corresponding to the cosine on
Œ �; 3� �; Œ 3�; 5� �; : : :. arc cos is the main branch.

Example 7 Inverse tangent (Arc tan) function. The tangent is strictly increas-
ing on �� �

2
; �
2
Œ and assumes all real values (Fig. 6.22). So the inverse function,

arc tan, is defined on all R. In this case y D arc tan x implies x D tan y for
y 2 � � �

2
; �
2
Œ, so tan.arc tan x/ D x and

.arc tan x/0 D 1

1=.cos.arc tan x//2
D .cos.arc tan x//2 D 1

1C x2

(because 1
1C.tan y/2

D .cos y/2

.cos y/2C.sin y/2
D .cos y/2).

Again there are other inverse functions of the tangent function on � �
2
; 3�
2
Œ, � �

3�
2
;��

2
Œ, etc. They differ only in constants k� and all have as derivative 1=.1C x2/.
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Fig. 6.22 The tangent (strictly increasing on �� �
2
; �
2
Œ) and (dotted graph) the Arc tan function

6.5.1 Exercises

1. Let a, b, c, c1, c2 be real constants, where a < b. Let f1 W �a; bŒ ! R and
f2 W �a; bŒ ! R be differentiable functions. Prove that
(a) .cf1.x//0 D cf 0

1.x/,
(b) .c1 f1.x/C c2 f2.x//0 D c1 f 0

1.x/C c2 f 0
2.x/.

2. Calculate the first and second derivatives of the functions f given by
(a) f .x/ D x2 C x cos x , (b) f .x/ D .x4 � x/ sin x,
(c) f .x/ D x3 sin x cos x, (d) f .x/ D .sin x/2 � .cos x/2.

3. Calculate the first derivatives of the functions given by h.x/=g.x/, g.x/ ¤ 0,
where h W R ! R and g W R ! R are given by
(a) h.x/ D x3 � x2 � 4x C 4, g.x/ D x2 C x � 2,
(b) h.x/ D 1 � x2 cos x, g.x/ D x sin x,
(c) h.x/ D sin x cos x, g.x/ D x3.

4. Determine the first derivative of the composite function
(a) g ı h , (b) h ı g,
where g and h are the functions given in Exercise 3 (c).

5. Find the derivative of the inverse function f �1 of the function f given by
(a) f W RC ! R, x 7! 1C x3,
(b) f W RC ! R, x 7! x C x2.
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6.5.2 Answers

1. (a) .cf1.x//
0 D limw!x

cf1.w/�cf1.x/
w�x D limw!x c f1.w/�f1.x/

w�x

D c limw!x
f1.w/�f1.x/

w�x D cf 0
1.x/ .w 2 �a; bŒ; x 2 �a; bŒ/;

(b) .c1 f1.x/C c2 f2.x//
0

D limw!x
.c1 f1.w/Cc2 f2.w//�.c1 f1.x/Cc2 f2.x//

w�x

D limw!x
.c1 f1.w/�c1 f1.x//C.c2 f2.w/�c2 f2.x//

w�x

D limw!x c1
f1.w/�f1.x/

w�x C limw!x c2
f2.w/�f2.x/

w�x

D c1 limw!x
f1.w/�f1.x/

w�x C c2 limw!x
f2.w/�f2.x/

w�x

D c1 f 0
1.x/C c2 f 0

2.x/ .w 2 �a; bŒ; x 2 �a; bŒ/:
2. (a) 2x � x sin x C cos x, (b) .x4 � x/ cos x C .4x3 � 1/ sin x,

(c) x3..cos x/2 � .sin x/2/C 3x2 sin x cos x, (d) 4 sin x cos x.

3. (a) 1, (b) x � 2 cot x � x2.cot x/2 C cot x

sin x
� x

sin x
C 1

x sin x
,

(c)
.cos x/2 � .sin x/2

x3
� 3 sin x cos x

x4
.

4. (a) 3.sin x/2.cos x/2Œ.cos x/2 � .sin x/2�,
(b) 3x2Œ.cos x3/2 � .sin x3/2�.

5. (a) 1=3.x � 1/2=3 (x > 1, because f �1 W �1;1Œ ! RC),
(b) 1=2

p
x C 1=4 (x > 0, because f �1 W RC ! RC).

6.6 An Application: Price-Elasticity of Demand

We look at the dependence of the amount q of sale of a product upon its price p
during a fixed time period (a day, a week, a month, a season, a year, etc.). Let p
be in an interval �a; bŒ of nonnegative numbers and f W �a; bŒ ! RCC the function
describing this dependence, the so-called price-demand function. We will need to
change p by a (small) positive or negative number h so that p C h is still in �a; bŒ,
that is why we took �a; bŒ to be an open interval. The price elasticity 	. p; h/ of
the demand at price p under change by h is the relative change of quantity of sold
products (goods) caused by the change of their price from p to p C h divided by the
relative change of price. In formula:

	. p; h/ D f . p C h/� f . p/

f . p/

�
h

p
:

Note the dependence on the price increase (or decrease) . p C h/ � p D h. In
practice h D 0:01p, a price increase of one percent, is of particular interest. Then, of
course, 	. p; p=100/ is the ratio by which the sale quantity changes when the price
is increased by 1%. The choice of h can nevertheless be arbitrary.



244 6 Functions, Their Limits and Their Derivatives

The instantaneous change of the quantity of sold goods under small changes of
price clearly describes the tendency of this dependence, the smaller h is the better.
So the following price elasticity at p is of importance:

". p/ D lim
h!0

f . p C h/� f . p/

f . p/

p

h
D lim

h!0

f . p C h/� f . p/

f . p/

p

f . p/
D f 0. p/

p

f . p/

(under the supposition that the limit, that is the derivative, exists and, of course,
f . p/ ¤ 0). One often writes

" D df

dp

p

f
D df

f

�
dp

p
D dq

dp

�
q

p
D dq

q

�
dp

p

(since q D f . p/) but with the mental reservation about “differentials” mentioned in
Sect. 6.8 4 on occasion of the chain rule.

Example If the price-demand function f W RCC ! RCC is given by

f . p/ D ˛

ˇ C p
;

where ˛, ˇ are positive constants, then (by calculating the derivative of a
fraction or applying the chain rule)

	. p; h/ D ˛=.ˇ C p C h/� ˛=.ˇ C p/

˛=.ˇ C p/

h

p
D � p

ˇ C p C h
;

	. p; p=100/ D � p

ˇ C 1:01p
;

". p/ D f 0. p/
p

f . p/
D � ˛

.ˇ C p/2
p

˛=.ˇ C p/
D � p

ˇ C p
:

(It is not surprising that the price elasticity is negative since, with increasing
price, the quantity of sold goods usually diminishes.)

Remark In economics often the price p is considered a function of the quantity q:
p D g.q/ rather than the other way round. Then, by the derivation rule of inverse
functions (5 in Sect. 6.5),

".g.q// D ". p/ D dq

dp

�
q

p
D 1

dp=dq

p

q
D p

q

1

g0.q/
:
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6.6.1 Exercises

1. Calculate the price elasticity ". p/ for the price-demand function
f W RCC ! RCC, p 7! ˛p�1=2, where ˛ is a positive constant.

2. Same problem for p 7! ˛=.ˇ C p1=2/, ˛ and ˇ positive constants.
3. Same problem for p 7! ˛=.ˇ C p2/, ˛ and ˇ positive constants.
4. Same problem for p 7! .1C p/=.2C p2/.
5. Let the price-demand function g W RCC ! RCC be given in the following

“inverse form”: p D ˛=.ˇq C q2/, ˛ and ˇ positive constants. Determine
". p/ D ".g.q//.

6.6.2 Answers

1. �1=2. 2.
�p1=2

2.ˇ C p1=2/
.

3. � 2p2

ˇ C p2
. 4. � 2p2

2C p2
C p

1C p
.

5. � ˇ C q

ˇ C 2q
.

6.7 Laws of the Mean, Taylor Series, Bernoulli–L’Hospital Rule

The law of the mean states that, if f is differentiable on the finite open interval �a; bŒ
and continuous at a and at b ( from the right or from the left, respectively), then
there exists at least one � 2 �a; bŒ such that

f 0.�/ D f .b/� f .a/

b � a
:

This sounds pretty obvious (if f is differentiable on an interval then to every chord of
the graph over that interval there exists at least one parallel tangent, see Fig. 6.23),
so we do not prove it here.

However, as in Sect. 6.3, we give examples that even a slight relaxing of
the conditions may render the law of the mean invalid. The function (Fig. 6.24)
f1.x/ D jxj is continuous at �1 and at 1

2
and differentiable on � � 1; 1

2
Œ everywhere

but at 0, still the graph has no tangent parallel to the chord between .�1; 1/ and�
1
2
; 1
2

	
. On the other hand, the function f2.x/ D x � jxj, considered on the interval

Œ 0; 1 � (Fig. 6.25) is differentiable on �0; 1Œ, continuous at 0 (from the right; if x � Œx�
would be considered also left from 0, it would not be continuous from the left at 0,
but that does not matter here), it is however, not continuous at 1 from the left (x� Œx�,
considered for x � 1 would be continuous from the right at 1, but this does not help)
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Fig. 6.23 Law of the mean

Fig. 6.24 f1.x/ D jxj, not
differentiable at 0, no tangent
parallel to chord between
.�1; 1/ and

�
1
2
; 1
2

	

Fig. 6.25 f2.x/ D x � jxj,
not continuous from the left
at 1, no tangent parallel to the
chord between .0; 0/ and
.1; 0/

and there is no (horizontal) tangent parallel to the chord between the points .0; 0/
and .1; 0/ of the graph.

Applying the law of the mean to

�.x/ D f .x/ � Œg.x/� g.a/�Œ f .b/� f .a/�

g.b/� g.a/

we get Cauchy’s law of the mean:
If f and g are differentiable on �a; bŒ, continuous at a from the right and at b from

the left, g0.t/ ¤ 0 for all t 2 �a; bŒ, then there exists at least one � 2 �a; bŒ such that

f 0.�/
g0.�/

D f .b/� f .a/

g.b/� g.a/
:

The laws of the mean, simple as they sound, have far reaching consequences, of
which we give here two. One yields the Taylor formula and the Taylor series (Brook
Taylor (1685–1731)).
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We first give an argument indicating what form this formula and series ought to
take. Take a polynomial

f .x/ D b0 C b1x C b2x
2 C � � � C bnxn

and rearrange it along powers of .x � a/:

f .x/ D c0 C c1.x � a/C c2.x � a/2 C c3.x � a/3 C � � � C cn.x � a/n: (6.8)

What will the new coefficients c0; c1; : : : ; cn be? First substitute x D a to get

c0 D f .a/:

Now differentiate both sides of (6.8) (polynomials are differentiable):

f 0.x/ D c1 C 2c2.x � a/C 3c3.x � a/2 C � � � C ncn.x � a/n�1

and substitute x D a again:

c1 D f 0.a/:

Repeating this procedure we get in succession:

f 00.x/ D 2c2 C 2 � 3.x � a/C � � � C n.n � 1/cn.x � a/n�2;

f 000.x/ D 3Šc3 C � � � C n.n � 1/.n � 2/cn.x � a/n�3;
:::

f .n/.x/ D n.n � 1/.n � 2/ � 3 � 2 � 1 � cn;

with

c2 D f 00.a/
2

D f 00.a/
2Š

; c3 D f 000.a/
3Š

; : : : ; cn D f .n/.x/

nŠ
D f .n/.a/

nŠ
;

(nŠ D 1 � 2 � 3 : : : � n; 0Š D 1 by definition), so that (6.8) becomes

f .x/ D f .a/

0Š
C f 0.a/

1Š
.x � a/C f 00.a/

2Š
.x � a/2

C f 000.a/
3Š

.x � a/3 C � � � C f .n/.a/

nŠ
.x � a/n

D
nX

kD0

f .k/.a/

kŠ
.x � a/k:
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Of course, this holds only for polynomials of n-th degree. But let us see how well

f .a/C f 0.a/
1Š

.x � a/C f 00.a/
2Š

.x � a/2 C � � � C f .n/.a/

nŠ
.x � a/n

approximates f .x/ for any n times differentiable function f . We denote the difference
between f .x/ and this polynomial by

Rn.x/ D f .x/� f .a/� f 0.a/
1Š

.x � a/� � � � � f .n/.a/

nŠ
.x � a/n

and call it the remainder. Of course Rn.a/ D 0. There are several ways to calculate
the remainder at other places. Here is one: In analogy to the law of the mean, we
want to prove here that, for a ¤ b,

Rn.b/� Rn.a/ D Rn.b/

D f .b/� f .a/� f 0.a/
1Š

.b � a/� � � � � f .n/.a/

nŠ
.b � a/n

D f .nC1/.�/
.n C 1/Š

.b � a/nC1
(6.9)

meaning that there exists a � between a and b so that (6.9) holds. There certainly is
no difficulty in finding a K such that

f .b/� f .a/� f 0.a/
1Š

.b � a/� � � � � f .n/.a/

nŠ
.b � a/n

D K

.n C 1/Š
.b � a/nC1;

(6.10)

namely

K D .n C 1/Š


f .b/� f .a/

.b � a/nC1 � f 0.a/
1Š

.b � a/�n � � � � � f .n/.a/

nŠ
.b � a/�1

�

:

We define now

F.t/ D f .b/� f .t/ � f 0.t/
1Š
.b � t/ � f 00.t/

2Š
.b � t/2 � � � �

� f .n/.t/

nŠ
.b � t/n � K

.n C 1/Š
.b � t/nC1:
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Of course, F.b/ D 0, from (6.10) we have also F.a/ D 0 and F is continuous at a
and b, so, since F is differentiable (everywhere), we can apply the law of the mean:
There exists a � between a and b such that

0 D F.b/� F.a/

b � a
D F0.�/:

However, differentiating F (with respect to t), we get

F0.t/ D �f 0.t/C f 0.t/ � f 00.t/.b � t/C f 00.t/.b � t/ � � � �

� f .nC1/.t/
nŠ

.b � t/n � K

nŠ
.b � t/n:

Therefore, F0.�/ D 0 means

K D f .nC1/.�/

and (6.10) becomes (6.9), so that we have

f .b/ D f .a/C f 0.a/
1Š

.b � a/C f 00.a/
2Š

.b � a/2 C � � �

C f .n/.a/

nŠ
.b � a/n C f .nC1/.�/

.n C 1/Š
.b � a/nC1

with some � between a and b. Thus, according to (6.9), with x in place of b, the
remainder is

Rn.x/ D f .nC1/.�/
.n C 1/Š

.x � a/nC1

with some � between a and x, furthermore we get the “Taylor formula with
remainder in the Lagrange form”

f .x/ D f .a/C f 0.a/
1Š

.x � a/C f 00.a/
2Š

.x � a/2 C � � �

C f .n/.a/

nŠ
.x � a/n C f .nC1/.�/

.n C 1/Š
.x � a/nC1:

(6.11)

From this, the polynomial part Pn.x/ WD f .x/ � Rn.x/ is

Pn.x/ D f .a/C f 0.a/
1Š

.x � a/C f 00.a/
2Š

.x � a/2 C � � � C f .n/.a/

nŠ
.x � a/n:

For polynomials of n-th degree, as we saw at the beginning of this argument, this
was all of f .x/ and our present question was how well Pn approximates f .
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We answer this question in two ways. First we notice that (by differentiating the
last equality 0, 1, 2, : : :, n-times and substituting x D a).

Pn.a/ D f .a/; P0
n.a/ D f 0.a/; P00

n.a/ D f 00.a/; : : : ; P.n/n .a/ D f .n/.a/:

Therefore, Pn has a graph that is similar to that of f for points near a. In particular,
the graph of Pn has at a the same height, the same slope, the same curvature (which
depends upon the first and second derivative at a), . . . . This gives the impression
that the values of f and Pn are pretty close if we stay near a.

Our second answer estimates jRn.x/j D j f .x/ � Pn.x/j in a neighbourhood of a
for the purpose to see in what neighbourhood of a will this difference be small—
and even tend to 0 as n ! 1: in these neighbourhoods, if any, we talk about the
Taylor expansion of f around a. Clearly this has to be estimated for the individual
functions.

Example 1 (Sine and cosine functions) For the functions f1.a/ D sin x and
f2.x/ D cos x we have

f 0
1.x/ D cos x; f 00

1 .x/ D � sin x; f 000
1 .x/ D � cos x; f .4/1 D sin x; : : :

f 0
2.x/ D � sin x; f 00

2 .x/ D � cos x; f 000
2 .x/ D sin x; f .4/2 D cos x; : : :

respectively. In any case, from (6.11), both for f .x/ D f1.x/ and for f .x/ D
f2.x/,

j f .x/ � Pn.x/j D
ˇ
ˇ f .nC1/.�/

ˇ
ˇ

.n C 1/Š
jx � ajnC1 � 1

.n C 1/Š
jx � ajnC1

since we have in the numerator either jsin �j or jcos �j which are always � 1,
no matter what x (and thus �) is. We show that, for fixed x, we can make the
right hand side as small as we want to. By the definition of limit this means

lim
n!1 Pn.x/ D f .x/:

In order to show that we can make jx � ajnC1 =.n C 1/Š as small as we want
to, we write A D jx � aj > 0 (remember, x is now fixed). Let n be larger than
Œ2A� (the integer part of 2A). Then

jx � ajnC1

.n C 1/Š
D A

1

A

2
� � � A

Œ2A�

A

Œ2A�C 1

A

Œ2A�C 2
� � � A

n C 1
:

(continued)
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While B D .A=1/.A=2/ � � � .A=Œ2A�/ is a fixed number,

A

Œ2A�C k
<
1

2
.k D 1; 2; : : :/;

A

Œ2A�C 1

A

Œ2A�C 2
� � � A

n C 1
<

�
1

2

�n�Œ2A�C1

and

jx � ajnC1

.n C 1/Š
D B

�
1

2

�n�Œ2A�C1
;

which can indeed be made as small as we want it to (limn!1.1=2/n D 0). So
limn!1 Pn.x/ D f .x/, that is,

lim
n!1. f .a/C f 0.a/

1Š
.x � a/C f 00.a/

2Š
.x � a/2 C � � � C f .n/.a/

nŠ
.x � a/n/ D f .x/:

The left hand side is the Taylor series around a (an infinite series), written as

1X

nD0

f .n/.a/

nŠ
.x � a/n

(we write f .0/.a/ D f .a/ and 0Š D 1, as before) and what we got is, that in the
cases f .x/ D cos x and f .x/ D sin x the Taylor series converges to f .x/. (This
is not always so: the Taylor series may converge, but not to f .x/ or it may not
converge at all.) If we choose a D 0, we get a Taylor series around 0 called
also a MacLaurin series. In the cases of sin x and cos x, from the derivatives
calculated at the start of this Example 1, we have, for all real x (x is a variable
again),

sin x D x � x3

3Š
C x5

5Š
� x7

7Š
C : : : and cos x D 1� x2

2Š
C x4

4Š
� x6

6Š
C : : : :

These Taylor and, in particular, MacLaurin series are very useful. We observe
that, while we were able to make j f .x/� Pn.x/j as small as we wanted to for
large enough n > N, this N D Œ2A� D Œ2.x � a/� depended on x (not only
upon the " below which we wanted to bring j f .x/ � Pn.x/j). For many uses of
these power series (every

P1
nD0 cn.x � a/n is a power series), for instance for

derivation and integration, it helps if they are uniformly convergent, that is, the
same N is good for all x, say on an interval. In the present example, both series
are uniformly convergent to f .x/ (to sin x or to cos x) on any closed interval
Œa � r; a C r�: just choose in the above argument A D 2r (jx � aj � 2r D A if
x is in Œa � r; a C r�). This again is not always the case.
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Example 2 (Taylor series of 1=x around 1) For f .x/ D x�1,

f 0.x/ D �x�2; f 00.x/ D 2x�3;
f 000.x/ D �3Šx�4; : : : ; f .n/.x/ D .�1/nnŠx�.nC1/:

So, in this case,

f .1/ D 1; f 0.1/ D �1; f 00.1/ D 2; f 000.1/ D �3Š; : : : ; f .n/.1/ D .�1/nnŠ

and

Pn.x/ D 1 � .x � 1/C .x � 1/2 C � � � C .�1/nC1.x � 1/n:

Instead of using the form (6.11) of the Taylor formula, we calculate
the remainder

Rn.x/ D x�1 � Pn.x/

directly: The simple trick is (as in establishing the sum of the geometric series)
to multiply

Rn.x/ D 1

x
� 1C .x � 1/� .x � 1/2 C � � � C .�1/nC1.x � 1/n

by .x � 1/:

.x�1/Rn.x/ D x � 1

x
�.x�1/C.x�1/2C� � �C.�1/n.x�1/nC.�1/nC1.x�1/nC1

and add up the last two equations:

xRn.x/ D .�1/nC1.x � 1/nC1. So jRn.x/j D jx � 1jnC1

jxj if x ¤ 0:

It is easy to see (and will be shown formally in Sect. 7.2) that n-th powers of
real numbers greater than 1 tend to 1, while n-th powers of positive numbers
smaller than 1 converge to 0 as n ! 1. Therefore

lim
n!1 jRn.x/j D 1 if jx � 1j > 1; that is, x > 2 or x < 0;

lim
n!1 jRn.x/j D 0 if jx � 1j < 1; that is, 0 < x < 2:

(continued)



6.7 Laws of the Mean, Taylor Series, Bernoulli–L’Hospital Rule 253

Thus we have the Taylor series of 1=x around 1:

1

x
D 1 � .x � 1/C .x � 1/2 � .x � 1/3 C � � � if 0 < x < 2;

while this formula is not true for x > 2 and for x < 0 (then the series on
the right does not converge to any finite number at all). Of the two remaining
cases, x D 0 makes no sense in our case (1=x is not defined for x D 0) but,
anyway, Pn.0/ D n C 1 goes to 1, while, for x D 2, jRn.2/j D 1

2
1nC1 D 1

2
,

independently from n (constant sequence), so Rn.2/ does not tend to 0 and
therefore Pn.2/ does not converge to f .2/ D 1

2
. (Actually, Pn.2/ is 1 if n is

odd and Pn.2/ is 0 if n is even, so fPn.2/g D f1; 0; 1; 0; 1; 0; : : :g is divergent.)
So the above Taylor expansion of 1=x holds exactly on �0; 2Œ. We get another
form, a MacLaurin series of 1=.1C t/ around 0 with x D 1C t:

.1C t/�1 D 1� t C t2 � t3 C � � � if and only if � 1 < t < 1 (6.12)

(Here again, the convergence is uniform on Œ�r; r� with any r 2 �0; 1Œ.)

Our second application of the laws of the mean is the Bernoulli-L’Hospital
rule. First about the name. Most English language textbooks call it the L’Hôpital
rule. While today hôpital is the French spelling of the word hospital, the French
mathematician Marquis de L’Hospital (1661–1704) spelled his name this way or
even as “L’Hospital”. More importantly, the famous Swiss mathematician Johann
Bernoulli (1667–1748) claimed in 1704 that he discovered first the rule, which
L’Hospital published it in his Analysis monograph in 1696. The late claim (after
L’Hospital’s death) made it suspicious and disputed. But the publication in 1955(!)
of a letter of L’Hospital to Johann Bernoulli made the claim more credible
and also explained why Bernoulli staked it only after L’Hospital’s death: it is
because L’Hospital bought several of Bernoulli’s results. Indeed, L’Hospital wrote
to Bernoulli on March 17, 1694, among others:

I shall give you with pleasure an annuity of three hundred livres. . . I shall send two hundred
livres for the first half of the year because of the notebooks that you have sent, and it will be
one hundred and fifty livres for the other half of the year and so on in the future. I promise
to increase this annuity soon. . . I am not so unreasonable as to ask for this all your time, but
I shall ask you to give me occasionally some hours of your time to work on what I shall ask
you - and also to communicate to me your discoveries, with the request not to mention them
to others. . . Monsieur, tout á vous

le M. de L’Hospital.
(translation from French; emphasis added).
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So, what is this Bernoulli–L’Hospital rule? In its simplest form it deals with the
limit of fractions at points where both the numerator and the denominator tend to 0
(with “ 0

0
indeterminate forms”). We encountered such limits before, for instance

lim
x!0

sin x

x

in Sect. 6.2,

lim
x!x0

x2 � x20
x � x0

; lim
x!x0

.1=x/� .1=x0/

x � x0
; lim

x!x0

sin x � sin x0
x � x0

in Sect. 6.3 and, also in Sect. 6.4,

lim
x!0

jxj
x

which turned out not to exist (though the left limit �1 and the right limit C1 do
exist). All those limits served indirectly or directly to determine derivatives or to
show that the derivative does not exist. We now turn this around and use derivatives
to determine such limits. Of course we could not have used derivatives to determine
those among the above limits, which do exist, because that would be circular
reasoning (using the derivative, which we have not established yet, to determine
the limit which gives the derivative).

We will formulate and prove the Bernoulli–L’Hospital rule in a somewhat
stronger form: Suppose that there exist a right neighbourhood of a on which f
and g are differentiable and g0.x/ ¤ 0 and that the following limits exist:

lim
x!aC f .x/ D lim

x!aC g.x/ D 0 and lim
x!aC

f 0.x/
g0.x/

D A (finite or infinite).

Then also limx!aCŒ f .x/=g.x/� exists and equals A:

lim
x!aC

f .x/

g.x/
D lim

x!aC
f 0.x/
g0.x/

D A:

A similar rule (with similar proof) holds also for left limits limx!a� and so also
for limits limx!a (throughout, in place of limx!aC ). We did not exclude infinity as
limit: A D 1 is permissible and so is A D �1.

All conditions have to be carefully checked, in particular the existence of
limx!aCŒ f 0.x/=g0.x/�. It is even possible that limx!aCŒ f 0.x/=g0.x/� does not exist
(neither finite nor infinite) but limx!aCŒ f .x/=g.x/� exists (this does not contradict
the above rule; why?):
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Example 3 By Sects. 6.5 1 and 6.2 Example 1, the following limit exists:

lim
x!0

x C 2x2 sin.1=x/

x
D lim

x!0

�

1C 2x sin
1

x

�

D 1C lim
x!0

�

2x sin
1

x

�

D 1:

But

lim
x!0

Œx C 2x2 sin.1=x/�0

.x/0
D lim

x!0

1C 4x sin.1=x/� 2 cos.1=x/

1
D 1�2 lim

x!0
cos

1

x

(again by Sects. 6.5 1 and 6.2 Example 1) does not exist, because limx!0 cos 1x
does not exist for the same reason as limx!0 sin 1

x does not exist (compare
Sect. 6.2 Example 1).

Proof of the Bernoulli–L’Hospital rule As we have seen in the definition of (right)
limits (Sect. 6.7) neither f nor g needs to be defined at a. But we can define them (or
redefine if f .a/ or g.a/ were already defined otherwise) as follows:

f .a/ D lim
x!aC f .x/ D 0; g.a/ D lim

x!aC g.x/ D 0:

Then (compare Sect. 6.3) f and g will be right continuous at a. So the conditions of
Cauchy’s law of the mean hold in the right neighbourhood of a on which f and g are
differentiable and g ¤ 0, that is, there exists a � between a and x (x being in that
right neighbourhood) such that

f .x/

g.x/
D f .x/� f .a/

g.x/� g.a/
D f 0.�/

g0.�/
:

As x tends to a, so does � which is between x and a. Therefore

lim
x!aC

f .x/

g.x/
D lim

�!aC
f 0.�/
g0.�/

D lim
x!aC

f 0.x/
g0.x/

if the right hand limit exists (of course the limit in the middle is the same as the limit
on the right hand side). This concludes the proof of the Bernoulli–L’Hospital rule.

Example 4

lim
x!0

1 � cos x

x
D lim

x!0

sin x

1
D sin 0 D 0

(continued)
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since the sine is continuous at 0. Here we applied the Bernoulli–L’Hospital
rule to calculate a limit rather than a right limit.

The rule can also be applied repeatedly; if you do not succeed first, try again:

Example 5

lim
x!0

1 � cos x

x2
D lim

x!0

sin x

2x
:

On the right hand side, numerator and denominator still tend to 0 (we still
have a “ 0

0
–form”) if x D 0. So we do “it” again:

lim
x!0

1 � cos x

x2
D lim

x!0

sin x

2x
D lim

x!0

cos x

2
D 1

2
;

since also the cosine is continuous at 0.

But we have to be careful not to overdo it; it can be continued only while each
limit (except the last) is “ 0

0
–form”:

Example 6

lim
x!2

x2 � x � 2
x2 � 2x

D lim
x!2

2x � 1
2x � 2 ¤ lim

x!2

2

2
D 1:

because lim
x!2

2x � 1

2x � 2
is no “ 0

0
–form” anymore. Correctly:

lim
x!2

x2 � x � 2
x2 � 2x

D lim
x!2

2x � 1
2x � 2 D 3

2
;

because 2x � 1 and 2x � 2 are continuous.

The Bernoulli–L’Hospital rule (or a consequence) can be applied also “ 0
0
–forms”

generated by limits at infinity: if limx!1 f .x/ D limx!1 g.x/ D 0 and, for some
M, g0.x/ ¤ 0 if x > M, furthermore limx!1 f 0.x/

g0.x/ D A exist, then

lim
x!1

f .x/

g.x/
D lim

x!1
f 0.x/
g0.x/

D A:
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Indeed, write t D 1=x. Then in the following calculation (which uses also the chain
rule Sect. 6.5 4) the second limit is of the previous form:

lim
x!1

f .x/

g.x/
D lim

t!0C
f .1=t/

g.1=t/
D lim

t!0C
�f 0.1=t/=t2

�g0.1=t/=t2

D lim
t!0C

f 0.1=t/

g0.1=t/
D lim

x!1
f 0.x/
g0.x/

if the limit on the right exists. Also other “indeterminate forms” like 1
1 and 1 � 1

can be reduced to the 0
0
–form and the Bernoulli–L’Hospital rule applies. We show

only an example of the latter:

Example 7 (The second limit is already of the 0
0
–form. We apply the

Bernoulli–L’Hospital rule twice.)

lim
x!0C

�
1

sin x
� 1

x

�

D lim
x!0C

x � sin x

x sin x
D lim

x!0C
1 � cos x

sin x C x cos x

D lim
x!0C

sin x

cos x C cos x � x sin x
D 0

2
D 0:

6.7.1 Exercises

1. Determine the � in f 0.�/ D f .b/� f .a/

b � a
for the functions

(a) f W �a; bŒ ! R, x 7! x2, where a D �1, b D 3,
(b) f W �a; bŒ ! R, x 7! 1 � x2 C x4, where a D �3, b D 3.

2. Determine the � in
f 0.�/
g0.�/

D f .b/� f .a/

g.b/� g.a/
for the functions

f W �a; bŒ ! R, x 7! 1C x � x2 C x3=3,
f W �a; bŒ ! R, x 7! 1C x2=2,
where a D 1, b D 3.

3. Determine the Taylor series of f W .R � f0g/ ! R, x 7! 1

x
, around x D �1. For

which values of x does this series converge?
4. Calculate the following limits by applying the Bernoulli–L’Hospital rule.

(a) lim
x!0

1 � cos x
2

1 � cos x
, (b) lim

x!0

2 tan x

tan.2x/
,

(c) lim
x!0

sin x � x cos x

x sin x
, (d) lim

x!�=2
.� � 2x/ tan x.
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5. (a) Why is the following application of the Bernoulli–L’Hospital rule wrong:

lim
x!1

x3 C x2 � x � 1

x2 � 1 D lim
x!1

3x2 C 2x � 1

2x
D lim

x!1

6x C 2

2
D 4‹

(b) Determine the true value of the limit.

6.7.2 Answers

1. (a) � D 1, (b) �1 D 0, �2 D p
2=2, �3 D �p

2=2.

2. �1 D .4C p
7/=3, �2 D .4 � p

7/=3.

3. f .x/ D 1

x
D �1 � .x C 1/� .x C 1/2 � .x C 1/3 � � � �

converges if �2 < x < 0.

4. (a)
1

4
, (b) 1, (c) 0, (d) 2.

5. (a) lim
x!1

3x2 C 2x � 1
2x

is not of the form
0

0
(lim
x!1

.3x2 C 2x � 1/ D 4 ¤ 0),

(b) lim
x!1

3x2 C 2x � 1
2x

D 2.

6.8 Monotonicity, Local Maxima, Minima and Convexity
of Differentiable Functions

We can use (6.11), the “Taylor formula with remainder in the Lagrange form” (6.11),
to find conditions, sometimes necessary, sometimes sufficient, sometimes both, for a
function to be monotonic, strictly monotonic (see Sect. 3.3), which we will do here,
or to be convex or strictly convex (see Sect. 3.5), which we will do in Sect. 7.2. Since
the derivative at a point (Sect. 6.4) is the slope of the tangent of the graph, it seems
intuitive, that a function strictly increases on an interval, if the derivative is positive
there. This is actually true, it follows from the n D 0 case of the Taylor formula,
which is really just the law of the mean

f .x/ D f .a/C f 0.�/.x � a/:

Indeed, if x > a and f 0.�/ is positive for � 2 �a; xŒ (meaning also that f 0 exists on that
interval and f is continuous at a and at x; we will suppose here that f is differentiable
on Œa; b�; x � b) then f .x/ > f .a/, that is, f strictly increases and does so as long as f 0
remains positive. By the same argument, if f 0.�/ � 0 on an interval then f increases
there in the wider sense. Similar rules hold for strictly decreasing ( f 0.�/ < 0) and
decreasing in the wider sense ( f 0.�/ � 0).

How about the converse? Does the increasing of a differentiable function on an
interval imply that the derivative is nonnegative there? The answer is yes: If f .x/ �
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f .x0/ for all x > x0 on an interval then, by the definition of the derivative in Sect. 6.4,

f 0.x0/ D lim
x!x0

f .x/� f .x0/

x � x0
� 0:

(We took x > x0 but the proof goes the same way if we approach x0 by x < x0.)
Similarly, if f is decreasing (in the broader sense) on an interval then f 0 � 0 there.

But, if f is strictly decreasing on an interval, does it follow that f 0.x/ < 0

everywhere on the interval, except may be at its ends (where it still should be
continuous)? The answer is no.

Example f .x/ D �x3 strictly decreases on Œ�1; 1 �, but

f 0.0/ D �3x2jxD0 D 0:

On the other hand, f 0.x/ D 0 on a whole subinterval implies, as noted
right after (6.11), that f is constant on that subinterval, so f cannot be strictly
decreasing or strictly increasing on an interval where f 0.x/ D 0. Conversely,
if f is monotonic but not strictly monotonic then there exist x1, x2, x1 < x2
such that f .x1/ D f .x2/ DW c (say). Since f is monotonic (in the wider sense)
this is possible only if f .x/ D c for all x 2 Œ x1; x2 �, that is on an interval of
positive length (on a “proper interval”).

Thus a function f differentiable on the interior of an interval I � R and
continuous on its ends is strictly increasing (respectively. strictly decreasing)
if, and only if, f 0.x/ � 0 (respectively. f 0.x/ � 0) on the interior of I and there
is no proper subinterval on which f 0.x/ D 0.

As we know from Sect. 3.3, if the function f increases before x0, say
on Œx0 � ı1; x0�, and decreases after x0, on Œx0; x0 C ı2�, then f has a local
maximum at x0. If f is differentiable on Œx0 � ı1; x0 C ı2� then f 0.x/ � 0

for x � x0 and f 0.x/ � 0 for x � x0, so f 0.x0/ D 0 at local maxima and,
by the same argument, also at local minima. However, the converse is not
true: f 0.x0/ D 0 is possible also if x0 is neither a local maximum, nor a local
minimum, as f .x/ D �x3 shows at x D 0 (Fig. 6.26). If also f 0.x/f 0.Qx/ > 0

for x < x0 < Qx in a neighbourhood of x0 then x0 is called a horizontal point
of inflection. (The word “horizontal” is often omitted, but we saw in Sect. 3.4
and will see in Sect. 7.4 also other kinds of “points of inflection”:) So how can
we decide whether at x0 with f 0.x0/ D 0 the function f has a local maximum,
minimum or horizontal point of inflection? As we saw, right before a local
maximum x0 we have f 0.x/ � 0, right after it f 0.x/ � 0. So f 0 decreases (in the
wider sense) on a neighbourhood of a local maximum. If f 0 is differentiable,
that is, f 00 exists on such a neighbourhood of a local maximum, then f 00.x/ � 0

there. The converse is clearly also true: if f 0.x0/ D 0 and f 00.x/ � 0 on a
neighbourhood of x0, then f has a local maximum at x0. But it is not enough

(continued)
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Fig. 6.26 x 7! �x3 is
strictly decreasing on Œ�1; 1�,
but the derivative is
0 at x D 0

−1

1

−1

1

to have, in addition to f 0.x0/ D 0 just f 00.x0/ � 0 as again the example
f .x/ D �x3 (Fig. 6.26) shows. If, however, f 0 and f 00 exist, f 00 is continuous
at x0, f 0.x0/ D 0 and f 00.x0/ < 0 (not just � 0) then f has indeed a local
maximum at x0 (why?). But again this sufficient condition is not necessary: for
f .x/ D 1 � x4, f 0 and f 00 everywhere exist, are continuous, f 0.0/ D f 00.0/ D 0

but f has a maximum at 0 (show by calculation or drawing).
Similar statements hold for local minima (local maxima and minima are

called collectively “local extrema”). We remind the reader, however (see
Sect. 3.4), that a (global) maximum or minimum (global “extremum” for
short) can be also on a closed end of an interval (Figs. 3.23 and 3.24). This
gives the following test for extrema on an interval: Find the points where
f 0.x/ D 0 and check there f 00.x/. If it is positive then there is a local
minimum, if negative then a local maximum. (This test is not decisive where
f 0.x0/ D f 00.x0/ D 0; one can prove that when the first nonzero derivative is
of even order then we have a local extremum and if it is of odd order, then
a horizontal point of inflection.) In order to determine the global maximum
(minimum) on the interval, calculate the local maximum (minimum) values of
the function on that interval and the function values at the closed ends of the
interval (if any). Now the largest (smallest) among all these will be the global
maximum (minimum) value on that interval and the point or points where it
is assumed the global maximum (minimum) point or points. (We have seen
in Sect. 6.3, property 2 that on a closed bounded interval every continuous
function assumes both its maximum and its minimum.)
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Example Determine the global and local maxima, minima and the horizontal
points of inflection of the function given by

f .x/ D 0:15x5 � 0:25x3 C 0:1

on Œ�2; 2 �. We differentiate:

f 0.x/ D 0:75x4 � 0:75x2 D 0:75x2.x2 � 1/ D 0:75x2.x � 1/.x C 1/

so f 0.x/ D 0 at �1, 0 and 1. We differentiate again:

f 00.x/ D 3x3 � 1:5x; f 00.�1/ D �1:5 < 0; f 00.0/ D 0; f 00.1/ D 1:5

so �1 is a local maximum point, 1 a local minimum point. This test is
indecisive concerning x D 0 but f 000.0/ D �1:5 ¤ 0 so 0 is a horizontal
point of inflection. The local maximum and minimum values are

f .�1/ D 0:2 and f .1/ D 0;

respectively. But the function values at the end of the closed interval Œ�2; 2 �
are

f .�2/ D �2:7 and f .2/ D 2:9

so the global maximum value on Œ�2; 2 � is 2:9 (and not 0:2) and the global
minimum value is �2:7 (not 0), attained at 2 and �2, respectively (Fig. 6.27).

(continued)

Fig. 6.27 Global and local
extrema and horizontal point
of inflection of
x 7! 0:15x5 � 0:25x3 C 0:1

on Œ�2; 2�
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Note that it is also possible that f 0.a/ D 0 but there is neither a local
extremum nor a point of inflection at a. For instance:

f .x/ D
�

x4 cos 1x .x ¤ 0/

0 .x D 0/
;

f 0.x/ D
�
4x3 cos 1x C x2 sin 1

x .x ¤ 0/

0 .x D 0/
;

f 00.x/ D
�
.12x2 � 1/ cos 1x C 6x sin 1

x .x ¤ 0/

0 .x D 0/

(check!) but f 000.0/ is not defined:

f 00.x/ � f 00.0/
x

D .12x � 1

x
/ cos

1

x
C 6 sin

1

x

has no limit as x ! 0.
In Sect. 8.3 we will obtain from the n D 2 case of the Taylor formula (6.11)

similar conditions for convexity (from above or from below) as we did for
monotonicity. Actually, compare Figs. 6.11, 6.14, and 6.27, in the neighbour-
hood of a local minimum (maximum) the function is convex from below (from
above).

6.8.1 Exercises

1. (a) Draw the graph of the function f W Œ�1; 2 � ! R, x 7! x3 � x2. Determine
(b) the local extrema (minima, maxima) of f in the interior of Œ�1; 2 �,
(c) the global extrema of f ,
(d) its points of inflection.

2. (a) Draw the graph of the function f W R ! R, x 7! �2x3 C 9x2 � 12x � 6 for
�2 � x � 3.

(b) Where are the local minima of f ?
(c) Where are the local maxima of f ?
(d) Where are the points of inflection of f ?

3. Present a function f W Œ�3; 3 � ! R which is strictly increasing, four times
differentiable and satisfies f 0.1/ D f 00.1/ D f 000.1/ D f .IV/.1/ D 0.

4. Present a continuous function f W �� 3; 3 Œ ! R which is decreasing and differ-
entiable everywhere on �� 3; 3 Œ up to the points �2, �1, 0, 1, 2, but not strictly
decreasing in Œ 0; 1 �.
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5. Is the function f W � 0; 3 Œ ! R given by

f .x/ D
8
<

:

p
x for x 2 � 0; 1 �

x2 for x 2 Œ 1; 2 �
�4C 4x for x 2 Œ 2; 3 Œ

continuous, strictly increasing and differentiable?

6.8.2 Answers

1. (b) Local minimum at x D 2=3, f .2=3/ D �4=27, local maximum at x D 0,
f .0/ D 0,

(c) global minimum at x D �1, f .�1/ D �2, global maximum at x D 2, f .2/ D
4,

(d) point of inflection x D 1=3, f .1=3/ D �2=27.
2. (b) Local minimum at x D 1, f .1/ D �11,

(c) local maximum at x D 2, f .2/ D �10,
(d) point of inflection x D 3=2, f .3=2/ D 21=2.

3. Take, for instance, f .x/ D .x � 1/5.
4. Take, for instance,

f .x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

�2x for x 2 �� 3;�2 �
2 � x for x 2 Œ�2;�1 �
�3x for x 2 Œ�1; 0 �

0 for x 2 Œ 0; 1 �
1 � x for x 2 Œ 1; 2 �
7 � 4x for x 2 Œ 2; 3 Œ:

5. The function is continuous and strictly increasing. It is differentiable at any point
different from x D 1. The left limit of the difference quotient at x D 1 is

lim
x!1
x<1

p
x � p

1

x � 1
D 1

2
, but the right lim

x!1
x>1

x2 � 12
x � 1 D 2.

6.9 “Cobweb” Situations in Economics: Points of Intersection
of Graphs and Zeros of Functions

We apply now limit, continuity, differentiability and the “law of the mean” to
important situations in economics, laying at the same time the groundwork to
important algorithms for determining zeros of functions.
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If the price of a product at a certain time is relatively high, that is an incentive
for the producers to increase the production. If that can be done, it may raise new
problems. By the time the production will have increased, the demand may already
be lower but, even if this is not the case, the increased quantity of supply may still
push down the price (the original height of which was the incentive for increasing
the production) according to the “law of supply and demand”. The lower price may
then lead to lower production which may eventually lead to higher prices again,
and so on. Popular examples come from agriculture; one speaks, in particular, about
“pork cycles”.

In the mathematical model we make the following assumptions.

(A1) The price p of the product generates a certain quantity y of demand, that is,
there exists a demand function f W RC ! RC such that y D f . p/.

(A2) On the other hand the price p determines also the quantity Ny of supply, that
is, there exists also a supply function g W RC ! RC such that Ny D g. p/.

(A3) The demand function f is decreasing, the supply function g is increasing; the
graphs of these two functions, that is, the demand curve D and the supply curve
S intersect in exactly one point . p�; y�/.

Note: It is clear from the above that it is pretty natural to suppose that f decreases
and that g increases. Strict decreasing and increasing would make the uniqueness
of the point of intersection more automatic but are somewhat less natural and rarely
occur in practice. Nevertheless, as Fig. 6.28 shows, not-strictly monotonic functions
S and D can also produce a single point of intersection. This point . p�; y�/, which
according to (A3) exists and is unique, is called equilibrium point, y� the equilibrium
quantity, p� the equilibrium price or market price. We point out here that in many
economic textbooks our price axis (see Figs. 6.28, 6.29, 6.30, and 6.31) is the
quantity axis and, accordingly, our quantity axis in the price axis.

At the market price p� the quantities of supply and demand on the market
are equal. It is, of course, not fixed in advance but determined (more or less)
by the “market forces”. Here we are modelling this “market process” according

Fig. 6.28 Supply curve S
demand curve D, and
equilibrium point . p�; y�/
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Fig. 6.29 Successive
price–quantity points may
approach the equilibrium
point in a shape reminding of
a “cobweb”

Fig. 6.30 Both f png and
fyng oscillate between two
fixed values

Fig. 6.31 Both f png and
fyng “explode”
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to our assumptions (A1), (A2), (A3). While one sees that time has a role in the
process described above, we will not explicitly refer to it and we will also ignore,
the influence of warehousing on the price development. We start with a price p0.
According to (A1) this creates demand in quantity y0 D f . p0/ while, according
to (A2), it generates a (presumably larger) quantity y1 D g. p0/ of supply. This
quantity can be sold only at the (lower) price p1 (Fig. 6.29), so y1 D f . p1/. At this
price the quantity of supply changes (diminishes) to y2 D g. p1/ causing a change
(increase) of price from p1 to p2: y2 D f . p2/ and so it goes.

As we have just seen, the two sequences f png and fyng are defined by

yn D f . pn/; ynC1 D g. pn/ .n D 0; 1; 2; : : :/: (6.13)

Actually, if f is strictly monotonic and continuous, we can apply inverse functions
and define fyng and f png by

pn D f �1.yn/; ynC1 D g. f �1.yn// .n D 0; 1; 2; : : :/: (6.14)

If we are lucky, these sequences converge to the equilibrium price p� and the
equilibrium quantity y�, respectively (Fig. 6.29). However, as Figs. 6.30 and 6.31
show, for certain f and g and initial points . p0; y0/, the sequences f png and
fyng may oscillate between two points each or even j pn � pn�1j and jyn � yn�1j
may, instead of decreasing, increase beyond any bound (“exploding” sequences).
Anyway, Figs. 6.29, 6.30, and 6.31 remind economists of cobwebs therefore these
phenomena are called “cobweb situations” or even “cobweb theorems”.

In the case where f png and fyng converge and (Fig. 6.29)

p� D lim
n!1 pn; y� D lim

n!1 yn;

if f and g are continuous at p� then, from (6.13),

f . p�/ D y� D g. p�/; that is; f . p�/ � g. p�/ D 0:

Thus the market price p� is a point where the value of the function f � g (that is,
p 7! f . p/ � g. p/) is zero or, for short, p� is a zero of the function f � g. Here we
determined the zero of this function by the iteration process (6.14). We now regard
this in general, not only for the above application.

Not only for monotonic functions but in general, determining points where
two functions f and g are equal (their graphs intersect) is clearly equivalent to
determining the zeros of f � g:

f . p�/ D g. p�/ ” f . p�/ � g. p�/ D 0:
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The function g may even be a constant c and then the function f assumes the value c
exactly where p 7! f . p/�c is zero. So, determining zeros of functions is important.
As above, it is often done by iteration processes.

In search of the zeros of a function h W I ! R, where I is an open interval, the
following iteration process is often useful: Choose x0 2 I arbitrarily, then define

x1 D x0 � h.x0/;
x2 D x1 � h.x1/;

:::

xnC1 D xn � h.xn/ .n D 0; 1; 2; : : :/:

(6.15)

If this sequence converges to x� and h is continuous at x� then clearly (taking n !
1 in the last equation)

x� D x� � h.x�/; that is h.x�/ D 0

so that x� is a zero of h.
We give now conditions which are sufficient for the sequence fxng, defined

by (6.15), to converge whenever we start from an x0 in an open subinterval I� of
I (I� � I ). We define a new function F W I ! R by

F.x/ D x � h.x/:

Then (6.15) can be written as

xnC1 D F.xn/ .n D 0; 1; 2; : : :/

(compare to the second equation in (6.14)). If (a) with every x 2 I�, also F.x/ 2 I�
and (b) there exists a (nonnegative) constant c < 1 such that

jF.x/� F.y/j � c jx � yj for all x; y 2 I�

then the sequence fxng, defined by xnC1 D F.xn/ starting with an x0 2 I�, converges
(the assumption (b) is called a Lipschitz condition; Rudolf Lipschitz (1832–1903)).
Indeed, first of all, by condition (a), with x0 2 I� also x1 D F.x0/ 2 I� then
x2 D F.x1/ 2 I�, and so on, xn 2 I� for all n 2 N. Further, by the Lipschitz
condition (b),

jx2 � x1j D jF.x1/� F.x0/j < c jx1 � x0j ;
jx3 � x2j < c jx2 � x1j < c2 jx1 � x0j
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and, in general,

jxnC1 � xnj < c jxn � xn�1j < : : : < cn jx1 � x0j :

So, the distance between xnC1 and xn decreases as n increases and

lim
n!1 jxnC1 � xnj D 0

because limn!1 cn D 0 if 0 � c < 1 (as will be shown in Sect. 7.2 but was used
already in Sect. 6.7, Example 2), that is, the distance between xnC1 and xn decreases
to 0 as n goes to 1. So fxng indeed converges (“squeeze rule”, compare Sect. 6.2,
proof of (3)).

Let the limit of fxng be x�:

x� D lim
n!1 xn:

From the Lipschitz condition (b), F is continuous at every point y 2 I�. Indeed,
either c D 0, in which case F is constant and thus continuous on I�, or, by (b),

if jx � yj < ı then jF.x/� F.y/j < " D cı;

so for every " > 0 there exists a ı D "=c such that

jF.x/� F.y/j < " whenever jx � yj < ı

which, as we have seen in Sect. 6.3, exactly means that F is continuous at y. This
fact with

xnC1 D F.xn/ and x� D lim
n!1 xn

means again that

x� D F.x�/:

This equation is described by saying that x� is a fixed point of F.
By our definition, F.x/ D x � h.x/, so

x� D x� � h.x�/; that is, h.x�/ D 0

and x� is indeed a zero of h. For h the condition (b) translates into

jx � y � .h.x/� h.y//j � c jx � yj .0 � c < 1/ for x; y 2 I�:
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If F is differentiable on I� and the absolute value of the derivative is not greater
than a constant c < 1 on I� then the Lipschitz condition (b) is satisfied (so the
Lipschitz condition is something between continuity and differentiability). Indeed,
by the law of the mean (Sect. 6.7) for a differentiable F there exists a � between
x and y such that .F.x/� F.y//=.x � y/ D F0.�/. If jF0.x/j � c on I�, then

ˇ
ˇ
ˇ
ˇ
F.x/� F.y/

x � y

ˇ
ˇ
ˇ
ˇ D ˇ

ˇF0.�/
ˇ
ˇ � c so jF.x/� F.y/j � c jx � yj ;

as asserted. With F.x/ D x � h.x/, the condition jF0.x/j � c < 1 translates into

ˇ
ˇ1 � h0.x/

ˇ
ˇ � c < 1; that is � c � h0.x/ � 1C c .0 � c < 1/ for x 2 I�

or, what is the same, 1 � c � h0.x/ � 1 C c .0 � c < 1/ on I� and (by (a)),
x 2 I� ) x � h.x/ 2 I�. These conditions are sufficient for the sequence fxng,
defined by

x0 2 I�; xnC1 D xn � h.xn/ .n D 0; 1; 2; : : :/;

to converge to a zero of h.

6.9.1 Exercises

1. Let p and y be the price and the quantity of a good, respectively. On a market
let f W RC ! RC, p 7! ˛=p be the demand function and g W RC ! RC, p 7!
bp2 the supply function. Determine the parameters ˛ and b so that equilibrium
point . p�; y�/ in the market is
(a) .1; 100/, (b) .2; 20/, (c) .3; 10/ .

2. Determine the zeros of the functions

(a) h1 W R ! R, x 7! x2 � 3

2
x C 1

2
,

(b) h2 W RC ! R, x 7! p
x � 2x C 1,

(c) h3 W R ! R, x 7! x3 � 2x2 � x C 2.
3. With h1 from Exercise 2 start the integration process xnC1 D xn � h1.xn/ .n D
0; 1; 2; : : :/

(a) with x0 D 11=10 and determine x1, x2 and x3,
(b) with x0 D 1=4 and determine x1, x2 and x3.

4. Why does the iteration process in Exercise 3 converge in case (a)?
5. Why does the iteration process in Exercise 3 not converge in case (b)?
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6.9.2 Answers

1. (a) ˛ D 100, b D 100,
(b) ˛ D 40, b D 5,
(c) ˛ D 30, b D 10=9.

2. (a)
1

2
, 1,

(b)
5

2
C

p
29

2
,
5

2
�

p
29

2
,

(c) �1, 1, 2.
3. (a) 1:04, 1:0184, 1:0088,

(b) 0:0625, �0:347656, �1:490005.
4. Because F0.x/ D .x � h1.x//0 D �

x � x3 C 3
2
x � 1

2

	0 D �2x C 5
2
< 1 for x D

x0 D 11=10.

5. Because F0.x/ D .x � h1.x//
0 D �2x C 5

2
> 1 for x D x0 D 1=4.

6.10 Newton’s Algorithm: Differentials (Linear Approximation)

A particularly popular algorithm for determination of zeros of functions is
theNewton algorithm (Isaac Newton (1643–1727)), because it often converges
fast.

Here we take, in (6.15), for a function f , differentiable with continuous nonzero
derivative on I�,

h.x/ WD f .x/

f 0.x/
:

So the algorithm defines the sequence fxng by

xnC1 D xn � f .xn/

f 0.xn/
.n D 0; 1; 2; : : :/: (6.16)

If fxng converges to x� then accordingly

x� D x� � f .x�/
f 0.x�/

; that is; f .x�/ D 0;

so that in this case x� is a zero of f .
The geometric meaning of (6.16) is shown in Fig. 6.32: xnC1 is the point of

intersection of the tangent of the graph of f at xn and of the X1–axis. Indeed, since
f 0.xn/ is the slope tan˛, where ˛ is the angle between the tangent and the X1-axis,
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Fig. 6.32 The Newton algorithm

Fig. 6.33 Newton algorithm oscillates between two points

therefore

f 0.xn/ D tan˛ D f .xn/

xn � xnC1

which is equivalent to (6.16).
But, just as in the “cobweb situation” in the previous section, it is possible that the

sequence fxng of the Newton algorithm “oscillates” between two points (Fig. 6.33)
or “explodes” (Fig. 6.34).
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Fig. 6.34 Newton algorithm
“ex- plodes”

We get from the last statement of Sect. 6.9 sufficient conditions for the convergence
of fxng: x 2 I� ) x � f .x/=f 0.x/ 2 I� and there exists a c 2 Œ 0; 1 Œ such that

1 � c � h0.x/ D
�

f .x/

f 0.x/

�0
D f 0.x/2 � f .x/f 00.x/

f 0.x/2
D 1 � f .x/f 00.x/

f 0.x/2
� 1C c

that is,

ˇ
ˇ
ˇ
ˇ
f .x/f 00.x/

f 0.x/2

ˇ
ˇ
ˇ
ˇ � c < 1 for all x 2 I�:

An example, where this condition is satisfied, is given by f .x/ D x3 � 1, I� D
� 3
4
; 3 Œ. Indeed then f 0.x/ D 3x2, f 00.x/ D 6x, and

ˇ
ˇ
ˇ
ˇ
f .x/f 00.x/

f 0.x/2

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
6x4 � 6x

9x4

ˇ
ˇ
ˇ
ˇ D 6

9

ˇ
ˇ
ˇ
ˇ1 � 1

x3

ˇ
ˇ
ˇ
ˇ � 74

81
< 1

so c D 74
81
< 1 will do. Furthermore, if x 2 � 3

4
; 3 Œ then, as one checks easily (for

instance on the graph of 2
3
x C 1

3
x�2),

x � f .x/

f 0.x/
D x � x3 � 1

3x2
D 2x3 C 1

3x2
2


1;
55

27



�
�
1

2
; 3



;

as required. This, of course, is a test case since it is obvious that x� D 1 is the only
zero of f .x/ D x3�1. Let us see how well and fast the Newton algorithm approaches
it, starting, say, with x0 D 2:

x1 D x0 � x30 � 1

3x20
D 2 � 8� 1

12
D 1:41666666 : : : ;



6.10 Newton’s Algorithm: Differentials (Linear Approximation) 273

x2 D x1 � x31 � 1

3x21
D 1:11053374 : : : ;

x3 D 1:01063664 : : : ;

x4 D 1:00011155 : : : ;

x5 D 1:0000001 : : :

Pretty good!
With the Newton algorithm we have already, in a sense, approximated the

function f by a “linear function” (really by a sequence of affine functions): we
approximated the zero x� of f by xnC1, the zero of the affine function whose graph
is the tangent of the graph of f at xn. The idea of the differential rests on a somewhat
similar approximation of f by an affine function, represented by the tangent of the
graph of f .

As we saw in Sect. 6.4, the derivative at x0 of a real valued function defined on a
neighbourhood of x0 is given by

L D f 0.x0/ D lim
x!x0

f .x/ � f .x0/

x � x0
; (6.17)

if this limit exists. Since the limit of the constant L is L, and the limit of a difference
is the difference of limits, we can write this also as

lim
x!x0

�
f .x/� f .x0/

x � x0
� L

�

D 0 (6.18)

(compare also the proof of the Theorem in Sect. 6.4).
Now we introduce a linear function ` by

`.t/ D Lt

and an affine function `� by

`�.x/ D f .x0/C `.x � x0/:

Equation (6.17) shows that the slope L of (the graph of) `� equals that of (the
graph of) f at x0, while (6.18) can be written as

lim
x!x0

f .x/ � f .x0/� `.x � x0/

x � x0
D 0:

This equation expresses that (Fig. 6.35) f can be approximated at x0 by the affine
function `�. One often gives meaning to the “differential”, mentioned in Sect. 6.5 4,
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Fig. 6.35 Approximation of
f at .x0; f .x0// by the affine
function `�

by defining

df .x0/ D `.x � x0/ D `.x/ � `.x0/

(the last equality being true because ` is linear). Usually one writes, in particular if
x0 is fixed,

dy D df

for the affine function df .x0/ given by

df .x0/ D `.x/ � `.x0/;

but a consequent definition of the differential dy D df is that it is the following set
of affine functions:

df D fx 7! `.x/� `.x0/ j x0 2 domain of f g:

Of course, for the “identity” function f .x/ D x we have

`.x/ D x; because lim
x!x0

.x � x0/� .x � x0/

x � x0
D 0;

so dx D x � x0 and, since dy D `.x/� `.x0/ D Lx � Lx0,

dy

dx
D L D f 0.x0/;
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in accordance with our notation in 6.5 4. Another interpretation of differentials is
given in nonstandard analysis. We do not go into that here.

6.10.1 Exercises

1. Apply the Newton algorithm to determine the zeros of the function x 7! x2 �
3
2
x C 1

2
mapping R into R. Start the iteration

xnC1 D xn � f .xn/=f 0.xn/ .n D 0; 1; 2; : : :/

(a) with x0 D 2 and determine x1, x2, x3, x4 and x5,
(b) with x0 D 1=10 and determine x1, x2, x3 and x4.
(c) Compare your result with the exact solutions of the equation x2� 3

2
xC 1

2
D 0.

2. Why does the iteration process in Exercise 1, case (a), converge to one of the
zeros determined in Exercise 1 (c) but not to the other?

3. Why does the iteration process in Exercise 1, case (b), converge to one of the
zeros determined in Exercise 1 (c) but not to the other?

4. (a) Draw the graph of the function

g W R �! R; x 7�!
� p

x for x � 0

�pjxj for x � 0
:

(b) Show that the Newton algorithm oscillates between x0 and �x0 for each initial
point x0 6D 0.

5. (a) Draw the graph of the function

h W R �! R; x 7�!
�

x1=3 for x � 0

� jxj1=3 for x � 0
:

(b) Show that the Newton algorithm “explodes” for each initial point x0 6D 0.

6.10.2 Answers

1. (a) 1:4; 1:12307692 : : : ; 1:02030135 : : : ;

1:00076238 : : : ; 1:00000115 : : : ;

(b) 0:376923076 : : : ; 0:479698652 : : : ;

0:499237603 : : : ; 0:499998841 : : : :

2. Convergence to x D 1, since

ˇ
ˇ
ˇ
ˇ
f .x/f 00.x/

f 0.x/2

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
2x2 � 3x C 1

4x2 � 6x C 9
4

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2
< 1 for all x 2�0:95;1Œ;
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but not to x D 1
2
, since in the iteration process

xnC1 D xn � f .xn/

f 0.xn/
D xn � x2n � 3

2
xn C 1

2

2xn � 3
2

D x2n � 1
2

2xn � 3
2

� 1 for all xn � 1 .n D 0; 1; 2; : : :/:

3. Convergence to x D 1
2
, since

ˇ
ˇ
ˇ
ˇ
f .x/f 00.x/

f 0.x/2

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
2x2 � 3x C 1

4x2 � 6x C 9
4

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2
< 1 for all x 2� � 1; 0:55Œ;

but not to x D 1, since in the iteration process

xnC1 D xn � f .xn/

f 0.xn/
D xn � x2n � 3

2
xn C 1

2

2xn � 3
2

D x2n � 1
2

2xn � 3
2

� 1

2
for all xn � 1

2
.n D 0; 1; 2; : : :/:

4. (b) Newton algorithm for g:

xnC1 D xn � g.xn/

g0.xn/
D

8
ˆ̂
<̂

ˆ̂
:̂

xn �
p

xn

1
2

x
�
1
2

n

D xn � 2xn for xn � 0

xn � �pjxnj
1
2

jxnj�
1
2

D xn C 2 jxnj for xn � 0;

with x1 D �x0 for x0 � 0 or x1 D jx0j for x0 � 0:

5. (b) Newton algorithm for h:

xnC1 D xn � h.xn/

h0.xn/
D

8
ˆ̂
<

ˆ̂
:

xn � x
1
3
n

1
3 x

� 2
3

n

D xn � 3xn for xn � 0

xn � �jxnj 13
1
3 jxnj� 2

3

D xn C 3 jxnj for xn � 0;

with x1 D �2x0 for x0 � 0 or x1 D 2 jx0j for x0 � 0:



6.11 Linear Approximation: Differentials and Derivatives of Vector-Vector. . . 277

6.11 Linear Approximation: Differentials and Derivatives
of Vector-Vector Functions—Partial Derivatives of Higher
Orders

We introduced in the previous section linear approximation and differentials of real-
valued functions of a real variable in a way that can be generalised right away
to vector valued functions of a vector variable (vector-vector functions, compare
Sect. 4.8). While the variables are in Rn and the function value in Rm in our
examples and figures, we will often take n D 2, m D 1 because, as mentioned in
Sect. 3.2, these can still be presented in our three-dimensional space (see Fig. 3.25).
Here we will need neighbourhoods in n-dimensional spaces. We touched on them
at the end of Sect. 6.2 but choose another definition and relate it to the particular
case of one-dimensional neighbourhoods as defined in Sect. 6.2. In our Fig. 6.36 we
choose again n D 2.

As we saw in Sect. 6.2, an "-neighbourhood (" > 0) of a finite point p (in the
one-dimensional space, that is, p is a real number) is the set of points

N". p/ D fx j jx � pj < " g:

So we first have to define the analogues of absolute values (or distances, since
jx � pj is the distance between the points x and p) in n-dimensional (in particular
2-dimensional) spaces. As we saw in Sects. 1.4, 1.6, and 3.2 this can be done by the
(Euclidean) norm

jxj WD .x21 C x22 C : : :C x2n/
1
2 :

Fig. 6.36 "-neighbourhood
of the point p in a
2-dimensional space. Open
set. Region



278 6 Functions, Their Limits and Their Derivatives

Accordingly, the distance between the points (vectors) x and p of the n-dimensional
space is

jx � pj WD ..x1 � p1/
2 C .x2 � p2/

2 C : : :C .xn � pn/
2/
1
2

and the n-dimensional "-neighbourhood (" > 0) is defined by

N".p/ WD fx j jx � pj < " g

which, for n D 2, that is in the plane, is (see Fig. 6.36) the interior of a circle of
radius " around p. Similarly, for n D 3 we get the interior of the (3-dimensional)
sphere (the “3-ball”) of radius " around p and, in general, in an n-dimensional space
the “n-ball” of radius " around p defined by

N".p/ D fx j jx � pj < " g
D
�

.x1; : : : ; xn/

ˇ
ˇ
ˇ
ˇ ..x1 � p1/2 C .x2 � p2/2 C : : :C .xn � pn/

2/
1
2 < "

�

:

We again define also punctured "-neighbourhoods of p by

N0
".p/ WD fx j jx � pj < "; x 6D pg:

Of course, a vector-vector-function need not be defined on all of Rn, only on a
domain (subset) D of Rn. But it will be of advantage if, at least initially, D is an
open set, that is, if it contains with every point p 2 D at least one "p-neighbourhood
of p ("p > 0). Then (see Fig. 6.36) it will contain also every "-neighbourhood of p
with " < "p.

In order to make our domain D even more similar to open intervals (whether finite
or not) on the real line (that is, in one-dimensional space), we will also suppose that
D is connected, that is, for any two points p and p0 in D there is a path inside D which
connects them (see Fig. 6.36). (Actually, this is the definition of path-connected sets
but we will not speak about other kinds of connectedness. Strictly speaking, even
the concept “path” has to be defined, what we will not do here, since the notion is
quite intuitive but the definition would be less so. (See also Sect. 9.2.)

Connected open sets are called regions. (Of course, every neighbourhood is a
region.) So, let f be defined on an n-dimensional region D 
 Rn and have its values
in Rm, that is, f W D ! Rm.

A vector a 2 Rm is the limit of a function f W D ! Rm at a point p 2 D (D 
 Rn

is a region or, at least, it contains a neighbourhood of p) if, for every neighbourhood
N".a/ of a, there exists a punctured neighbourhood N0

ı.p/ of p such that, for x 2
N0
ı.p/, we have f.x/ 2 N".a/. In symbols:

a D lim
x!p

f.x/ if 8" > 0 9ı > f.x/ 2 N".a/ for all x 2 N0
ı.p/
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Fig. 6.37 Linear approximation (differentials) of a vector-vector function

or, what is the same, if

8" > 0 9ı > 0 W jf.x/� aj < " whenever jx � pj < ı:

A function f W D ! Rm is continuous on a set S 
 D, if it is continuous at every
p 2 S. We could (but will not) again define uniform continuity and continuity on the
boundary of a region (we even leave the intuitive notion of boundary undefined).
We only note that, here too, a D limx!p f.x/ or f continuous at p means intuitively
that, if x is close enough to p then f.x/ can get as close to a or to f.p/, respectively,
as we wanted it to get.

A function f defined (at least) on a neighbourhood of a point p 2 Rn that is,
f W N.p/ ! Rm is differentiable at p if there exists a linear function (see Sect. 4.3)
` W Rn ! Rm such that (see Fig. 6.37)

lim
x!p

�
1

jx � pj .f.x/� f.p/� `.x � p/
�

D lim
x!p

�
1

jx � pj .f.x/� f.p/ � `.x/C `.p/
�

D 0;

(6.19)

(0 is the 0-vector in Rm). The expression `.x�p/ as function of x (an affine function,
in symbols: x 7! `.x/ � `.p/) is often called the (“total” or “exact”) differential of
f at p and denoted by df.p/. Equation (6.19) states that x 7! f.p/ C `.x/ � `.p/
can be considered to be a linear approximation of f at p (called “linear” for historic
reasons, it is really affine, see Sects. 4.2, 4.3, and 6.10) .
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A function f W D ! Rm is differentiable on a region (or, at least, on an open set)
D 
 Rn if it is differentiable at every point p 2 D. Then we often write df for the set
of affine functions fx 7! `.x/� `.p/ j p 2 Dg. We call df and df.p/ differentials.
Of course, for the identity function f.x/ D x on D (in which case m D n), dx D
fx 7! `.x � p/ D x � p j p 2 Dg, since for each fixed p 2 D

lim
x!p

�
1

jx � pj.x � p � .x � p//
�

D 0;

so for the identity function .x/ D x we have dD dx. If p 2 D is fixed, writing
d.p/dx.p/ would be consistent but is not always applied.

In general, as we have seen in Sect. 4.3, with the help of a basis of Rn the linear
function ` W Rn ! Rn can be written as

`.x/ D Lx (6.20)

where L is an m � n matrix.
This matrix L may be the derivative of the vector-vector function at p, denoted

by f0.p/ (compare Sect. 6.10). It is also called a Jacobian matrix. With the above
notations, and with (6.20), we can write

d.p/ D `.x � p/ D L.x � p/ D f0.p/dx (6.21)

again as for functions of one (scalar) variable in Sect. 6.9. (Note that `.x � p/ is the
value of ` at x � p but L.x � p/ is the product of the matrix L and the vector x � p).

We mention that (also in the case n D 1), with the notations

�f.p/ D f.x/� f.p/; �p D x � p; (6.22)

(6.19) is often written as

lim
�p!0

�f.p/ � `.�p/
j�pj D 0:

Also sometimes absolute value is written for the euclidean norm: j�pj for j�pj
etc. Keeping this distinction may, however, be useful in what follows.

We can express the Jacobian matrix L explicitly in terms of the function
f W D ! Rm. Indeed, by the above definition of limits of vector-vector functions
(and of connected stes), if (6.19) holds, then the x in it can be anywhere in a certain
neighborhood of p and then approach p on any path. .

Let this path (Fig. 6.38) be a straight line going through p, parallel to the basic
unit vector ej (a column vector with 1 in the j-th row, 0 in all other rows, compare
to Sects. 1.5 and 4.3) and let x be on this straight line (sufficiently close to p so that
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Fig. 6.38 x is in a
neighborhood of p on a
straight line through p,
parallel to ej

x is in the given neighborhood of p). Then, by the rules of addition of vectors and
their multiplication by scalars (Sect. 1.5),

x D p C �ej (� 6D 0 a real (scalar) variable)

and

lim
�!0

 
1

ˇ
ˇ�ej

ˇ
ˇ Œf.p C �ej/ � f.p/� L.�ej/�

!

D 0:

But, by the definition of euclidean norms (note the norms on the left hand side,
absolute value on the right):

ˇ
ˇ�ej

ˇ
ˇ D

p
0C : : :C 0C �2 C 0C : : :C 0 D

p
�2 D j�j

and, see Sect. 4.4 2,

L.�ej/ D �L ej;

so we can write (with y
�

WD 1
�

y for simplicity)

lim
�!0

�
�

j�j


f.p C �ej/ � f.p/
�

� L ej

��

D 0:

But �
j�j is either 1 or �1. In either case, the limit can be 0 only if the limit of the

expression in square brackets is 0. Furthermore ILej does not depend on � and, here
too, the limit of the difference is the difference of the limits. So

lim
�!0

f.p C �ej/ � f.p/
�

D L ej D

0

B
B
B
@

`1j

`2j
:::

`mj

1

C
C
C
A

(6.23)
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since (see Sect. 4.3)

L ej D

0

B
@

`11 � � � `1j � � � `1n
:::

`m1 � � � `mj � � � `mn

1

C
A

0

B
B
B
B
B
B
@

0
:::

1
:::

0

1

C
C
C
C
C
C
A

D

0

B
@

`1j
:::

`mj

1

C
A :

Consider now the left hand side of (6.23). Since vectors are subtracted and (as is
easy to see) their limits are taken componentwise, the i-th component `ij of (6.23)
is, written in detail,

lim
j!0

fi. p1; : : : ; pj�1; pj C �; pjC1; : : : ; pn/ � fi. p1; : : : ; pj�1; pj; pjC1; : : : ; pn/

�
:

If we keep p1; : : : ; pj�1; pjC1; : : : ; pn fixed, this limit is clearly the derivative of the
(scalar) function gj defined by gj.x/ WD fi. p1; : : : ; pj�1; x; pjC1; : : : ; pn/ at x D pj.
We call this the j-th partial derivative of fi at p and write it as

@fi
@xj
.p/ or

@fi
@xj

for short:

So `ij D @fi
@xj and

f0.p/ D L D

0

B
B
@

@f1
@x1
.p/ � � � @f1

@xn
.p/

:::
:::

@fm
@x1
.p/ � � � @fm

@xn
.p/

1

C
C
A D

0

B
B
@

@f1
@x1

� � � @f1
@xn

:::
:::

@fm
@x1

� � � @fm
@xn

1

C
C
A

This is the explicit form of the Jacobian matrix, often written as

@. f1; : : : ; fm/

@.x1; : : : ; xm/
:

If, in particular, m D 1, then f and df are scalars, dx is as always a column vector
and

L D
�
@f

@x1
; : : : ;

@f

@xn

�
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a row vector. So (6.21) becomes (as in Sect. 4.4 1 we get a scalar product):

df .p/ D
�
@f

@x1
.p/; : : : ;

@f

@xn
.p/
�
0

B
@

dx1
:::

dxn

1

C
A D @f

@x1
.p/dx1 C : : :C @f

@xn
.p/dxn

or

df D
�
@f

@x1
; : : : ;

@f

@xn

�
0

B
@

dx1
:::

dxn

1

C
A D @f

@x1
dx1 C : : :C @f

@xn
dxn

for short. This differential is often called the total differential of f (whether at one
point or on all of D) and the row vector L the gradient (abbreviated grad or r) of f
(again at one point or on all of D). In notation

grad f D rf D
�
@f

@x1
; : : : ;

@f

@xn

�

:

So, written again for the point p,

df .p/ D grad f .p/ � dx D rf .p/ � dx:

With the notation (6.22), we have for m D 1 that �f .p/ D f .x/ � f .p/ is
approximated by

df .p/ D @f

@x1
.p/.x1 � p1/C : : :C @f

@xn
.p/.xn � pn/

D @f

@x1
.p/�x1 C : : :C @f

@xn
.p/�xn:

If f is constant on a region D then every

gj.xj/ D f . p1; : : : ; pj�1; xj; pjC1; : : : ; pn/

is constant, so (see Sect. 6.4, Example 5)

@f

@xi
D f 0

j .xj/ D 0 .j D 1; : : : ; n/

and so

df D @f

@x1
dx1 C : : :C @f

@xn
D 0:
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Conversely, if df D 0, that is @f
@x1

D : : : D @f
@xn

D 0 then f is constant (because f is
constant in all n of its variables). If df .p/ D 0 only at a certain point p then f may
have a maximum or minimum there (see Sect. 8.3).

Just as, at the end of Sect. 6.4 and in Sect. 6.7, derivatives of functions of one
real variable could have (but do not always have) derivatives themselves, so partial
derivatives may have partial derivatives themselves. We use the notation

@2f

@xj@xk
.p/ WD @

@xj

�
@f

@xk
.p/
�

; in particular,
@2f

@x2k
.p/ WD @

@xk

�
@f

@xk
.p/
�

for j; k D 1; : : : ; n (sometimes omitting p). These are the second order partial
derivatives. Similarly one may be able to form third and higher order partial
derivatives. The above notation and concept means, of course, that @f

@xk
.p/ is a

function of p D . p1; : : : ; pn/ and if the difference quotient of this function with

respect to xj has a limit then at that point @2f
@xj@xk

exists. This again is a function of p
and may be continuous or differentiable or partially differentiable. If and where it
is partially differentiable (at least with respect to one variable), there the third order
partial derivative (with respect to that variable) exists, and so on.

Example 1 f W R3 ! R; f .x1; x2; x3/ WD x21x2 C x32 sin x23;
(we get @f

@x1
. p1; p2; p3/ D 2p1p2, or @f

@x1
D 2x1x2 for short),

@f

@x1
D 2x1x2;

@f

@x2
D x21 C 3x22 sin x23;

@f

@x3
D 2x32x3 cos x23;

@2f

@x21
D 2x2;

@2f

@x1@x2
D 2x1;

@2f

@x1@x3
D 0;

@2f

@x2@x1
D 2x1;

@2f

@x22
D 6x2 sin x23;

@2f

@x2@x3
D 6x22x3 cos x23;

@2f

@x3@x1
D 0;

@2f

@x3@x2
D 6x32x3 cos x23;

@2f

@x23
D 2x32 cos x23 � 4x32x

2
3 sin x23:

(We used the differentiation rules from Sects. 6.4 and 6.5).
The attentive reader may have noticed that here

@2f

@x1@x2
D @2f

@x2@x1
;

@2f

@x1@x3
D @2f

@x3@x1
and

@2f

@x2@x3
D @2f

@x3@x2

at any point p 2 R3. This “equality of mixed partial derivatives” (at point p)
holds always if at least one of the two mixed derivatives is continuous (at that
point).

(continued)
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We will not prove this result. Instead, as in Sects. 6.3 and 6.7, we show,
that the statement need not be true if (at least) one of the two derivatives is
not continuous at that point. This will also show that a derivative may exist at
a point but may be discontinuous there.

Example 2 The function f W R2 ! R; f .x1; x2/ is given by

f .x1; x2/ D

8
<̂

:̂

x1x2.x21 � x22/

x21 C x22
if x21 C x22 6D 0

0 if x21 C x22 D 0; that is at .0; 0/:

We calculate the partial derivatives again by the rules in Sects. 6.4 and 6.5
when x21 C x22 6D 0:

@f

@x1
.x1; x2/ D x2

x21 � x22
x12 C x22

C x1x2
2x1.x21 C x22/ � .x21 � x22/2x1

.x21 C x22/
2

D x41x2 C x21x
3
2 � x52

.x21 C x22/2
;

@f

@x2
.x1; x2/ D x1

x21 � x22
x12 C x22

C x1x2
�2x2.x21 C x22/� .x21 � x22/2x2

.x21 C x22/
2

D x51 � 4x31x
2
2 � x1x42

.x21 C x22/2
:

However, at .0; 0/, we have to calculate the partial derivatives directly as
limits of difference quotients:

@f

@x1
.0; 0/ D lim

x1!0

f .x1; 0/� f .0; 0/

x1
D lim

x1!0

0 � x31=x21 � 0
x1

D lim
x1!0

0 D 0;

@f

@x2
.0; 0/ D lim

x2!0

f .0; x2/� f .0; 0/

x2
D lim

x2!0

�0 � x32=x22 � 0
x2

D lim
x2!0

0 D 0:

Now we determine, also as limit of difference quotients, the mixed partial
derivatives at .0; 0/

@2f

@x1@x2
.0; 0/ D lim

x1!0

@f
@x2
.x1; 0/� @f

@x2
.0; 0/

x1
D lim

x1!0

x51
x41

x1
D 1;

(continued)
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@2f

@x2@x1
.0; 0/ D lim

x2!0

@f
@x1
.0; x2/ � @f

@x1
.0; 0/

x2
D lim

x2!0

�x52
x42

x2
D �1:

The two are clearly not equal. And indeed, for instance @2f
@x2@x1

, while it exists
at .0; 0/ (as we have just seen, it is �1) it is not continuous there. Indeed, from
the above,

@f

@x1
.x1; 0/ D x41 � 0 � 4x21 � 03 � 05

.x21 C 02/2
D 0 for x1 6D 0;

therefore

@2f

@x2@x1
.x1; 0/ D 0 for x1 6D 0;

and

lim
x1!0

@2f

@x2@x1
.x1; 0/ D 0 6D �1 D @2f

@x2@x1
.0; 0/:

6.11.1 Excercises

1. Determine the Jacobian matrix f0.x/ of the function

f W R3 ! R2 given by f.x/ D . f1.x1; x2; x3/; f2.x1; x2; x3//

with

f1.x1; x2; x3/ D 1C x21 � x1x2x3 C x2 cos x3 and
f2.x1; x2; x3/ D x1x2.sin x3/2

at (a) x D p D . p1; p2; p3/, (b) x D .1; 1; 0/, (c) x D .1;�1; �
2
/.

2. Determine the qradient of the functions[-4ex]
(a) g W Rn �! R; g.x/ D .1C x21 C x22 C : : :C x2n/

�1,
(b) h W � � �

2
; �
2
Œ �! R; h.x/ D tan.x1 C 2x2 C : : :C nxn/,

for x1 C 2x2 C : : :C nxn 2� � �
2
; �
2
Œ,[-4ex]

at x D p D . p1; p2; : : : ; pn/ and
x D .1; 1; : : : ; 1/ in case (a), x D .0; 0; : : : ; 0/ in case (b).
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3. Determine the mixed partial derivatives of second order of the functions
(a) f1 given in Exercise 1,
(b) f2 given in Exercise 1.

4. For the functions g and h given in Exercise 2 determine, for j D 1; : : : ; n, the
partial derivatives of the second order

(a)
@2g

@x2j
; (b)

@2h

@x2j
:

5. Determine the partial derivatives of the third order of the function F W R2 ! R

given by F.x; y/ D xy.cos x/.sin y/.

6.11.2 Answers

1. (a) f0. p1; p2; p3/ D
�
2p1 � p2p3 �p1p3 C cos p3 �p1p2 � p2 sin p3
p2.sin p3/2 p1.sin p3/2 2p1p2 sin p3 cos p3

�

,

(b) f0.1; 1; 0/ D
�
2 1 �1
0 0 0

�

,

(c) f0.1;�1; �
2
/ D

�
2C �

2
��
2
2

�1 1 0

�

,

2. (a) grad g.p/ D �2. p1; p2; : : : ; pn/.1C p21 C p22 C : : : p2n/
�2,

grad g.1; 1; : : : ; 1/ D �2.n C 1/�2.1; 1; : : : ; 1/,
(b) grad h.p/ D �2.1; 2; : : : ; n/Œcos.x1 C 2x2 C : : : nxn/�

�2,
grad h.0; 0; : : : ; 0/ D .1; 2; : : : ; n/.

3. (a) @2f1
@x1@x2

D �x3 D @2f1
@x2@x1

,
@2f1
@x1@x3

D �x2 D @2f1
@x3@x1

,
@2f1
@x2@x3

D �x1 � sin x3 D @2f1
@x3@x2

.

(b) @2f2
@x1@x2

D .sin x3/2 D @2f1
@x2@x1

,
@2f2
@x1@x3

D 2x2.sin x3/.cos x3/ D @2f1
@x3@x1

,
@2f2
@x2@x3

D 2x1.sin x3/.cos x3/ D @2f1
@x3@x2

.

4. (a) @2g
@x2j

D 8x2j .1C x21 C : : :C x2n/
�3 � 2.1C x21 C : : :C x2n/

�2,

(b) @2h
@x2j

D 2j2Œcos.x1 C 2x2 C : : :C nxn/�
�3 sin.x1 C 2x2 C : : :C nxn/.

5. @3F
@x3

D y sin y.x sin x � 3 cos x/,
@3F
@x2@y

D �.y cos y C sin y/.x cos x C 2 sin x/ D @3F
@y@x2

,
@3F
@x@y2

D .x sin x � cos x/.y sin y � 2 cos y/ D @3F
@y2@x

,
@3F
@y3

D �x cos x.y cos y C 3 sin y/,



288 6 Functions, Their Limits and Their Derivatives

6.12 Chain Rule: Euler’s Partial Differential Equation
for Homogeneous Functions

A further way to write the Jacobian matrix, belonging to f at p 2 S � Rn, is

L D f0.p/ D df
dx
.p/:

We also combine (6.19) and (6.20) into

f.x/� f.p/ D L.x � p/C �.x/ jx � pj
D df

dx
.p/.x � p/C �.x/ jx � pj

.x 2 S;p 2 S/; with limx!p �.x/ D 0:

(6.24)

To see this, we just have to define

�.x/ D
8
<

:

1

jx � pj Œf.x/� f.p/ � Lx C Lp� if x 6D p;

0 (e.g.) if x D p:

Equation (6.24) makes it clear that, if f is differentiable at p, then it is also
continuous there, just as we saw for functions of one variable in Sect. 6.5. We prove
now for vector-vector functions an analogue of the chain rule.

Let f W D ! Rm (D � Rn) be differentiable at p 2 D and g W S ! Rk (S � Rm)
be differentiable at y D f.p/. For this we suppose that there exists a neighbourhood
N.p/ of p such that the set ff.x/ j x 2 N.p/g � S contains a neighbourhood of y. If
we denote the variable in g by y and the Jacobian matrix belonging to g at q by

M D g0.q/ D dg
dy

D dg
dy
.q/;

then, just as in (6.24), we have

g.y/� g.q/ D M.y � q/C  .y/ jy � qj with lim
y!q

 .y/ D 0:

In particular, for y D f.x/ (we have supposed that there exists such x 2 N.p/)
and with q D f.p/ taking also (6.24) into consideration, we have

g.f.x//� g.f.p// D M .x/ jx � pj C  .f.x// jf.x/� f.p/j
D ML.x � p/C M�.x/ jx � pj C  .f.x// jL.x � p/C �.x/ jx � pjj

D dg
dy
.q/

df
dx
.p/.x � p/C �.x/ jx � pj :
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Here we have used the fact that

jz�j D
q

z21�
2 C : : :C z2n�

2 D jzj j�j D jzj� if � � 0

(in our case � D jx � pj � 0) and wrote

�.x/ WD M�.x/C  . f .x//

ˇ
ˇ
ˇ
ˇL.x � p/

1

jx � pj C �.x/

ˇ
ˇ
ˇ
ˇ :

Since x�p
jx�pj is a vector divided by its length, so a unit vector, and limits are taken on

punctured neighbourhoods with x 6D p, therefore the vector-vector function whose
norm we are taking here is bounded. Furthermore, since (using also the continuity
of f at p, a consequence of its differentiability)

lim
x!p

�.x/ D 0; lim
x!p

 .f.x// D lim
y!q

 .y/ D 0

(the first equation we used already in the boundedness argument), therefore we see
that, in

g.f.x//� g.f.p// D dg
dy
.q/

df
dx
.p/.x � p/C �.x/ jx � pj ;

we have

lim
x!0

�.x/ D 0:

But this is an equation of the form (6.24) for h.x/ D g.f.x// D .g ı f/.x/, so we
have the following:

Chain rule If f and g are defined on neighbourhoods of p 2 Rm and of q D f.p/ 2
Rn, respectively, and f maps a neighbourhood of p onto a set which contains a
neighborhood of q, if further f and g are differentiable at p and at q, respectively,
then g ı f W N.p/ ! Rk is differentiable at p and

d.g ı f/
dx

.p/ D dg
dy
.q/

df
dx
.p/:

em If the conditons hold on regions, so does the chain rule and we write simply

d.g ı f/
dx

D dg
dy

df
dx
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or, with y D f.x/, z D g.y/ D g.f.x// D .g ı f/.x/ (compare to Sect. 6.5 4):

dz
dx

D dz
dy

dy
dx
:

If especially m D k D 1, then

y D

0

B
@

y1
:::

yn

1

C
A D f.x/ D

0

B
@

f1.x/
:::

fn.x/

1

C
A ;

z D g.y/ D g.y1; : : : ; yn/ D g. f1.x/; : : : ; fn.x// D g.f.x// D .g ı f/.x/

d.g ı f/
dx

. p/ D dg

dy
.q/

df
dx
. p/ or

dz

dx
D dz

dy
dy
dx
;

that is (again a scalar product):

dz

dx
D
�
@z

@y1
; : : : ;

@z

@yn

�

0

B
B
B
B
@

dy1
dx
:::

dyn

dx

1

C
C
C
C
A

D @z

@y1

dy1
dx

C : : :C @z

@yn

dyn

dx
(6.25)

(x is a scalar variable so we do not need partial derivatives when we differentiate
with respect to x), the most popular and frequently used form of the chain rule.

A function g W RnC ! R is (positively) homogenous of degree r if (compare to
Sect. 4.3 for the case r D 1)

g.�s/ D �rg.s/ .s D .s1; : : : ; sn/ 2 RnC; � 2 RCC/ (6.26)

(we could have takenRn or a region D � Rn instead of RnC). We know the definition
and derivative of � 7! �r for rational r; in Sect. 8.2, � 7! �r will be defined fo any
r and we will see that the formula d �r

d� D r �r�1 still holds. We can apply the chain
rule to get conditions necessary and sufficient for a differentiable function to be
homogeneous of degree r.

We differentiate both sides of (6.26) with respect to �, interchange the two sides
and apply the chain rule in the form (6.25):

r�r�1g.s/ D dg.�s/
d�

D @g.�s/
@.�s1/

.�s1/

d�
C : : :C @g.�s/

@.�sn/

.�sn/

d�

D @g.�s/
@.�s1/

s1 C : : :C @g.�s/
@.�sn/

sn
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(here x D �, y D �s). Put now � D 1 in order to get

rg.s/ D @g.s/
@s1

s1 C : : :C @g.s/
@sn

sn (6.27)

which is LEONHARD EULER’S (�1707 – �1783) (partial) differential equation for
(positively) homogeneous functions of degree r.

We have just proved that all positively homogeneous differentiable functions
of degree r satisfy Euler’s equation (6.27), that is, (6.27) is necessary for (6.26).
Conversely, let (6.27) be satisfed (and g, of course, differentiable). We prove
that (6.26) follows, so (6.27) is also sufficient for (6.26). For this purpose, we
suppose that (6.27) holds and define

h.s; �/ D ��rg.�s/� g.s/:

We want to show that h.s; �/ 	 0 (then we have indeed g.�s/ D �rg.s/, that
is (6.26)). We get from the chain rule

@h.s; �/
@�

D �r��r�1g.�s/C ��r @g.�s/
@�

� 0

D ��r�1


�rg.�s1; : : : ; �sn/C �
@g.�s/
@.�s1/

s1 C : : :C �
@g.�s/
@.�sn/

sn

�

(g.s/ is constant in �, so its partial derivative with respect to � is 0). The expression
in brackets on the right hand side is exactly the difference of the two sides of (6.27)
with �sj in place of sj (j D 1; : : : ; n). Since (6.27) is now supposed to hold for all
s, thus this difference has to be identically 0. So @h.s;�/

@�
	 0 and therefore h.s; �/ is

constant in � (independent of �), thus it is some function c of s alone:

��rg.�s/ � g.s/ D h.s; �/ D c.s/:

Putting here � D 1 we get c.s/ D 0 and so indeed

h.s; �/ D ��rg.�s/� g.s/ D 0 ) g.�s/ D �rg.s/;

that is, (6.26) follows from (6.27), the Euler equation (6.27) is necessary and
sufficient for the differentiable function g to be positively homogeneous of degree r.

While above we had g W RnC ! R, we may have also g W RnC ! Rm (output
vectors), this just means m equations of the form (6.27).

We now apply these results and their proof to the class of production functions
which has homogeneity as an essential property. That class plays an important role
in several parts of the economic literature. Homogeneity expresses that multiplying
each input variable (“production factor”) by � results in multiplying the output (or,
if several products are produced, their value) by �r.
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If g W RnC ! RC is a “microeconomic” production function, then the function
value g.s/ is the maximal output (or output value) which can be produced (or stab-
lished, respectively) in an enterprise during a given time period by the production
factor quantities s1; : : : ; sn. If g is homogeneous and r D 1 (that is, g is linearly
homogeneous) then we speak of constant returns to scale (compare Sect. 3.3) while,
if 0 < r < 1 or r > 1 then the returns to scale are decreasing or increasing,
respectively. Clearly, r � 0 would make no economic sense.

The assumption that g is differentiable contains an assumption which clearly can
hold only approximately, namely that the inputs and outputs can be divided into
arbitrarily small quantities. The partial derivatives

@g.s/
@s1

; : : : ;
@g.s/
@sn

are the marginal products (compare Sect. 6.1) of the production factor quantities
s1; : : : ; sn.

In the marginal theory of distribution it is assumed that the production factors,
including labour, are rewarded according to their marginal product. (For instance,
somewhat simplistically, new workers are employed if it is expected that they will
produce more (value of) additional goods than would pay their wages, and workers
are laid off after a while if they would have to be paid more than their additional
contributions to production). We can consider

@g.s/
@s1

s1; : : : ;
@g.s/
@sn

sn

as the compensations (measured in quantities of the output or output value) given to
the individual production factors. But these are the terms on the right hand side
of Euler’s differential equation (6.27). So if r D 1 then, by (6.27), the sum of
compensations uses up the whole production. If r < 1 then after all compensations
a surplus is left, namely .1 � r/g.s1; : : : ; sn/. Finally, if r > 1 then the output (or
output value) g.s1; : : : ; sn/ is insufficient to pay for the compensations.

These three cases are interesting from the point of view of production and
distribution theory. In the first case “the distribution problem is solved”: the Euler
equation describes how to distribute the output (or output value) to compensate the
production factors. In the other two cases the employer has surplus or deficit (in this
model taxation of enterprises is ignored). In the dynamical theory of competition
these two situations can persist, at least theoretically, only for a short time, if at all,
because, in the first case, additional production is worth while, whereas in the second
the enterprise goes bankrupt. There exists also a stronger opinion: absence of linear
homogeneity is possible for the duration only if not all production factors have been
taken into consideration. If all are considered, then the production function would
have to be linearly homogeneous (see Sect. 3.3).

On the other hand, g is a “macroeconomic” production function if it yields
the (gross or net) national product (or at least the whole product of a sector of
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industry) produced during a given time period, say a year, as function of the input
values or quantities. For simplicity, one often aggregates the inputs into labour L,
capital K, and possibly also energy E (measured, say, in hours of work, money
and energy units). Again the case where g is linearly homogeneous is of practical
importance. Some special linearly homogeneous functions, such as the Cobb-
Douglas production functions (see Sect. 8.4), are particularly useful. An example
of such a production function and its Euler equation is

g.L;K/ D cL0:7K0:3 .c 2 RCC; constant/;

@g

@L
L C @g

@K
K D 0:7cL0:7K0:3 C 0:3cL0:7K0:3

D 0:7g.L;K/C 0:3g.L;K/

D g.L;K/;

that is, 70 % of the (this time net) national product goes to labour, 30 % to capital.
The converse question, whether such distribution implies g.L;K/ D cL0:7K0:3 at
least approximately, is also of interest. The answer is positive. We show that in
Sect. 8.4.

6.12.1 Excercises

1. Determine at .x1; x2/ D . p1; p2/ the Jacobian matrix df.x/
dx of the function

f W R2 ! R2 given by f.x/ D .2x1 � 3x2 C 4x1x2; x31 � x32/.
2. Determine at .y1; y2/ D .q1; q2/ the Jacobian matrix dg.y/

dy of the function

g W R2 ! R2 given by g.y/ D .y1 � y2; y21 C 2y2/.
3. For the composition g ı f of the functions f and g defined in Excercises 1 and 2,

respectively,
(a) determine the Jacobian matrix at x D p.
(b) Show that d.gıf/

dx .p/ D dg
dy.q/

df
dx.p/.

(Notice that q1 D 2p1 � 3p2 C 4p1p2, q2 D p31 � p32).

4. Show that the function h W R2CC ! R given by h.x1; x2/ D .4x
1
2
1 C 5x

1
2
2 /

3.
(a) is homogeneous of degree 1:5 and
(b) check that it satisfies the equation

h.x1; x2/ D 2

3

�
@h.x1; x2/

@x1
x1 C @h.x1; x2/

@x2
x2

�

:
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5. Show that the function f W R2CC ! R given by f .x1; x2/ D 3x41x52
6x81C7x82

(a) is linearly homogeneous and
(b) check that it satisfies the equation

f .x1; x2/ D @f .x1; x2/

@x1
x1 C @f .x1; x2/

@x2
x2:

6.12.2 Answers

1. df
dx .p/ D

�
2C 4p2 �3C 4p1
3p21 �3p22

�

.

2. dg
dy .q/ D

�
1 �1
2q1 2

�

.

3. (a) d.gıf/
dx .p/ D

0

@
2C 4p2 � 3p21 �3C 4p1 C 3p22

8p1 � 24p2 C 32p1p2 �12p1 C 36p2 � 72p1p2
C6p21 � 48p22 C 32p1p22 C16p21 � 6p22 C 32p21p2

1

A.

(b) Write 2p1�3p2C4p1p2 for q1 in

�
1 �1
2q1 2

�

and multiply by the first matrix

from the left. You get the third matrix.
4. (a) h.�x1; �x2/ D .4.�x1/1=2 C 5.�x2/1=2/3 D .�1=24x1=21 C �1=25x1=22 /3

D .�1=2.4x1=21 C 5x1=22 /3 D �3=2h.x1; x2/.

(b) 2
3

�
@h.x1;x2/
@x1

x1 C @h.x1;x2/
@x2

x2
�

D 2
3
.3.4x1=21 C 5x1=22 /24 � 1

2
x�1=2
1 /x1 C 3.4x1=21 C 5x1=22 /25 � 1

2
x�1=2
2 /x2/

D .4x1=21 C 5x1=22 /2.4x1=21 C 5x1=22 / D h.x1; x2/
5. (a) f .�x1; �x2/ D 3.�x1/4.�x2/5=Œ6.�x1/8 C 7.�x2/8�

D 3�9x41x
5
2=�

8Œ6x81 C 7x82�
D �f .x1; x2/.

(b) @f .x1;x2/
@x1

x1 C @f .x1;x2/
@x2

x2

D 3x41x52Œ4.6x81C7x82/�48x81C5.6x81C7x82/�56x82�

.6x81C7x82/
2

D f .x1; x2/.

6.13 Implicit Functions

Often a function of one variable is given “implicitly” in terms of a function of
two variables (or a function of several variables in terms of functions of more
variables). The contour lines (isoquants) in Sect. 3.3 give important examples. They
were described by

F.x; y/ D c: (6.28)

If we are lucky, such an equation (with c fixed) determines y as function of x.
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Fig. 6.39 Graphs of the two functions f1, f2 satisfying x2 C fk.x/ D 9 (k D 1; 2). Both are
differentiable on �� 3; 3Œ but not at �3 and 3

The simplest case is illustrated by

xy D c which determines y D c

x

for x; y 2 RCC if c 2 RCC. If 0 is permitted as x, y or c, complications start to arise.
Somewhat more complicated is

x2 C y2 D c: (6.29)

If c < 0, there are no real x, y which satisfy such an equation. If c D 0 then it is
satisfied only by x D 0 and y D 0, which gives a very primitive function indeed
(it maps f0g onto f0g). Things improve when c > 0; actually we get more than we
bargained for: several functions defined on ��p

c;
p

cŒ (see Fig. 6.39). For instance,
for every x0 2� � p

c;
p

cŒ there exists a function f given by

f .x/ D
( p

c � x2 for x 2� � p
c; x0�

�p
c � x2 for x 2�x0;pcŒ

such that (6.29) is fulfilled with y D f .x/. This gives infinitely many functions on
��p

c;
p

cŒ since the choices of x0 can be made arbitrarily in ��p
c;

p
cŒ. Notice that

f is not continuous at x0. By dividing � � p
c;

p
cŒ into a finite or infinite number of

intervals and by choosing on them alternatively
p

c � x2 and �p
c � x2 as function
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values, one can get as many discontinuities as one wants (even infinitely many. We
also get continuous functions on � � p

c;
p

cŒ, but only two, given by

y D
p

c � x2 and y D �
p

c � x2:

For x < �p
c or x >

p
c there exists no y satisfying (6.29), for x D p

c or x D �p
c

just one: y D 0.
It is often impossible or inconvenient to express y as function of x from an

equation of the form (6.28). Take for instance

1C 4x � 2x2 C 15xy � 5xy3 � x2y3 C 3xy5 D 11: (6.30)

Calculating y as a function of x would mean the solution of an equation of fifth
degree. If we wanted to determine the derivative of this function, say at x D 5, from
this solution, it would have to be in a form which permits derivation, no mean feat
(for solutions of equations of fifth and higher degrees no explicit algebraic formula
can be found in general). However, if we guess that for x D 5 we have, as solution
of (6.30), y D 1 (which is easy) and no others (which is not so easy, but see below),
we can use the following result of which we prove here only the second part.

If F is a function of two variables x and y with continuous partial derivatives @F
@x

and @F
@y at a point .x0; y0/ for which F.x0; y0/ D 0 then there is a neighborhood N of

x0 on which

F.x; y/ D 0 (6.31)

determines y uniquely as a differentiable (and thus continuous) function of x:

y D f .x/ satisfying f .x0/ D y0

and we have

f 0.x/ D �@F=@x

@F=@y
.x; f .x// (6.32)

on N.
(The right hand side means that we calculate

�@F

@x
.x; y/ and

@F

@y
.x; y/;

divide them and then substitute f .x/ for y).
Accepting without proof the existence and differentiability of f which satis-

fies (6.31), that is,

F.x; f .x// D 0; (6.33)
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on N, we prove (6.32) by differentiating (6.33) with respect to x, using the chain
rule:

0 D d

dx
F.x; f .x// D @F

@x
.x; f .x//C @F

@y
.x; f .x//

df .x/

dx

and dividing by @F
@y 6D 0.

Notice that in (6.30) F.x; y/ D �10C 4x � 2x2 C 15xy � 5xy3 � x2y3 C 3xy5. So
we get

f 0.x/ D �@F=@x

@F=@y

ˇ
ˇ
ˇ
ˇ
yDf .x/

D �4 � 4x C 15y � 5y3 � 2xy3 C 3y5

15x � 15xy2 � 3x2y2 C 15xy4

ˇ
ˇ
ˇ
ˇ
yDf .x/

:

But we are interested in f 0.5/ and know that f .5/ D 1, so we get, without having to
solve (6.30),

f 0.5/ D 13

150
:

By the way, the fact mentioned above, that Eq. (6.30) for x D 5, that is

� 10C 20 � 50C 75y � 25y3 � 25y3 C 15y5 D 0 (6.34)

has just one solution (y D 1) is true because the derivative of the left hand side
of (6.34) with respect to y,

75� 150y2 C 75y4 D 75.1� y2/2 > 0 .D 0 only for y D 1/;

so the left hand side of (6.34) strictly increases with y (see Eq. 6.33). Therefore it
cannot be 0 for more than one y-value. However, even if (6.31) has (say) N > 1

solutions y1; : : : ; yN for an x D x0, as is the case for (6.29) (with N D 2) in
the case c > 0 and x0 2� � p

c;
p

cŒ, for each solution yk there is a unique
continuous, differentiable fk with F.x; fk.x// D 0 (k D 1; : : : ;N)—as long as the
above conditions are satisfied in particular @F

@y 6D 0. Also if (6.32) holds then for

each fk. However, if @F
@y D 0, as for (6.29) at .�p

c; 0/ and .
p

c; 0/, then there may

be no (finite) derivative (see Fig. 6.39) or no nontrivial function as for x2 C y2 D 0

at x D 0.
Without proof we formulate here a generalization of the result concerning (6.31)

since this generalization is often needed for applications in economics (see Sects. 8.7
and 8.7). Instead of (6.31) we consider now the equation

F.x; y/ D 0; (6.35)
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where F is a vector-valued function of the (real) vectors x D .x1; : : : ; xp/ and y D
.y1; : : : ; yq/. In what follows, F will be an Rq-valued function, that is,

F D

0

B
@

F1
:::

Fq

1

C
A with real-valued functions F1; : : : ;Fq.

If the partial derivatives in the Jacobian matrices @F
@x and @F

@y (see Sect. 6.11) are

continuous at a point .x0; y0/ for which F.x0; y0/ D 0 and @F
@y (as a .q; q/-matrix) is

invertible, then there is a neighborhood N of x0 on which F.x; y/ D 0 determines y
uniquely as a differentiable (and thus continuous) function of x, y D f.x/, satisfying
f.x0/ D y0 and we have

df
dx
.x/ D �

�
@F
@y

��1
@F
@x
.x; f.x// (6.36)

on N.
Compare this to (6.32). Since in (6.32)

1

@F=@y
can be written

�
@F

@y

��1

we see that Eqs. (6.36) and (6.32) are of the same form. The right hand side of (6.36)
means the same as that in (6.32), but notice that in (6.36) we have to multiply from
the left by the inverse of the matrix @F

@y , while in (6.32)

�
@F

@y

��1
@F

@x
D @F

@x

�
@F

@y

��1
:

6.13.1 Excercises

1. For each of the equations below determine, whether there exists an implicit
function expressing y in terms of x around the point .x; y/ D .1; 2/.
(a) 16x4 C y4 � 32 D 0,
(b) x3 C 2x2y � xy2 � 1 D 0,
(c) 3x2 C 4xy � y5 C 21 D 0.
If your answer is affirmative, find dy

dx and evaluate it at the said point.
2. Given the equation x41 C 2x1 cos x2 C sin y D 0, is there an implicit function

y D f .x1; x2/ defined around the point .x1; x2; y/ D .0; 0; 0/?
If your answer is affirmative, find @y

@x1
, @y
@x2

and evaluate it at the said point.
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3. (a) Show that the equation

x31 C 2x21x2 � 3x32x3 C x43 � 2x1y C y2 � 22 D 0

implicitly defines a positiv-valued function y D f .x1; x2; x3/ around the point
.x1; x2; x3; y/ D .1; 2; 3; 4/.

(b) Find @y
@x1

, @y
@x2

, @y
@x3

and evaluate it at that point.
4. (a) Show that the systems of equations

x2 C 2y21 C y22 � 4 D 0

x2 C y21 � 2y22 D 0

implicitly defines two positive-valued functions y1 D f1.x/, y2 D f2.x/
around the point .x; y1; y2/ D .1; 1; 1/.

(b) Determine @y1
@x as an expression involving x, y1 and evaluate it at

.x; y1/ D .1; 1/.
(c) Determine @y2

@x as an expression involving x, y2 and evaluate it at
.x; y2/ D .1; 1/.

5. (a) Show that the systems of equations

x21 C 2x22 C 3y21 C 4y22 � 10 D 0

x21 C x22 � y21 � y22 D 0

implicitly defines two positive-valued functions y1 D f1.x1; x2/, y2 D
f2.x1; x2/ around the point .x1; x2; y1; y2/ D .1; 1; 1; 1/.

(b) Determine @y1
@x1

and @y1
@x2

as expressions involving x1, y1 and x2, y1, respectively,
and evaluate it at .x1; x2; y1/ D .1; 1; 1/.

(c) Determine @y2
@x1

and @y2
@x2

as expressions involving x1, y2 and x2, y2, respectively,
and evaluate it at .x1; x2; y2/ D .1; 1; 1/.

6.13.2 Answers

1. (a) Yes; dy
dx D � 64x3

4y3
D � 16x3

y3
D � 16

8
D �2,

(b) Yes; dy
dx D � 3x2C4xy�y2

2x2�2xy
D � 7

�2 D 3:5,

(c) Yes; dy
dx D � 6xC4

4x�5y4
D � 10

�76 D 5
38

,

2. Yes; dy
dx1

D � 4x31C2 cos x2
cos y D � 2

1
D �2; dy

dx2
D � �2x1 sin x2

cos y D 0
1

D 0.
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3. (a) y D x1 C .x21 � x31 � 2x21x2 C 3x32x3 � x43 C 22/1=2 (defined for .x1; x2; x3/
sufficiently close to .1; 2; 3/). Take the positive square root and notice that
y D 4 for .x1; x2; x3/ D .1; 2; 3/.

(b) dy
dx1

D � 3x21C4x1x2�2y
2.y�x1/

D � 1
2
,

dy
dx2

D � 2x21�9x22x3
2.y�x1/

D 53
3

,
dy
dx3

D � �3x32C4x33
2.y�x1/

D �14,

4. (a) y1 D
�
8�3x2

5

�1=2
(defined for x sufficiently close to 1), y2 D �

4Cx2
5

	1=2
. Take

the positive square roots in both cases.
(b) dy1

dx D � 3x1
5y1

D � 3
5
,

(c) dy2
dx D x

5y2
D 1

5
.

5. (a) y1 D .5x21 C 6x22 � 10/1=2, y2 D .10� 4x21 � 5x22/
1=2, both defined for .x1; x2/

sufficiently close to .1; 1/. Take the positive square roots in both cases and
notice that y1 D y2 D 1 for .x1; x2/ D .1; 1/.

(b) @y1
@x1

D 5x1
y1

D 5;
@y1
@x2

D 6x2
y1

D 6.

(c) @y2
@x1

D � 4x1
y2

D �4; @y2
@x2

D �5x2
y2

D �5.



7Nonlinear Functions of Interest to Economics.
Systems of Nonlinear Equations

Unhappiness is realising almost everything is nonlinear.

Based loosely on ED ADAMS
motto at beginning of Chapter 4

7.1 Introduction

The processes which were objects of the first six chapters were mostly linear or, like
differentials served for linear approximation of nonlinear functions of one or several
variables.

In Chap. 6 we dealt with many functions; we mentioned also applications. The
functions and classes of functions on which we concentrate in this chapter are of
particular interest for applications: homogeneous functions and their generalisations
(Sect. 7.4), in particular CD (Cobb–Douglas) and other CES (Constant Elasticity
of Substitution) functions (Sect. 7.5) as production functions. For this we will
need further elementary functions, the logarithms and the exponential functions
(Sect. 7.2). The latter will be used also to extend the rule for differentiating power
functions to the case of irrational exponents (Sect. 7.2) and will be applied to
compounding and discounting (Sect. 7.3). It also provides occasion to the further
discussion (Compare Sects. 3.5, 3.6 and 6.7) of convex functions (Sect. 7.2).

In Sect. 7.3 we will see that the question important in everyday life, how much
time it takes for a deposit to double, leads to solving the nonlinear equation

ert D 2

for t, the doubling time for a deposit under daily compounding or under the smoother
“continuous” compounding with compounding rate r.

© Springer International Publishing Switzerland 2016
W. Eichhorn, W. Gleißner, Mathematics and Methodology for Economics,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-23353-6_7
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Similar nonlinear equations like

et D t C 2; et D t C 1; or et D t

have exactly two solutions, one solution, or no solution at all, respectively. Already
these examples suggest that the theory of nonlinear equations and their solutions
may be difficult. Section 7.6 is devoted to questions of solving not only single
nonlinear equations but also systems of them. In this connection, nonlinear vector–
valued functions of several variables and Banach’s fixed point theorem play an
important role.

7.2 Exponential and Logarithm Functions. Powers
with Arbitrary Real Exponents. Conditions for Convexity
and Applications

In what follows let a (the base) be any positive real number. As we know, for integer
exponents m the power am is defined recursively by a0 D 1, a1 D a, amC1 D ama,
a�m D 1=am .m D 1; 2; : : :/. It is easy to see (by induction, Appendix) that amCn D
aman and amn D .am/n D .an/m for m D 1; 2; : : : and n D 1; 2; : : :.

For rational exponents r D m=n (with integer m and positive integer n) the
power is

am=n D . n
p

a/m

where the nth root is the inverse function of the nth power, applied to a > 0. It is easy
to see that this definition is unambiguous, that is, am=n D am0=n0

when m=n D m0=n0.
For example,

a6=4 D 4
p

a6 D
qp

.a3/2 D
p

a3 D a3=2:

From the am D am�1a part of the above definition

a.m=n/C.m0=n/ D a.mCm0/=n D . n
p

a/mCm0 D . n
p

a/mCm0�1 n
p

a

D . n
p

a/mCm0�2. n
p

a/2 D � � � D . n
p

a/m � . n
p

a/m
0

D am=n � am0=n

if m and m0 are positive, and the a�m D 1=am and a0 D 1 parts of the definition take
care of the proof of a similar equality when m and/or m0 are negative or 0. So

axCx0 D axax0

for all rational x; x0
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(we can always choose x D m=n and x0 D m0=n with common denominator,—here
the positive integer n). Similarly,

.ax/x
0 D axx0

for all rational x; x0:

Note that, if m=n > 0 then am=n > 1 for a > 1 and am=n < 1 for a < 1. (Proof:
an > 1 if a > 1, n > 0; an < 1 if a < 1, n > 0, so a1=n D n

p
a > 1 for n > 0,

a > 1 because n
p

a � 1 would imply a D . n
p

a/n � 1, a contradiction; furthermore,
am=n D . n

p
a/m > 1 for a > 1, m=n > 0; similarly am=n < 1 for a < 1, m=n > 0.)

Consequently, if a > 1, then ax strictly increases with increasing rational x (if
x00 > x, say x00 D x C x0, x0 > 0, then ax00 D axax0

) or, what is the same, ax strictly
decreases with decreasing rational x.

For powers with irrational (real) exponents the definition ax D limn!1 arn

seems appropriate, where limn!1 rn D x, the rn .n D 1; 2; : : :/ are rational, and
frng increases but fRng D frn C 1=ng decreases, (the introduction of Rn makes
arguments easier).

We have to prove that limn!1 arn exists and is unique (the same for different
sequences of rational numbers tending to x). For this we need only the limit

lim
n!1 a1=n D lim

n!1
n
p

a D 1 .a > 0/:

Proof Let, say a > 1. As we have seen, fa1=ng decreases with n but each term of
this sequence is greater than 1. But then (compare Fig. 7.1) b D limn!1 a1=n � 1

exists. Taking the limit of a1=n D a1=.2n/a1=.2n/ as n ! 1, we get b D b � b, thus
b D 1 (b D 0 is excluded by b � 1), as asserted.

Furthermore, since frng is increasing and fRng D frn C 1=ng decreasing, faRng
decreasing, moreover,

arn � aRn D arnC1=n D arna1=n:

3
1
n

1

2

3

n

1 2 3 4 5 6 7 8 9 10

Fig. 7.1 Decreasing sequences bounded from below by c are convergent and their limit is � c
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In particular, faRng is bounded from below (by ar1) and decreasing, so has a limit
A and the increasing sequence farng is bounded from above by aR1 and has a limit
B. From limn!1 a1=n D 1 and from aRn D arna1=n we prove A D B. Indeed,
going to the limit as n ! 1 (limit of product is product of limits), we have A D
B � 1 D B. By definition, this common limit will be ax. Since ax increases with
increasing rational x, it is easy to see that every sequence frng of the above nature
(frng increasing, frn C 1=ng decreasing, x in between) leads to the same A. (That
such sequences frng exist, is easy: Choose r1 so that x � 1 < r1 � x and choose the
further r2; : : : ; rn; rnC1; : : : so that

x � 1

n
< rn � x; rn � rnC1 < rn C 1

n
� 1

n C 1
:

Then rn � x, rn � rnC1, RnC1 D rnC1 C 1
nC1 < rn C 1

n D Rn and Rn > x.)
This definition conforms with the previous one, if r in ar is rational. We just

choose rn D r .n D 1; 2; : : :/, a constant sequence. Then ax we have just defined
for a > 1 is still strictly increasing in the case of real x: If x1 < x2, take a lower
approximating rational r of x2 and an upper one, R, of x1 so that R < r (can be done:
R gets as close to x1 and r to x2 as we want them to) and get, by the definition of
ax1 ; ax2 and since ax is strictly increasing for rational x,

ax1 < aR < ar < ax2

as asserted. Also, ax is a continuous function of x. Take, for instance, x > x0; then
we want

0 � jax � ax0 j D ax � ax0 < " if 0 < x � x0 < ı:

Let R be an upper approximation fraction of x0 for which aR � ax0 < ". Now choose
ı < R � x0 and choose x so that 0 < x � x0 < ı < R � x0. Then x0 < x < R and
jax � ax0 j D ax � ax0 < aR � ax0 < " as required. (The proof for x < x0 is similar).
If a < 1 then ax is a strictly decreasing but still a continuous function of x. If a D 1

then, of course, ax D 1x D 1 (Fig. 7.2).

f ..1 � q/x1 C qx2/ < .1 � q/f .x1/C q f .x2/

.0 < q < 1I x1 6D x2; x1 2 I; x2 2 I; I D Œa; b�/:
(7.1)

If this is true for all q 2�0; 1Œ, x1 6D x2, x1 2 I, x2 2 I with � instead of < then f is
convex from below on I. If we have � or>, we get the definition of functions convex
or strictly convex, respectively, from above.
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y = 1

y = 2xy = 2 x

x

y

1

2

3

4

1 2 3123

Fig. 7.2 Exponential functions

Fig. 7.3 Function f convex from below

For f .x/ D ax we prove first the q D 1
2

case of (7.1) (the interval I is the whole
real line):

f .
1

2
x1 C 1

2
x2/ <

1

2
. f .x1/C f .x2// .x1 6 D x2/: (7.2)

Indeed ax1=2Cx2=2 D ax1=2ax2=2 < 1
2
.ax1 C ax2 / because

0 < .ax1=2 � ax2=2/2 D ax1 C ax2 � 2ax1=2ax2=2 if x1 6D x2:

(The squares of nonzero numbers are positive). This inequality
p

uv < .uCv/
2

(u 2
RCC, v 2 RCC, u 6D v) is the simplest arithmetic-geometric-inequality, (we wrote
u D ax1 , v D ax2). From this, (7.1) follows for all q 2�0; 1Œ in case of the continuous
function f .x/ D ax.
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Fig. 7.4 If one point of each
chord is above the graph of a
continuous function, then all
are

P1

P0

P4

P3

P5

P2

Indeed, if f is continuous and for each pair x1 6D x2, x1 2 I, x2 2 I there exists
at least one q 2�0; 1Œ so that (7.1) holds, then (7.1) holds for all q 2�0; 1Œ, x1 D x2,
x1 2 I, x2 2 I. In other words if one point of each chord is strictly above the graph
of a continuous function, then the function is strictly convex from below. (Similar
statements hold for functions convex from below or above and for functions strictly
convex from above). We sketch a proof (Fig. 7.4).

Let P1, P2 be the endpoints of a chord and P0 a point of the graph strictly below
that chord. If there existed a P3 on the graph above the chord P1P2 (say, between
P0 and P2), then (because of continuity; related to the Property 3 in Sect. 5.3) there
would be a last point of the graph, P4, before P3, and a first point P5 after P3, which
would be on the chord. But now look at the chord P4P5: all its points lie under the
graph, contrary to supposition. With a little more effort the case where P3 is both on
the graph and on the chord can also be dealt with. So indeed, (7.1) follows from (7.2)
for continuous f .

For ax, inequality (7.1) states that

a.1�q/x1Cqx2 < .1 � q/ax1 C qax2 .q 2�0; 1Œ; u 6D v; both positive/

which is a more general form of the arithmetic-geometric-mean-inequality: the
inequality between the weighted arithmetic mean .1 � q/u C qv and the weighted
geometric mean u1�qvq (q 2�0; 1Œ). There are similar inequalities for arithmetic and
geometric means of more than two variables.

The continuity of ax implies that

axCx0 D axax0

and .ax/t D axt (7.3)

remain valid for all real x, x0, and t.
Since the exponential function (ax for a 6D 1) is strictly monotonic, continuous,

and maps the set R of real numbers onto the set RCC of positive numbers, therefore
an inverse function loga, called the logarithm with base a, exists for each a 6D 1.
The properties (7.3) of ax imply (with x1 D ax, x2 D ax0

)

loga.x1x2/ D loga x1 C loga x2 and loga xt
1 D t loga x1

.x1 2 RCC; x2 2 RCC; t 2 R/:

Also, loga 1 D 0 (because a0 D 1) and loga is continuous (for all a), strictly
convex from above and strictly increasing if a > 1, while strictly decreasing and
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strictly convex from below if a < 1. The monotonicity statements are obvious
consequences of the monotonicity of ax. We prove the convexity statements. We
take the arithmetic-geometric-mean-inequality

x1 C x2
2

> .x1x2/
1=2 if x1 6D x2; x1 2 RCC; x2 2 RCC: (7.4)

Since, for a < 1, loga is strictly decreasing, this is equivalent to

loga.
1
2
x1 C 1

2
x2/ < loga.x1x2/

1=2 D 1
2

loga x1 C 1
2

loga x2

for all x1 2 RCC; x2 2 RCC .x1 6D x2I a < 1/

that is, loga x satisfies the last equation, if a < 1. As loga x is continuous, (7.1)
follows and loga is strictly convex from below if a < 1. But if a > 1, the loga is
strictly increasing, so that taking loga on both sides of the inequality (7.4) gives

loga.
1

2
x1 C 1

2
x2/ >

1

2
loga x1 C 1

2
loga x2;

and so loga is strictly convex from above if a > 1.
Now we can determine that for the limit limx!1 ax (a > 0). First we show that

limx!1 ax D 0 if 0 < a < 1, that is (see Sect. 6.2), for all " > 0 there exists an M
such that ax D jax � 0j < " if x > M. For this we choose M D loga ". As we have
seen, ax is decreasing with x if 0 < a < 1, so

ax < aM D aloga " D "

as asserted. If a > 1, then limx!1 ax D 1, because, for every prescribed (large)
M0, with x > loga M0 we have

ax > aloga M0 D M0

since ax increases for a > 1. Finally, if a D 1, then limx!1 1x D limx!1 1 D 1

(limit of a constant function). As a consequence (noting also 0n D 0),

lim
n!1 an D 0 if 0 � a < 1; lim

n!1 an D 1 if a > 1; lim
n!1 1n D 1;

which we needed in Sect. 6.7, Examples 1 and 2. Another consequence is (with
t D �x)

lim
x!�1 ax D lim

t!1.
1

a
/t D

8
<

:

0 if a > 1
1 if a D 1

1 if 0 � a < 1:
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Fig. 7.5 The slopes of the
chords, starting from the
same point on the graph of a
function, convex from below,
are increasing

h h h

h
1

0

Chord from

(0,1) to ah

Graph of ah

ah

ah

We want now to determine the derivative of ax if it exists, that is, if the following
limit exists:

lim
x!x0

ax � ax0

x � x0
D lim

x!x0
ax0

ax�x0 � 1

x � x0
D lim

h!0
ax0

ah � 1
h

(we have used the rule that, if lim f .x/ exists, then so does lim cf .x/ D c lim f .x/;
then wrote h D x � x0). The last limit, if it exists, is the derivative of ax at 0. So the
derivative of ax exists at every point x0 if it exists at 0. But it does exist at 0 since ax

is convex from below, as we have seen, so (Fig. 7.5) the slopes of the chords starting
at the point .0; 1/ and ending at .h; ah/ are decreasing with decreasing positive h
and increasing with increasing negative h (h is increasing, not its absolute value).
If a > 1 then both kinds of slopes are positive (ah > 1 > a�h for h > 0). So
.ah � 1/=h is decreasing and bounded from below as h decreases to 0 through
positive h’s; therefore its limit as h ! 0 through the positive numbers (the right
limit) limh!0C ah�1

h exists (compare Fig. 7.5). If h is negative, h < 0, we introduce
h0 D �h.

Then

ah � 1
h

D a�h0 � 1
�h0 D 1

ah0

ah0 � 1

h0 :

Since limh0!0 ah0 D 1 (proved the same way as limn!1 a1=n D 1 above) and we
have already proved that

lim
h0!0C

ah0 � 1

h0

exists, we see that also the following left limit exists:

lim
h!0�

ah � 1
h

D lim
h0!0C

a�h0 � 1

�h0 D lim
h!0C

1

h0 lim
h!0C

ah0 � 1

h0 D lim
h!0C

ah0 � 1
h0 ;
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and is equal to the right limit. Therefore

lim
h!0

ah � 1
h

D `.a/ (7.5)

exists (it clearly may depend on a, which is why we denote it by `.a/) and so does

.ax/0xDx0 D lim
x!x0

ax � ax0

x � x0
D ax0`.a/; (7.6)

that is, ax is everywhere differentiable. The proof is similar if a � 1. It is easy to see
that `.a/ D 0 if and only if a D 1.

We now want to find out more about the function `. By its definition (7.5), `.a/ is
the slope of the tangent to the graph of ax at 0 (look at Fig. 7.5). So `.at/ will be the
slope of .at/x D atx at 0. The graph of atx is a t-fold horizontal contraction of that
of ax, since we replaced, in ax, x by tx (Fig. 7.6). So the slope `.at/ of the tangent of
atx at 0 will be t times the slope `.a/ of that of at:

`.at/ D t`.a/: (7.7)

If we write at D s then t D loga s, because loga is the inverse function of the
exponential function with base a. So our equation becomes

`.s/ D loga s`.a/; (7.8)

that is, `.s/ is a constant multiple of a logarithm function. Take any c for which
`.c/ 6D 0 (that is, any c 6D 1 since `.a/ D 0 only for a D 1) and define

e D c1=`.c/:

x0 x1 x2x2

t
x1

t
x0

t

axatx

1

0

ax2 1

Fig. 7.6 The graph of atx is a t-fold horizontal contraction of that of ax
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Then, by `.at/ and `.s/ formulas (7.7) and (7.8) which we have just proved,

`.e/ D `.c1=`.c// D 1

`.c/
`.c/ D 1 and `.s/ D loge s;

that is, ` itself is a logarithm, with base e. It is easy to see that e does not depend
on c, it is simply the value for which `.e/ D 1 (there is only one, because it is
easy to see from (7.8) that ` is strictly increasing). While e D c1=`.c/ gives good
approximations of e (for instance, if c D 3 and h D 10�4 D 0:0001 then `.3/ is
approximated by .30:0001 � 1/=0:0001 � 1:0987 and 31=1:0987 � 2:718/ there are
“nicer” expressions of e, as limits (to be shown later):

e D lim
n!1.1C 1

n
/n D lim

n!1.1C 1

n
/nC1;

It is an irrational number (even transcendental, that is, there is no algebraic equation
(see Sect. 6.12) of no matter how large degree with rational coefficients of which it
is a solution). Its value (to twelve decimals) is

e D 2:718281828459 : : :

The function `.x/ D loge x is called the natural logarithm and is denoted often
by ln x. By (7.6),

.ax/0 D ax ln a;

so ln is not so much natural as unavoidable: we need it to differentiate ax—and also
to differentiate loga x—for any a > 0, a 6D 1 (and x > 0): As derivative of an inverse
function (Rule 6.5 in Sect. 6.5)

.loga x/0 D 1

aloga x ln a
D 1

ln a

1

x
:

If a D e, we get

.ex/0 D ex and .ln x/0 D 1

x

which shows that ex and ln x are the “simplest” exponential and logarithm functions,
respectively. Moreover, every exponential and logarithmic function can be expressed
with their aid:

ax D .eloge a/x D ex ln a
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and (see also (7.8))

loga s D ln s

ln a
:

We remind that loga s and, in particular, ln s are defined only for positive s.
In addition to exponential and logarithmic functions we can now, extending the

rule (6.7) in Sect. 6.5, also differentiate powers with arbitrary real exponents (we
have defined them before, at the beginning of this section, only now we denote the
base by x and the exponent by p): Since x D eln x, therefore, by (7.3),

xp D ep ln x (7.9)

and, by the chain rule 6.4 of Sect. 6.5,

.xp/0 D ep ln x.p ln x/0 D xpp
1

x
D pxp�1:

We had above several arguments about convex functions in general. We will
now use an argument similar to that which proved the differentiability of ax, to find
conditions for the convexity of differentiable functions in general. As we have seen
in Sect. 3.4, a function is strictly convex from below or from above on an interval
if on that interval the arc between two points of its graph is below or above the
chord, respectively, while for convex functions in the wider sense we also permit
some points of the chord, other than the endpoints, to be on the arc. As mentioned
there, one often calls functions convex from below just plainly “convex” while those
convex from above are called “concave”.

On the other hand, we saw (Fig. 7.5) that the slopes of the chords, starting from
the same point on the graph of a function, convex from below, are increasing. So
h 7! . f .xCh/�f .x//=h is increasing with increasing positive h or, what is the same,
decreasing with h decreasing to 0. But these are the difference quotients of f between
x and xCh, the limit of which, by definition, is the derivative of x if it exists. Actually,
we took h > 0 here. The same argument shows that h 7! . f .x C h/ � f .x//=h
increases with negative h’s increasing to 0 and its limit is again f 0.x/ if it exists.
So for differentiable functions f convex from below (in the wider sense), taking first
x D x1, h D x2 � x1, then x D x2, h D x1 � x2.< 0/, we get

f 0.x1/ � f .x2/� f .x1/

x2 � x1
� f 0.x2/;

that is, f 0 increases. Similarly, for differentiable functions f , convex from above
(“concave”), f 0 decreases.
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As in Sect. 6.7 for monotonicity, we want to see whether also the converse is
true. Here too we use Taylor’s formula with remainder in Lagrange form ((6.11) in
Sect. 6.7). So, let us suppose that

f 00.x/ � 0

on a—for simplicity open—interval I. By the Taylor formula, just mentioned,

f .u/ D f .x/C .u � x/f 0.x/C 1

2
.u � x/2f 00.�/ � f .x/C .u � x/f 0.x/

and

f .v/ � f .x/C .v � x/f 0.x/

for all x, u, v (and thus also �) in I. We may choose

x D .1 � �/u C �v with any � 2�0; 1Œ

since, if u and v are in I, so is this x. Of course, we chose this x because it figures in
the definition of convexity in Sect. 3.4 (convexity both from below and from above,
let us take here convexity from below). Accordingly, we form, making use of the
above,

�f .u/C .1 � �/f .v/
� .�C .1 � �//f .x/C .�u C .1 � �/v � x/f .x/

� f .�u C .1 � �/v/:

So f is indeed convex from below on I. Similarly,

f 00.x/ � 0

on I implies that f is convex from above (“concave”) on I. In both cases convexity
was meant in the wider sense. If f 00.x/ > 0 on I or f 00.x/ < 0 on I then f is strictly
convex there from below or above respectively. But again f can be strictly convex
even if at some points f 00.x/ D 0 (for instance x 7! x4 � x at x D 0, see Fig. 7.7) as
long as f 00 is not 0 on an interval.

As mentioned in Sect. 3.4, the points where a segment convex from one side
meets one convex from the other are called points of inflection. (The “horizontal
points of inflection” in Sect. 6.7 were special cases.) If f is twice differentiable then
x0 is a point of inflection if and only if f 0.x0/ D 0 and f 00.x/ changes from positive
to negative or vice versa at x0. (It is not enough that f 00.x0/ D 0 as again the example
f .x/ D x4 � x at x D 0 shows, Fig. 7.7.)
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Fig. 7.7 .x4 � x/00 jxD0 D
12x2 jxD0 D 0, but
x 7! x4 � x is strictly convex
from below everywhere

0

1

1-1

Another motivation of the exponential function comes from compound interest.
Banks pay interest annually, semiannually, quarterly, monthly or daily, but in most
cases the bank rate stated is annual rate. In what follows the rate r is 0:01 times the
bank rate. If the interest is paid every n-th part of the year (n D 1; 2; 4; 12; 365 for
years, half years, quarter years, months, days; theoretically even smaller units could
be considered), then A dollars would grow to A.1C r=n/ during one n-th part of the
year, to A.1C r=n/2 during two n-th parts of a year, . . . , and to A.1C r=n/n during
the whole year, to A.1 C r=n/nt during t years (in practice the formula is slightly
altered or fractional years). Both in economics and in mathematics, the limit of this
sequence,

lim
n!1 A.1C r

n
/nt (7.10)

is of interest.
While this is not of the “form 0

0
” and, anyway, n goes through the positive

integers, not through the continuous real (half-)line, the Bernoulli–L’Hospital rule
can still be applied after some conversions. First, we take the (natural) logarithm of
.1C r=n/nt and try to calculate its limit

lim
n!1 ln.1C r

n
/nt D lim

n!1
ln.1C r

n /
1
n

t: (7.11)

This is now of the form 0
0

since limn!1 ln.1 C r
n / D 0 (ln is continuous and

ln 1 D 0) and limn!1 1
n D 0. In order to have a continuous variable, we consider

(leaving the factor t, which does not depend upon x, aside for now)

lim
x!0

ln.1C rx/

x
:
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If the limit exists as x goes to 0 through all reals then it exists (and is the same) when
x goes to 0 just through elements of the sequence f1=ng. But this limit exists by the
Bernoulli–L’Hospital rule:

lim
x!0

ln.1C rx/

x
D lim

x!0

.1=.1C rx//r

1
D r;

(that is, the limit of the quotient of derivatives indeed exists and therefore also the
left hand side exists).

So the limit (7.11) exists and equals rt; and .1 C r
n /

nt (of which ln.1Cr=n/
1=n t is the

natural logarithm) converges to ert and the limit (7.10) exists and equals Aert, which
is thus the limit amount with accrued continuous interest. In particular (for r D 1),

lim
n!1.1C 1

n
/nt D et

(this is our new, second formula for the exponential function) and

lim
n!1.1C 1

n
/n D e;

lim
n!1.1C 1

n
/nC1 D lim

n!1.1C 1

n
/n � lim

n!1.1C 1

n
/ D e � 1 D e;

as mentioned before.
A third representation of ex is by its Taylor series. Since

.ex/0 D ex; .ex/00 D .ex/000 D .ex/.4/ D : : : D ex;

the Taylor formula (6.11) in Sect. (6.7), that is

f .x/ D f .a/C f 0.a/
1Š
.x � a/C f 00.a/

2Š
.x � a/2

C : : :C f .n/.a/
nŠ .x � a/n C f .nC1/.�/

.nC1/Š .x � a/nC1;
(7.12)

gives, for a D 0:

ex D 1C 1

1Š
x C 1

2Š
x2 C : : :C 1

nŠ
xn C e�

.n C 1/Š
xnC1

for some � between 0 and x. If x is in � � r; rŒ, so is � and e� � er. As we have seen
in Sect. 6.7, Example 1, we have

lim
n!1

jxjnC1

.n C 1/Š
D 0; so lim

nto1.1C 1

1Š
x C 1

2Š
x2 C : : :C 1

nŠ
xn/ D ex
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(uniform convergence on � � r; rŒ and this is true for every r > 0), which gives the
Taylor (really MacLaurin) series expansion

ex D 1C x

1Š
C x2

2Š
C : : :C xn

nŠ
C : : : for all real x:

We have also

axf D ex ln a D 1C ln a

1Š
x C .ln a/2

2Š
x2 C : : : for all real x:

How about a Taylor series for ln x? Since ln x is not defined at 0, we will look for
the Taylor expansion around 1 (we could have chosen any other positive number,
but the series is nicer around 1 and can be easily transformed into a Taylor series
around any other point). In order to get the Taylor formula for ln x, note:

f .x/ D ln x; f .1/ D 0

f 0.1/ D �1

x

	
xD1 D 1; f 00.1/ D � � 1

x2
	

xD1 D �1

f 000.1/ D �
2
1

x3
	

xD1 D 2; f .4/.1/ D � � 2 � 3 1
x4
	

xD1 D �3Š;
� � �

f .n/.1/ D �
.�1/n�1 .n � 1/Š

xn

	
xD1 D .�1/n�1.n � 1/Š

f .nC1/.�/ D �
.�1/n nŠ

xnC1
	

xD� D .�1/n nŠ

�nC1 :

So, since .k � 1/Š=kŠ D 1=k, the Taylor formula with a D 1 yields

ln x D .x � 1/� 1

2
.x � 1/2 C 1

3
.x � 1/3 � 1

4
.x � 1/4

C : : :C .�1/n�1 1
n
.x � 1/n C .�1/nC1 1

n C 1

�x � 1
�

	nC1
:

We consider this first for 1 � x � 2. If 1 < x � 2, then 1 < � � and 0 < jx � 1j D
x � 1 � 1. So 0 < c D jx � 1j = j�j < 1 and we know that then limn!1 cnC1 D
limn!1 cnc D 0. Therefore

lim
n!1 jRn.x/j D lim

n!1

ˇ
ˇ
ˇ
ˇ.�1/nC1 1

n C 1
.
x � 1

�
/nC1

ˇ
ˇ
ˇ
ˇ

D lim
n!1

1

n C 1
lim

n!1

ˇ
ˇ
ˇ
ˇ
x � 1

�

ˇ
ˇ
ˇ
ˇ

nC1
D 0 � 0 D 0 for 1 < x � 2:
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Since Rn.1/ D 0, we have

ln x D .x � 1/� 1

2
.x � 1/2 C 1

3
.x � 1/3 � 1

4
.x � 1/4 C : : : for 1 � x � 2

(uniform convergence). In particular we have the sum of the following nice, though
slowly converging series:

ln 2 D 1 � 1

2
C 1

3
� 1

4
C : : :

One can show that the Taylor series of ln x can be extended to �0; 2�, so that

ln x D .x�1/�1
2
.x�1/2C1

3
.x�1/3�1

4
.x�1/4C: : : for 0 � x � 2: (7.13)

(Uniform convergence on Œ˛; 2� for every ˛ > 0 .˛ < 2/) but that this equation does
not hold for x > 2 (and of course not for x � 0, since ln x is not defined there). The
series on the right is even divergent, that is,

lim
n!1Œ.x � 1/� 1

2
.x � 1/2 C 1

3
.x � 1/3 C : : :C .�1/n�1 1

n
.x � 1/n�

does not exist or is not finite for x > 2 and for x � 0.
We can write (7.13) with u D ax a 6D 0 as

ln u D ln a C 1

a
.u � a/� 1

2a2
.u � a/2 C 1

3a3
.u � a/3 C : : : for 0 < u � 2a;

a Taylor series of ln u around a. Or, with t D x � 1,

ln.1C t/ D t � t2

2
C t3

3
� t4

4
C : : : for � 1 < t � 1

a Taylor (really MacLaurin) series of ln.1 C t/ around 0. (It does not matter which
letter we use for the variable, x, u or t.)

We mention here, without proof, another important MacLaurin series, the
binomial series:

.1C x/p D 1C
 

p

1

!

x C
 

p

2

!

x2 C
 

p

3

!

x3 C : : :

for �1 < x < 1 and for all real p (remember that by now .Cx/p is defined for all
real p and all x > �1). Here

 
p

n

!

D p.p � 1/ � : : : � .p � n C 2/.p � n C 1/

1 � 2 � 3 � : : : � n
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are the binomial coefficients. We have seen the particular case p D �1 of the
binomial series before:

.1C x/�1 D 1 � x C x2 � x3 C : : : .�1 < x < 1/

(see (6.12) in Sect. 6.7). Another is the binomial formula: If p is a positive integer
then

 
p

p

!

D p.p � 1/ � : : : � 2 � 1
1 � 2 � 3 � : : : � p

;

 
p

p C 1

!

D p.p � 1/ � : : : � 1 � 0
1 � 2 � 3 � : : : � p � .p C 1/

;

 
p

p C k

!

D p.p � 1/ � : : : � 0 � .�1/ � : : : � .�k C 1/

1 � 2 � 3 � : : : � p � .p C 1/ � : : : � .p C k/
D 0 for k D 1; 2; : : :

Therefore in this case the binomial series is finite, that is, from somewhere ( from
the .p C 1/-st term) on all coefficients are 0:

.1C x/p D 1C
 

p

1

!

x C
 

p

2

!

x2 C : : :C
 

p

p � 1

!

xp�1 C xp for positive integer p:

This happens to be true for all real x. Multiplied by up after substitution of x D v=u
we get the binomial formula:

.u C v/p D up C
 

p

1

!

up�1v C
 

p

2

!

up�2v2 C : : :C
 

p

p � 1

!

uvp�1 C vp

for all positive integer p and all real u, v (actually, also for complex u, v).
Comparison of the two series

ln.1C x/ D x � x2

2
C x3

3
� x4

4
C : : : .�1 < x � 1/

(uniform convergence on Œ�; 1�, � > �1) and

1

1C x
D 1 � x C x2 � x3 C : : : .�1 < x < 1/

(uniform convergence on Œ�r; r�, 0 < r < 1) is an example for the rule that a series
can be differentiated term by term if (where) the series for the derivative is uniformly
convergent. Here the term by term derivation works for every x 2 Œ�r; r�, thus, since
r < 1 is arbitrary, for every x 2� � 1; 1Œ, but not for x D 1 (1 � 1C 1 � 1C : : :) is
divergent, as we saw in Sect. 6.7, (Example 2).
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7.2.1 Exercises

1. Draw graphs for the functions
(a) f1 W Œ�4; 4� ! RC; x 7! .3=4/x,
(b) f2 W Œ�4; 4� ! RC; x 7! .3=2/x,
(c) f3 W Œ�3; 2� ! RC; x 7! .5=2/x,
(d) f4 W Œ�2; 3� ! RC; x 7! .2=5/x.

2. The functions f1, f2, f3, f4 from Exercise 1 are convex. Verify that they satisfy
f ..1�q/x1Cqx2/ < .1�q/f .x1/Cqf .x2/ for q D 1=3, x1 D �3=2, x2 D 17=10.

3. Determine the first derivatives of the functions given by
(a) g1.x/ D a7x log9 x, (x > 0, a > 0, a 6D 1),
(b) g2.x/ D .sin ax/ ln 4x, (x > 0, a > 0, a 6D 1),
(c) g3.x/ D e�1:5x cos.2x C 3/, (x 2 R),
(d) g4.x/ D log5.2C x2/=e6x, (x 2 R),
(e) g5.x/ D 1=g4.x/, (x 2 R).

4. (a) Determine the second derivatives of the functions given by G1.x/ D x ln x
(x > 0) and G2.x/ D xex (x 2 R).

(b) Is G1 strictly convex from below on RCC?
(c) Is G2 strictly convex from below on RCC?

5. Verify that the (convex) functions f1 and f3 from Exercise 1 satisfy f 0.x1/ <
. f .x2/ � f .x1//=.x2 � x1/ < f 0.x2/ for x1 D �3=2 and x2 D 4=3.

6. Verify that the concave (i.e., convex from above) functions given by F1.x/ D ln x
(x > 0), F2.x/ D log1 0x (x > 0) satisfy F0.x1/ > .F.x2/ � F.x1//=.x2 � x1/ >
F0.x2/ for x1 D 2 and x2 D 3.

7. Denote 1C 1
1Š
1
2

C 1
2Š
. 1
2
/2 C : : : C 1

nŠ .
1
2
/n C : : : D e1=2 by r. At least how many

terms from the beginning of the series on the left has one to add in order to be
closer to r than 10�6 D 0:000001?

7.2.2 Answers

2. .1 � q/x1 C qx2 D 2
3
.�3=2/C 1

3
.17=10/ D �0:4333 : : :

(a) .3=4/�0:4333:::1:132 : : : 1:230 : : : .2=3/.3=4/�3=2.1=3/.3=4/17=10;
(b) .3=2/�0:4333:::0:838 : : : 1:026 : : : .2=3/.3=2/�3=2.1=3/.3=2/17=10;
(c) .5=2/�0:4333:::0:672 : : : 1:751 : : : .2=3/.5=2/�3=2.1=3/.5=2/17=10;
(d) .2=5/�0:4333:::1:487 : : : 2:705 : : : .2=3/.2=5/�3=2.1=3/.2=5/17=10:

3. (a) g0
1.x/ D a7x.ln 9/�1Œ7.ln a/.ln x/C 1=x�,

(b) g0
2.x/ D a cos.ax/ ln.4x/C x�1 sin.ax/,

(c) g0
3.x/ D �e�1:5xŒ1:5 cos.2x C 3/C 2 sin.2x C 3/�,

(d) g0
4.x/ D 2e�6x.ln 5/�1Œx.2C x2/�1 � 3 ln.2C x2/�1�,

(e) g0
5.x/ D e6x.ln 5/Œln.2C x2/��2Œ6 ln.2C x2/� 2x.2C x2/�1�.

4. G00
1 .x/ D 1=x, G00

2.x/ D .2C x/ex, (a) yes, (b) no.
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5. (a) f 0
1.x/ D .3=4/x ln.3=4/, .3=4/�3=2 ln.3=4/ D �0:4429 : : : < �0:1960 : : : D
.3=4/4=3 ln.3=4/,
Œ.3=4/4=3 � .3=4/�3=2�=Œ4=3 � .�3=2/� D �0:3028 : : :

(c) f 0
3.x/ D .5=2/x ln.5=2/,
.5=2/�3=2 ln.5=2/ D �0:2318 : : : < 3:1089 : : : D .5=2/4=3 ln.5=2/,
Œ.5=2/4=3 � .5=2/�3=2�=Œ4=3 � .�3=2/� D 1:1082 : : :

6. F0
1.x/ D .ln x/0 D x�1, F0

2.x/ D .log1 0x/0 D .x ln 10/�1,
F0
1.2/ D 1=2 > 1=3 D F0

1.3/,
.F1.3/� F1.2//=.3� 2/ D ln 3 � ln 2 D 0:4054 : : :,
F0
2.2/ D 1=2 � 2:302585 : : : D 0:2171 : : : > 0:1447 : : : D F0

2.3/,
.F2.3/� F2.2//=.3� 2/ D log1 03 � log1 02 D 0:1760 : : :

7. 8 terms.

7.3 Applications: “Discrete” and “Continuous” Compounding,
“Effective Interest Rate”, Doubling Time, Discounting

As mentioned in the previous section, with “stated yearly interest rate” r � 100% if
paid (or calculated) yearly, semiannually, quarterly, monthly, or, in general every
1th of the year, with interest compounded, a deposit (or loan) amount A grows, by
the end of the first year, to

A.1C r/;A
�
1C r

2

�2
; A

�
1C r

4

�4
; A

�
1C r

12

�12
;

A
�
1C r

365

�365
; A

�
1C r

n

�n
;

respectively, (and to the t-th power of these amounts by the end of the t-th year),
while in limit (see (7.10)) with “continuous compounding”, it will

grow to lim
n!1 A

�
1C r

n

�n D Aer in a year, to Aert in t years. (7.14)

An important question is what annual (yearly) interest rate would have the same
effect. This is the “effective yearly interest rate”, usually denoted by i � 100%. (Of
course, this is not to be confused with i D p�1 in Sect. 1.7 and elsewhere; we were
careful to print that i in a different—Roman rather than italic—type.) Of course with
this rate i the amount A > 0 grows in the year to A.1C i/, in t years to A.1C i/t and
we have two simple tasks. The first is to find i such that

A.1C i/ D A
�
1C r

n

�n I that is i D
�
1C r

n

�n � 1 (7.15)
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(which satisfies also A.1 C i/t D A
�
1C r

n

	nt
.) In many countries this “effective

yearly interest rate” i � 100% is posted for saving deposits and has to be posted for
loans. Notice the subtle difference in the previous sentence. The reason is that i > r
(for r > 0, n > 1, of course), so banks gladly post the higher effective rate for
savings, but not-so-gladly for loans. Why is i > r? By the binomial formula at the
end of Sect. 7.2,

i D �
1C r

n

	n � 1 D
�

n
1

�
r
n C

�
n
2

�
�

r
n

	2 C : : :

C
�

n
n � 1

�
�

r
n

	n � 1C �
r
n

	n
> n

Our second task is equally easy: find i D er � 1 such that

A.1C i/ D Aer; that is i D er � 1

(which of course, satisfies also .1 C i/t D Aert). This i is clearly not the same
as (7.15) which could be denoted by in and then, by (7.14),

i D er � 1 D lim
n!1

h�
1C r

n

�n � 1
i

D lim
n!1 in:

In the present case we deal with continuous compounding. However, also this i is
greater than r. (This is not guaranteed by in > r; for instance 2 C 1

n > 2 but
limn!1.2C 1

n / D 2.) This can be seen from the Taylor/MacLaurin series expansion
of ex (ref Sect.7.1):

ex D 1C x C x2

2Š
C x3

3Š
C : : : ; so ex > 1C x if x > 0;

that is, i D er � 1 > r .r > 0/.
More exactly we can consider the remainder R1.x/ in the Taylor/MacLaurin

series if ex,

ex D 1C x C R1.x/; where R1.x/ D e�

2
x2 for some � between 0 and x;

and this R1 is, of course, positive if x > 0, so again ex > 1 C x, i D er � 1 > r for
r > 0.

Table 7.1 shows the “effective interest rates” in % (percent), that is 100in
corresponding to the “stated interest rate” (also in %, that is, to 100r) paid every
n-th part of a year (n times yearly) for n D 1; 2; 4; 12; 365 and also the 100i%
corresponding to that 100r % stated interest rate in “continuous” compounding.
Notice that, for small r, i and r hardly differ at all, but for r D 1, that is
100r % D 100 %, if 100

365
% is paid daily and compounded, we have already
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100i365 D 171:4567% as “effective” (equivalent yearly) interest rate and if, with this
100r % D 100%, the compounding is “continuous” then the “effective” interest rate
is 100i % D 100.er �1/% D 100.e�1/% D 171:8281828459 : : :%. Surprisingly,
this is not much greater then 100

365
%, while from n D 1 to n D 2 the equivalents 100i

% and 100i2 % of yearly and of semiannual payments with 100i % D 100% “stated
interest rate” grows from 100i % D 100 to 100i2 % D 125 and then, from n D 2

to n D 4 (from semiannual to quarterly) the equivalent interest grows to 100i4
% D 144:1406 a smaller, but still respectable growth. the same can be observed
(though in somewhat smaller degree) for smaller r in the Table 7.1.

On the other hand, for any yearly (interest) rate i D i1, there is an r such that in
any (positive) integer number t of years the continuous compounding with the rate
r leads to the same result as they yearly compounding with rate i:

Aert D A.1C i/t .t D 1; 2; : : :/:

This r is, of course r D ln.1C i/. (Clearly, i and r are different, if they are not both
0, because i D er � 1 D r C r2

2Š
C r3

3Š
C : : : > r.)

Now, Aert is defined for all real t, in particular for all positive t, so continuous
compounding makes sense for any positive (not only integer) length t of time.
Similarly, A.1C i/t can also be extended to (positive) noninteger t at least formally.

It is important and also easy to determine the doubling time, that is, the time
during which a deposit doubles under “discrete” or “continuous compounding”.
For continuous compounding this means

Aert D 2A; that is, ert D 3; rt D ln 2

or, what is the same, doubling time is

t D ln 2

r
D 69:314718 : : :

100r
D 0:69314718 : : :

r
:

Here this time interval t which is in general of noninteger length, makes sense (but
then continuous compounding is an abstraction). On the other hand for (discrete)
yearly compounding, we have to solve the equation

A.1C i/t D 2A; that is, t ln.1C i/ D ln 2

(where i is the annual effective interest rate), so the doubling time is

t D ln 2

ln.1C i/
D 0:69314718

i � i2

2
C i3

3
: : :
;
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(which is not necessarily integer). We made use of the Taylor/MacLaurin series of
ln.1C i/ (from Sect. 7.2, there ln.1C t/), valid for 0 < i � 1. If i is small, then the
latter formula gives “approximately”

t � 69:314718 : : :

100i
(7.16)

where “�” reads “approximately equal” or “asymptotically equal”. This is true also
in the exact sense that

lim
t!0

ln.1C i/

i
D 1 (7.17)

(see Sect. 7.2, right after (10)). So in both cases roughly the “rule of 70” holds for
the doubling time:

t  70

100r
; t  70

100i
:

We wrote , not �, because � as in (7.16) makes exactly a limit statement
like (7.17), what is not the case here. Actually, t  70=.100i/ is good approximation
up to i D 0:04 D 4%; then, till 10% one uses t  72=.100i/; finally t  74=.100i/
is appropriate up to i D 0:16 D 16%.

Another important question about compounding is discounting, that is, the
present value A of an amount Z to become due in t years. Clearly this means solving

A.1C i/t D Z or Aert D Z

with respect to A in case of yearly discrete compounding or continuous compound-
ing, respectively. The solutions, that is, the present values of Z, are clearly

A D Z.1C i/�t and A D Ze�rt;

respectively. Here .1 C i/�1 is the “discount factor”, r the “rate of decay”. (The
latter name comes from the natural sciences, where Ze�rt is the formula for instance
for chemical or radioactive decay.) Figure 7.8 connects the graphs of the functions
t 7! Aert and t 7! Ze�rt.

Doubling times and discount factors can, of course, be calculated also for
semiannual, quarterly, monthly : : : compounding.
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0 0

A A

Z ZAert

Ze rt

Fig. 7.8 The graphs of growth (t 7! Aert) and decay (t 7! Ze�rt), r > 0

7.3.1 Exercises

1. To which amounts will $ 1000 grow in 20 years if the stated (yearly) interest rate
r D 0:03 is paid.
(a) annually, (b) semiannually, (c) quarterly,
(d) monthly, (e) daily, (f) continuously?

2. Let the annual effective interest rate i be 0:056. Calculate the number t of years
in which a deposit amount A grows to
(a) 3A, (b) 5A, (c) 10A, (d) 20A.

3. Calculate the annual effective interest rate i � 100% with which a deposit amount
A grows to
(a) 5A, (b) 6A, (c) 7A, (d) 8A
in 30 years.

4. Let the stated yearly interest rate r be 0:06. Calculate the doubling time t of a
deposit amount A if the interest is paid and compounded
(a) semiannually, (b) quarterly, (c) monthly,
(d) daily, (e) continuously.

5. Calculate the present value A of 1000 dollars that become due in 10 years if the
stated yearly interest rate r D 0:05 is assumed to be paid and compounded
(a) annually, (b) semiannually, (c) quarterly,
(d) monthly, (e) daily, (f) continuously.

7.3.2 Answers

1. (a) 1806:11, (b) 1814:02. (c) 1818:04,
(d) 1820:75, (e) 1822:07, (f) 1822:12.

2. (a) 20:162, (b) 29:537. (c) 42:258,
(d) 54:979.
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3. (a) 5:51, (b) 6:15. (c) 6:70,
(d) 7:18.

4. (a) 11:725, (b) 11:639. (c) 11:581,
(d) 11:553, (e) 11:552.

5. (a) 613:91, (b) 610:27. (c) 608:41,
(d) 607:16, (e) 606:55, (f) 606:53.

7.4 Some Interesting Scalar Valued Nonlinear Functions
in Several Variables. Homothetic Functions

We have already encountered several particular functions. The linear and affine
functions were discussed in Chap. 4 with both variables and function values either
vectors or scalars (one-component vectors, real numbers). But we saw also nonlinear
functions, such as

• the sine, cosine, tangent, cotangent in Sects. 1.7, 6.2, 6.4, 6.5 and 6.7,
• the polynomials and rational functions in Sects. 6.2, 6.3, 6.5, 6.7 and 6.9,
• the exponential and logarithm in Sects. 7.2 and 7.3.

We got to know them as real valued (scalar valued) functions of one real variable.
In what follows, we introduce some classes of scalar valued functions of several

variables, which play an important role in economics and which are, in general,
nonlinear (though some special cases may be linear).
1. Polynomials in n real variables. These are functions P W IRn ! IR of the form

P.x/ D Pm.x1; x2; : : : ; xn/ D
mX

k1Ck2C:::CknD0
ak1k2:::knxk1

1 xk2
2 : : : x

kn
n : (7.18)

The large sum sign needs explanation. The numbers k1; k2; : : : ; kn are integers, not
smaller than 0 and not larger than m. So really n summations take place. But only
those terms appear, where k1Ck2C: : :Ckn is not larger than m. The (real) constants
ak1k2:::kn are the coefficients while m is the degree of the polynomial (if at least one of
the coefficients whose subscripts add up to m that is, at least one of the coefficients
of products of powers, whose exponents add up to m, is nonzero, then m is the exact
degree).

The special case m D 0 gives simply a constant while, in the case of
m D 1, (7.18) gives the values

P1.x1; x2; : : : ; xn/ D a0 C a1x1 C a2x2 C : : :C anxn (7.19)

of an affine function; in particular, if a0 D 0, then the values of a linear function.
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For m D 2 we get the so-called quadratic functions with the values

P2.x1; x2; : : : ; xn/

D a0 C a1x1 C a2x2 C : : :C anxn C a11x
2
1 C a12x1x2

C : : :C a1nx1xn C a21x2x1 C a22x
2
2 C : : :C a2nx2xn

C : : :C an1xnx1 C an2xnx2 C : : :C annx2n: (7.20)

Here we wrote, for the sake of brevity and symmetry, a0 WD a00:::0, a1 WD a10:::0,
a2 WD a010:::0, : : :, an WD a0:::0n, a11 WD a20:::0, a12 D a21 WD 1

2
a110:::0, : : :, a1n D

an1 WD 1
2
a10:::01, : : :, a2n D an2 WD 1

2
a010:::0n, : : : , ann WD a00:::02. (Of course, x1x2 D

x2x1 etc., that is why we wrote a12 D a21, and comparison to (7.18) gives a110:::0 D
2a12 D 2a21, etc.) If, in particular, a0 D a1 D a2 D : : : D an D 0 in (7.20) then it
is a quadratic form.

Polynomials are often used in economics to approximate empirically the depen-
dence of a quantity (for instance the cost of output or the utility of some goods) from
other quantities (those of outputs or of goods, respectively), as we did already with
polynomials of degree 1 (affine functions) in Sect. 6.10. As there, here too, one gets
good approximations by choosing the coefficients appropriately in (7.18).

For determining the (minimal) cost of producing the desired output x D
.x1; : : : ; xn/ (the n outputs of different kinds united into an output vector) one often
supposes that the cost is a quadratic function (7.20) of these output quantities. In
this case the marginal costs of the production of the j-th output good (compare the
marginal product rates in Sect. 6.11) are given by

@P2
@xj

.x1; x2; : : : ; xn/ D aj C 2.aj1x1 C : : :C ajjxj C : : :C ajnxn/:

With vector and matrix notations (see Sect. 6.4), we can write (7.20) as

P2.x1; x2; : : : ; xn/ D P2.x/ D a0 C a � y C xAxT ; (7.21)

where a D .a1; a2; : : : ; an/ and the matrix

A D

0

B
B
B
@

a11 a12 � � � a1n

a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

1

C
C
C
A

is symmetric, that is, aij D aji for all i; j D 1; 2; : : : ; n (as we just saw). he vector
x D .x1; x2; : : : ; xn/ is a row vector, but we need it also in column vector form; this
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is denoted by

xT D

0

B
B
B
@

x1
x2
:::

xn

1

C
C
C
A
;

the transpose of x. Note the inner product in the second term of (7.21) and that, in
the third term, which is a quadratic form, a 1 � n matrix is multiplied by an n � n
matrix and that by an n�1matrix, which can be done and the result is a 1�1matrix,
that is a scalar, as are the other terms in (7.21).

2. Rational functions in n variables. These are quotients of two polynomials P,
Q of any degree ( just as rational functions of one variable are, see Sect. 6.2):

R.x1; x2; : : : ; xn/ D P.x1; x2; : : : ; xn/

Q.x1; x2; : : : ; xn/
: (7.22)

They are defined at those points .x1; x2; : : : ; xn/ 2 IRn, where Q.x1; x2; : : : ; xn/ ¤ 0.
If however, the polynomial Q has some zeros in common with P then one can cancel
in their product representation (see Sect. 6.2) the respective factors and in this way
one may be able to extend the definition of R to these zeros of Q. The following
example shows how this is done:

R.x1; x2/ D P.x1; x2/

Q.x1; x2/
D 4 � x21 � 4x32 C x21x

3
2

4 � 4x1 � 4x2 C x21 C 4x1x2 � x21x2
:

This is not defined at x1 D 2 (whatever x2 is) and at x2 D 1 (whatever x1 is) because

Q.2; x2/ D 4 � 8 � 4x2 C 4C 8x2 � 4x2 D 0

and

Q.x1; 1/ D 4 � 4x1 � 4C x21 C 4x1 � x21 D 0:

But

4 � x21 � 4x32 C x21x
3
2

4 � 4x1 � 4x2 C x21 C 4x1x2 � x21x2

D .x1 � 2/.x1 C 2/.x2 � 1/.x22 C x2 C 1/

�.x1 � 2/2.x2 � 1/

D .x1 C 2/.x22 C x2 C 1/

2 � x1
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except if x2 D 1 or x1 D 2. This equality shows, however, that we can define
R.x1; 1/ as

R.x1; 1/ WD .x1 C 2/3

2� x1
I we also have lim

x1!1
R.x1; x2/ D .x1 C 2/3

2 � x1
;

thus the so extended R will even be continuous at x2 D 1 for all x1 except x1 D 2.
However, R cannot be defined at x1 D 2 for any x2 so that the extended R be
continuous at x1 D 2. The continuity requirement is essential; otherwise we could
just assign to R value at x1 D 2 (and also at x2 D 1).

Of course, if the denominator Q.x1; x2; : : : ; xn/ is a nonzero constant then the
rational function (7.22) equals a polynomial (everywhere).

3. Homogeneous functions. We had encountered (positively) linearly homo-
geneous functions in Sects. 3.3, 4.2, and 4.3 without any regularity (continuity or
differentiability) suppositions. Then, in Sect. 6.11, we dealt with their generalisa-
tion, the (positively) homogeneous functions of degree r, that is, those functions
F W D ! IR (D � IR) which satisfy

F.�x/ D �rF.x/ .x 2 D; �x 2 DI � 2 IRCC/; (7.23)

under the supposition that F is differentiable. We will look here at (positively)
homogeneous functions of degree r and, subsequently, at some of their applications
in economics without supposing any regularity. In the case where r is irrational,
it would be quit difficult to define �r for negative � (certainly one would have to
move from IR to C) and, for r < 0, �r is not defined for � D 0. This, in addition
to considerations in economics, explains why � is supposed to be positive in (7.23).
We will write in what follows, as usual in economics, homogeneous for short in
place of “positively homogeneous”. s we know from Sect. 7.2 (7.9), �r is defined,
for all real r and positive �, by

�r D er ln�:

Again, ln� would not be defined for � � 0.
However, for r 2 N, in particular r D 1 (linear homogeneity) an r D 2,

homogeneity, that is (7.23), is often supposed for all � 2 R and, in the case of
nonpositive integer r, in particular r D �1, for all � 6D 0. For instance, the linear
functions ((7.19) with a0 D 0) are, as we saw in Sect. 4.3, linearly homogeneous,
that is, they satisfy (7.23) with r D 1 for all � 2 rz (and all D � Rn) are
homogeneous of degree 2, that is, (7.23) is satisfied with r D 2, � 2 R:

P.�x/ D .�x/A.�x/T D �xA.�xT/ D �x�.AxT/ D �2xAxT D �2P.x/:

Here we used the rules of matrix algebra from Sect. 4.4 ((4.20) and (4.21)) and
the fact that .�x/T D �xT , which is obvious from the definition of the transpose.
Finally, special rational functions (7.22) where P is linear and Q is a quadratic form
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are homogeneous of degree �1 in the sense that they satisfy (7.23) with r D �1 for
all � 6D 0 and all D not containing the zeros of Q, as long as x 2 D, �x 2 D:

R.�x/ D P.�x/
Q.�x/

D �P.x/
�2Q.x/

D ��1R.x/:

But from now on we will suppose � to be positive. If also the domain of F RnCC
(or a subset of it), then it is easy to give the (or one) general representation of the
function F W RnCC ! R, homogeneous of degree r. Indeed, then

F.x1; x2; : : : ; xn/ D F.x1 � 1; x1.x2=x1/; : : : ; x1.xn=x1//

D xr
1F.1; x1=x1; : : : xn=x1/;

that is, F is of the form

F.x1; x2; : : : ; xn/ D xr
1˚.x2=x1; : : : ; xn=x1/; (7.24)

for some ˚.t2; : : : ; tn/ WD F.1; t2; : : : ; tn/. Conversely, for any function
˚ W Rn�1CC ! R, the function F, given by (7.24) is homogeneous of degree r,
that is, satisfies (7.23) with D D RnCC, � 2 RCC:

F.�x1; �x2; : : : ; �xn/ D �rxr
1˚.x2=x1; : : : ; xn=x1/ D �rF.x1; x2; : : : ; xn/:

So, the general homogeneous functions of degree r, F W Rn�1CC ! R are given
by (7.24) with arbitrary ˚ W Rn�1CC ! R.

Notice, that ˚ and thus the homogeneous function F need not be differentiable
or even continuous.

Instead of x1 we could have chosen any xk .k D 2; : : : ; n/, giving similar results.
So there are several equivalent general representations for homogeneous functions
of degree r. We give one more, in which none of the variables x1; x2; : : : ; xn has
a distinguished role and which works also on D D Rn n f0g (the set of all n-
dimensional, nonzero vectors), or on certain subsets thereof. Clearly,

F.x/ D F.jxj 1jxjx/ D jxjr F.
1

jxjx/ (7.25)

for homogeneous functions of degree r. Notice that .1= jxj/x is a unit vector. Let

S WD fz j jzj D 1g

be the n-dimensional unit sphere. Take any function � W S ! R. Then

F.x/ D jxjr �. 1jxjx/ (7.26)
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is always a homogeneous function of degree r, since j�xj D � jxj if � > 0:

F.�x/ D j�xjr �.
1

j�xj�x/ D �r jxjr �. 1jxjx/ D �rF.x/:

Of course, (7.25) is also of the form (7.26). So the general homogeneous function
of degree r on Rn n f0g is given by (7.26), where � W S ! R is an arbitrary func-
tion. This is again another (on RCCn equivalent) representation of homogeneous
functions of degree r. If we wish to include also 0, then (7.23) becomes

F.�x/ D �rF.x/ .x 2 Rn; � inRCC/: (7.27)

For x D 0 this gives

F.0/ D �rF.0/:

If r 6D 0, then this is possible only when F.0/ D 0. If, however, r D 0, then F.0/ can
be any constant. For x 6D 0, F is still given by (7.26). So the general homogeneous
function of degree r on Rn, is given by

F.x/ D
� jxjr �..1= jxj/x/ for x 6D 0

c for x D 0

where � W S ! R is an arbitrary function and c is an arbitrary real constant if
r D 1 but c D 1 if r 6D 0 (check that all such functions satisfy (7.27)).

The final representation, important for applications, will be presented here in the
case n D 2 where it is very intuitive. This representation D D R2CC n f.0; 0/g or on
a subset thereof, in particular on Œ0; a� � Œ0; b� n f.0; 0/g. Its distinguishing feature
is that, rather than the unspecific arbitrary functions ˚ or � , it features the almost
arbitrary (see below) chosen or prescribed values of F on the horizontal and vertical
segments f.x; b/ j x 2 Œ0; a� g and f.a; y/ j y 2 Œ0; b�g, respectively. If

F.x; b/ D f .x/ for x 2 Œ0; a� and

F.a; y/ D g.y/ for y 2 Œ0; b�

then

F.x; y/ D F.x
b

y

y

b
; b

y

b
/ D

� y

b

�r
F.x

b

y
; b/ D

� y

b

�r
f .x

b

y
/ if x

b

y
2 Œ0; a�

and

F.x; y/ D F.a
x

a
; y

a

x

x

a
/ D

� x

a

�r
F.a; y

a

x
/ D

� x

a

�r
g.y

a

y
/ if y

a

x
2 Œ0; b�:
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Notice that the two conditions at the end of these two formulas are almost
complementary: the second means

x > 0; y � 0; y=x � b=a

while the first is satisfied iff

y > 0 and either x D 0

or y=x � b=a with x 6D 0:

As Fig. 7.9 shows, these two, on the figure differently shaded domains cover
R2CC n f.0; 0/g with the line y D .b=a/x (x > 0) as only possible overlap. On this
line we get both

F.x;
b

a
x/ D .

x

a
/rf .a/ and F.x;

b

a
x/ D .

x

a
/rg.b/:

So we have to have f .a/ D g.b/, that is why we said above that f and g may be
chosen almost arbitrarily; everywhere else they can be prescribed arbitrarily (they
need not be differentiable or continuous either). Therefore, given two functions
f W Œ0; a� ! R and g W Œ0; b� ! R such that f .a/ D g.b/ but otherwise arbitrary,
there exists exactly one homogeneous function of degree r which extends f and g
from f.x; b/ j x 2 Œ0; a�g and f.a; y/ j y 2 Œ0; b�g, respectively, to R2C n f.0; 0/g and
this is given by

F.x; y/ D
�
.y=b/rf .xb=y/ for y > 0; 0 � x � ay=b
.x=a/rg.ya=x/ for x > 0; 0 � y � bx=a:

(7.28)

Fig. 7.9 The two parts of
formula (7.28) hold on the
above two shaded domains.
Overlap possible only on the
line given by y WD .b=a/x. No
ambiguity if and only if,
f .a/ D g.b/

0 a

b
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All that remains to be checked is that this gives a homogeneous function of degree
r (do the checking) and that indeed

F.x; b/ D .b=b/rf .xb=b/ D f .x/ for x 2 Œ0; a� and

F.a; y/ D .a=a/rg.ya=a/ D g.y/ for y 2 Œ0; b�:

We remind the reader that in Sect. 3.3 we interpreted the linearly homogeneous
functions as production functions with constant returns to scale. In the case of
linearly homogeneous functions of two variables their graphs, the production
surfaces, consist, as we have also seen, of straight lines starting at 0. In case of
homogeneous functions of degree r these straight lines are replaced by “generalise
parabolas”, graphs of � 7! �rF.x0; y0/ (for r D 2 we get the usual parabolas).
Formula (7.28), which we have just obtained, shows that we can draw these
generalised parabolas through two arbitrarily described curves

f.x; b; f .x// j x 2 Œ0; a�g and f.a; y; g.y// j y 2 Œ0; b�g

as long as f .a/ D g.b/. Note that the intervals Œ0; a� and Œ0; b� are finite.
In Sect. 3.5 we showed for linearly homogeneous functions the following. If for

these functions x 7! F.x; b/ D f .x/ or y 7! F.a; y/ D g.y/ are strictly convex from
below “at the beginning” (say on Œ0; Nx� and Œ0; Ny�, respectively) they may, of course,
continue, strictly convex from above (“strictly concave”) for a while but “finally”
(on �1=Nx;1Œ or �1=Ny;1Œ, respectively; these intervals are not finite anymore!), f
and g will have to be strictly convex from below again. So the typical “cuts” parallel
to the coordinate planes (graphs of the “partial factor variations” in Sect. 3.5 (3.14))
are “bell-shaped curves” (Fig. 7.10).

An example of a class of linearly homogeneous functions in n variables for which
all cuts of the graph are bell-shaped is given by

F.x1; x2; : : : ; xn/ D Axa1
1 xa2

2 � : : : � xan
n

B1xb
1 C B2xb

2 C : : :C Bnxb
n

.x1; x2; : : : ; xn 2 RCC/

Fig. 7.10 Bell-shaped curve

0
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where A; b;Bj 2 RCC, aj > 1 (j D 1; 2; : : : ; n) are constants such that a1 C a2 C
: : : C an � b D 1. The last condition guarantees that F is linearly homogeneous
(check!) The “partial functions” (“partial factor variations” in Sect. 3.5 (3.14)), for
instance x1 7! F.x1; x20; : : : ; xn0/, are given by

f .x1/ D Cxa1
1 =.B1x

b
1 C B/;

where C D Axa2
20 � : : : � xan

n0, B D B2xb
20 C : : : C Bnxb

n0. From the process described
in Sect. 6.7 for finding maxima, it is easy to prove that f has only one maximum, at
x1 D .Ba1=B1.b � a1//1=b. Also f .0/ D 0 (since B > 0) and

lim
x1!1 f .x1/ D lim

x1!1
C

B1x
b�a1
1 C Bx�a1

1

D 0

by the rules of limits in Sect. 6.2 and because, from aj > 1 (j D 2; : : : ; n), we
have b � a1 D a2 C : : : C an�1 � 1 > 0. Now, f 00 (calculate it!) is a fraction with
.B1xb

1CB/3 in the denominator and xa�2
1 times a polynomial of second degree of xb

1 in
the numerator. So f 00 is 0 in at most two points on RCC. By what we saw in Sect. 7.2,
f (and similarly every xj 7! F.: : : ; xj; : : :/) thus has at most two points of inflection.
But it has to have exactly two because of the maximum and limit established above:
f cannot be convex from below at the maximum or convex from above (concave)
for large x1 since it is positive and converges to 0. So there is one point of inflection
in between. The proof in Sect. 3.5, quoted above, also shows that, if f is convex
from below “at the end”, then also “at the beginning”. Thus there is another point
of inflection between 0 and the maximum and f starts convex from below then turns
convex from above (concave), which stretch contains the maximum, then becomes
convex from below again and stays so: it is bell-shaped.

Let us note that this F is not necessarily quasi-convex from above (“quasi
concave”) as defined in Sect. 3.5 (show it for n D 2 and, say, a1 D 1:4, a2 D 1:6,
b D 2).

In the next section we will introduce important production functions with
“constant elasticity of substitution” which will turn to be convex from above
(“concave”) all the way.

4. Generalised homogeneous functions. Homogeneous functions can be gen-
eralised in several ways. Some look but really are not much more general, while
others are genuine generalisations.

Replacing, in the definition (7.23) of homogeneous functions of degree r, �r by
�.�/ is a tempting way to generalise and looks far reaching but really it is not. In
order to see this, take this new definition

F.�x/ D �.�/F.x/ (7.29)

(� 2 RCC, F W RnCC ! R; one may include 0 in the domain the same way as right
after (7.27), restriction of x to a subset D, which contains also �x, is not difficult
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either) and apply it twice (equally three times):

F.��/ D F.�.�x// D �.�/F.�x/ D �.�/�.�/F.x/;

F.��/ D F..��/x/ D �.��/F.x/:

We may have F.x/ D 0 for all x, which satisfies (7.29) whatever � is. This

F.x/ 	 0; � arbitrary

is a trivial solution which clearly is uninteresting for applications and we will ignore
it. So we suppose that there exists an x0 such that F.x0/ 6D 0. But then comparison
of the above two equations gives

�.��/ D �.�/�.�/ .�; � 2 RCC/: (7.30)

While this “functional equation” has solutions (functions � W RCC ! R satisfy-
ing (7.30)) which are very irregular, the only solution under very weak regularity
(continuity, boundedness) conditions is �.�/ D �r, that is, we get (7.23) again.
Here we have ignored �.�/ 	 0, as we should, since by (7.29) it would lead to
F.�x/ 	 0 and this F identically 0, which we have already excluded.

We supposed � W RCC ! R to be real-valued, however it follows from (7.30)
that � can assume only nonnegative values. Indeed, choose � D � D p

� :

�.�/ D �.
p
�/2 � 0 for all � 2 RCC;

because the square of any real number is nonnegative. Moreover, since we have
just excluded that � be everywhere 0, the solutions of (7.30) cannot be 0 anywhere.
Indeed, if there existed a �0 2 RCC for which �.�/ D 0 then (7.30) with � D �0,
� D �7�0 would give for all � 2 RCC

�.�/ D �.�0/�.�=�0/ D 0

which was excluded. So � has to be positive valued.
Now it is possible to reduce Eq. (7.30) to that of additivity (see Sect. 4.2 (4.6)):

f .x1 C x2/ D f .x1/C f .x2/ .x1; x2 2 R/ (7.31)

since we can take now the logarithm of both sides of (7.30) (we have defined ln only
for positive arguments) and get

ln �.��/ D ln�.�/C ln �.�/ .�; � 2 RCC/:
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Putting � D ex1 , � D ex2 we get every positive � and � (and only these) as x1 and
x2 go trough R and, defining f W R ! R by

f .x/ D ln�.ex/ (7.32)

(� is positive valued but ln� can assume any real value), we get indeed (7.31).
At the end of Sect. 4.2 we noted that the only additive functions, locally bounded

from above (bounded from above on an interval of positive length), are linear
functions given by, say,

f .x/ D rx: (7.33)

We suppose the same weak regularity condition, local boundedness from above,
about �. If � is continuous even at one point then this condition is amply satisfied.
By the way, it would make no sense to suppose � bounded from below since, as we
have see, (7.30) implies that � is always nonnegative, that is, bounded from below
by 0. However, we may suppose that � is bounded from below by a positive bound.
Anyway, if � is locally bounded from above then, by (7.32), so is f which, as we
saw, satisfies (7.31). So (7.33) holds which, by (7.32), gives

�.ex/ D erx; that is, �.�/ D �r;

as asserted.
Thus all functions F satisfying (7.29) with a � locally bounded from above are

homogeneous of degree r. (We did not forget about the excluded F.x/ 	 0 either: it
satisfies (7.23) trivially, so it is also homogeneous of any degree r.)

So (7.29) is not really more general than (7.23) except that it unites (7.23) (with
D D RnCC) for all real r and except for the weak regularity condition on �.

While (7.29) is not a strong enough generalisation of (7.23) to yield new locally
bounded functions, the tempting further generalisation

F.�x/ D �.�; x/F.x/ .� 2 RCC; x 2 D � Rn; �x 2 D/; (7.34)

where � may depend, in addition to �, also upon x, is so general that it is meaning-
less. Indeed to every function F W D ! R there exists a function � W RCC � D ! R

such that (7.34) is satisfied. At points where F.x/ 6D 0, this � is simply given by

�.�; x/ D F.�x/=F.x/:

If F.x0/ D 0 at a point x0 2 D then, by (7.34), also F.�x0/ D 0 whenever �x0 2 D
and � can be anything (for instance equal to 1) at these points.

Several intermediate generalisations of (7.34) (if D D Rn n f0g) can be
formulated. One is

F.�x/ D �h.x=jbxj/F.x/; .� > 0; x 6D 0/ (7.35)
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which defines ray-homogeneous functions (h W S ! RCC where S is again the
n-dimensional unit sphere).

The definition

F.�x/ D �h.x/F.x/ .� > 0; x 6D 0/ (7.36)

seems to lie more naturally between (7.29) [(7.23)] and (7.34), but we show that it
is equivalent to (7.35): We substitute into (7.36) x D z= jzj, � D jzj (z 6D 0) to get

F.z/ D jzjh.z=jzj/ F.z= jzj/; (7.37)

and, as consequence,

F.�x/ D �h.x=jxj/ jxjh.x=jxj/ F.x= jxj/:

Applying (7.37) to the right hand side we obtain

F.�x/ D �h.x=jxj/F.x/;

that is (7.35). On the other hand, (7.35) is clearly a particular case of (7.36), so
Eqs. (7.35) and (7.36) are equivalent. At the same time substitution shows that

F.z/ D jzjh.z=jzj/ G.z= jbzj/ (7.38)

satisfies (7.35) with arbitrary G W S ! R. Since (7.37) is of this form, we have
proved that the general solution of (7.35) and also of (7.36) is given by (7.38) with
arbitrary G W S ! R. The equivalence of (7.35) and (7.36) shows that h in (7.36) is
necessarily homogeneous of degree 0.

Another but related (look at (7.38)) generalisation is given by

F.x/ D �.jxj/F.x= jxj/ .x 6D 0/ (7.39)

which defines quasi homogeneous functions; here � W RCC ! RCC. Notice
that (7.39) is a generalisation of (7.35) with �.jxj/ in place of jbxjr. This may
suggest that (7.39) is equivalent to (7.29). However, if we replace x by �x in (7.39)
we get

F.�x/ D �.� jxj/F. x
jxj/ D �.� jxj/

�.jxj/ F.x/;

which is a special case of (7.34), but it is only then the same as (7.29) if

�.� jxj/ D �.�/�.jxj/;
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that is, � satisfies (7.30). Since (7.30) was a consequence of (7.29) but not
of (7.39), therefore quasi homogeneous functions are genuinely more general than
homogeneous functions of degree r, to which they clearly reduce iff �.�/ D �r. It
is even more obvious that (7.35) reduces to (7.23) (with D D Rn n f0g), iff h.t/ 	 r
(constant).

5. Homothetic functions. Generalisations of homogeneous functions of degree
r, of importance for economics, are the homothetic functions. These are composi-
tions of linearly homogeneous functions F W D ! RC (D � RnC) and of strictly
increasing functions g W F.D/ ! RC (where F.D/ is, as we know, the image of D
under F), that is, H D g ı F. They reduce to homogeneous functions of degree r
exactly when g.t/ D atr:

H.�x/ D g.F.�x// D g.�F.x// D a�rF.x/r D �rg.F.x// D �rH.x/:

To give an interpretations, we recall the contour lines introduced in Sect. 3.2 and
generalise them from two to n variables and to even more general situations. A level
set of F W D ! RC (D � Rn) is defined as

fx j F.x/ D c g for a c 2 R:

An example of a homothetic function, which is not homogeneous of any degree,
is given by

H.x/ D H.x1; x2; : : : ; xn/ D .x1x2 � : : : � xn/
2=.1C .x1x2 � : : : � xn/

2�.1=n2//

for x 2 RnC. Here F.x1; x2; : : : ; xn/ D .x1x2 � : : : �xn/
1=n is the geometric mean, which

is linearly homogeneous, and

g.t/ D t2n=.1C t2n�.1=n// D .t�2n C t�1=n/�1:

Since, by the differentiation rules in Sect. 6.5,

g0.t/ D �.t�2n C t�1=n/�2.�2nt�2n�1 � .1=n/t�.1=n/�1/

D t2n�1.2n C .1=n/t2n�.1=n//.1C t2n�.1=n//�2 > 0

for all t > 0, therefore g is indeed strictly increasing by what we saw in Sect. 6.5
that the geometric means, including the weighted ones (compare Sect. 7.2) and their
powers, there called Cobb–Douglas production functions, play an important role
in production theory. The homothetic function in the above example thus has the
same contour sets (also called—“isoquants” for production functions) as the linearly
homogeneous Cobb–Douglas function F.x/ D .x1x2 � : : : �xn/

1=n. However they have
a pronounced advantage: while this F is convex from above (“concave”) on all of
RnC, the “partial functions”

xj 7! H.x1; x2; : : : ; xn/ . j D 1; 2; : : : ; n/ (7.40)
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of this H are first convex from below and then turn into convex from above (concave)
at a point of inflection as it is desirable in production theory (“law of eventually
diminishing returns”), see for n D 2, Fig. 7.4. Such figures are called “production
surfaces”.

Homothetic functions have, among others, the following interesting properties.
The domain of substitution of H W RnC ! RC is the set S of those points in

RnC at which every partial function (7.40) is strictly increasing. If H is partially
differentiable with respect to each of its n variables then S is usually defined by

S WD
n
x
ˇ
ˇ
ˇ @H
@xj
.x/ > 0I j D 1; : : : ; n

o
:

0

There is a slight difference between these two definitions: we saw in Sect. 6.7
(compare Sect. 6.10) that, while @H.x/=@xj > 0 indeed guarantees that the
functions (7.40) strictly increase at x, they may also strictly increase at certain points
where @H.x/=@xj D 0.

For homothetic functions, if x belongs to the domain of substitution S then so
does �x for all � 2 RCC. Indeed, if

H.x0/ > H.x/

then, since H D g ı F, where g is strictly increasing an F linearly homogeneous,

H.�x0/ D g.F.�x0// D g.�F.x0//
> g.�.x// D g.F.�x// D H.�x/:

(7.41)

Thus the domain of substitution S of a homothetic function is “convex with respect
of the origin” (“star shaped”) which means exactly that, if x 2 S, then also �x 2 S
for all � 2 RCC. (Similar definitions and statements hold iff H is defined only on a
subset of RnC which itself is convex with respect to 0.)
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Fig. 7.11 Contour lines of a
homothetic production
function of two input
quantities x1, x2 . The cost
combinations of x1, x2 are
parallel straight lines. The
points where they touch the
(dotted) isoquants (contour
lines of the production
function) represent the
minimal cost combinations.
These are connected by rays
starting from the origin

0

Let now the variables of the homothetic production function be the costs of
the n inputs and suppose that the linear combination a � x D a1x1 C : : : C anxn

with given “weights” a1; : : : ; an is the “combination of costs” relevant to us. If
x� D .x�

1 ; : : : ; x
�
n / yields the “minimal cost combination” to produce the output

c among all x with H.x/ D c D H.x�/ (so the x’s are on the isoquant of
“hight” c D H.x�/) then, by (7.41), �x� D .�x�

1 ; : : : ; �x�
n / yields the minimal

cost combination to produce the output H.�x�/. If the situation changes so that x��
yields the minimal cost combination for the output c D H.x��/ then every �x��
(� 2 RCC) will furnish a minimal cost combination. In particular: “enterprises
with homothetic production functions expand along rays”. See Fig. 7.11 for the
case n D 2. For linear expansion in the case of vector–valued (“multi product”)
production functions, see Sect. 7.5.

7.4.1 Exercises

1. Extend the definition (c. Sect. 7.2 2) of

R.x1; x2/ D x21x2 � x21 � 6x1x2 C 6x1 C 9x2 � 9

x1x22 � 3x22 C x1 � 3

to x1 D 3, x2 arbitrary so that the extended function be continuous.
2. Let f W Œ0; a� ! RC, a 2 RCC, and g W Œ0; b/ ! RC, b 2 RCC, be two arbitrary

functions satisfying f .a/ D g.b/. Show that the function F given by (7.28) is
(a) unambiguous defined on R2C n f.0; 0/g,
(b) homogeneous of degree r on R2C n f.0; 0/g.
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3. Let F W RCC2 ! RCC be given by F.x; y/ D x2y3

x4Cy4
. The graphs of x 7! F.x; y/

and y 7! F.x; y/ are bell–shaped (see Fig. 7.10).
(a) Determine the abscissae x1 and x2 of the turning points of x 7! F.x; 1/.
(b) Determine the abscissa x3 of the maximum of x 7! F.x; 1/.
(c) Show that x 7! F.x; 1/ is convex from below in the intervals �0; x1Œ, �x2;1Œ

and convex from above in �x1; x2Œ.
(d) Do the corresponding exercises 3(a),(b), (c) for y 7! F.1; y/.

4. Show that the function F defined in Exercise 3 is not quasi-convex from above
(“quasi concave”) as defined in Sect. 3.5.

5. Draw three isoquants of the function H W R2CC ! RCC given by H.x; y/ D
x2y2=.1C x7=4y7=4/.

7.4.2 Answers

1.

R.x1; x2/ D
(

.x1�3/2.x2�1/
.x1�3/.1Cx22/

if x1 ¤ 3;

0 if x1 D 3:

(Continuous because limx1!3
.x1�3/2.x2�1/
.x1�3/.1Cx22/

D limx1!3
.x1�3/.x2�1/

1Cx22
D 0:)

2. (a) If the point .x; y/ 2 IRCC lies in one of the two shaded domains in Fig. 7.9
then F.x; y/ is defined by one of the two expressions in Sect. 7.4 (7.11). If
.x; y/ 2 IRCC lies on the line given by y D .b=a/x then Sect. 7.4 (7.11) yields
F.x; y/ D .x=a/rg.b/, that is, F is unambiguously defined on this line since
f .a/ D g.b/. For .x; 0/; x 2 IRCC, and .0; y/; y 2 IRCC, the function F is
defined by the second or the first expression in Sect. 7.4 (7.11), respectively.

(b)

F.�x; �y/ D
�
.�y=b/rf ..�xb/=.�y// for �y > 0; 0 � �x � a�y=b
.�x=a/rg..�ya/=.�x// for �x > 0; 0 � �y � b�x=a

D
�
�r.y=b/rf .xb=y/
�r.x=a/rg.ya=x/

D �rF.x; y/:

3. (a) x1 D 0:5401828 : : :, x2 D 1:4066268 : : :,
(b) x3 D 1,

(c) F00.x; 1/ D 2 � 24x4 C 6x8

.1C x4/3

�
> 0 for 0 < x < x1; x > x2
< 0 for x1 < x < x2:

(d) y1 D 0:5810658 : : :, y2 D 1:4471621 : : :, y3 D 1:3160740 : : :,

F00.1; y/ D y � 54y5 C 12y9

.1C y4/3

�
> 0 for 0 < y < y1; y > y2
< 0 for y1 < y < y2:
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4. The function F W IR2CC ! IRCC given by x2y3=.x4 C y4/ is not quasiconcave
since, for example, its function values along the ray given by y D 1 C x=4
(x 2 IRCC) strictly increase to a local maximum of 0:6773 : : : at x D 1:52 : : :,
than strictly decrease to a local minimum of 0:413 : : : at x D 7:7 : : :, and then
strictly increases to C1.

7.5 Fundamental Notions in Production Theory. Production
Functions. Elasticity of Substitution

We have encountered production functions at the end of the previous Sect. 7.4,
in Sect. 6.12 and in Chap. 3. We have been dealing and will continue to deal
with production functions of several variables (of several “product factors”). In
the present section, as in the previous one, we discuss scalar valued production
functions not because we consider, as some do, single product production, which
seems to us too unrealistic, but because, for instance the monetary value of the
production, in particular the maximal output value, may be considered as the
function value. This is particularly so for the production function in an enterprise.
If the function refers to production of an industry or of a sector of the economy
or the entire economy of a nation then the function values are often determined by
econometric methods from data of past production (compare Sect. 6.9).

So let F W RnC ! RC be a production function with the input quantities (input for
short) united into the vector x D .x1; : : : ; xn/ as variable and the (maximal) output
value as function value F.x/ (notice the two different senses the word “value” is
used in “output value” and “function value”). Some of the fundamental notions in
production theory are defined as follows:

• F.x/=xj is the average product at x for the j-th production factor when xj > 0,
• xj=F.x/ its reciprocal with F.x/ > 0 is the product coefficient at x of the j-th

product factor,
• F0

j.x/ WD @F
@xj
.x/ is the marginal product for the j-th production factor at x,

• F0
j.x/=F0

k.x/ is the marginal rate of (technical) substitution at x, with F0
k.x/ > 0,

of the j-th by the k-th production factor (j D 1; : : : ; n; k D 1; : : : ; n).

(Independently of interpretation, F0
j.x/ often denotes the partial derivation of F with

respect to its j-th variable, at x.)
The average product at x D .x1; : : : ; xn/ for xj shows how many units of output

(in value) can be produced in average by one unit of the j-th production factor.
Reciprocally, the production coefficient at x of xj indicates how many units of the
j-th production factor are needed in average to produce one unit of output (in value).
In both instances, the total output value is F.x/ D F.x1; : : : ; xn/.

The above definition of the marginal product clearly works only if F is partially
differentiable with respect to xj at x. But, in general, the marginal product (output)
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at x D .x1; : : : ; xn/ under change by h of the j-th production factor can be defined by

F.x1; : : : ; xj�1; xj C h; xjC1; : : : ; xn/� F.x1; : : : ; xj�1; xj; xjC1; : : : ; xn/

h
:

If F is partially differentiable with respect to xj at x then this has a limit, when
h ! 0, the partial derivative

F0
j.x/ D @F

@xj
.x/ (see Sect. 6.11);

that is, the marginal product for xj at x, as defined above. (Compare the definition
of price elasticity in Sect. 6.6.)

In order to attach meaning to the marginal rate of substitution, let us calculate
what change, say q units of the k-th production factor xk is needed to have the same
effect on the output value F.x/ as the change of xj by h units if all other production
factors xl are unchanged (l 6D j, l 6D k):

F.: : : ; xj C h; : : : ; xk; : : :/ D F.: : : ; xj; : : : ; xk C q; : : :/

(the values of the variables at the dotted places are the same on both sides). We can
write this as

F.: : : ; xj C h; : : : ; xk; : : :/ � F.: : : ; xj; : : : ; xk; : : :/

D F.: : : ; xj; : : : ; xk C q; : : :/ � F.: : : ; xj; : : : ; xk; : : :/:

As we saw in Sect. 6.11, if F is differentiable at x then the left and right hand sides
are approximately equal to (remember that the xl’s are unchanged for l 6D j, l 6D k)

F0
j.x/h and F0

k.x/q;

respectively, the approximations being the better the smaller h and q are. So

F0
j.x/h � F0

k.x/q

(� meaning “approximately” or “asymptotically” equal as in Sect. 7.3), that is,

q

h
� F0

j.x/

F0
k.x/

:

So the marginal rate of (technical) substitution at x of xj by xk equals approximately
the change of the k-th production factor needed to have the same change of the value
F.x/ of the production function as with the change of the j-th production factor by
one (small) unit (see Fig. 7.12).
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C

B

A
xk

xj xj h

Isoquant of level

Isoquant of level c

q

h

Fig. 7.12 The marginal rate of substitution at x of xj by xk equals approximately q=h, that is q if
h D 1. Geometrically it equals approximately the slope of the segment from B to C, exactly the
slope of the tangent at point A

We defined above the marginal rate of substitution of xj by xk as the quotient of
the marginal products for xj and xk. The marginal product divided by the average
product, both for xj, both at x, is the output elasticity of the j-th production factor
at x:

"j.x/ WD @F

@xj
.x/
�

F.x/
xj

D F0
j.x/xj=F.x/

for xj > 0, F.x/ > 0 (notice the similarity to the definition of price elasticity in
Sect. 6.6). It is, as we see,

"j.x/ D lim

�
F.: : : ; xj C h; : : :/ � F.: : : ; xj; : : :/

F.: : : ; xj; : : :/

�
h

xj

�

;

the limit, when the change h of the j-th production factor (the only one which
changes) tends to 0, of the relative change of the output value divided by the relative
change of the j-th production factor.
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The output elasticity of xj at x can be written in the form of a so-called
“logarithmic derivative”:

@ ln F

@ ln xj
.x1; : : : ; xj; : : : ; xn/

WD @ ln F.eu1 ; : : : ; euj ; : : : ; eun/

@uj

ˇ
ˇ
ˇ
ˇ
ujDln xj

D 1

F.eu1 ; : : : ; euj ; : : : ; eun/

@F.eu1 ; : : : ; euj ; : : : ; eun/

@euj
euj

ˇ
ˇ
ˇ
ˇ
ujDln xj

D 1

F.x/
@F.x/
@xj

xj D "j.x/ . j D 1; 2; : : : ; n/:

We applied the chain rule, see Sect. 6.5 4; the meaning of uj D fj.x/ after a vertical
bar is that fj.x/—in this case ln xj—has to be substituted for uj in the formula in
front of the bar.

A related quantity is the scale elasticity of F at .�; x/, defined by (we use the
chain rule again)

".�; x/ WD @F.�x/
@�

�

F.�x/
D

nX

jD1
F0

j.�x/
@.�xj/

@�

�

F.�x/

D
nX

jD1
F0

j.�x/
�xj

F.�x/
D

nX

jD1
"j.�x/:

Now we can define one of the most important notions in production theory, the
elasticity of substitution �kj.x/. It is the limit of the ratio of relative changes

• in the proportion xk=xj of production factors and
• in the marginal rate of substitution F0

j.x/=F0
k.x/

(see Fig. 7.13). We calculate this limit, for each pair . j; k/ . j 6D k/ at a point x� D
.x�
1 ; : : : ; x

�
j ; : : : ; x

�
k ; : : : ; x

�
n /, and it is the j-th and the k-th variable (“production

factor”) xj and xk which move towards x�
j and x�

k , respectively, but staying on the
isoquant (contour line, compare Sect. 3.3)

F.x�
1 ; : : : ; x

�
j�1; xj; x

�
jC1; : : : ; x�

k�1; xk; x
�
kC1; : : : ; x�

n / D c

D F.x�
1 ; : : : ; x

�
j ; : : : ; x

�
k ; : : : ; x

�
n /: (7.42)

As we know (Sect. 6.13) under appropriate conditions this equation can be solved
yielding xk as a function of xj

xk D gk.xj/ (7.43)
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=gk xj

Slope=gk xj

0 xj xj

xk

xk

Xj-axis

Xk-axis

Isoquant=
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xk
xj
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xk
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Fig. 7.13 Geometric illustration helping to understand the notion of the elasticity of substitution
of a production factor xj by a production factor xk. Notice that the slopes of the tangents to the
isoquant equal the marginal rates of substitution of xj by xk at .xj; xk/ and .x�

j ; x
�
k /

with the derivative

g0
k.xj/ D � F0

j.x/

F0
k.x/

:

[Notice that g0
k is the derivative of the function gk of one variable, while

F0
k is the derivative of F with respect to its k-th variable.] Here x D
.x�
1 ; : : : ; x

�
j�1; xj; x�

jC1; : : : ; x�
k�1; xk; x�

kC1; : : : ; x�
n / while, as above, x� D .x�

1 ; : : : ;

x�
j ; : : : ; x

�
k ; : : : ; x

�
n / (for the following calculation this is more convenient than the

above xj C q, xk C h, xj, xk type notation but, of course, equivalent to it.) Since,
by (7.42), x� is on the same isoquant as x, we have

x�
k D gk.x

�
j /; g0

k.x
�
j / D � F0

j.x
�/

F0
k.x

�/
: (7.44)
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So for j 6D k the elasticity of substitution of the j-th by the k-th production factor is

�jk.x�/ D limxj!x�
j

�
xk=xj�x�

k =x�
j

x�
k =x�

j

�
F0

j .x/=F0
k.x/�F0

j .x
�/=F0

k.x
�/

F0
j .x

�/=F0
k.x

�/

�

D limxj!x�
j

�
gk.xj/=xj�gk.x

�
j /=x�

j

gk.x�
j /.x

�
j /

�
�g0

k.xj/Cg0
k.x

�
j /

�g0
k.x

�
j /

�

:

(7.45)

Dividing the numerators of both fractions (which are the divided again) on the
right hand side of (7.45) by .xj � x�

j / does not change its value, of course. But

lim
xj!x�

j

xk=xj � x�
k =x�

j

xj � x�
j

D lim
xj!x�

j

gk.xj/=xj � gk.x�
j /=x�

j

xj � x�
j

D
�

gk.xj/

xj

�0

xDx�
j

D g00
k .x

�
j /;

(7.46)

by the rule of derivation of fractions Sect. 6.5 3, and

lim
xj!x�

j

g0
k.xj/� g0

k.x
�
j /

xj � x�
j

D g00
k .x

�
j /;

by the definition of the (second) derivative. So (7.45) becomes

�kj.x�/ D g0
k.x

�
j /.x

�
j g0

k.x
�
j /� x�

k /

g00
k .x

�
j /x

�
j x�

k

. j 6D k/ (7.47)

(since gk.x�
j / D x�

k ) which expresses the elasticity of substitution �kj.x�/ in terms of
the function gk alone.

It is, of course, more desirable to express �kj in terms of the production function
F. We can do that too, from the middle term of the chain of equalities (7.45), where
we again divide the numerators of both fractions by .xj �x�

j /. From (7.44) and (7.46)
now

lim
xj!x�

j

xk=xj � x�
k =x�

j

xj � x�
j

D 1

x�
j
2

 

�x�
j

F0
j.x

�/
F0

k.x
�/

� x�
k

!

D �x�
j F0

j.x
�/C x�

k F0
k.x

�/
x�

j
2F0

k.x
�/

:

(7.48)
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On the other hand, again from the definition of (partial) derivatives and from
Sect. 6.5 3

limxj!x�
j

F0
j .x/=F0

k.x/�F0
j .x

�/=F0
k.x

�/

xj�x�
j

D @
@xj

�
F0

j .x/

F0
k.x/

�ˇˇ
ˇ
xDx�

D F0
k.x

�/ @@xj
F0

j .x
�/�F0

j .x
�/ @

@xj
F0

k.x
�/

F0
k.x

�/2

(7.49)

(in the middle term we wrote the partial derivatives with respect to xj at x�).
We now calculate the partial derivatives in the numerator, using (7.43), (7.44)

and the chain rule for functions of several variables from Sect. 6.12:

@
@xj

F0
j.x

�/ D @
@xj

F0
j.x

�
1 ; : : : ; x

�
j�1; xj; x�

jC1; : : :
: : : ; x�

k�1; gk.xj/; x�
kC1; : : : ; x�

n /

ˇ
ˇ
ˇ
ˇ
xjDx�

j

D F00
jj.x

�/C F00jk.x�/g0
k.x

�
j /

D F00
jj.x

�/� F00
jk.x

�/ F0
j .x

�/

F0
k.x

�/
;

(7.50)

and similarly,

@

@xj
F0

k.x
�/ D F00

kj.x
�/� F00

kk.x
�/

F0
j.x

�/
F0

k.x�/
: (7.51)

Here (compare Sect. 6.9) we used the following notation for second partial deriva-
tives, supposing that they exist and are continuous at x:

F00
kj.x/ D @

@xj

�
@

@xkF.x/

�

D @

@xk

�

.
@

@xjF.x/
/

�

D F00
jk.x/;

F00
ll.x/ D @2

@x2l
F.x/ .l D jI l D kI j D 1; : : : ; nI k D 1; : : : ; n/:

So we get from (7.45), (7.48), (7.49), (7.50) and (7.51) for every x� 2 RnCC the
expression

�kj.x�/ D x�
j

x�
k

 

�x�
j F0

j.x
�/C x�

k F0
k.x

�/
x�2

j F0
k.x/

!� 
F0

k.x
�/

F0
j.x

�/

� F0
k.x

�/2F00
jj.x

�/� 2F0
k.x

�/F0
j.x

�/F00
jk.x�/ C F0

j.x
�/2F0

k.x
�/

F0
k.x

�/3

!
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or, omitting the asterisks, . j 6D k/

�kj.x/ D �F0
j.x/F

0
k.x/

xjxk

� xjF0
j.x/C xkF0

k.x/

F0
k.x/

2F00
jj.x/� 2F0

j.x/F
0
k.x/

00
jk.x/C F0

j.x/
2F00

kk.x/

(7.52)

for the elasticity of substitution of the j-th by th k-th production factor. (Not quit
simple but we got it; the fact that it is usually obtained by even more complicated
calculations may give some comfort to the reader.)

Notice that

�kj.x/ D �jk.x/:

Therefore one often calls �kj.x/ the elasticity of substitution between the j-th and
k-th production factor.

We calculate the above quantities for an important class of production functions,
the Cobb–Douglas functions (Charles W. Cobb (1871–1941), Paul H. Douglas
(1892–1976)), for which we saw an example at the end of Sect. 6.12 and which
have, as we will see, constant elasticity of substitution. They are homogeneous and,
if their degree of homogeneity is not greater than 1, they are also convex from above
(concave). The Cobb–Douglas functions are defined by

F.x1; x2; : : : ; xn/ D axc1
1 xc2

2 � : : : � xcn
n ; (7.53)

where a, c1; c2; : : : ; cn are positive constants. Notice that the output (value) is
positive if the production factor quantities x1; : : : ; xn are positive and that it is
then strictly increasing with each xj (j D 1; : : : ; n). These functions are clearly
homogeneous of degree c1 C c2 C : : :C cn.

F.�x1; �x2; : : : ; �xn/ D �c1Cc2C:::Ccn F.x1; x2; : : : ; xn/:

For the Cobb–Douglas functions given by (7.53), the marginal product of the j-th
production factor is

F0
j.x/ D @F

@xj
.x/ D cjaxc1

1 xc2
2 � : : : � x

cj�1

j�1 x
cj�1
j x

cjC1

jC1 � : : : � xcn
n D cj

F.x/
xj

and so the marginal rate of substitution of the j-th by the k-th production factor is

F0
j.x/

F0
k.x/

D cjF.x/
xj

�
ckF.x/

xk
D cj

ck

xk

xj
:

Notice, that this is independent of the production factors other than xj and xk.
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The output elasticity of the j-th production factor at x is for Cobb–Douglas
function,

".�; x/ D
nX

jD1
"j.�x/ D

nX

jD1
cj;

is also constant and equals its degree of homogeneity.
Finally we calculate the elasticity of substitution �kj.x/. First we obtain

F00
kj.x/ D @2F

@xk@xj
.x/ D cj

F0
k.x/
xj

D ckcj
F.x/
xkxj

or k 6D j

and

F00
jj.x/ D @

@xj
.cjaxc1

1 xc2
2 � : : : � x

cj�1

j�1 x
cj�1
j x

cjC1

jC1 � : : : � xcn
n / D cj.cj � 1/F.x/

x2j
:

Plugging these into (7.52) gives

�kj.x/ D � cjckF.x/2.cjF.x/C ckF.x//
cjckF.x/3.ck.cj � 1/� 2cjck C cj.ck � 1//

D 1; (7.54)

that is, for all Cobb–Douglas functions the elasticity of substitution of the k-th by the
j-th production factor is 1, independent not only of all production factors but also of
the exponents cl (l D 1; : : : ; n) and of the degree of homogeneity c1 C c2 C : : :C cn.

Our calculations leading to (7.54) show that this result is also true if the constants
a, c1; c2; : : : ; cn (see (7.53)) are arbitrary nonzero. If

c1 C : : :C cn D 1; (7.55)

then the Cobb–Douglas function is linearly homogeneous. It is also concave (convex
from above) on RnC in this case and even if c1 C : : : C cn � 1. We will show this,
at least for n D 2, in Sect. 7.5 (Example 3). In the case (7.55) it cannot be strictly
concave anywhere because

� 7�! F.�x0/ D �F.x0/;

so F is linear on each ray f�x0 j � 2 RC g (see Sect. 3.4), through every x0 2 RnCC.
I r WD c1 C : : : C cn > 1 then F cannot be anywhere concave even in the broader
sense: � 7! F.�x0/ D �rF.x0/ is strictly convex (from below) for r > 1 (see
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Sect. 7.2). More generally, if F is homogeneous of degree r > 1, then

� 7�! F.�x0/ D �rF.x0/

is strictly convex (from below) for every x0 2 RnCC, that is, F is strictly convex on
every ray.

Whatever r is, the scale elasticity of the Cobb–Douglas function at .�; x/ equals
r (constant):

".�; x/ D @F.�x/
@�

�

F.�x/
D @�rF.x/

@�

�

�rF.x/

D r�r�1F.x/
1

�r�1F.x/
D r:

(7.56)

We say that the returns to scale on the ray f�x j � 2 RCC g are (strictly)
increasing, decreasing or constant if ".�x/ > 1, < 1 or D 1, respectively.
Since (7.56) holds for every homogeneous function of degree r, such a function
has increasing, decreasing or constant returns to scale according to whether r > 1,
r < 1 or r D 1. This holds then in particular also for Cobb–Douglas functions with
r D c1 C : : :C cn.

We return now to the elasticity of substitution and investigate the reverse question
to that settled above. We will determine, at least for n D 2, which linearly
homogeneous functions have constant elasticity of substitution (we do not have to
say between which production factors, since now there are only two).

For (twice continuously differentiable) linearly homogeneous functions
F W R2CC ! RCC the formula (7.52) for elasticity of substitution can be simplified
by use of Euler’s equation (Sect. 6.12 (6.27)):

F.x/ D x1F
0
1.x/C x2F

0
2.x/: (7.57)

By differentiating it, we get

F0
1.x/ D F0

1.x/C x1F
00
11.x/C x2F

00
21.x/;

F0
2.x/ D x1F

00
12.x/C x2F

00
22.x/C F0

2.x/;

F0011.x/ D �x2
x1

F00
21.x/ D �x2

x1
F00
12.x/;

F00
22.x/ D �x1

x2
F00
12.x/

(7.58)

(where we used also the equality of continuous mixed second partial derivatives,
F00
12 D F00

21, see the end of Sect. 6.9.) By (7.52), (7.54) and (7.58) the elasticity of
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substitution is

�21.x/ D �12.x/

D �F0
1.x/F

0
2.x/

x1x2

� F.x/

.F0
1.x/

2.�x1
x2
/ � 2F0

1.x/F
0
2.x/C F0

2.x/
2.�x2

x1
//F00

12.x/

D F0
1.x/F

0
2.x/F.x/

.x1F0
1.x/C x2F0

2.x//
2F00

12.x/
D F0

1.x/F
0
2.x/

F.x/F00
12.x/

:

(7.59)

But, F being linearly homogeneous, there exists a function ˚ W RCC ! RCC such
that

F.x/ D F.x1; x2/ D x1˚.
x2
x1
/ D x1˚.u/ where u WD x2

x1
(7.60)

(see Sect. 7.5 (7.48)). If F is twice differentiable, so is ˚ (since ˚.t/ D F.1; t/) and
we use (7.60),

F0
1.x/ D @

@x1
.x1˚.

x2
x1
// D ˚.

x2
x1
/C x1˚

0.
x2
x1
/.�x2

x21
/ D ˚.u/� u˚ 0.u/;

F0
2.x/ D @

@x2
.x; ˚.

x2
x1
// D x1˚

0.
x2
x1
/
1

x1
D ˚ 0.u/;

F00
12.x/ D @

@x1
.x; ˚.

x2
x1
// D ˚ 00.

x2
x1
/.�x2

x21
/ D � u

x1
˚ 00.u/

to transform (7.59) in the case �21 D �12 D c (= constant) into

� cu˚.u/˚ 00.u/ D .˚.u/� u˚ 0.u//˚ 0.u/: (7.61)

This equation, which is supposed to hold for every u 2 RCC (since (7.59) was to
hold for all x 2 R2CC), is a second order differential equation. We will deal with
differential equations in Chap. 11 and show methods for their solution. In this case,
however, it is quit easy to solve the equation directly. This is especially so if we now
assume c 6D 0 and ˚ 0.u/ > 0, which suggests itself in broad sections of production
theory. (For instance, c D elasticity of substitution D 0 is only possible if the
isoquants of F are rays of the kind

˚
�.x1; x2/

ˇ
ˇ .x1; x2/ 2 R2CC; fixed; � 2 RCC

�
,

see (7.45) and Fig. 7.13; this is not realistic in any production.) We divide both sides
in (7.61) by �cu˚.u/˚ 0.u/ and get

˚ 00.u/
˚ 0.u/

D 1

c

˚ 0.u/
˚.u/

� 1

c

1

u
:
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If we look carefully, we recognise each term as derivative of easy to guess functions
(of u): 1=u is the derivative of ln u (Sect. 7.2), so ˚ 0.u/=˚.u/ is the derivative of
ln˚.u/ (using also the chain rule Sect. 6.4 5) and similarly ˚ 00.u/=˚ 0.u/ is the
derivative of ln˚ 0.u/. Moreover, by the remark after Sect. 6.6 (6.11), G0.u/ D H0.u/
implies that G.u/ D H.u/C C for some constant C. So we have

ln˚ 0.u/ D 1

c
ln˚.u/� 1

c
ln u C C:

Taking the exponential of both sides (in view of eln t D t) we get (with c2 WD eC)

˚ 0.u/ D c2
˚.u/1=c

u1=c
(7.62)

(compare Sect. 11.2 (11.10)).
We distinguish now two cases. First, if c D 1, then we write (7.62) as

˚ 0.u/
˚.u/

D c2
1

u
:

As above, this implies (writing the added constant this time as ln a)

ln˚.u/ D c2 ln u C ln a;

that is,

˚.u/ D auc2 :

Now we substitute this into (7.60) and obtain

F.x/ D F.x1; x2/ D x1a.
x2
x1
/c2 D ax1�c2

1 xc2
2 ; (7.63)

that is, writing c1 WD 1 � c2 we get the function (7.53) with n D 2, c2 > 0,
c1 C c2 D 1. We have thus proved that the only linearly homogeneous functions
F W R2CC ! RCC which satisfy F0

1.x1; x2/ > 0, F0
2.x1; x2/ > 0 and have elasticity

of substitution 1 are the Cobb–Douglas functions (7.53) with n D 2, c2 D 1 � c1,
0 < c1 < 1, a > 0. (We have proved before, that all functions (7.53), with arbitrary
nonzero constants a, c1; c2; : : : ; cn, have “elasticity of substitution” 1 between any
two production factors.)

We now look at the second case in (7.62), when c 6D 1. Then the notation

� WD 1 � 1

c
6D 0
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will be of advantage, because it (and multiplication by � ) transforms (7.62) into

�˚.u/��1˚ 0.u/ D c2�u��1 .c2 D eC > 0I see (7.62)/:

In this equation we recognise (see Sects. 6.5 and 7.2) the right and left sides as
derivatives (with respect to u) of c2u� and of ˚.u/� , respectively. As above,

˚.u/� D b2u
� C b1 .b2 WD c2 > 0; b1 some nonnegative constant/

follows (since ˚.u/ is supposed to be > 0, b1 cannot be negative) and by (7.60),

F.x1; x2/ D x1˚.
x2
x1
/ D x1.b1.

x2
x1
/� C b1/

1=� D .b1x
�
1 C b2x

�
2 /
1=� .� 6D 0/:

(7.64)

These are called CES D “Constant Elasticity of Substitution” functions (even
though, as we just saw, other functions, like the Cobb–Douglas function, have this
property too). And indeed, every step we made can be reversed, so we get that the
linearly homogeneous function (7.65) has constant elasticity of substitution:

�21.x/ D �12.x/ D c D 1

1 � � .� 6D 0; � 6D 1/: (7.65)

Thus we showed that the only linearly homogeneous production functions
F W R2CC ! RCC which satisfy F0

1.x1; x2/ > 0, F0
2.x1; x2/ > 0 and have constant

elasticity of substitution are given by (7.63) and (7.66) (a > 0, c2 2�0; 1Œ, b1 > 0,
b2 > 0, � 6D 0 arbitrary constants). If we want the constant elasticity of substitution
to be positive, the (see (7.65) in (7.64)) � < 1 or, in the equivalent

F.x/ D F.x1; x2/ D .b1x
��
1 C b2x

��
2 /�1=� .� 6D 0/ (7.66)

we have � > �1.
Just as (7.53) is a generalisation of (7.40), so (7.66) is generalised to the

expressions

F.x/ D
 

nX

kD1
bkx��

k

!�1=�
.bk > 0I k D 1; : : : ; nI � 6D 0/ (7.67)

which are also called CES functions (each �ij.x/ elasticity of substitution is indeed
constant for them too) and even to

F.x/ D
 

nX

kD1
bkx��

k

!�r=�

:

The latter function is homogeneous of degree r (as is (7.53) if c1 C : : :C cn D 1).
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Since, as we saw, not only the CES functions (7.65) but also the Cobb–Douglas
functions (7.53) with c1 C : : : C cn D 1 are linearly homogeneous and have
constant elasticity of substitution, some effort is made to “include (7.53) into the
family (7.67)” as limit for � ! 0. This cannot be done with this form of (7.67) when
b1 C : : :C bn 6D 1 (why?) but a slightly devious trick seems to make it possible. We
introduce

ck WD bk

. nX

jD1
bj; a WD

0

@
nX

jD1
bj

1

A

�1=�

(7.68)

in order to transform (7.67) into

F.x/ D a

 
nX

kD1
ckx��

k

!�1=�

where
nX

kD1
ck D 1 .ck > 0I k D 1; : : : ; nI a > 0I � 6D 0/:

(7.69)

This formula, with constant a, is equivalent to (7.67) as long as � remains constant.
But notice that a in (7.68) depends on � . If a in (7.69) is a constant we prove
that for � ! 0 the limit of (7.69) is the Cobb–Douglas expression (7.53) with
c1 C : : :C cn D 1. Indeed,

lim
�!0

ln

 

a
nX

kD1
ckx��

k

!�1=�
D ln a � lim

�!0

ln.
P

kD1/nckx��
k

�

D ln a � lim
�!0

P
ck.�x��

k ln xk/P
ckx��

k

�

1

D ln a C
nX

kD1
ck ln xk:

(We used limits of sums, the Bernoulli–L’Hospital rule, the chain rule and
the derivatives of the natural logarithm and of the exponential functions from
Sects. 6.1, 6.6, 6.4 and 7.2, respectively, and

P
ck D 1. Be aware that here � is

the variable.) Putting both sides into the exponential function, which is continuous
(Sect. 7.2), we get, as asserted,

lim
�!0

 

a
nX

kD1
ckx��

k

!�1=�
D axc1

1 xc2
2 � : : : � xcn

n :
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Finally we note that both (7.53) (with 0 < cj < 1; j D 1; : : : ; n) and (7.67)
(with � > �1) are strictly concave functions (convex from above) of each xj

(j D 1; : : : ; n). In production theory these properties are called laws of diminishing
marginal returns. Indeed,

@

@x1

�
axc1
1 xc2

2 � : : : � xcn
n

	 D ac1x
c1�1
1 xc2

2 � : : : � xcn
n ;

@2

@x21

�
axc1
1 xc2

2 � : : : � xcn
n

	 D ac1.c1 � 1/xc1�2
1 xc2

2 � : : : � xcn
n < 0

since 0 < c1 < 1, a > 0. So x1 7! axc1
1 xc2

2 � : : : � xcn
n and, in the same way (x1 had

no distinguished role) xj 7! axc1
1 xc2

2 � : : : � x
cj

j � : : : � xcn
n are strictly concave (compare

Sect. 7.4 and also Sect. 7.5). Similarly,

@

@xj

 
nX

kD1
bkx��

k

!�1=�
D � 1

�
.��/

 
nX

kD1
bkx��

k

!.�1=�/�1
bjx

���1
j

@2

@x2j

 
nX

kD1
bkx��

k

!�1=�

D .� 1
�

� 1/.��/
 

nX

kD1
bkx��

k

!.�1=�/�2
bjx

���1
j bjx

���1
j

C
 

nX

kD1
.bkxk/

.�1=�/�1bj.�� � 1/

!

x���2
j

D .� C 1/

 
nX

kD1
bkx��

k

!.�1=�/�1
bjx

���2
j

 
bjx

��
jPn

kD1 bkx��
k

� 1

!

< 0

since 0 < bjx
��
j <

P
bkx��

k and � C 1 > 0. So, just as the Cobb–Douglas
functions (7.53) (with 0 < cj < 1, j D 1; : : : ; n), the CES functions (7.67) (with
� > �1) are strictly concave in each variable (in each production factor quantity).

Of course, in production theory also production functions are used which are not
homogeneous (of any degree) or do not have the property of constant elasticity of
substitution. They do not have to be everywhere convex from above (concave) either
in their individual variables. For instance, stretches convex from below then from
above, then again from below may alternate, compare to the end of Sect. 3.5.
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7.5.1 Exercises

1. Give an example of a “production function” F W RC ! RC that satisfies both
(a) strictly decreasing average product for all x > 0,
(b) strictly increasing marginal returns for all x > x� > 0.

2. Give an example of a “production function” F W RC ! RC that satisfies both
(a) strictly increasing average product for all x > 0,
(b) strictly decreasing marginal returns for all x > Ox > 0.

3. Let ".�; x/ be the scale elasticity of the production function F W R2CC ! RCC
at .�; x/ 2 R3CC, and "j.�x/ the output elasticity of the j-th (j D 1; 2) production
factor at �x. Show that ".�; x/ D "1.�x/C "2.�x/ for the function F given by
(a) F.x1; x2/ D ln.1C x1x2/, (b) F.x1; x2/ D 1=.1C e1�x1x2 /,
(c) F.x1; x2/ D x1=31 C x1=22 , (d) F.x1; x2/ D x21x

3
2=.1C x1x22/.

4. Determine the elasticity of substitution �21.x1; x2/ (D �12.x1; x2/) for the
functions F given in (a), (b), (c) of Exercise 3.

5. Let F W RnCC ! D � RCC be an arbitrary twice differentiable function. Show
that g ı F, where g W D ! RCC is an arbitrary function satisfying g0.u/ > 0

(u D F.x/), has the same elasticity of substitution �kjx (D �kj.x/) as F.

7.5.2 Answers

1. F.x/ D x1=2.1=.1C x2/C x1=2/, for example, has the properties:
(a) F.x/=x D 1=

p
x.1C x2/C 1=

p
x is strictly decreasing for all x > 0,

(b) F0.x/ D 1 C . 1
2
x�1=2 � 3

2
x
3
2 /=.1 C 2x2 C x4/ is strictly increasing for all

x > Nx D 1:119 : : :.
2. F.x/ D x3=.10C x2/, for example, has the properties:

(a) F.x/=x D x2=.10C x2/ is strictly increasing for all x � 0,
(b) F0.x/ D .30x2Cx4/=.100C20x2Cx4/ is strictly decreasing for all x > x� Dp

30 D 5:477225575 : : :.
3. (a) 1, (b) 1, (c) .2x1=31 C 3x1=22 /=.x1=31 C 2x1=22 /.
4. Hint: Insert g ı F for F into (7.28), that is, write

@g.F.x//
@xj

D g0.u/F0
j.x/ for

@F.x/
@xj

D F0
j.x/ and

@2g.F.x//
@xj@xk

D g00.u/F0
j.x/F

0
k.x/C g0.u/F00

jk.x/ for
@2F.x/
@xj@xk

D F00
jk.x/

in (7.28).
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7.6 Nonlinear Vector-Valued Functions, Systems of Equations.
Banach’s Fixed Point Theorem

In Sect. 7.3 we solved nonlinear equations, such as

er � 1 D i and ert D 2;

where i � 100% is the yearly interest rate, r � 100% the continuous compounding rate
and t is the doubling time. While these and similar equations are easily solved with
aid of the logarithm or other inverse functions, in general it is very difficult to solve
nonlinear equations or even establish whether solutions exist and, if yes, how many.
As we saw in Sect. 7.5, many things can happen. For instance,

ex D x C 2

has two solutions,

ex D x C 1

has exactly one solution (X D 0) and

ex D x

has no solution (see Fig. 7.14). The equation

sin x D 1=2

Fig. 7.14 The equations ex D x C 2, ex D x C 1, ex D x have two solutions, one solution or no
solution, respectively
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even has infinitely many solutions (check by calculation or drawing):

x D �=6C 2kn and x D 5�=6C 2kn

for all k 2 R (that is, see Sect. 1.7.2, k D 0; 1;�1; 2;�2; : : :).
Solving systems of nonlinear equations is, of course, even more difficult. But

such systems often arise in economics and other sciences.
For instance, as we saw in Sect. 6.9, the price for which a product can be sold

may determine the quantity to be produced next time. We now consider, more
realistically, a market on which s products are supplied by each of r competitors,
rather than by just one producer with one product. The supposition that each
competitor brings the same number of products to the market is only seemingly
a restriction: we will allow 0 quantities of products. Also, no producer can bring to
the market an unlimited quantity of any product, therefore (or because of differences
in quantity, preference or location) not only the cheapest product will sell. So, let the
price for which the j-th competitor sells the k-th product be pjk 2 RCC (j D 1; : : : ; r;
k D 1; : : : ; s). Based on these prices, the j-th competitor produces or hopes to sell
in the next time interval (production or sales “period”) the quantity qjk 2 RC of the
k-th product. For the sake of brevity we introduce the vectors

qj D .qj1; : : : ; qjs/ 2 RsC; pj D .pj1; : : : ; pjs/ 2 RsCC . j D 1; : : : ; r/

(as we see, these are “row-vectors”, not “column vectors” as in most places in
Chap. 4). Let the functions

Gj W RrsCC �! RrC

describe how the quantities qj (j D 1; : : : ; r) in the next time interval depend upon
the prices p1; : : : pr previously attained

G1.p1; : : : ; pr/ D q1;
:::

Gr.p1; : : : ; pr/ D qr:

(7.70)

Similarly, as in Sect. 6.9, “we”—usually the market researchers—wish, conversely,
to determine the prices

p11; : : : ; p1s; : : : ; pr1; : : : ; prs

(or the price vectors p1; : : : ; pr) which would guarantee that the projected (and thus
given) quantities

q11; : : : ; q1s; : : : ; qr1; : : : ; qrs

(or the quantity vectors q1; : : : ; qr) will indeed be sold in the next time interval.
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The system (7.70) consists of rs scalar equations (r vector–equations) which may
then serve the market researchers to determine rs unknown numbers (r vectors). If,
instead of the quantities “we” the market researchers had projected the revenues
qj � pj D tj (j D 1; : : : ; r; “�” the scalar product, see Sect. 1.5 or (1.3)) then we have
to determine rs unknown numbers p11; : : : ; prs (r vectors p1; p2; : : : ; pr) from the r
(scalar) equations

G1.p1; : : : ; pr/ � p1 D t1;
:::

Gr.p1; : : : ; pr/ � pr D tr:

(7.71)

There are further variations on the theme. For instance in knowledge of the “price
lists” p2 D p02; : : : ; pr D p0r of her competitors the first seller wants to know how
much she can charge in order to be able to sell the quantities .q11; : : : ; q1s/ D
q1 or have the revenue t1 from the sale. Then the rs equations (7.70) or the r
equations (7.71) serve to determine the s unknown prices .p11; : : : ; p1s/ D p1.

In general we may have m equations

h1.x1; : : : ; xn/ D 0;
:::

hm.x1; : : : ; xn/ D 0;

to determine the values of n unknown x1; : : : ; xn. If at least one of the functions
h1; : : : ; hm is not linear (compare Sect. 4.8) then we have a nonlinear system of
equations. If all functions h1; : : : ; hm are linear then we are back to a system o linear
equations. In Sects. 4.6 and 4.7 we saw quite general methods for deciding whether
a system of linear equations has solutions at all and, if yes, to determine them.

For nonlinear systems of equations (as already for nonlinear equations), the
solution is much more complicated. Therefore we can give neither necessary and
sufficient conditions for the existence or uniqueness of solutions nor formulas which
give these solutions. So in this section we will just generalise the method of iteration
processes used in Sect. 6.10 for single scalar equations and apply it to determine,
under certain conditions, the solution of vector equations, that is of systems of scalar
equations. But first we give a few more examples.

As already for some systems of linear equations (Sect. 4.6) the numbers of
equations (m) and of variables (n) does not determine whether there are solutions
and, if yes, how many.

Some examples, other than these with m D n D 1 at the beginning of this section,
of m equations with n real unknowns (whether m D n, m < n or m > n) with
drastically different numbers of solutions are the following.
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Example 1 First for m D n we write

x21 C : : :C x2n D 0;

x31 C : : :C x3n D 1;
:::

xn
1 C : : :C xn

n D n � 2;
xnC1
1 C : : :C xnC1

n D n � 1:

(7.72)

Since the square of a real number is always nonnegative, the first equation can
be satisfied only if all term on the left are 0, so

x1 D 0; : : : ; xn D 0 (7.73)

is the only n-tuple which satisfies the first equation, but it clearly does not
satisfy the second (or any further) equation. So this system of nonlinear
equations with as many equations as variables (that is m D n) has no solutions.

If we just take the first m (1 < m < n) equations, we also have no solution,
this time with m < n and if we enlarge the above system (7.72) by several more,
completely arbitrary equations, the new system, with m < n, still has no solutions.

Example 2 Replace in both the m D n and the m < n cases of Example 1 all
the right hand sides in (7.72) by 0. This, of course, does not change the first
equation or its only solution (7.73). But this solution x1 D 0; : : : ; xn D 0 then
satisfies also all other equations so, whether m D n or m < n, this system of
m nonlinear equations has exactly one n-tuple of solutions, namely (7.73).

If we take, similarly, the system

x21 C : : :C x2n D 0;
:::

xnC1
1 C : : :C xnC1

n D 0;
:::

xmC1
1 C : : :C xmC1

n D 0;

with m > n, it has also exactly the one n-tuple of solutions (7.73).
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Example 3

.x1 � 1/.x1 � 2/ � : : : � .x1 � k/.x22 C : : :C x2n C 1/ D 0;

.x22 C : : :C x2n/x1 D 0;
:::

.xm
2 C : : :C xm

n /x1 D 0:

The last factor on the left hand side of the first equation is positive for all real
x1; x2; : : : ; xn. So the left hand side can be 0 only if

either x1 D 1 or x1 D 2 or : : : or x1 D k:

For each of these values of x1, the second equation is satisfied exactly when
x2 D 0; : : : ; xn D 0. So, whether m < n, m D n or m > n, the above system
of m nonlinear equations in n unknowns has exactly k (n-tuples of) solutions
(and we can make k � 1 as large or as small as we want to):

x1 D 1; x2 D : : : D xn D 0;

x1 D 2; x2 D : : : D xn D 0;
:::

x1 D k; x2 D : : : D xn D 0:

Example 4 Let f1 W Rn ! R; : : : ; fm W Rn ! R be arbitrary functions. We
consider the system

f1.x1; x2; : : : ; xn/ sin x1 D 0;
:::

fm.x1; x2; : : : ; xn/ sin x1 D 0:

As we know (Sect. 1.7 2; Fig. 6.7) sin x1 D 0 at the infinitely many places

x1 D 0; �;��; 2�;�2�; 3�;�3�; : : : ;

so, whatever x2; : : : ; xn and f1; : : : ; fm are (though these may furnish further
solutions), with these x1-values all m equations of the system are solved. Thus,
whether m < n, m D n or m > n the above system of m nonlinear equations
in n unknown has infinitely many solutions.
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Since it is easier to visualise them, we look now at situations with m equations
containing just n D 2 variables:

h1.x1; x2/ D 0;
:::;

hm.x1; x2/ D 0:

(7.74)

While the functions h1 W S1 ! R; : : : ; hm W Sm ! R .Sj � R2; j D 1; : : : ;m/ need
not be defined on the same domain, their domains should have at least one point and,
preferably, a whole neighbourhood (see Sect. 6.2) in common. We consider

S WD
n\

jD1
Sj � R2;

the domain, where all our functions h1; : : : ; hm are defined. Solving the sys-
tem (7.74) of equations means to find those points x D .x1; x2/ 2 S where all
functions h1; : : : ; hm are 0, in other words, to find the zeros of the vector-vector
function h W S ! Rm (h D .h1; : : : ; hm/).

We just said that for n D 2, that is in two dimensions, it is easier to visualise
the above problem. In Sect. 3.3 we introduced contour-lines as set of points where a
function of two variables assumes the same value. Here we are, of course interested
in the value 0, but for all functions h1; : : : ; hm. So we draw the contour-lines
belonging to the value 0 of all these functions on the part S of R2 and look whether
there are points which lie on all of them and, if yes, how many.

The following examples show again the possibility of no, one, k, or infinitely
many solutions.

Example 5 Here h1.x1; x2/ WD x21Cx22�4, h2.x1; x2/ WD x21�3x2, h3.x1; x2/ WDp
3x1 C x2 � 4; h4.x1; x2/ WD 2x1 � 3x2 C 8. The system of equations (third

and fourth equation linear, first and second not)

x21 C x22 � 4 D 0; (7.75)

x21 � 3x2 D 0; (7.76)
p
3x1 C x2 � 4 D 0; (7.77)

2x1 � 3x2 C 8 D 0 (7.78)

has, as Fig. 7.15 shows, no solution. But the system (7.75), (7.76), (7.77)
has exactly one solution, namely .x1; x2/ D .

p
3; 1/. We see that a system

of three equations in two variables can have a solution. On the other hand,

(continued)
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a system of two equations in two variables can have (see Fig. 7.15 for the first
three cases)

• no solution: see (7.75), (7.78),
• exactly one solution: see (7.75), (7.77) and (7.77), (7.78) having the

solutions .x1; x2/ D .
p
3; 1/ and .x1; x2/ D ..12

p
3 � 8/=23; .56 C

8
p
3/=23/, respectively,

• exactly two solutions: those of the system
– (7.75), (7.76) are .x1; x2/ D .

p
3; 1/ and .x1; x2/ D .�p

3; 1/,
– (7.76), (7.77) are .x1; x2/ D .

p
3; 1/ and .x1; x2/ D .�4p3; 16/,

– (7.76), (7.78) are .x1; x2/ D .4; 16=3/ and .x1; x2/ D .�2; 4=3/,
• three, four, fife, : : : solutions,
• infinitely many solutions.

Fig. 7.15 The curves denoted by (7.75), (7.76), (7.77), (7.78) are representations of the solutions
to Eqs. (7.75), (7.76), (7.77), (7.78), respectively. If a point .x1; x2/ lies on two or three of
the curves, it is a solution to the corresponding two or three equations in the system of
equations (7.75), (7.76), (7.77), (7.78)
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Fig. 7.16 The system of equations (7.79), (7.80) has infinitely many solutions
: : :, .�7�=4;p2=2/, .�5�=4;p2=2/, .�=4;

p
2=2/, .3�=4;

p
2=2/, .9�=4;

p
2=2/,

.11�=4;
p
2=2/; : : :

We affirm the last two assertions by

Example 6 Now h1.x1; x2/ WD sin x1�x2, h2.x1; x2/ WD 2x2�p
2. The system

of equations

sin x1 � x2 D 0; (7.79)

2x2 � p
2 D 0 (7.80)

(we see that not all equations have to contain all unknowns—but each
unknown should be in at least one equation) has infinitely many solutions

.x1; x2/ D .�=4C 2k�;
p
2=2/ and .x1; x2/ D .�5�=4C 2k�;

p
2=2/

(k 2 Z), see Fig. 7.18. Obviously, if the domain of h1 is S1 D Œ0; �=2Ck����
R for a fixed k� 2 f0; 1; 2; : : :g then the system of equations (7.79), (7.80) has
exactly k� C 1 solutions (Fig. 7.16).

Example 7 Here, too, h1.x1; x2/ WD x21 C x22 � 1 but this time h2.x1; x2/ WD
x1 C x2. The nonlinear system of equations

x21 C x22 � 1 D 0;

x1 C x2 D 0

(continued)
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(nonlinear system, because the first equation is not linear, even though the
second is linear) has (see Fig. 7.17) two solutions: .�p

2=2;
p
2=2/ and

.
p
2=2;�p

2=2/. With h3.x1; x2/ WD p
2x21 � x2 again, the system consisting

of the above two equations and of

p
2x21 � x2 D 0;

however, has only one solution .�p
2=2;

p
2=2/ (Fig. 7.17).

On the other hand, the system h1.x1; x2/ D 0, h3.x1; x2/ D 0 and the system
h2.x1; x2/ D 0, h3.x1; x2/ D 0 again have two solutions each, .�p

2=2;
p
2=2/,

.
p
2=2;

p
2=2/ and .�p

2=2;
p
2/, .0; 0/, respectively. These two pairs of solutions

are different from each other and from the solutions of the original system of two
equations in this system.

Fig. 7.17 Given are the equations (i) x21 C x22 � 1 D 0, (ii) x1 C x2 D 0, and (iii) 0:5x21 � x2 D 0.
The system (i), (ii) has two solutions and so have the systems (i), (iii) and (ii), (iii) (but different
ones), while the system (i), (ii), (iii) has only one solution
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Example 8 Now h1.x1; x2/ WD sin x1�x2, h2.x1; x2/ WD 2x2�
p
2. The system

of equations

sin x1 � x2 D 0;

2x2 � p
2 D 0

(we see that not all equations have to contain all unknowns—but each
unknown should be in at least one equation) has infinitely many solutions

.�=4C 2k�;
p
2=2/ .k 2 Z/ and .��=4C 2k�;

p
2=2/ .k 2 Z/

(see Fig. 7.18. With h3.x1; x2/ WD cos x1 � x2 D 0, the system h1.x1; x2/ D 0,
h2.x1; x2/ D 0, h3.x1; x2/ D 0 has still infinitely many solutions, but only
the first set of the above solutions, which are also the only solutions of
h1.x1; x2/ D 0, h3.x1; x2/ D 0, while the system h2.x1; x2/ D 0, h3.x1; x2/ D 0

has the first set of the above solutions and .3�=4 C 2k�;
p
2=2/ (k 2 Z) as

solutions (infinitely many solutions for all these systems). For all systems in
this example the domain is R� Œ�1; 1�. (In Examples 6 and 7 the domains are
the same as in Example 5.)

By now we have probably convinced the reader that having as many equations as
unknowns is neither necessary nor sufficient for the system of equations to have
solutions, let alone unique solutions. Some methods of solution, however, work
better in this case and even give (restricted) existence and uniqueness results.

The iteration process (“cobweb situation”) in Sect. 6.9 can be generalised to such
a method. We have now the system

h1.x1; : : : ; xn/ D 0;

:::

hn.x1; : : : ; xn/ D 0

of n equations in n unknowns, where hj W Sj ! R and Sj � Rn. We use again the
vector notation x D .x1; : : : ; xn/, also for the functions:

h WD .h1; : : : ; hn/ W S ! Rn; where S D
n\

jD1
� Rn:

So our problem is to determine the zeros of h, that is, those x 2 S for which
h.x/ D 0. As in Sect. 6.10, we define a new function F by

F.x/ D x � h.x/;
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Fig. 7.18 The system of equations sin x1 � x2 D 0, 2x2 � 1p
2

D 0, cos x1 � x2 D 0, and all three
systems consisting of two of these equations, have infinitely many solutions each

which changes our problem into the more convenient form of determining all fixed
points of F that is, all x 2 S for which

x D F.x/: (7.81)

Under certain conditions, analogous to those in Sect. 6.10, such fixed points of F
do exist and can be determined, in generalisation of the method given there, by the
following iteration process:

xnC1 D F.xn/ .n D 0; 1; : : :/: (7.82)

We are helped by the following result called “Banach’s fixed point theorem”
(Stefan Banach, 1892–1945): If, for a function W S ! Rn (S � Rn), there exists a
number c 2 Œ0; 1Œ and a ı-neighbourhood (see Sect. 6.10)

Nı.x0/ WD fx j jx � x0j < ı g � S
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such that

jF.x/� F.y/j � c jx � yj for all x; y 2 Nı.x0/ (7.83)

(for norms of vectors see Sect. 1.4) and

jF.x0/� x0j < .1 � c/ı (7.84)

then the sequence defined by (7.82) converges to a fixed point of F, that is, to a
solution of (7.81)—the only one in Nı.x0/.

The proof, which we sketch here, follows the lines of the argument given in
Sect. 6.10, with modifications made necessary by the space of more than one
dimension (no “squeeze rule”). Actually, (7.83) is the exact analogue of the
“Lipschitz condition” (b) there. Furthermore, (7.84) establishes that x1 D F.x0/
is in Nı.x0/ and use of (7.83) will establish that all xn (n D 1; 2; : : :), as defined
by (7.82) are in Nı.x0/, which corresponds to the condition (a) in Sect. 6.10.

Indeed we prove for all n (or at least for n D 1; 2; 3, which shows already how to
proceed),

jxn � xn�1j � cn�1 jx1 � x0j < cn�1.1 � c/ı (7.85)

and

jxn � x0j � .1C c C : : :C cn�1/ jx1 � x0j < .1 � cn/ı; so xn 2 Nı.x0/ (7.86)

(remember c > 0). By (7.82) and (7.84) we have already

jx1 � x0j D ˇ
ˇF.x/ � x0

ˇ
ˇ < .1 � c/ı;

that is, (7.85) and (7.86) are true for n D 1. Now, using this, (7.85) and (7.82), we
have

jx2 � x1j D jF.x1/ � F.x0/j � c jx1 � x0j < c.1� c/ı

(since x0 2 Nı.x0/, x1 2 Nı.x0/) and, from the triangle inequality (see Sect. 1.5),

jx2 � x0j D j.x2 � x1/C .x1 � x0/j
� jx2 � x1j C jx1 � x0j � .c C 1/ jx1 � x0j
< .1C c/.1� c/ı D .1 � c2/ı � ı:

So (7.85) and (7.86) hold also for n D 2. We use this, (7.83) and (7.82) again to
show

jx3 � x2j D jF.x2/� F.x1/j � c jx2 � x1j � c2 jx1 � x0j < c.1 � c/ı
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(since x1 2 Nı.x0/, x2 2 Nı.x0/) and, again from the triangle inequality,

jx3 � x0j D j.x3 � x2/C .x2 � x0/j
� jx3 � x2j C jx2 � x0j � .c2 C c C 1/ jx1 � x0j
< .c2 C c C 1/.1� c/ı D .1 � c3/ı � ı:

Thus we see that (7.85) and (7.86) hold also for n D 3. In the same way we get (7.85)
and (7.86) for all n 2 N (one can apply induction).

The next step is to get, from (7.85) and from repeated use of the triangle
inequality, for all n > m � 1,

jxn � xmj � jxn � xn�1j C jxn�1 � xmj
� jxn � xn�1j C jxn�1 � xn�2j C : : :C jxmC1 � xmj
< .cn�1 C cn�2 C : : :C cmC1 C cm/.1 � c/ı

D .cm � cmC1 C cmC1 � cmC2 C : : :

CcnC3 � cnC2 C cnC2 � cnC1 � cnC1 � cn/ı

D .cm � cn/ı < cmı:

In Sect. 7.2 we have proved that fcmg converges to 0 as m ! 1 if 0 � c < 1.
So jxn � xmj converges to 0 when m (and thus also n) tends to 1. It can be proved
(this is called “Cauchy’s criterium” after Augustin Louis Cauchy (1789–1857), the
founder of modern exact analysis) that this implies

lim
n!1 xn DW x� (7.87)

(the limit of sequences of vectors being defined the same way as in Sect. 6.2 for
scalars and as limits of vector-vector functions in Sect. 6.12.

As in Sect. 6.8, the Lipschitz inequality (7.83) has the continuity of F as
consequence. But, by (7.82) and (7.87) for all " > 0 there exists an N such that

jF.xn/� x�j D jxnC1 � x�j for n > N;

that is,

x� D lim
n!1 F.xn/ D F.x�/;

(by the continuity of F). So the sequence (7.82) indeed converges to a solution
of (7.81). That there is no other solution of (7.81) in Nı.x0/ is proved by
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contradiction: if there were also a y� 6D x� with F.y�/ D y� in Nı.x0/ then, by
0 � c < 1 and by (7.83),

c jx� � y�j < jx� � y�j D jF.x�/ � F.y�/j � c jx� � y�j ;

a contradiction indeed. (Actually one has also to prove that x� 2 Nı.x0/.)
This (with the gaps which we pointed out) concludes the proof of Banach’s fixed

point theorem.
Returning to our problem of solving

h.x/ D 0; (7.88)

this means that, if there exists a c 2 Œ0; 1Œ such that

jx � y � .h.x/� h.y//j � c jx � yj

for all x, y in a ı-neighbourhood Nı.x0/ and if

jh.x0/j < .1 � c/ı;

then there is exactly one solution (root) of (7.88) in Nı.x0/ and it can be calculated
by the iteration process

xnC1 D xn � h.xn/ .n D 0; 1; 2; : : :/:

We recommend that the reader check how these results relate to those in Sects. 6.9
and 6.10.

7.6.1 Exercises

1. Determine by iteration the two solutions x�, x�� of equation ex D x C 2 up to
five decimals. (Hint: One solution is negative, one is positive. Take xjC1 D exj �2
and xjC1 D 3

2
xj � 1

2
exj C 1, respectively.)

2. Determine by direct calculation all solution points .x1; x2/ of the nonlinear
system of equations x21 C x22 � 1 D 0,

p
2x21 � x2 D 0.

3. Determine by direct calculation all solution points .x1; x2/ of the nonlinear
system of equations x21 C x22 � 2 D 0, x21 � x2 D 0, 3x21 C x2 � 4 D 0.

4. Add to the equations in Exercise 3 a linear equation such that the new system
of four equations has exactly one solution point .x1; x2/ which is also the only
solution point of that linear equation and equation x21 C x22 � 2 D 0.

5. Construct a system of three equations in two variables x1, x2 which has exactly
four solution points .x1; x2/.
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7.6.2 Answers

1. x� D �1:84141, x�� D 1:14619:

2. .x1; x2/ D .�p
2=2;

p
2=2/, .x1; x2/ D .

p
2=2;

p
2=2/.

3. .x1; x2/ D .�1; 1/, .x1; x2/ D .1; 1/.
4. There are exactly two such linear equations, namely

x1 C x2 � 2 D 0 and x1 � x2 C 2 D 0:

5. For instance, the system sin x1 � x2 D 0, 2x2 � p
2 D 0, cos.x1/ � x2 D 0,

where x1 2 Œ0; 7��, has exactly four solution points, namely
�
�
4
;

p
2
2

	
,
�
9�
4
;

p
2
2

	
,

�
17�
4
;

p
2
2

	
,
�
25�
4
;

p
2
2

	
.



8Nonlinear Optimisation with One or Several
Objectives: Kuhn–Tucker Conditions

The best is the enemy of the good.

VOLTAIRE (FRANÇOIS–MARIE AROUET, 1694–1778)

8.1 Introduction

As in other introductory sections, we set the stage here too (this time for nonlinear
optimisation) by describing a situation from economics. Within the framework of a
simple model we are interested in the optimal investment ratio in national economy.

The investment ratio xt in the year t is defined by

xt D It

Yt
; (8.1)

where It is the gross fixed capital formation (investment) and Yt the gross domestic
product in the year t. Let t run from the year t to the year T. The question is for what
choice of the investment ratios x1; : : : ; xT is the “discounted aggregate consumption”
maximal. To get the latter, we have to consider the capital stock (that is, the (value of
the) aggregate of capital goods in the economy) Kt�1 at the beginning of the year t.
We suppose that the gross domestic product Yt depends only upon Kt�1:

Yt D F.Kt�1/ (8.2)

(F W RC ! RC is the production function). By (8.1) and (8.2)

It D xtF.Kt�1/: (8.3)

© Springer International Publishing Switzerland 2016
W. Eichhorn, W. Gleißner, Mathematics and Methodology for Economics,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-23353-6_8
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Now we define the total consumption in the year t, Ct, as “gross domestic product
less gross capital formation”, that is, by

Ct D Yt � It D .1 � xt/F.Kt�1/

(here .1 � xt/ is called the “average propensity to consume”). This has to be
discontinued to year 1, that is, with the discount factor d D .1 C i/�1 < 1 (see
Sect. 7.2; i is the interest rate which we here assume to be the real rate, that is, the
inflation–adjusted rate) we form

dt�1Ct D .1 � xt/F.Kt�1/dt�1:

The discounted aggregate consumption C is the sum of these terms for the years
t D 1, t D 2, : : :, t D T

C D
TX

tD1
dt�1 D

TX

tD1
.1 � xt/F.Kt�1/dt�1: (8.4)

This is what we have to maximise. The Kt’s can be determined recursively from K0
which is given by the following argument. The capital stock Kt�1 at the beginning
of the year t depreciates to qKt�1 (q the depreciation factor, 0 < q < 1) by the end
of the year. At the same time the capital formation (investment) It D xtF.Kt � q/
(see (8.3)) is added. so we have the recursive formula (compare to the iteration
process in Sect. 6.9)

Kt D qKt�1 C xtF.Kt�1/ .t D 1; : : : ;T/: (8.5)

Our optimisation problem is to maximise (8.4) where the function F is usually
nonlinear (compare Sect. 7.4). This is a nonlinear optimisation problem. We will
solve it in Sect. 8.2 under certain assumptions in addition to those which we
have already made. This will answer in a particular case a classical question
of macroeconomics, which asks what investment ratio maximises the discounted
aggregate consumption.

One of the strongly restrictive simplifying assumptions is that the production
function is neither depending on the employment level nor on the year (time) t
(which it would, e.g., if the operating rates of the production units would change
in the same direction in time). The assumption of independence of the employment
level does not seem very restrictive, since unfortunately nowadays the operating
rate of the capital stock depends more on the market situation than on the number of
people employed. Another restrictive assumption in our model is that the considered
economy is closed, that is, foreign trade is neglected or the value of exports always
equals that of the imports.
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We have real life data about investment ratios or, to be exact, about their
arithmetic mean for the years 1970–1999. This mean was greater then :32 in Japan,
between .24 and .20 in France, Italy and (West)Germany, and less than .17 in Great
Britain and the U.S.A.

In Sect. 8.2 we lay the foundations for Sects. 8.3, 8.4, 8.5 and 8.6 which deal
with the problem of determining maxima and minima (“extrema”) of functions of
several variables. These foundations include the notions of convexity and concavity
of differentiable functions of several variables, matrix conditions for convexity
(concavity), and eigenvalues and eigenvectors of matrices. These in turn will let
us find conditions for extrema of such functions (Sect. 8.4) and of functions under
constraints (Sect. 8.6) The Kuhn–Tucker conditions (Sect. 8.9) are conditions of
this kind. An application of nonlinear optimisation establishes the method of least
squares in the theory of linear regression (Sect. 8.5). The concluding Sect. 8.10
deals with optimisation in the case when several functions (“objectives”) are to be
maximised or minimised at the same time.

8.2 Convexity of Differentiable Functions of Several Variables,
Matrix–Conditions for Convexity, Eigenvalues,
Eigenvectors

In Sect. 3.5 we introduced convex functions (from below or from above; the latter
also called concave functions) of one and of several variables. In Sect. 6.8 we found
conditions (some necessary, some sufficient, some both) for differentiable functions
in a single variable to be convex (from above or below, strictly or otherwise):

In what follows we aim at finding conditions for one or twice differentiable
functions of several variables to be convex. These will be of use in subsequent
sections which will deal with maxima and minima of functions of several variables.

We will need the concepts of interior points and of open sets in Rn (compare
Sect. 3.5. If a point a 2 S 
 Rn has a neighbourhood (no matter how small) that is
in S (is a subset of S) then a is an interior point of S. The set of all interior points of
S is the interior of S (see Fig. 8.1. If all points of S are interior ( are elements of the
interior of S) then S is an open set

x

x+h

Fig. 8.1 Interior point (left). Interior of a set (middle; the dotted set does not belong to the interior).
Open and convex set (right): with x and x C h it contains x C rh for all r 2 I
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Let now S 
 Rn be a convex open set (for convex sets see Sect. 3.5 and let the
function F W S ! R be convex from below and differentiable. Then, as we have seen
in Sect. 6.11, it is also partially differentiable in each variable, has thus a gradient

rF.x/ WD .
@F

@x1
.x/; : : : ;

@F

@xn
.x//:

If both x and y D x C h are in S then, since S is convex, also x C h 2 S for r 2 Œ0; 1�
but, since S is also open, it contains with each point xCh 2 S also a neighbourhood,
so there exists an open interval I, of which Œ0; 1� is a subinterval, such that xCh 2 S
for all r 2 I (we need the larger interval I to facilitate differentiation). Take now
g W I ! R defined by

g.r/ D F.x C rh/ (8.6)

The graph of this function is (for n D 2) the vertical slice of the graph of F
on the ray–segment fx C rh j r 2 I g through x. Since F is convex from below, and
differentiable, so is g. By the chain rule in Sect. 6.5

g0.r/ D @F

@x1
.x C rh/h1; : : : ;

@F

@xn
.x C rh/hn D h � rF.x C rh/: (8.7)

By the law of means (Sect. 6.7),

F.y/� F.x/ D F.x C rh/ � F.x/ D g.1/� g.0/ D g0.�/ for some � 2�0; 1Œ:

Since, as we have seen in Sect. 6.8, the derivative of a differentiable convex function
is increasing,

F.y/� F.x/ D g0.�/ � g0.0/ D h � rF.x/ D .y � x/ � rF.x/:

So, if F is convex from below and differentiable on an open convex set S and x; y 2 S
then

F.y/� F.x/ � .y � x/ � rF.x/: (8.8)

The question arises whether, conversely, (8.8) implies the convexity of F form
below. The answer is yes. Indeed, take any y and z in the open, convex set S 
 Rn

and let � 2 Œ0; 1� be arbitrary. Then x D �y C .1� �/z 2 S (since S is a convex set,
so (8.8) and the similar inequality

F.z/� F.x/ � .z � x/ � rF.x/:

hold. Multiply the latter inequality by .1� �/ and (8.8) by � and add them:

�F.y/C .1 � �/F.z/� F.x/ � .�z C .1 � �/z � x/ � rF.x/ D 0:
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since x D �y C .1 � �/z. Thus

F.�y C .1� �/z/ D F.x/ � �F.y/C .1 � �/F.z/;

which is exactly how we defined, in Sect. 3.5, functions convex from below.
Thus on an open convex set S 
 Rn a differentiable function F W S ! R is convex

from below if, and only if, (8.8) holds for all x; y 2 S. A similar statement, with �
in place of � holds for functions convex from above (“concave”). The geometric
interpretation of (8.8) (for n D 2) is that the graph of F does not get below any
tangent plane and, with �, that it does not get above any tangent plane (compare
Sects. 6.8 and 7.2)

For differentiable functions strictly convex from below, by the same argu-
ment, (8.8) with > on place of �, but only for y ¤ x, is necessary and sufficient
and (8.8) with< for y ¤ x “characterises” (is necessary and sufficient for) functions
strictly convex from above (that is, “strictly concave” functions).

While (8.8) and similar conditions involve only first derivatives, we will give
now convexity conditions for functions of n variables, involving second derivatives,
which are similar to but more complicated than those in Sect. 6.8 for functions of
one variable. There we proved that the twice differentiable function g W I ! R on
an open Interval I is convex from below or from above if, and only if

g00.r/ � 0 on I or g00.r/ � 0 on I;

respectively.
As we have seen , F is convex from below on S exactly if the function of one

variable g, defined by (8.6), is convex from below on I. If F has continuous second
partial derivatives (here it would be enough that F be twice differentiable but we
will need later continuous second partial derivatives anyway), then g W I ! R is
twice differentiable and exactly then convex from below on I if

0 � g00.r/ � ˙n
jD1˙n

kD1
@2F

@xj@xk
.x C rh/hjhk DW hF00.x C rh/hT (8.9)

for r 2 I (cf. Sect. 6.8). Here we applied the chain rule (Sect. 6.5) again on @F.x C
rh/=@xj in (8.7). We denote by hT the vector h D .h1; : : : ; hn/ transformed into a
column vector and by F00x the Hessian matrix (Ludwig Otto Hesse (1811–1874)),
“Hessian” for short,

F00.x/ WD

0

B
B
@

@2F
@x21
.x/ : : : @2F

@x1@xn
.x/

:::
:::

@2F
@xn@x1

.x/ : : : @2F
@x2n
.x/

1

C
C
A D

0

B
@

F00
x1x1 .x/ : : : F00

x1xn
.x/

:::
:::

F00
xnx1 .x/ : : : F00

xnxn
.x/

1

C
A ;
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where F00
xjxk
.x/ WD @2F.x/=@xj@xk. Since we supposed the second partial derivatives

to be continuous, we have (see Sect. 6.11)

F00
xjxk
.x/ D F00

xkxj
.x/;

therefore the Hessian matrix is symmetric.
We proved (8.9) for r 2 I (I � Œ0; 1�), so, in particular, it has to hold for r D 0:

hF00.x/hT � 0 (8.10)

and r D 1:

hF00.x C h/hT � 0

for x and x C h in S, respectively. The left hand side is a quadratic form (see
Sect. 7.4). Multiplication of (8.10) by �2 shows that

.�h/F00.x/.�h/T � 0

that is, (8.10) holds for all h 2 Rn if F is convex in a neighbourhood of x.
Conversely, if F satisfies (8.10) and F00 is continuous (that is, F has continuous
second derivatives) then, for sufficiently small r also

hF00.x C rh/hT � 0; for all h 2 Rn

(values of continuous functions change little when their variables change little). So
we have proved that the function F, having continuous second partial derivatives
in a neighbourhood of x, is convex from below in that neighbourhood if, and only
if (8.10) holds for all h 2 Rn.

A similar result, with � in place of � in (8.10), holds for functions convex from
above (concave). As to strictly convex functions from below or above, (8.10) with
< or >, respectively, is sufficient but not necessary as the example of F.x/ D x41 C
: : : x4n at 0 shows (F strictly convex but F00.0/ D 0 so (8.10) holds with D, not
with >). However, (8.10) with �, but D not holding on any open set, is necessary
and sufficient for the twice continuously differentiable F to be strictly convex from
below on a neighbourhood of x. Again, a similar result holds for functions strictly
convex from above (concave).

Quadratic .n � n/ A or the quadratic forms hAhT for which in equalities of the
form (8.10),

hAhT � 0; for all h 2 Rn; (8.11)
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hold are called positive semidefinite. The same inequality with �,> or<, in place of
� ,makes A negative semidefinite, positive definite or negative definite, respectively,
So F W S ! R.S 
 Rn/ is convex or strictly convex from below or from above on
the neighbourhood of an interior point x of S if the Hessian matrix F00.x/ is positive
semidefinite or definite or negative semidefinite or definite, respectively. Notice that
we did not suppose that S is an open set, only that is that it has at least one interior
point x. Notice also that we did not write “and only if” because this is nit true for
strict convexity from below or from above (strict concavity).

In what follows, we give conditions and algorithms which help determine
whether a matrix (or quadratic form) is positive or negative semidefinite or definite.

Such tools are eigenvalues and eigenvectors. In (8.11) we have the product AhT .
Things become considerably simpler of there exists a scalar � such that

AhT D �hT :

If for a quadratic .n � n/-matrix A there exist both a scalar � and a vector v D
.v1; : : : ; vn/ such that

AvT D �vT : (8.12)

then � is called an eigenvalue and v an eigenvector of A. We can write (8.12) as

.A � �I/vT D 0T : (8.13)

where I is the n � n unit matrix and 0T the n � I zero column vector. This is a vector
equation and, as those with which we dealt in Sect. 4.6, it is a compact way to write
a system of homogeneous linear equations. If it is supposed to have a nontrivial
solution v ¤ 0 then (see Sect. 4.7)

det.A � �I/ D det

0

B
B
B
@

a11 � � a12 : : : a1n

a21 a22 � � : : : a2n
:::

:::
: : :

:::

an1 an2 : : : ann � �

1

C
C
C
A

D 0: (8.14)

This equations called the the characteristic equation of A and det.a � �I/ it’s
characteristic polynomial. Indeed, if we calculate this determinant as in Sect. 4.7,
we see that it is a polynomial of n-th degree. But then (8.14) has (with multiplicity)
exactly n real or complex zeros. So a real n �n matrix has, with multiplicity, exactly
n real or complex eigenvalues. So even matrices with only real entries may have
complex eigenvalues, since polynomials with real coefficient may have complex
zeros (for example x2 C 1 D 0). However, one can show that all eigenvalues
of symmetric real matrices are real. Since the Hessian matrices, with which we
deal here, are, as we had seen, symmetric, we will not have worry about complex
eigenvalues.
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It will be of importance that eigenvectors, belonging to different eigenvalues of
the same matrix, are orthogonal. In order to show this, we have to remind the reader
that (Sect. 1.6) two vectors are orthogonal, if their product is 0 and that (Sect. 4.4)
the dot product of two (say row) vectors v1 and v2 with n components each, is the
product of an n � 1 matrix (the column vector vT

1 ) and of a 1 � n matrix (the row
vector v2). We point also out that the transpose AT of a matrix A is obtained by
interchanging its rows and columns. Clearly .AT/T D A and it is easy to check (do
it!) that

.AB/T D ATBT :

Moreover, for symmetric matrices, by definition AT D A,

.AvT
1 / � v2 D .AvT

1 /
TvT

2 D v1ATvT
2 D v1AvT

2 D v1 � .AvT
2 /

Using this we get, for the eigenvectors v1, v2 belonging to two different
eigenvalues �1, �1, that is, satisfying AvT

1 D �1vT
1 , AvT

2 D �2vT
2 , that

�1.v1 � v2/ D .�1v1/ � v2 D .AvT
1 / � v2

D v1 � .AvT
2 / D v1 � .�2v2/ D �2.v1 � v2/

Since �2 ¤ 2 this is possible only if v1 � v2 D 0. So eigenvectors belonging into
different eigenvalues are indeed orthogonal, as asserted.

Without loss of generality, we may suppose that the eigenvectors v are unit
vectors (by supposition, they are not 0 and, it v is an eigenvector belonging
to the eigenvalue �, then so is the unit vector .1= jvj/v). A set of orthogonal
vectors, each of which has a norm 1, is called orthonormal. Ignoring, for the time
being eigenvalues with multiplicity >1, we unite the (column) eigenvectors into a
matrix V:

V D .vT
1 ; v

T
2 ; : : : ; v

T
n / D

0

B
B
B
@

v11 v12 : : : v1n

v21 v22 : : : v2n
:::

:::
: : :

:::

vn1 vn2 : : : vnn

1

C
C
C
A
:

It follows from the orthonormality of vT
1 ; v

T
2 ; : : : ; v

T
n that the matrix Vis of rank n.

Indeed, det V ¤ 0 (compare Sect. 4.7) because

VTV D

0

B
B
B
@

v1
v2
:::

vn

1

C
C
C
A
.vT
1 ; v

T
2 ; : : : ; v

T
n /
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D

0

B
B
B
@

v1 � v1 v1 � v2 : : : v1 � vn

v2 � v1 v2 � v2 : : : v2 � vn
:::

:::
: : :

:::

vn � v1 vn � v2 : : : vn � vn

1

C
C
C
A

D

0

B
B
B
@

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

1

C
C
C
A

D I;

which shows also that VT D V�1 for these V.
We transform now the quadratic form

hAhT D
nX

jD1

nX

kD1
ajkhjhk (8.15)

by the linear transformation (function)

hT D VxT : (8.16)

Transposing the last equation, since, as we have seen, .WT/T D W and

.VW/T D WTVT ;

we get

h D xVT :

So, since matrix multiplication is associative (Sect. 4.4),

.hAh/T D .xVT/A.VxT/ D xVTAVxT :

Now

.AV/T D A.vT
1 ; : : : ; v

T
n /

D .AvT
1 ; : : : ;AvT

n /

D .�vT
1 ; : : : ;�vT

n /;

since vT
1 ; : : : ; v

T
n are the eigenvectors belonging to the eigenvalues �1; : : : ; �n. Thus,

if all eigenvalues of A are different,

hAhT D .xVT/.�vT
1 ; : : : ;�vT

n /x
T
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D x

0

B
B
B
@

v1
v2
:::

vn

1

C
C
C
A
.�vT

1 ; : : : ;�vT
n /x

T D x

0

B
B
B
@

�1 0 : : : 0

0 �2 : : : 0
:::
:::
: : :

:::

0 0 : : : �n

1

C
C
C
A

xT

D �1x
2
1 C �2x

2
2 C : : :C �nx2n DW Q.x/

which considerably simplifies the quadratic form.
We supposes all eigenvalues to be different. One can show that a somewhat

similar result holds if some eigenvalues are equal.
Of course, x21; x

2
2; : : : ; x

2
n are nonnegative. So the quadratic form hAhT is

nonnegative or the matrix A is positive semidefinite if, and only if, all eigenvalues of
A are nonnegative (if even one �j would be negative then, for large enough xj, the
value Q.x/ could be negative). Similarly, the quadratic form hAhT or the matrix A
is negative semidefinite if, and only if all eigenvalues of A are nonpositive. One has
to be more careful with positive or negative definite quadratic forms, since

Q.x/ D �1x
2
1 C �2x

2
2 C : : :C �nx2n

may be 0 even if all �j’s are positive (or negative), actually if x1 D : : : D xn D 0,
that is, x D 0. By (8.15) this is the case exactly if h D 0. So the quadratic form
hAhT is positive or negative, respectively. We do not have to worry about h when
we check the positive or negative definiteness of the matrix A rather then that of the
quadratic form hAhT , so the matrix A is positive or negative definite if, and only if,
all its eigenvalues are positive or negative, respectively.

Quadratic forms hTAh, which are positive for some h and negative for others
are called indefinite and therefore matrices which have both positive and negative
eigenvalues are also called indefinite. At points where the Hessian matrix is
indefinite the graph of the function may have line(s) of inflection (compare Fig. 3.31
at which the function changes from convex from below to convex from above
(concave) or from convex from above to convex from below.

Example 1 The characteristic equation of

A D
�
6 �3

�3 6

�

is det

�
6 � � �3
�3 6 � �

�

D .6 � �/2 � 9 D 0

so the eigenvalues are calculated from 6 � � D ˙3, that is, �1 D 3, �2 D 9

(we could have used also the usual formula for the solution of an equation
of second degree). Both eigenvalues are positive, so the matrix (and the
quadratic form 6h21 � 6h1h2 C 6h22 for .h1; h2/ ¤ .0; 0/) is positive definite.

(continued)
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The eigenvectors belonging to �1 D 3 are the vectors .v1; v2/ satisfying

�
6� �1 �3

�3 6 � �1

��
v1

v2

�

D
�
3 �3

�3 3

��
v1

v2

�

D
�
3v1 �3v2

�3v1 3v2

�

D
�
0

0

�

Obviously, these are the vectors .v1; v2/ D .v1; v2/, where v1 2 R. The
eigenvectors belonging to �2 D 9 are the vectors .v1; v2/ satisfying

�
6� �2 �3

�3 6 � �2

��
v1

v2

�

D
��3 �3

�3 �3
��

v1

v2

�

D
��3v1 �3v2

�3v1 �3v2
�

D
�
0

0

�

Obviously, these are the vectors .v1; v2/ D .v1;�v1/, where v1 2 R. Since

ˇ
ˇ
ˇ
ˇ

�
v1

v2

�ˇˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

�
v1

�v1
�ˇˇ
ˇ
ˇ D

q
2v21 D p

2v1

these eigenvectors have norm 1 exactly if v1 D 1=
p
2 D p

2=2. The
eigenvectors .

p
2=2;

p
2=2/ and .

p
2=2;�p

2=2/ are indeed orthogonal:

 p
2

2
;

p
2

2

!

�
 p

2

2
;�

p
2

2

!

D
�
2

4
� 2

4

�

D 0;

so these eigenvectors from an orthonormal set. Here

V D
�p

1=2
p
1=2p

1=2 �p
1=2

�

D VT

and we have indeed

VTAV D
�p

1=2
p
1=2p

1=2 �p
1=2

��
6 �3

�3 6

��p
1=2

p
1=2p

1=2 �p
1=2

�

D
�
3 0

0 9

�

D
�
�1 0

0 �2

�

:

Example 2 Consider function F W R4 ! R, given by

F.x/ D F.x1; x2; x3; x4/ D x41 � 2x1 C x32 � 3x22 C x23 � 4xx:

(continued)
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Calculate the second partial derivatives:

F00
x1x1
.x/ D 12x21; F00

x2x2
.x/ D 6x2 � 6; F00

x3x3
.x/ D 2; F00

x4x4
.x/ D 0

and F00
xjxk
.x/ D 0 if j ¤ k .j; k D 1; 2; 3; 4/:

So the Hessian matrix

F00.x/ D

0

B
B
@

12x21 0 0 0

0 6x2 � 6 0 0
0 0 0 0

0 0 0 0

1

C
C
A

is already of the form

0

B
B
@

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

1

C
C
A :

Therefore the eigenvalues are

�1 D 12x21; �2 D 6x2 � 6; �3 D 2; �4 D 0:

We see that �1, �2 and �4 are always nonnegative, while �2 D 6x2 � 6 � 0

exactly if x2 � 1. So the Hessian is positive semidefinite and F is convex (but not
strictly convex) from below on the domain

f.x1; x2; x3; x4/ j x1 2 R; x2 � 1; x3 2 R; x4 2 R g:

While �4 D 0 always and �1 D 0 for x1 D 0 and �2 D 0 for x2 D 1, the Hessian
cannot be negative semidefinite and F cannot be convex from above (concave)
anywhere because �3 D 2 > 0.

Example 3 The Cobb–Douglas functions F W R2C ! RC (compare Sects.
6.12 and 7.5 defined by (we omit the positive constant multiplier)

F.x/ D F.x1; x2/ D xc1
1 ; x

c2
1

(continued)



8.2 Convexity of Differentiable Functions of Several Variables, Matrix–. . . 385

with positive constants c1, c2 satisfying c1 C c2 � 1, are convex from above
(concave) on R2C; in the case c1 C c2 < 1 even strictly concave on R2CC.
Indeed, the Hessian matrix is

F00.x/ D
�

c1.c1 � 1/xc1�2
1 xc2

2 c1c2x
c1�1
1 xc2�1

2

c1c2x
c1�1
1 xc2�1

2 c2.c2 � 1/xc1
1 xc2�2

2

�

and the characteristic equation is

�2 � .c1.c1 � 1/xc1�2
1 xc2

2 C c2.c2 � 1/xc1
1 xc2�2

2 /�

C c1c2..c1 � 1/.c2 � 1/� c1c2/x
2c1�2
1 x2c2�2

2 D 0:

As mentioned before, symmetric matrices with real entries have real eigen-
values and the Hessian matrix of a twice continuously partially differentiable
function is symmetric. So the eigenvalues are real. Notice that in the charac-
teristic equation the term not containing � is, for x1 2 RCC, x1 2 RCC,

c WD c1c2.1 � c1 � c2/x
2c1�2
1 x2c2�2

2

�
> 0 for c1 C c2 < 1
D 0 for c1 C c2 D 1

while the coefficient of � is

b WD �.cq.c1 � 1/x22 C c2.c2 � 1/x21/xc1�2
1 xc2�2

1 > 0

for all x1; x2 2 RCC, We can see as follows that b is positive:

c1 C c2 � 1; c1 > 0; c2 > 0 so c1 < 1; c2 < 1

thus

c1.c1 � 1/ < 0 and c2.c2 � 1/ < 0:

Now we can write the characteristic equation as

�2 C b�C c D 0

and its solution are

�1 D �b C p
b2 � 4c

2
; �2 D �b � p

b2 � 4c

2
:

(continued)
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Since c � 0, we have b2 � 4c � b2 so b � p
b2 � 4c, �b C p

b2 � 4c � 0,
�b � p

b2 � 4c � 0. Thus both eigenvalues are nonpositive, even negative if
c > 0, that is for x1 > 0, x2 > 0, c1 ¤ c2 < 1. Thus, in the case c1Cc2 < 0 the
Cobb–Douglas Function F is strictly convex from above (strictly concave) on
R2CC. If x1 D 0 or x2 D 0 then b=c=0 and �1 D �2 D 0. Also if c1 C c2 D 0

then c D 0, so �1 D 0 even if x1 > 0, x2 > 0). Thus, these cases, the Cobb–
Douglas function F is convex from above (concave only in the broader sense
on R2C (if c1 C c2 D 1 then even on R2CC), as asserted.

We will need characteristic equations and eigenvalues in Chaps. 11 and 12 in the
context of systems of differential and difference equations again.

Of course, we only know how to solve equations of second degree explicitly
and there exist such explicit formulas only for equations of up to fourth degree. So
the following conditions for positive or negative definiteness or semi-definiteness,
which we present without proof, are of importance. For

A D

0

B
@

a11 : : : a1n
:::

:::

an1 : : : ann

1

C
A

the determinants

Dj WD det

0

B
@

a11 : : : a1j
:::

:::

aj1 : : : ajj

1

C
A . j D 1; 2; : : : ; n/

are called principal minors of det A. A matrix A (or the quadratic form hTAh) is
positive definite if, and only if,

Dj > 0 .j D 1; : : : ; n/:

However A is negative definite if, and only if alternatingly

D1 < 0; D2 > 0; D3 < 0; : : : .�1/jDj > 0

. j D 1; : : : ; n/. This is easy to see when A is of the diagonal form

0

B
B
B
@

�1 0 : : : 0

0 �2 : : : 0
:::
:::
: : :

:::

0 0 : : : �n

1

C
C
C
A
:
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Indeed, then

Dj D det

0

B
B
B
@

�1 0 : : : 0

0 �2 : : : 0
:::
:::
: : :

:::

0 0 : : : �n

1

C
C
C
A

D �1�2 : : : �n

is positive for all j D 1; 2; : : : ; n if, and only if

�1 > 0; �2 > 0; : : : �n > 0:

but alternating if, and only if,

�1 < 0; �2 < 0; : : : �n < 0:

Example 4 The Hessian matrix of the function F W Rn ! R, defined by

F.x/ D F.x1; x2; x3/ D 12C 6x1 � 3x2 C 6x3 C 6x1x3 � 3x21 C x22 � 9x23

is

F00.x/ D
0

@
�6 0 6

0 6x2 0

6 0 �18

1

A :

On the domain

f.x1; x2; x3/ j x1 2 R; x2 < 0; x3 2 R g (8.17)

we have

D1 D �6 < 0; D2 D �36x2 > 0

D3 D 648x2 � 216x2 D 432x2 < 0:

So F00.x/ is negative definite and thus F is strictly convex from above
(concave) on (8.17). On the other hand, on the domain

f.x1; x2; x3/ j x1 2 R; x2 2 RCC; x3 2 R g;
d1 D �6 < 0; d2 D �36x2 < 0; d3 D 432x3 > 0:

(8.18)
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So A is neither positive nor negative definite on (8.18) and thus, F is not strictly
convex either from above or from below on R � RCC � R.

Actually, this F is neither convex or concave even broader sense on the
domain (8.18). Indeed, the characteristic equation of F00.x/ is

0 D det

0

@
�6 � � 0 6

0 6x2 � � 0

6 0 18� �

1

A

D .�6 � �/.6x2 � �/.�18 � �/ � 36.6x2 � �/

D .6x2 � �/..6C �/.18C �/� 36/ D .6x2 � �/.�2 C 24�C 72/:

Thus

�1 D �12C
p
122 � 72 D � 3:5147 : : : < 0;

�2 D �12�
p
122 � 72 D �20:4852 : : : < 0;

�3 D 6x2;

so F00.x/ is indefinite in (8.18), from which our statement follows. (Notice
that we have had no result connecting semidefiniteness or indefiniteness with
D1;D2;D3; : : :).

8.2.1 Exercises

1. (a) Determine the Hessian matrix H (D F00) of the function F W R2 ! R given
by F.x; y/ D x2 � 4x C y2 C 6y.

(b) Is F convex (from below or above) on R2?
2. (a) Determine the Hessian matrix H (D G00) of the function G W R2 ! R given

by G.x; y/ D x2 C 5xy3 C 2y.
(b) Is H.x; 0/, that is H at the points .x; y/ D .x; 0/, positive or negative definite

or neither?
3. Is the function f W R2CC ! R given by f .x; y/ D x2y2 C 2y C 3 convex (from

below or above) an a neighbourhood of some point .x�; y�/ 2 R2CC?
4. Determine the Hessian matrix H for the quadratic form give by
.x1; : : : ; xn/A.x1; : : : ; xn/

T , where A is a (n,n)-matrix of real constants.
5. On which subset of R2 is the function g W R2 ! R, defined by g.x; y/ D �4xy �

y2, strictly convex from above?
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8.2.2 Answers

1. (a) H D
�
2 0

0 2

�

,

(b) F is convex from below on R2 since H is positive definite on R2.

2. (a) H D
�

2 15y2

15y2 30xy

�

,

(b) H.x; 0/ D
�
2 0

0 0

�

, that is, H is positive semidefinite at .x; 0/.

3. No: The Principal minors of the determinant of the Hessean matrix H.x; 0/ D�
2y2 4xy
4xy 2y2

�

are D1 D 2y2 and d2 D 4x2y2 � 16x2y2, that is D1 > 0, D2 < 0

at each point of R2CC. The Hessean is indefinite on R2CC, hence there is no
neighborhood of a point .x�; y�/ 2 R2CC on which f is convex.

4. H D 2A.

5. The Hessean of g is

��12x2 �4
�4 �2

�

. The principal minor D1 of the determinant

equals �12x2 < 0 for x ¤ 0. The principal minor D2 D 24x21 � 16. This is <0
for all jxj < p

2=3 and >0 for all jxj > p
2=3. Hence g is strictly convex from

above on � � 1;�p2=3Œ�R and on �
p
2=3;1Œ�R.

8.3 Quadratic Approximation. Maxima andMinima
of Functions of Several Variables

The economic objective of reaching a goal with the least possible effort (expense)
or obtain maximal yield by use of given means makes it important to determine
maxima and minima of functions, in particular of functions in several variables. If
the function is, for instance, the cost function of a firm then the task is to minimise
the cost; if it is the utility function of a household or the profit function of a firm
then we talk about maximising utility or profit.

We will be able to progress in analogy to and by use of what we learnt in
Sects. 5.2, 6.3 and 6.9. We will need just three new concepts: those of bounded
closed (compact) sets, orders of magnitude and saddle points.

As we saw in Sect. 6.3 (Properties 1, 2), not even continuous functions of one
variable need to be bounded on intervals, which are not closed and, even if they
are bounded, they need not assume their greatest and/or smallest value (maximum
or minimum) on that interval. Both situations changed, however, when the intervals
were closed.

In Sect. 3.3 we have defined closed n-dimensional intervals. Here we will need
more general n-dimensional closed sets. (For n D 1 every closed set consists
of closed intervals, that is the reason why we did not need this generalisation
before). We defined n-dimensional neighbourhoods in Sects. 6.11 and 6.12 and we
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defined limits of one-dimensional sequences in Sect. 6.2. In complete analogy, an
n-dimensional (real) sequence is a function f W N ! Rn, denoted by ff.k/g or fakg
or fa1; a2; : : :g. It converges to a or has a as limit, in symbols

lim
k!1 ak D a;

if, for every neighbourhood of a there exists a K such that all ak (k > K) will
be contained in that neighbourhood. While for one-dimensional sequences we
considered also infinity as limit, this is not the case here. Sequences which converge
to a (finite) a are again called convergent. Of course, all terms ak (function values
f.k/ of a convergent series) may be in a set S � Rn (that is, the sequence is in S) but
its limit may still not be in S. For instance, ak D . 1k ;

1
k2
/ 2 S D RCC2 but its limit

lim
k!1

�
1

k
;
1

k2

�

D .0; 0/ 62 R2CC:

If, for every convergent sequence in S, also its limit is in S then S is closed.
For instance, as we have just seen, R2CC is not closed. Neither is the open ball

fx 2 Rn j jxj < 1 g:

But the sets

S1 D fx 2 Rn j jx � bj � r g; (closed ball)

S2 D
n
.x; y/ 2 R2

ˇ
ˇ
ˇ x2

a2
C y2

b2
� 1

o
;

S3 D R2C;

S4 D ˚
.x; y/ 2 R2C j xy � 1

�

are closed. Of course, there are sets which are neither open (see Sects. 3.2 and 6.8)
nor closed, for instance (check this, and also the above; compare Fig. 8.2)

S5 D ˚
.x; y/ 2 R2 j a < x � b; c � x < d

�
;

S6 D ˚
.x; y; z/ 2 R3 j x � 0; y > 0; z � 0

�
:

Among the above sets S1, S2, S5 are bounded, S3, S4, S6 are not bounded. A set
S � Rn is bounded if there exists an r 2 RC such that

jxj � r for all x 2 S

(compare Fig. 8.3). A set S � Rn which is both closed and bounded is called
compact (for more general sets there is a more general definition but for Rn this
will do). So, among the above sets S1 and S2 are compact.
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S

r

b

b

b

0

0

b

a

S

0

S

0

S

0

S

a b

c

d

0

S

Fig. 8.2 In R2, S0
1, S2 are compact; S5 bounded but not closed; S3, S4 closed but not bounded; S0

6

neither closed nor bounded

0

S

Fig. 8.3 Bounded set S

Of course, here too, a real valued function F W S ! R (S 
 Rn) is called bounded
from above or below on C 
 S if there exist m;M 2 R such that

F.x/ � m or F.x/ � M; respectively, for all x 2 C:

If a function is bounded both from above and from below on C the it is bounded
on C.
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Now we can state the analogues of Properties 1 and 2 in Sect. 6.3. (We will not
prove them here as we had not proved them there either. Analogues of the counter
examples given there show that the compactness condition cannot be dropped).

Every function F W S ! R (S 
 Rn) continuous on a compact set C 
 S is
bounded on C and assumes its greatest and its smallest value (its maximum and
minimum) an C.

It is a fundamental property of real numbers that, if a real valued function
(continuous or not) is bounded from below or from above on a set S (finite or
not, closed or not) then there exists a greatest lower bound and a least upper
bound (called infimum and supremum, respectively) of the function values S. More
formally: If there exist m;M 2 R such that

F.x/ � m or F.x/ � M for x 2 S

then there exist m0;M0 2 R such that

inf
x2S

F.x/ WD m0 � F.Qx/ or sup
x2S

F.x/ WD Mo � F.Qx/ .Qx 2 S/;

respectively, but for all m0 > m0 there exists an x0 2 S such that F.x0/ < m0 or for
all M0 < M0 there exists an x00 2 S such that F.x00/ > M0, respectively. So the above
second property can be formulated so that for continuous functions on a compact
set, the infimum is the minimum and the supremum is the maximum.

These are also nice results but for the above mentioned practical purposes it is
of at least as much importance to know how to calculate the maxima and minima.
(Actually, the above considerations showed also that in some cases there exists no
maximum or minimum. For instance, for .x; y/ 7! 2x C y on �0; 1Œ2 the infimum
is 0, the supremum is 3 but there exists neither a maximum nor a minimum, while
.x; y/ 7! x=y is not even bounded from above on �0; 2�2).

We saw in Sect. 6.8 how to find local and global minima and maxima for
functions of several variables. The definition of global and local minima (and
maxima) is similar here too: If a 2 S and

F.x/ � F.a/ for all x 2 S

then there is a global minimum at a for F W S ! R (strict global minimum if > holds
for all x 6D a in S) and similarly for (strictly) global maxima. We did not require here
that S is compact. We define local minima and maxima at interior points a of S, that
is (see Sect. 6.8), if there is a neighbourhood of a completely in S. If there exists a
neighbourhood N.a/ � S of a such that

F.x/ � F.a/ for all x 2 N.a/ (8.19)

then there is a local minimum at a (strictly local minimum) if we have > for x 6D a)
and similarly for (strict) local maxima.
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As we saw in Sect. 6.8, local maxima and minima need not be global. There are
cases, however, when they are. One is the following. Let F be convex from below on
the open convex set S (see Sect. 3.4) and have a local minimum at a 2 S. Then this
will be a global minimum on S. Indeed, since F is convex from below on the convex
set S, we have for all z 2 S and all � 2�0; 1Œ, that �a C .1 � �/z 2 S and

F.�a C .1 � �/z/ � �F.a/C .1 � �/F.z/:

Suppose for contradiction that there exists a z 2 S with

F.z/ < F.a/: (8.20)

The closer � is to 1, the closer �a C .1 � �/z gets to a so, for � close enough to 1,
we will have x D �a C .1��/z in that neighbourhood N.a/ for which (8.19) holds.
Thus

F.a/ � F.x/ D F.�a C .1 � �/z/ � �F.a/C .1 � �/F.z/

< �F.a/C .1 � �/F.a/ D F.a/;

which is impossible (it would mean F.a/ < F.a/). So (8.20) cannot hold for any
z 2 S, that is,

F.z/ � F.a/ for all z 2 S;

and so F has a global minimum at a, as asserted. Similarly, if F is convex from above
(concave) on the open convex set S and has a local maximum at a then this is also a
global maximum on S. Similar statements hold for strict maxima and minima. While
we needed here no differentiability of F, we will need it in what follows. Similarly
as we did in Sect. 6.8 with convexity, we intend to reduce now the finding of local
maxima and minima of functions in several variables to dealings with functions in a
single variable.

We first use the law of the mean for functions of several variables: If p and p C h
are interior points of the convex set S 
 Rn and if F W S ! R is differentiable, then

F.p C h/� F.p/ D h � rF.p C �h/ for some � 2�0; 1Œ;

as we derived it in Sect. 6.8 from the formula (8.20) of that section (we use here p
rather than x). As in Sect. 6.8, we may also write

rF D F0 D
�
@F

@x1
; : : : ;

@F

@xn

�

and so F.p C h/ � F.p/ D F0.p C �h/ � h:

(8.21)

(We wrote r and F0 bold faced to emphasise that they are vectors, even though F is
scalar-valued.)

Up to here we needed only the differentiability of F.
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Suppose now that the partial derivatives @F=@x1; : : : ; @F=@xn are continuous on
S (then it follows also that F is differentiable on S). Since in this case

lim
x!p

.F0.x/� F0.p// D 0;

therefore, writing

d.x/ WD F0.x/� F0.p/;

we have

F0.x/ D F0.p/C d.x/; where lim
x!p

d.x/ D 0: (8.22)

Thus (8.21) becomes

F.p C h/� F.p/ D F0.p/ � h C d.p C �h/ � h D F0.p/ � h C R.p;h/: (8.23)

Here R.p;h/ WD F.p C h/ � F.p/ � F0.p/ � h D d.p C �h/ � h corresponds to the
remainder R1 of the Taylor series in Sect. 6.7. We show that

lim
jhj!0

1

jhjR.p;h/ D lim
jhj!0

d.p C �h/ � h
jhj D 0: (8.24)

Indeed, jhj D .h21 C � � � h2n/
1
2 ! 0 implies h1 ! 0, h2 ! 0, � � � , hn ! 0, that is,

h D .h1; � � � ; hn/ ! 0. So, by (8.22),

lim
jhj!0

d.p C �h/ D 0; in components lim
jhj!0

dj.p C �h/ D 0; .j D 1; : : : ; n/:

(8.25)

As a consequence we have (8.24):

lim
jhj!0

R.p;h/
jhj D lim

jhj!0

�

d1.p C �h/ � h1
jhj C : : :C dn.p C �h/ � hn

jhj
�

D 0;

(8.26)

since
ˇ
ˇhj

ˇ
ˇ � .h21 C � � � h2n/

1
2 D jhj, that is,

ˇ
ˇ
ˇ
ˇ

hj

jhj
ˇ
ˇ
ˇ
ˇ � 1 .j D 1; : : : ; n/; if jhj 6D 0

and, by (8.25) and the definition of limit in Sects. 6.2 and 6.10, to every "0 > 0 there
exists a ı > 0 such that

ˇ
ˇdj.p C �h/

ˇ
ˇ < "0 D "=n if jhj < ı .j D 1; : : : ; n/
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so, by the triangle inequality (see Sects. 1.6 and 1.7)

ˇ
ˇ
ˇ
ˇ.d1.p C �h/ � h1

jhj C : : :C dn.p C �h/ � hn

jhj
ˇ
ˇ
ˇ
ˇ

� j.d1.p C �h/C : : :C dn.p C �h/j < " if jhj < ı

which is exactly (8.26) (with "0 also " D n"0 is as small as we want to make it).
The statement (8.24) is verbalised as follows: R is of order 1 in jhj (second order

will soon follow). In formula:

R.p;h/ D o.jhj/ and F.p C h/ � F.p/ D F0.p/ � h C o.jhj/;

in view (8.23); or, equivalently,

F.x/ D F.p/C F0.p/ � .x � p/C o.jx � pj/: (8.27)

This is just a more exact formulation of the statement at the end of Sect. 6.10 about
linear approximation and differentials. The first two terms on the right hand side
of (8.27) form an affine linear function of x, the linear approximation of F at p (see
Fig. 7.4).

We can often approximate the value of a function better by quadratic approxi-
mation that is, by a quadratic polynomial (see Sect. 7.4 (7.3)) in place of the linear
polynomial F.p/C 0.p/ � .x�p/ in (8.27). This will be particularly useful for finding
conditions for maxim and minima of functions of several variables.

As indicated above, we want to reduce the problem to finding quadratic
approximations, maxima and minima for a function of one variable. We define, as
in Sect. 8.2 (7.2),

g.r/ WD F.p C rh/: (8.28)

We apply the Taylor formula with first degree (affine) polynomial part and with the
remainder in the Lagrange form (Sect. 6.7 (6.11)):

g.r/ D g.0/C g0.0/r C 1

2
g00.�/r2 .r 2 Œ0; 1�/ (8.29)

which holds for some � 2�0; 1Œ, if g is twice differentiable on an interval containing
Œ0; r� (we have here a D 0, so really a “MacLaurin formula”, and wrote r in place of
x and � instead of � which, of course, does not change its validity). As in Sect. 6.8,
the continuity of the second partial derivatives of F in (8.28) implies that g has a
continuous second derivative.
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By repeated use of the chain rule in Sect. 6.5, we get (compare Sect. 6.8 (7.2)
and (7.19):

g0.r/ D F0.p C rh/ � h;

g00.r/ D hF00.p C rh/hT :

So (8.28) and (8.29) (at r D 1) yield

F.p C h/ D F.p/C F0.p/ � h C 1

2
hF00.p C �h/hT :

(Remember that F is a scalar valued function of a vector, consequently F0 is vector
valued and F00 is matrix valued, it is the Hesseean matrix). Since F00, (thus also every
component of the Hessian matrix F00) is continuous, we can write (compare (8.22))

F00.p C �h/ D F00.p/C 2D.p C ��h/; lim
h!0

D.p C ��h/ D 0

(D now matrix valued; the factor 2 is harmless but simplifies what follows; � 2�0; 1Œ,
�� 2�0; �Œ) and get

F.p C h/ D F.p/C F0.p/ � h C 1

2
hF00.p/hT C hD.p C ��h/hT : (8.30)

But exactly as (8.24), one can show that

lim
h!0

�
1

jhj2 hD.p C ��h/hT

�

D 0

which we express so that hD.p C ��h/hT is of order 2 in jhj; in formula:

hD.p C ��h/hT‹o.jhj2/; where lim
h!0

o.jhj/2
h2

D 0:

So, in view of (8.30),

F.p C h/ D F.p/C F0.p/ � h C 1

2
hF00.p/hT C o.jhj2/

or, what is the same, we have

F.x/ D F.p/C F0.p/ � .x � p/C 1

2
.x � p/F00.p/.x � p/T C o.jx � pj2/ (8.31)

if F has continuous second partial derivative on a convex set containing p and bx.
The first three terms on the right hand side of (8.31) form a polynomial of second

degree, the quadratic approximation of F at p (see Fig. 8.4).
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Fig. 8.4 Spatial graphs of
linear and quadratic
approximations of a function
F W R2

C ! R at p D .p1; p2/

Now we get to local maxima and minima of functions of several variables at
interior points (as in Sect. 6.7 we will use occasionally “extremum” as a common
name for maximum or minimum). If F.p/ is maximal among all values of F on a
neighbourhood N.p/ then it will be maximal also among the values at

. p1; : : : ; pj�1; xj; pjC1; � � � ; pn/ in N.p/:

But these values are those of the partial function

xj 7�! F.p1; : : : ; pj�1; xj; pjC1; � � � ; pn/; (8.32)

so it too should have a local maximum at xj D pj. Thus, if the derivative of this
function, that is @F=@xj, exists on a neighbourhood of p then, by what we learned in
Sect. 6.8,

@F

@xj
.p/ D 0 .j D 1; : : : ; n/ (8.33)
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is necessary for F to have a local maximum—or, similarly, a local minimum,
generally: a local extremum—at p, As in the case n D 1 (see (6.19) in Sect. 6.11)
we call a point p satisfying (8.33), a critical or stationary point of F.

Already for functions in one variable we have seen in Sect. 6.8 that this condition
is not sufficient. We can construct examples which follow the same pattern as there,
for instance F W R2 ! R, defined by

F.x1; x2/ D x31 C 2x32;

satisfies @F=@x1 D @F=@x2 D 0 (only) at x1 D x2 D 0 but there is neither
local maximum nor local minimum at that point not even for the partial functions
(Fig. 8.5).

For functions of several variables we have, however, also a new phenomenon: the
saddle point. We can see it (Fig. 8.6; compare Fig. 3.26) on the function F W R2 ! R

given by

F.x1; x2/ D x21 � x22I here
@F

@x1
.0; 0/ D @F

@x2
.0; 0/ D 0

Fig. 8.5 For the function
F W R2 ! R given by
F.x1; x2/ D x31 C 2x32 we have
@F
@x1
.0; 0/ D @F

@x2
.0; 0/ D 0 but

both x1 7! F.x1; 0/ D x31 and
x2 7! F.0; x2/ D 2x32 keep
increasing: no local extremum

x y

z

Fig. 8.6 For the function
F W R2 ! R given by
F.x1; x2/ D x21 � x22 there is
@F
@x1
.0; 0/ D @F

@x2
.0; 0/ D 0 and

the partial functions
x1 7! F.x1; 0/ D x21,
x2 7! F.0; x2/ D �x22 have
(local) extrema at 0 but the
first has a minimum, the
second a maximum there: F
has a saddle point at .0; 0/ x

y

z
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and indeed both partial functions

x1 7! F.x1; 0/ D x21 and x2 7! F.0; x2/ D �x22

have local extrema at 0, but the first a maximum, the second a minimum. Clearly, F
has no local extremum at 0:

F.0; 0/ D 0; F.0; "/ D �"2 < 0; F."; 0/ D "2 > 0;

no matter how small the positive " is. Such points are called saddle points.
In general, if all partial functions (8.32) have a local extremum at xj D pj

(j D 1; : : : ; n) but at least one partial function has a local maximum and at least one
other a local minimum (both strict) then the critical point .p1; : : : ; pn/ is a saddle
point of F. Saddle points can appear also in other ways. Take, for instance, the
function F W R2 ! R given by

F.x1; x2/ D x21 C x22 � 3x1x2

(Fig. 8.7). We have

@F

@x1
.0; 0/ D @F

@x2
.0; 0/ D 0;

both partial functions x1 7! F.x1; 0/ D x21, x2 7! F.0; x2/ D 2x22 have a minimum
at 0 but the vertical 45ı “cut” x 7! F.x; x/ D �x2 has a maximum at 0. Again, F
has no local extremum at 0: F.0; 0/ D 0, F.0; "/ D "2 < 0, F."; "/ D �"2 < 0,
no matter how small the positive " is. One may stop worrying about the different

x y

z

Fig. 8.7 For the function F W R2 ! R given by F.x1; x2/ D x21 Cx22�3x1x2 we have @F
@x1
.0; 0/ D

@F
@x2
.0; 0/ D 0 and the partial functions x1 7! F.x1; 0/ D x21 , x2 7! F.0; x2/ D x22 have a minimum

at 0 but x 7! F.x; x/ D �x2 has a maximum at 0: F has a saddle point at .0; 0/
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possibilities by defining a saddle point as a critical point p (see (8.33)) at which
F.p/ is neither a local maximum or a local minimum of F.

So, if (8.33) is not sufficient for F to have a local extremum at p, what is?
We go back to (8.31) for that. Since the condition (8.33) is necessary, at local
extrema (8.31) reduces to

F.x/� F.p/ D 1

2
.x � p/F00.p/.x � p/T C o.jx � pj2/: (8.34)

By definition, F has a strict (sharp) local minimum at p if there exists a punctured
neighbourhood N0.p/ of p (p 62 N0.p/) such that

F.x/� F.p/ > 0 for all x 2 N0.p/:

This is certainly the case if, in (8.34), the quadratic form

1

2
.x � p/F00.p/.x � p/T

is positive definite, as defined in Sect. 8.2 (or, what is the same, the Hessian matrix
F00.p/ is positive definite). Indeed, then also

1

2

x � p
jx � pjF00.p/

�
x � p
jx � pj

�T

(8.35)

is positive definite (see Sect. 8.2; as it happens, F is also strictly convex from below
on a neighbourhood of p). This expression depends upon x only through 1

jx�pj .x�p/

and 1
jx�pj .x � p/T . Both these vectors (really the same vector in row and column

form) have norm 1, so they lie on the n-dimensional unit sphere

C1 D fz 2 Rn j jzj D 1 g

which is a closed and bounded (compact) set on which (8.35) is clearly continuous.
So, by what we stated about maxima and minima of continuous functions on
compact sets earlier in this section, (8.35) has a minimum on C1, and assumes
it. Since (8.35) is positive definite, it is positive everywhere (because x � p D 0
is excluded). So the minimum of (8.35), which is the value of (8.35) at some
.x0 � p/=

ˇ
ˇx0 � p

ˇ
ˇ 2 C1, is positive and independent of x, say � > 0. But, by

definition,

lim
x!p

o.jx � pj2/
jx � pj2 D 0:
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Take x in a punctured neighbourhood N0.p/ of the point p so small, such thatˇ
ˇ
ˇo.jx � pj2/= jx � pj2

ˇ
ˇ
ˇ < �=2, then (8.34) gives

F.x/� F.p/

jx � pj2 D 1

2

x � p
jx � pjF00.p/

�
x � p
jx � pj

�T

C o.jx � pj2/
jx � pj2

> � � �

2
D �

2
> 0:

(The worst effect ı D o.jx � pj2/=jx � pj2 can have on the first term on the right is
to diminish it by jıj. Diminishing it by �=2 > jıj decreases the right hand side even
more). Both then indeed

F.x/� F.p/ > 0 for all x 2 N0.p/:

So we have proved that, if F0.p/ D 0 and F00.p/ is positive definite, then F has
a sharp local minimum at the (interior) point p. This implies also (just take F0 in
place of F) that, if at the interior point p we have F0.p/ D 0 and F00.p/ is negative
definite, then F has a sharp local maximum at p.

One can check also (do it!) that, if IF00.p/ is indefinite then F cannot have a
local extremum at the critical point p, not even in the wider sense. Even if F00.p/ is
(positive or negative) semidefinite and F0.p/ D 0, it can happen that F has no local
extremum at p.

In Sect. 8.2 we saw how to determine whether a symmetric (Hessian) matrix is
positive or negative definite, semidefinite or indefinite. We remind the reader that
global extrema may be assumed, if at all, not only where there is a local extremum
in the interior but also on the boundary. Moreover, even local extrema in the interior
may be located at points where F is not differentiable.

Examples

1. F.x/ D jx1j C : : : C jxnj (x D .x1; : : : ; xn/ 2 Rn). There is a local and
global minimum at x D 0 where F is not differentiable (not even partially
differentiable with respect to any xj).

2. F.x/ D x1 C x22 C : : : C xn
n. On Œ0; 1�n there is a global maximum at 1 D

.1; 1; : : : ; 1/ even though F0.1/ D . @F
@x1
.1/; : : : ; @F

@xn
.1// D .1; 2; : : : ; n/ 6D

0 (all partial derivatives are taken “from the left”).
3. F.x/ D 1C 6x1 � 3x2 C 6x3 C 6x1x3 � 3x21 C x32 � 9x23 for .x1; x2; x3/ 2 R3

(compare Sect. 7.2, Example 4). Local extrema can exist only where

@F

@x1
D 6C 6x3 � 6x1 D 0;

(continued)
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@F

@x2
D �3C 3x22 D 0;

@F

@x3
D 6C 6x1 � 18x3 D 0:

We solve this system of equations. From the second equation x2 D 1

or x2 D �1. The first and third equation form a system of two linear
equations for the two unknowns x1 and x3. Solving it by methods in
Sect. 4.6 or directly, we get x1 D 2, x3 D 1. So there may be local extrema
only at .2; 1; 1/ or .2;�1; 1/. In Sect. 8.2, Example 4, we saw that the
Hessian matrix F00.x/ of this function is negative definite for negative x2
but indefinite for positive x2 (whatever x1 and x3 are). So the above F has
a strict local maximum at .2;�1; 1/ but no local extremum at .2; 1; 1/.

As we have also seen in Sect. 8.2, this F is strictly convex from above
(strictly concave) on

f.x1; x2; x3/ j x1 2 R; x2 2 R��; x3 2 R g: (8.36)

According to the result earlier in this section about the globality of local
maxima on domains where F is concave, the above F has a strict global
maximum at .2;�1; 1/ (8.36). On R3, however, no global maximum
exists—also no global minimum—because

lim
x2!1 F.0; x2; 0/ D lim

x2!1 x2

�
1

x2
� 3C x22

�

D 1I

lim
x2!�1 F.0; x2; 0/ D �1:

4. F.x1; x2/ D x31Cx32�3x1x2 (x1; x2 2 R). Local extrema can be only where

@F

@x1
D 3x21 � 3x2 D 0 and

@F

@x2
D 3x22 � 3x1 D 0:

From the first equation x2 D x21 and from the second x1 D x22 D x41. But
0 D x41 � x1 D x1.x31 � 1/ has only x1 D 0 and x1 D 1 as real solutions.
The x2.D x21/ values belonging to them are 0 and 1. So there can be local
extrema only at .0; 0/ and .1; 1/. Since

@2F

@x21
D 6x1;

@2F

@x1@x2
D �3; @2F

@x22
D 6x2;

(continued)
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the Hessian matrices at .0; 0/ and at .1; 1/ are

F00.0; 0/ D
�

0 �3
�3 0

�

and F00.1; 1/ D
�

6 �3
�3 6

�

;

respectively. The eigenvalues of the first matrix are (see Sect. 8.2 (8.27))
the solution of

0 D det

��� �3
�3 ��

�

D �2 � 9; that is, �1 D 3; �2 D �3;

one positive, one negative. Therefore, as we saw in Sect. 8.2, F00.0; 0/ is
indefinite. So F has no local extremum at .0; 0/, which is thus a saddle
point. Indeed, F.0; 0/ D 0, F.0; "/ D "3 > 0 but F.�"; 0/ D �"2 < 0,
no matter how small " > 0 is. On the other hand, the eigenvalues of the
second matrix are the solutions of

0 D det

�
6 � � �3
�3 6� �

�

D .6 � �/2 � 9;

that is, 6 � � D ˙3; so �1 D 3; �2 D 9;

both positive (see Sect. 8.2, Example 1). Thus F00.1; 1/ is positive definite
and F has a strict local minimum at .1; 1/. Again there exists no global
maximum and no global minimum on R2 because

lim
x!1 F.x; x/ D lim

x!1.2x3 � 3x2/ D lim
x!1 x3.2 � 3

x
/ D 1

and lim
x!�1 F.x; x/ D �1:

5. In our concluding example we suppose that a monopolist sells n goods
at the prices p1; : : : ; pn, respectively. Let G W RnCC ! RnCC be the price-
demand function which assigns to the price vector p D .p1; : : : ; pn/ the
vector of quantities q D .q1; : : : ; qn/ which can be sold at those prices
during a fixed time interval:

q D G.p/

So q1p1 C : : : C qnpn D q � p are our monopolists cash receipts. If
C.q/ (C W RnCC ! RCC) is the cost connected to the production of the
quantities q then the gross profit is

F.p/ D q � p � C.q/ D G.p/ � p � C.G.p//:

(continued)
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Let us try to maximise this profit. We suppose in this example that n D 2

and that both C and G are affine, say, numerically

G.p1; p2/ D .10�3p1C2p2; 15C p1�4p2/; C.q1; q2/ D 5C q1C q2:

So q1 D 10� 3p1 C 2p2, q2 D 15C p1 � 4p2 and

F.p1; p2/ D 10p1 � 3p21 C 2p1p2 C 15p2 C p1p2 � 4p22

�5 � 10C 3p1 � 2p2 � 30� 2p1 C 8p2

D �45C 11p1 C 21p2 � 3p21 C 3p1p2 � 4p22: (8.37)

(Notice that, because of the economic context, we here denoted the
variables by p1, p2 rather than x1, x2). Here F can have local extrema where

@F

@p1
D 11� 6p1 C 3p2 D 0;

@F

@p2
D 21C 3p1 � 8p2 D 0:

Solving this system of two linear equations, we get the critical points p1 D
151=39, p2 D 53=13.

So there can be a local extremum only at .151=39; 53=13/ 
.3:87; 4:08/. Since

@2F

@p21
D �6; @2F

@p1@p2
D 3; :

@2F

@p22
D 8;

the Hessian matrix is everywhere constant:

F00 D
��6 3

3 �8
�

:

By what we learnt near the end of Sect. 8.2, the fact that the sectional
determinants (principal minors, see Sect. 8.2)

D1 D �6 < 0; D2 D det

��6 3

3 �8
�

D 48� 9 D 39 > 0

are alternating means that the Hessian H is negative definite everywhere
so, on one hand the above F is strictly convex from above (strictly concave)
everywhere, on the other hand it has at .151=39; 53=13/ a strict local

(continued)
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maximum on R2CC. By our result already quoted in Example 3, this is also
a strict global maximum on R2CC.

So the maximal gross profit will be

F.
151

39
;
53

13
/ D �45C 11 � 151

39
C 21 � 53

13
� 3 � 151

2

392
C 3 � 151

39
� 53

13

� 4 � 53
2

132
 19:10;

attained with the prices p1  3:87, p2  4:08 and with the sale quantities

q1 D 10 � 3 � 151
39

C 2 � 53
13

D 85

13
 6:54;

q2 D 15 � 151

39
� 4 � 53

13
D 100

13
 2:56:

If the quantities q1, q2 are given (constants), then the problem is one of a
conditional extremum, that of determining the maximum of the function F
of p1 and p2 given by (8.37), under the restriction (condition)

10� 3p1 C 2p2 D q1; 15C p1 � 4p2 D q2

with given q1, q2. We will deal with conditional extrema in Sect. 8.5 but
first we give an important application to econometrics of the results and
methods which we have just learnt.

8.3.1 Exercises

1. (a) For the function F W R2 ! R given by F.x; y/ D x2�4xCy2C6y determine

all points .x�; y�/ at which
@F

@x
.x; y/ D 0 and

@F

@y
.x; y/ D 0.

(b) At which of these points does F have a local maximum or minimum? Why?
(c) Determine the values of F at these maximising or minimising points. Which

ones are global?
2. Answer similar questions as in Exercise 1 for the function G W R2 ! R given by

G.x; y/ D x2 C 5xy3 C 2y.
3. Answer similar questions as in Exercise 1 for the function g W R2 ! R given by

g.x; y/ D x � x4 � 4xy � y2.
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4. Determine place .x�; y�/, kind and function value of the local extrema or saddle
points of the functions f W R2 ! R

(a) f .x; y/ D .x2 C 2y2/e�x2 ,
(b) f .x; y/ D x3y2.1 � x � 2y/,
(c) f .x; y/ D x2.6 � x/y2e�y.

5. Consider differentiable functions F W R2 ! R satisfying
@F

@x1
.0; 0/ D 0,

@F

@x2
.0; 0/ D 0.

(a) Give an example of such a function satisfying
x1 7! F.x1; 0/ is strictly increasing,
x2 7! F.0; x2/ is strictly decreasing.

(b) Same problem for the properties
x1 7! F.x1; 0/ is strictly increasing,
x 7! F.x; x/ is strictly decreasing.

(c) Same problem for the properties
x1 7! F.x1; 0/ is strictly increasing,
x2 7! F.0; x2/ has a maximum at x2 D 0,
x 7! F.x; x/ has a local maximum at x D 0.

8.3.2 Answers

1. (a) .x�; y�/ D .2;�3/.
(b) At .x�; y�/ D .2;�3/ there is a minimum of F since

H D F00.x; y/ D
�
2 0

0 2

�

;

the Hessean of F, is positive definit.
(c) F.2;�3/ D �13. This minimu is global since F00.x; y/ is positive definit on

the whole of R2.
2. (a) .x�; y�/ D .� 15

2
. 4
225
/3=5; . 4

225
/1=5/ D .�0:668325; 0:446658/.

(b) This point .x�; y�/ is a saddle point of G, that is, at .x�; y�/ there is neither a
(local) maximum nor a (local) minimum of G, since the Hessean

G00 D
�

2 15y2

15y2 30xy

�

with det G00 D 60xy � 225y4 < 0 at .x�; y�/.
3. (a) .x�; y�/ D .1:473;�2:946/.

(b) At .x�; y�/ there is a local maximum of g since the principal minor D1 of

the Hessean of g, g00.x; y/ D
��12x2 �4

�4 �2
�

, equals �12x2 (<0 for x 6D 0)
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and the principal minor D2 of the Hessean of g equals 24x2 � 16 (>0 for
x� D 1:473).

(c) g.x�; y�/ D 5:444 is a global maximum on �Cp
2=3;1Œ�R, since there the

Hessean of g is negative definit. One can show that g.x�; y�/ D 5:444 is also
a global maximum on R2.

4. Place Kind Function value Hessean

(a) .x�
1 ; y

�
1/ D .0; 0/ Minimum f .0; 0/ D 0 f00.0; 0/ D

�
2 0

0 �4
�

,

.x�
2 ; y

�
2/ D .1; 0/ Saddle point f .1; 0/ D 1=e f00.1; 0/ D

��4=e 0

0 4=e

�

,

.x�
3 ; y

�
3/ D .�1; 0/ Saddle point f .�1; 0/ D 1=e f00.�1; 0/ D

��4=e 0

0 4=e

�

.

(b) .x�
1 ; y

�
1/ D . 12 ;

1
6 / Maximum f . 12 ;

1
6 / D 1

1728 f00. 12 ; 16 / D � 1
4

�
1=9 1=6

1=6 1=2

�

,

.x�
2 ; y

�
2/ D .x; 0/ Saddle points f .x; 0/ D 0 f00.x; 0/ D 0,

.x�
3 ; y

�
3/ D .0; y/ Saddle points f .0; y/ D 0 f00.0; y/ D 0.

(c) .x�
1 ; y

�
1/ D .4; 2/ Maximum f .4; 2/ D 128e�2 f00.4; 2/ D �e�2

�
48 0

0 64

�

,

.x�
2 ; y

�
2/ D .x; 0/ Saddle points f .x; 0/ D 0 f00.x; 0/ D 0,

.x�
3 ; y

�
3/ D .0; y/ Saddle points f .0; y/ D 0 f00.0; y/ D 0.

5. (a) F.x1; x2/ D x31 � x32,
(b) F.x1; x2/ D x31 � 2x32,
(c) F.x1; x2/ D x31 � x32 � x1x2.

8.4 Bellman’s Principle of Dynamic Optimisation; Application
to aMaximum Problem

This section presents the solution of the problem formulated in Sect. 8.1. The
problem was to maximise

C D
TX

tD1
dt�1Ct D

TX

tD1
.1 � xt/F.Kt�1/dt�1 (8.38)

(see (8.22)), where C is the discounted aggregate consumption in a closed economy
during the years t D 1; : : : ; t D T, while dt�1Ct is the discounted consumption in
the year t, d (0 < d < 1) and 1 � d are the discount factor and the discount rate,
respectively xt is the investment ratio in the year t, F is the production function and
Kt�1 is the capital stock of the economy at the beginning of year t. As we showed
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in Sect. 8.1, the capital stocks K1; : : : ;KT can be calculated from the given initial
capital stock K0 by the recursive equation

Kt D qKt�1 C xtF.Kt�1/ .t D 1; : : : ;T/ (8.39)

(see (8.23)). Here q is the depreciation factor (0 < q < 1). All terms are assumed
to be inflation-adjusted. We assume further that the production function is twice
differentiable.

In order to maximise (8.38) under the conditions (8.39) we have to calculate
values of the investment ratios x1; : : : ; xT which maximise (8.38), with K0 given and
K1; : : : ;KT calculated and inserted from (8.39). We insert (8.39) into (8.38) and get

C D
TX

tD1
.1 � xt/F.Kt�1/dt�1; (8.40)

that is,

C D F.K0/C
T�1X

tD1
F.Kt/d

t �
TX

tD1
xtF.Kt�1/dt�1

D F.K0/C
T�1X

tD1
F.qKt�1 C xtF.Kt�1//dt �

TX

tD1
xtF.Kt�1/dt�1:

From this we see that C as function of xT is greatest when xT is zero. As we
have learned before, in order to get necessary conditions for local maxima of C
as function of x1; : : : ; xT�1 in the interior of its domain (see (8.19) and assume that
It � Yt)

f.x1; : : : ; xT�1/ j 0 � xt � 1; t D 1; : : : ;T � 1 g; (8.41)

we have to set the partial derivatives with respect to x1; : : : ; xT�1 equal to zero:

@C

@xt
D 0 .t D 1; : : : ;T � 1/: (8.42)

We first differentiate (the last line of the expression for) C with respect to xT�1.
Doing this we start applying Bellman’s principle of backward dynamic optimisation
(RICHARD E. BELLMAN (�1920 – �1984)) which says that problems of dynamic
optimisation like that considered here can be solved as follows:

(i) Determine the optimal value of xT , then that of xT�1, xT�2 and so on.

The optimal value of xt may depend on the values of xt�1; : : : ; x1, that is, xt D
ft.xt�1; : : : ; x1/, t D 1; : : : ;T . The last step backward is calculating the optimal value
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x�
t of x1 which is determined by the initial situation of the problem, that is, in our

case, by the initial capital stock K0.

(ii) Insert x�
1 into x2 D f2.x1/ to get x�

2 , then insert x�
1 , x�

2 into x3 D f3.x2; x1/ to get
x�
3 , and so on.

(iii) For problems like that considered here (see also the assumptions that will
follow) the unique (global) solution vector is .x�

T ; x
�
T�1; : : : ; x�

1 /.

In what follows we apply (i) and (ii) to our example, that is, we determine
the vector of investment ratios x�

T D 0, x�
T�1; x�

T�2; : : : ; x�
1 , which is the (unique)

solution to our problem (see statement (iii); we omit its proof).
The terms of C which contain xT�1 are

F.qKT�2 C xT�1F.KT�2//dT�1 � xT�1F.KT�2/dT�2:

Differentiating this partially with respect to xT�1 and setting the result equal to zero
gives, with u D qKT�2 C xT�1F.KT�2/,

dF.u/

du

@u

@xT�1
dT�1 � F.KT�2/dT�2 D 0:

Since

@u

@xT�1
D F.KT�2/ D YT�1 > 0 (see (8.20))

we get

F0.qKT�2 C xT�1F.KT�2// D dF.u/

du
D 1

d
: (8.43)

We assume that the second derivative of the production function F is smaller than
zero for all u > 0:

d2F.u/

du2
D F00.u/; (8.44)

This means that the first derivative of F,

dF.u/

du
D F0.u/;

is strictly decreasing for all u > 0, which is usually the case for macroeconomic
production functions, because the marginal returns are strictly decreasing; see the
law of diminishing marginal returns in Sect. 7.5. Then F0 has an inverse function
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.F0/�1 (see Sect. 3.2), that is, we have, by (8.43),

qKT�2 C xT�1F.KT�2/ D .F0/�1.
1

d
/:

We note that we have to assume here that d�1 belongs to the domain of .F0/�1
(which is true, e.g., if F is of Cobb-Douglas form F.K/ D aKb, a > 0 and b 2�0; 1Œ
being constants). From here we get

xT�1 D .F0/�1.d�1/� qKT�2
F.KT�2/

: (8.45)

Note that this unique xT�1, which depends on the equation KT�2 D qKT�3 C
xT�2F.KT�3/, that is, on xT�2 and (via KT�3) on xT�3, : : :, maximises C because
of (8.44).

Now we have to calculate xT�2. To do this we differentiate C with respect to xT�2.
The sum of the terms in (8.40), which contain xT�2, is

F.KT�2/dT�2 � xT�1F.KT�2/dT�2 � xT�2F.KT�3/dT�3: (8.46)

In view of (8.39), (8.43) and (8.45), this equals

F.qKT�3 C xT�2F.KT�3//dT�2 � .F0/�1.d�1/dT�2

Cq.qKT�3 C xT�2F.KT�3//dT�2/� xT�2F.KT�3/dT�3:

Derivation with respect to xT�2 and setting the result equal to zero gives, with v D
qKT�3 C xT�2F.KT�3/,

dF.v/

dv

@v

@xT�2
dT�2 C qKT�3dT�2 � F.KT�3/dT�3

D F0.qKT�3 C xT�2F.KT�3//F.KT�3/dT�2

CqKT�3dT�2 � F.KT�3/dT�3 D 0:

From here we get analogously as above

qKT�3 C xT�2F.KT�3/ D .F0/�1.d�1 � q/

and

xT�2 D .F0/�1.d�1 � q/� qKT�3
F.KT�3/

: (8.47)
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From (8.44) it follows that this xT�2 maximises C. Notice the difference
in the arguments of .F0/�1 in (8.45) and (8.47). Since both d and q are
in �0; 1Œ, we have d�1 � q > 0. As in the case of the argument d�1
in (8.45) we assume that F is such that d�1 � q is in the domain of .F0/�1.
Obviously, the same process which resulted in (8.47) gives subsequently

xT�3 D .F0/�1.d�1 � q/� qKT�4
F.KT�4/

;

:::

x2 D .F0/�1.d�1 � q/� qK1
F.K1/

;

x1 D .F0/�1.d�1 � q/� qK0
F.K0/

:

(8.48)

(no change in the arguments of .F0/�1 from xT�2 on). By definition (see (8.19),
(8.20), and (8.23))

xt D It

Yt
D It

F.Kt�1/
;

IT D Kt � qKt�1;

thus

xt D Kt � qKt�1
F.Kt�1/

:

But, by (8.47) and (8.48),

xt D .F0/�1.d�1 � q/� qKt�1
F.Kt�1/

:

for t D 1; : : : ;T � 2. So each of K1, K2, : : :, KT�1 has to equal .F0/�1.d�1 � q/ in
order to get a (local) maximum of C as function of x1, x2, : : :, xT�2. We write

K� D .F0/�1.d�1 � q/

and

QK D .F0/�1.d�1/:
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Thus (remember (i), (ii), (iii) in Bellman’s principle) the investment ratios

x�
T D 0;

x�
T�1 D

QK � qK�

F.K�/
; (8.49)

x�
T�2 D K� � qK�

F.K�/
D x�

T�3 D : : : D x�
2 ; (8.50)

x�
1 D QK � qK0

F.K0/
(8.51)

are the solution of our problem; they determine the optional investment ratios.
From now on we assume that the depreciation rate 1 � q satisfies

0 � 1 � q � 0:15; (8.52)

that is, the depreciation factor q fulfils

0:85 � q � 1:

We assume further

F.K�/ � 0:15K�; (8.53)

that is, the optional gross domestic product F.K�/ is greater than or equal to
0.15 times the optimal capital stock K�. We note in this connection that the
relations (8.52) and (8.53) were satisfied every year during the last 30 years by
the actual depreciation rates, capital stocks and gross domestic products in the
economies of France, Germany, Italy, Japan, UK, and USA.

Obviously, he relations (8.52) and (8.53) yield (see (8.52))

0 � x�
2 � 1; : : : ; 0 � x�

T�2 � 1

for x�
2 , : : :, x�

T�2 as defined in (8.50), and

0 � x�
1 � 1; 0 � x�

T�1 � 1

for x�
1 (see (8.51)) and x�

T�1 (see (8.50)) if the initial capital stock K0 and the capital
stock

KT�1 D QK D .F0/�1.d�1/

are sufficiently close to K�.
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Notice that in our model the optimal investment policy becomes stationary after
the first step and changes only in the last two steps T �1 and T. In other words, up to
the last two steps the optimal investment ratio and the optimal capital stock remain
constant, that is, the growth rate of our model economy is zero from the second step
on. We point out here that, in our model, maximisation of consumption is not only
consistent with “zero growth”—it yields zero growth. (This would not necessarily
be the case if the production function F depended on time t.)

Let F be the Cobb-Douglas production function (see Sect. 6.9) in one variable,

F.K/ D cK� .c > 0; � 2�0; 1Œ constants/:

Then

F0.K/ D c�K��1 DW w;

that is,

K D .F0/�1.w/ D
�

w

c�

�1=.��1/
:

Hence,

K� D .F0/�1.d�1 � q/ D �d�1 � q

c�

	1=.��1/ D � c�d

1 � qd

	1=.��1/
;

x�
t D K� � qK�

cK�� D .1 � q/c�d

c.1 � qd/
D 1 � q

1 � qd
�d .t D 2; : : : ;T � 2/:

In the case of the USA we take the somewhat realistic values � D 0:265, q D 0:92,
d D 0:96 and get x�

t D 0:174. The investment ratio of the USA in 1997 was 17.4 %.
This is a quite encouraging result in a simple (but hopefully not too simple) model.

8.4.1 Exercises

1. Let F W RC ! RC be the “CES production function in one variable” given by
F.K/ D .ˇK�� C ı/�1=� (ˇ > 0, ı < 0, � > �1, � 6D 0 real constants).
Calculate .F0/�1, the inverse of the derivative of F.

2. Take the function F in Exercise 1 and determine, in the model formulated in this
section, the optimal capital stocks K�

1 , : : :, K�
T�2, K�

T�1.
3. Take the function F in Exercise 1 and determine, in the model formulated in this

section, the optimal investment ratios x�
T�2, : : :, x�

2 .
4. Calculate the numerical value of the optimal investment ratio x�

3 determined in
Exercise 3 for ˇ D 0:265, � D �0:2, q D 0:92, d D 0:96.

5. Determine the limit of x�
3 in Exercise 4 when ˇ, q and d are the same as in

Exercise 4, while � ! 0.
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8.4.2 Answers

1. .F0/�1.w/ D
�
.w=ˇ/ı=.1Cı/�ˇ

ı

�1=ı
.

2. K�
1 D : : : D K�

T�2 D
�
.dˇ=.1�qd//ı=.1Cı/�ˇ

ı

�1=ı D .F0/�1.d�1 � q/,

K�
T�1 D

�
.dˇ/ı=.1Cı/�ˇ

ı

�1=ı D .F0/�1.d�1/.

3. x�
T�2 D : : : D x�

2 D .1 � q/
�

dˇ
1�qd

�1=.1Cı/
.

4. x�
3 D 0:212:

5. x�
3 D 0:174:

8.5 Linear Regression; the “Method of Least Squares”

The following is a fundamental problem in economics and generally in statistics.
Suppose that we have good reasons to presume that a function of m (“independent”)
variables is of the following form

y D b0 C b1x1 C : : :C bmxm (8.54)

with real constants b0; b1; : : : ; bm.
(The graphs are, of course, straight lines in the case m D 1, planes for m D

2 and are called hyperplanes for m > 2.) For instance, x1; x2; : : : ; xm may be the
advertising expenses of a company in m different categories of advertising efforts
and y the amount of sales.

However, by errors of observation or experiment or because of variation of cir-
cumstances or (in the above example) because expenses and revenue are measured
in consecutive time intervals (of equal length) and external or random occurrences
may influence the results of measurement, n observations

.x11; : : : ; xm1; y1/; : : : ; .x1n; : : : ; xmn; yn/ (8.55)

do not exactly satisfy (8.54). The “cloud of points” representing our observations
(for an example in the case m D 1, n D 31 see Fig. 8.8) rather seems to make
an affine (in the older terminology “linear”) approximation possible. Looking for
the “best” linear approximation in the sense to be explained below is the object of
“linear regression”.

Rather than fitting (8.54), the data (8.55) satisfy

yk D b0 C b1x1ku1 C : : :C bmxmkum .k D 1; : : : ; n/; (8.56)

where uk is the deviation from the theoretical (and, eventually, “optimal”) value
given by (8.54). Equivalently, substituting the observations

.x1k; : : : ; xmk/



8.5 Linear Regression; the “Method of Least Squares” 415

* *
*

*

* *

*

*

* * *

* *
* *

*

*

* *
*

*

*
* * * *

*

*

* *

*

Fig. 8.8 The “cloud” of 31 points (marked by asterisks) are, as can be seen, approximated by the
straight line

˚
.x; y/

ˇ
ˇ y D 2C 1

2
x
�
. Linear regression gives the optimal approximating straight line

as f.x; y/ j y D 1:66C 0:56x g; see also (8.67)

into the right hand side of (8.54) gives, instead of yk,

y�
k D yk � uk .k D 1; : : : ; n/:

At least since Carl Friedrich Gauss (1777–1855) the affine function (or the (m C
1)-tuple b0; b1; : : : ; bm) in (8.54) is considered to be the “best” approximation of the
data (8.55) if the sum of the squares of the deviations

nX

kD1
u2k D

nX

kD1
.yk � y�

k/
2 D

nX

kD1
.yk � b0 � b1x1k � : : : � bmxmk/

2 (8.57)

called variance is minimal. This is called the “method of least squares”. Gauss
certainly gave good reasons for this choice. One is that this gives equal treatment to
positive and negative deviations. Another is that in the simplest case m D 0, when
the approximation is to be done by a constant b0, that is, (8.54) reduces to

y D b0

and (8.56) to

yk D b0 C uk .k D 1; : : : ; n/

then the method of least squares requires to find that b0 D t for which

nX

kD1
u2k D

nX

kD1
.yk � b0/

2 D
nX

kD1
.yk � t/2 (8.58)
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is minimal. By what we learned in Sect. 8.3 this can be only when

0 D d

dt

nX

kD1
.yk � t/2 D �2

nX

kD1
.yk � t/ D 2nt � 2

nX

kD1
yk

that is, when

b0 D t D .y1 C : : :C yn/=n;

the constant function value is the arithmetic mean of the observed values, very
reasonable indeed. (For actually having t D .y1 C : : : C yn/=n as minimum ofPn

kD1.yk � t/2 we have also to check that the second derivative is positive there:

d2

dt2

nX

kD1
.yk � t/2 D d

dt
.2nt � 2

nX

kD1
yk/ D 2n > 0;

which holds trivially since n 2 N). One can show that essentially (up to a constant)
only the square has this property.

In general, we can write (8.56) in the simpler form

yk D
mX

jD0
bjxjk C uk .k D 1; : : : ; n/

by taking

x01 D : : : D x0n D 1:

With the vectors and matrix

y D .y1; : : : ; yn/; u D .u1; : : : ; un/; b D .b0; b1; : : : ; bm/;

X D

0

B
B
B
@

x01 � � � x0n

x11 � � � x1n
:::

:::

xm1 � � � xmn

1

C
C
C
A

D

0

B
B
B
@

1 � � � 1

x11 � � � x1n
:::

:::

xm1 � � � xmn

1

C
C
C
A

and, later, t D .t0; t1; : : : ; tm/ we can write the above as

y D bX C u:
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We have to find the minimal value of the “variance”

nX

kD1
u2k D u � u D uuT

(compare Sects. 5.4, 6.8 and 6.9), that is, of

F.b/ WD .y � bX/.y � bX/T D .y � bX/.yT � XTbT/

D yyT � bXyT � yXTbT C bXXTbT :

However, bXyT is scalar (a 1 � .m C 1/ matrix times a .m C 1/ � n matrix times a
n �1 matrix = a 1�1 matrix) and its transpose is yXTbT ; furthermore the transpose
of a scalar is itself, so bXyT D yXTbT . Thus we look for the minimum of

F.b/ D yyT � 2bXyT C bXXTbT ;

that is, for that b which, makes the variance minimal.
As in (8.58), we emphasise that b is the unknown (variable) vector by writing

t D b. So we want to determine the minimum of

F.t/ D yyT � 2tXyT C tXXTtT : (8.59)

As we know from Sect. 6.9, there may be a local minimum only where

5F.t/ D .
@F

@t0
.t/;

@F

@t1
.t/; : : : ;

@F

@tm
.t// D 0:

Doing the calculations (for instance by determining F.t/ as a function of the m C 1

variables t0; t1; : : : ; tm) we get

5F.t/ D F0.t/ D �2XyT C 2XXTtT ; (8.60)

so that F may have a local minimum where

2XXT tT D 2XyT : (8.61)

After cancelling 2, we take the transpose of both sides:

.XyT/T D ..XXT/tT/T D .tT/T.XXT/T ;

that is,

yXT D t.XT/TXT D tXXT :
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If the inverse of the matrix XXT exists, that is, if det.XXT/ 6D 0 (compare Sect. 4.7),
then this equation has a unique solution and F can have a local minimum only where

t D yXT.XXT/�1 DW Ot: (8.62)

Exactly under the condition that the inverse of XXT exists, the function F given
by (8.59) has a strict minimum at Ot. Indeed, from (8.60), the Hessian matrix is

F00.t/ D 2XXT for all t: (8.63)

This is positive semidefinite because, for all v D .v0; v1; : : : ; vm/ 2 RmC1,

vF00.t/vT D v.2XXT/vT D 2.vX/.vX/T

D 2.vX/ � .vX/ D 2 jvXj2 � 0:

As positive semidefinite form it is positive definite if 0 is not an eigenvalue of
F00.t/. That is indeed the case, since 0 is an eigenvalue of A exactly when (compare
Sect. 6.8)

0 D det

0

B
B
B
@

a11 � 0 a12 � � � a1r

a21 a12 � 0 � � � a2r
:::

:::
: : :

:::

ar1 � 0 ar2 � � � arr

1

C
C
C
A

D det A

(here r D m C 1) and, by supposition, det F00.t/ D 2 det.XXT/ 6D 0. So F00.t/ is
positive definite and F has a strict local minimum at the Ot nm 0 (compare Sect. 6.9).
However, see (8.63), F00.t/ is independent of t so it is positive definite for all t,
therefore (Sect. 6.8) everywhere strictly convex from below and so its local minimum
Ot in (8.62) is a strict global minimum.

We get the value of the “minimal variance” by putting (8.62) into (8.59). First
we note that, because of Œ.XXT/�1�T D Œ.xXT/T ��1 D .XXT/�1, from (8.62) we get

OtT D .xXT/�1XyT :

So the minimal variance is

F.Ot/ D F.yXT.XXT/�1/

D yyT � 2yXT.XXT/�1XyT

CyXT.XXT/�1XXT.XXT/�1XyT

D yyT � yxT.XXT/�1XyT :

(8.64)
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Of course, yyT D y ı y D jyj2 so, if not all observed values y1; : : : ; yn are 0—a
rather natural supposition—then we may divide by yyT :

F.Ot/
yyT

D F.yXT.XXT/�1/
yyT

D 1 � yXT.XXT/�1XyT

yyT
D 1 � R2: (8.65)

R WD
�

yXT.XXT/�1XyT

yyT

� 1
2

(8.66)

is the “sum of square coefficients” which, as can be shown, satisfies 0 � R � 1. The
closer R is to 1 the less the “dispersion” of the “cloud of points” (8.55) is and the
closer is (8.65) to 0.

As an example where the inverse of XXT always exists, we examine the case
m D 1 in some detail. Here

X D
�
1 � � � 1
x1 � � � xn

�

;

where we wrote, for simplicity, x1; : : : ; xn in place of x11; : : : ; x1n. Thus

XXT D
�
1 � � � 1
x1 � � � xn

�
0

B
@

1 x1
:::
:::

1 xn

1

C
A D

�
n x1 C : : : xn

x1 C : : :C xn x21 C : : :C x2n

�

;

so, denoting the arithmetic mean by Nx D .x1 C : : :C xn/=n,

det.XXT/ D n.x21 C : : :C x2n/� .x1 C : : :C xn/
2

D n.x21 C : : :C x2n/� 2n2Nx2 C n2 Nx2
D n.x21 C : : : x2n/� 2n.x1 C : : :C xn/Nx C n2 Nx2
D n.x21 C : : :C x2n � 2x1Nx � : : : � 2xn Nx C nNx2/
D n..x1 � Nx/2 C : : :C .xn � Nx/2/ > 0

except if x1 D : : : D xn D Nx. The latter case is uninteresting since in practice one
wants observations at more than one place for the now single (m D 1) independent
variables. So det.XXT/ 6D 0 and thus (Sect. 4.7) the inverse of XXT indeed exists.

In the case drawn in Fig. 8.8, m D 1, n D 31, we have

X D
�
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 10 10

�

;

y D .3; 4; 2; 3; 3; 5; 4; 5; 3; 6; 4; 5; 7; 6; 7; 8; 5; 8; 6; 8/:
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Therefore

yXT D .102; 697/; XXT D
�
20 123

123 881

�

;

.XXT/�1 D 1

2491

�
881 �123

�123 20

�

�
�
0:35367 �0:04938

�0:04938 0:00803

�

:

Thus, from (8.62) the function F is minimal at

b D Ot D .102; 697/

�
881 �123

�123 20

�
1

2491

D 1

2491
.4131; 1394/� .1:65837; 0:55961/

(8.67)

and the minimal variance (8.64) will be the value of F at the b D Ot calculated
in (8.67):

F.Ot/ D yyT � OtXyT D 586� 1392980

2491
� 26:8

while, from (8.66) and (8.62),

R D
 OtXyT

yyT

! 1
2

� 0:9769;

is quite close to 1 so the dispersion is small. Indeed

F.Ot/
yyT

� 26:8

586
� 0:0457:

8.5.1 Exercises

Consider the case, where in (8.56)

m D 1, k D 5, .x11; y1/ D .2; 4/, .x12; y2/ D 5; 6,

.x13; y3/ D .3; 5/, .x14; y4/ D .4; 5/, .x15; y5/ D .6; 10/.

For X, y, b D t, F.t/ as defined in this section determine:

1. (a) yXT , (b) XyT ,
2. (a) XXT , (b) .XXT/�1,
3. (a) b D Ot, (b) F.Ot/,
4. (a) F.Ot/=.yyT/, (b) R D

�
.OtXyT/=.yyT/

� 1
2
.
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Consider now the case, where in (8.56) m D 3, k D 8 and

.x11; x21; x31; y1/ D .0; 0; 1; 19/, .x12; x22; x32; y2/ D .1; 4; 1; 17/,

.x13; x23; x33; y3/ D .2; 3; 1; 31/, .x14; x24; x34; y4/ D .3; 1; 0; 30/,

.x15; x25; x35; y5/ D .4; 0; 0; 16/, .x16; x26; x36; y6/ D .0; 0; 0; 16/,

.x17; x27; x37; y7/ D .3; 2; 0; 22/, .x18; x28; x38; y8/ D .1; 1; 0; 21/.

For the corresponding X, y,b D Ot determine

5. (a) yXT , (b) XXT ,
6. (a) .XXT/�1, (b) b D Ot.

8.5.2 Answers

1. (a) yXT D .4; 6; 5; 5; 10/

0

B
B
B
B
B
@

1 2

1 5

1 3

1 4

1 6

1

C
C
C
C
C
A

D .30; 133/, (b) XyT D
�
30

133

�

.

2. (a) XXT D
�
5 20

20 90

�

,

(b) .XXT/�1 D 1
50

�
90 �20

�20 5

�

D
�
1:8 �0:4

�0:4 0:1

�

.

3. (a) b D Ot D yXT.XXT/�1 D .30; 133/

�
1:8 �0:4

�0:4 0:1

�

D .0:8; 1:3/.

4. (a)
F.Ot/
yyT

D yyT � yXT.XXT/�1XyT

yyT
D 1 � R2

D 1 � .0:8; 1:3/.30; 133/T

202
D 1 � 24C 172:9

202

D 1 � 196:9

202
� 0:025;

(b) R D . 196:9
202

/
1
2 D p

0:974752475� 0:987.
5. (a) yXT D .72; 320; 256; 67/,

(b) XXT D

0

B
B
@

8 14 11 3

14 40 20 3

11 20 31 7

3 3 7 3

1

C
C
A.
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6. (a) .XXT/�1 D 1
1937

0

B
B
@

1121 �328 �15 �758
�328 172 �63 303

�15 �63 192 �370
�758 303 �370 1964

1

C
C
A,

(b) b D Ot D yXT.XXT/�1 D 1
1937

.33226; 2797; 1622; 3452/.

8.6 Extrema of an Objective Function Under Equality
Constraints

In Sect. 8.5 (linear optimisation) we presented methods for determining extrema,
that is maxima and minima of linear functions of several variables under linear
conditions (constraints). In Sect. 8.3 we considered maxima and minima of non-
linear functions of several variables without constraints other than rather arbitrary
limitations of the domain. This was so both when the maxima or minima were
local (on neighbourhoods) or global (usually on a predetermined domain). For
linear optimisation problems the constraints (equations or inequalities) themselves
determined or at least “constrained” the domains. These constraints often came
from economic or technical limitations. The function, the maximum or minimum
(extremum) of which we are interested in, is called the objective function. There
and in Sects. 8.7, 8.8 and 8.9 we deal with only one, Sect. 8.10 with several objective
functions.

The present section and Sects. 8.7, 8.8 and 8.9 are about nonlinear optimisation,
that is, at least one of the sets fobjective function, constraintsg is not linear or affine.
Here too, careful analyses of the constraints is needed to determine the domain, a
task neither easy nor always successful. Note that the domain needs not be a subset
of Rn. For instance in Sect. 9.4 (where there will be several objective functions) the
objective functions depend on strategies, not vectors in Rn. In most optimisation
problems in economics or engineering, however, the domains are subsets of Rn of
even of RnC.

Example 1 Ms. A intends to spend a budget B of exactly 360$ for two goods
1 and 2. The prices of the goods are p1 D 3$ and p2 D 4$, respectively. Let
x1 and x2 be the quantities of the goods. Then the so-called budget equation is

3x1 C 4x2 D 360:

Ms. A’s utility function U W R2C ! RC is given by

U.x1; x2/ D x1=41 x1=22 :

(continued)
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Which quantities bx1, bx2 has she to buy in order to maximise her utility?
Since U is nonlinear our problem is a nonlinear optimisation problem. The
constraint 3x1 C 4x2 D 360 is affine. Note that the domain of our problem is
the line segment

˚
.x1; x2/

ˇ
ˇ x2 D 90 � 3

4
x1; 0 � x1 � 120

�

rather than R2C. We have to find the maximum of U on this segment. To do
this we insert x2 D 90� 3

4
x1 into our objective function U:

U.x1; 90 � 3

4
x1/ D x1=41 .90� 3

4
x1/

1=2:

So we get the function u W Œ0; 120� ! RC of only one variable x1 2 Œ0; 120�

given by

u.x1/ D x1=41 .90 � 3

4
x1/

1=2:

This function is continuous on the closed finite interval Œ0; 120�, that is (see
Sect. 6.3), there exist points on Œ0; 120� at which u is maximal (as well as
points at which u is minimal). Since

u.0/ D u.120/ D 0; u.1/ D
r

90 � 3

4
> 0;

the maximum of u is at some point(s) bx1 in the interior of the set of the critical
points of u, that is, of the points x1 satisfying du.x1/=dx1 D 0. We determine
these points:

du.x1/

dx1
D d.x1=41 .90 � 3

4
x1/1=2/

dx1

D 1

4
x�3=4
1 .90 � 3

4
x1/

1=2 C 1

2
x1=41 .90 � 3

4
x1/

�1=2.�3
4
/ D 0:

Multiplying this by 4x3=41 .90 � 3
4
x1/1=2 gives

.90� 3

4
x1/� 3

2
x1 D 0;

(continued)
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that is, bx1 D 40 is the only point x1 that satisfies du.x1/=dx1 D 0. One can
show (prove it!) that

d2u

dx21
.40/ D �1350 � 40�7=460�3=2 < 0;

i.e. (see Sect. 6.3), the (only) maximum of u is at bx1 D 40. We insert this
into the budget equation 3x1 C 4x2 D 360 and get bx2 D 60. So the (unique)
solution point of our problem is .bx1;bx2/ D .40; 60/ and the maximum utility
value is U.bx1;bx2/ D bx11=4bx21=2 D 401=4 � 601=2 � 19:48.

Example 2 A generalisation of the problem dealt with in Example 1 is, with
the (nonlinear) utility function U W RnC ! R, n > 2, the prices p1; : : : ; pn, the
quantities x1; : : : ; xn of n goods, and the budget b:

Maximise U.x1; : : : ; xn/

under the condition (budget equation)

p1x1 C : : : pnxn D b:

In this case the solution method applied to our problem in Exercise 1, that
is, the method of inserting the constraint into the objective function, yields
difficulties that generally increase with the number n > 2 of goods under
consideration.

Example 3 Further difficulties may arise when the number m of the (equality)
constraints is greater than one. Forgetting about utility functions and budget
equations, more general (and frequently more difficult) problems than those
in Examples 1 and 2 are of the form:

Maximise (or minimise) F.x1; : : : ; xn/ (8.68)

under the conditions (constraints)

g1.x1; : : : ; xn/ D c1;
:::

gm.x1; : : : ; xn/ D cm;

(8.69)

(continued)
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where F W Rn ! R (objective function), g1 W Rn ! R, : : :, gm W Rn ! R,
x1; : : : ; xn are real variables, and c1; : : : cm real constants.

Frequently the (common) domain of F, g1; : : : ; gm is rather a true subset of
Rn than the Rn itself.

Unfortunately, there are no general methods for the solution of optimisa-
tion problems of this kind when at least one of the functions F, g1; : : : ; gm is
nonlinear and n > 2, m > 1. Note that this is in contrast to the problems of
linear optimisation, where the simplex algorithm is a general solution method.
We can formulate, however, conditions, either necessary or necessary and
sufficient, for a vector .x1; : : : ; xn/ to maximise (or minimise) F.x1; : : : ; xn/

under the constraints (8.69).
These conditions can be formulated with aid of the Lagrange (Joseph

Louis Lagrange (1736–1813)) multipliers and the Lagrange function. This
is a function L W Rn � Rm ! R or L W D � Rm ! R, where D is a domain in
Rn, defined by

L.x1; : : : ; xn; u1; : : : ; um/

D F.x1; : : : ; xn/C u1 � .c1 � g1.x1; : : : ; xn//

C : : :C um � .cm � gm.x1; : : : ; xn//;

(8.70)

where F is the objective function and c1 � g1.x1; : : : ; xn/ D 0, : : :, cm �
gm.x1; : : : ; xn/ D 0 are the constraints of our nonlinear optimisation problem.
The variables u1; : : : ; um are called Lagrange multipliers.

We mention without proof: If the derivatives of the functions F, g1; : : : ; gm

exist and are continuous, if Ox D .bx1; : : : ; bxn/ is a solution of the optimisation
problem (8.68), (8.69) and if the rank of the Jacobian matrix

0

B
B
B
B
@

@g1
@x1

.Ox/ � � � @g1
@xn

.Ox/
:::

:::
@gm

@x1
.Ox/ � � � @gm

@xn
.Ox/

1

C
C
C
C
A

is m (m < n) then there exists a vector Ou D .bu1; : : : ; bum/ of Lagrange
multipliers such that the vector

.Ox; Ou/ D .bx1; : : : ;bxn; bu1; : : : ; bum/

(continued)
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is a critical point of the Lagrange function (8.70), that is,

@L

@x1
.Ox; Ou/ D @F

@x1
.Ox/C bu1

@g1
@x1

.Ox/C : : :C bum
@gm

@x1
.Ox/ D 0;

:::

@L

@xn
.Ox; Ou/ D @F

@xn
.Ox/C bu1

@g1
@xn

.Ox/C : : :C bum
@gm

@xn
.Ox/ D 0;

@L

@u1
.Ox; Ou/ D c1 � g1.Ox/ D 0; : : :

@L

@um
.Ox; Ou/ D cm � gm.Ox/ D 0:

Note that the last line says that Ox satisfies the constraints (8.68). (This is
not surprising since we assumed that Ox is a solution of our problem). Note
further that Ox maximises F under the constraints (8.69), but that .Ox; Ou/ does
not maximise L; see, in this connection, Sect. 8.8.

Let us apply this to Example 1. The Lagrange function of the problem

maximise U.x1; x2/ D x1=41 x1=22
under the constraint 3x1 C 4x2 D 360

(8.71)

is

L.x1; x2; u/ D x1=41 x1=22 C u � .360� 3x1 C 4x2/: (8.72)

The critical points of L are the solutions of

@L

@x1
.x1; x2; u/ D 1

4
x�3=4
1 x1=22 � 3u D 0;

@L

@x2
.x1; x2; u/ D 1

2
x1=41 x�1=2

2 � 4u D 0;

@L

@u
.x1; x2; u/ D 360� 3x1 � 4x2 D 0:

The (only) solution of this system of nonlinear equations is

.bx1;bx2; Ou/ D .40; 60;
1

8
401=460�1=2/: (8.73)

(continued)
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If we did not know (from Example 1) that .bx1; bx2/ D .40; 60/ is the unique
solution point of our problem, we would need a criterion for deciding whether
there is maximum or minimum at this point.

We present such a criterion for the general case of our optimisation
problem, that is, for the problem (8.68) and (8.69). Let the Lagrange function
L (see (8.70)) of this problem be differentiable. The so-called bordered
Hessian matrix of L is the .m C n/ � .m C n/ matrix

H WD

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 : : : 0
@g1.x/
@x1

: : :
@g1.x/
@xn

:::
:::

:::
:::

0 : : : 0
@gm.x/
@x1

: : :
@gm.x/
@xn

@g1.x/
@x1

: : :
@gm.x/
@x1

@2L.x/
@x1@x1

: : :
@2L.x/
@x1@xn

:::
:::

:::
:::

@g1.x/
@xn

: : :
@gm.x/
@xn

@2L.x/
@xn@x1

: : :
@2L.x/
@xn@xn

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(8.74)

Compare this to the Hessian matrix in Sect. 8.2. Obviously the bordered
Hessian of the Lagrange function (8.72) from Example 1 is

H3 WD

0

B
@

0 3 4

3 � 3
16

x�7=4
1 x1=22

1
8
x�3=4
1 x�1=2

2

4 1
8
x�3=4
1 x�1=2

2 � 1
4
x1=41 x�3=2

2

:

1

C
A (8.75)

Let Dj ( j D 1; : : : ;m C n) be the principal minors (see Sect. 8.2) of H.
Without proof we formulate now the announced

Criterion Let .Ox; Ou/ be a critical point of the Lagrange function (8.71). Then
at Ox we have a

(i) local maximum of F under the constraints (8.69) if alternatingly

D2mC1 > 0; D2mC2 < 0; D2mC3 > 0; : : : for m odd, 2m C k � m C n,

D2mC1 < 0; D2mC2 > 0; D2mC3 < 0; : : : for m even, 2m C k � m C n,

(ii) local minimum of F under the constraints (8.69) if

D2mCk > 0 for m even, 2m C k � m C n,

D2mC1 < 0 for m odd, 2m C k � m C n.

(continued)
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We apply this criterion to Example 1. Since we had only one constraint
there (m D 1), we have to determine only D2mC1 D D3, that is, the
determinant of (8.75):

D3 D detH3 D 9

4
x1=41 x�3=2

2 C 3x�3=4
1 x�1=2

2 C 3x�7=4
1 x1=22 : (8.76)

Prove (8.76). Obviously D3 is positive for all .x1; x2/ 2 R2CC, in particular
for the stationary point (8.73). Our criterion says that at .bx1; bx2/ D .40; 60/

(see (8.73)) there is a local maximum of the problem (8.71). This maximum
is global, since, on one hand, (8.73) is the only critical point in the interior of
the domain of definition R2C �R of the Lagrange function L to problem (8.71)
(see (8.72)) and, on the other hand, at the relevant points of the boundary of
R2C � R we have

L.0; 90; u/ D L.120; 0; u/ D 0:

Example 4 Determine the extrema of

F.x1; x2; x3/ D x1 C x2 C x3 (8.77)

under the condition

.x1 � 1/2 C .x2 � 1/2 C .x3 � 1/2 D 12: (8.78)

The Lagrange function of this problem is

L.x1; x2; x3; u/ D x1 C x2 C x3 C u � .12� .x1 � 1/2 � .x2 � 1/2 � .x3 � 1/2/:
(8.79)

We determine the critical points of L from

@L.x1; x2; x3; u/

@x1
D 1 � 2u.x1 � 1/ D 0;

@L.x1; x2; x3; u/

@x2
D 1 � 2u.x2 � 1/ D 0;

@L.x1; x2; x3; u/

@x3
D 1 � 2u.x3 � 1/ D 0;

@L.x1; x2; x3; u/

@u
D 12 � .x1 � 1/2 � .x2 � 1/2 � .x3 � 1/2 D 0:

(continued)
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Solving this system of equations by eliminating successively u, x1, x2 gives
two critical points

.x�
1 ; x

�
2 ; x

�
3 ; u

�/ D .3; 3; 3;
1

4
/ (8.80)

and

.x��
1 ; x

��
2 ; x

��
3 ; u

��/ D .�1;�1;�1;�1
4
/: (8.81)

The bordered Hessian (see (8.74)) of (8.79) is

0

B
B
@

0 2x1 � 2 2x2 � 2 2x3 � 2
2x1 � 2 �2u 0 0

2x2 � 2 0 �2u 0

2x3 � 2 0 0 �2u

1

C
C
A ;

that is, for the critical point (8.80):

0

B
B
@

0 4 4 4

4 �1=2 0 0

4 0 �1=2 0

4 0 0 �1=2

1

C
C
A (8.82)

and for the critical point (8.81):

0

B
B
@

0 �4 �4 �4
�4 1=2 0 0

�4 0 1=2 0

�4 0 0 1=2

1

C
C
A : (8.83)

For (8.82) the principal minors D3 and D4 are D3 D 16, D4 D �12,
for (8.34) we have D3 D �16, D4 D �12, respectively. Prove this. According
to our criterion we have a local maximum of F (see (8.77)) under the
condition (8.78) at the critical point (8.80) with F.3; 3; 3/ D 3C3C3 D 9 (see
(i)) and a local minimum at the critical point (8.81) with F.�1;�1;�1/ D
�1 � 1 � 1 D �3 (see (ii)). Since there do not exist any other critical points
(or other points at which extrema of (8.77) under (8.78) can exist) both the
maximum 9 and the minimum �3 are global.

Until now we were always interested only in certain values and properties
of the variables x1; : : : ; xn in the vector .x1; : : : ; xn; u1; : : : ; um/ of the variables

(continued)
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of the Lagrange function L (see (8.70)). Now we give an interpretation of the
numerical values of the Lagrange multipliers u1; : : : ; um at the critical points

.bx1; : : : ;bxn; bu1; : : : ; bum/ D .Ox; Ou/: (8.84)

Let us consider, for the moment, the cj’s in (8.69) as parameters rather
than constants. Of course, each critical point .Ox; Ou/ depends upon c D
.c1; : : : ; cm/. To emphasise that, we will write for now, .Ox.c/; Ou.c// and, from
(compare (8.70))

L.x;u; c/ D F.x/CPm
jD1 uj.cj � gj.x//;

L.Ox.c/; Ou.c/; c/ D F.Ox.c//CPm
jD1 Ouj.c/.cj � gj.Ox.c///: (8.85)

So L depends both directly and indirectly, through Ox and Ou upon c. Thus,
partial derivation with respect to cj gives

@

@cj
L.Ox.c/; Ou.c/; c/ D

nX

kD1

@

@xk
L.Ox.c/; Ou.c/; c/@Oxk.c/

@cj

D C
mX

kD1

@

@uk
L.Ox.c/; Ou.c/; c/@Ouk.c/

@cj

D C@L.x;u; c/
@cj

jxDOx.c/;uDOu.c/

by the rule of differentiating composite functions (see Sect. 6.12). But by (�),

@

@xk
L.Ox.c/; Ou.c/; c/ D @

@uk
L.Ox.c/; Ou.c/; c/ D 0;

while, by (8.85), for j D 1; : : : ;m,

@L.x;u; c/
@cj

D uj; thus
@L.x;u; c/

@cj
jxDOx.c/;uDOu.c/ D Ouj.c/:

On the other hand, L.Ox.c/; Ou.c/; c/ D F.Ox.c// by (��) and by (8.69). Thus

@F.Ox.c//
@cj

D Ouj.c/ .j D 1; : : : ;m/: (8.86)

[Notice above the difference between differentiating L.Ox.c/; Ou.c/; c/ with
respect to cj and differentiating L.x;u; c/ with respect to cj, then substituting
x D Ox.c/, u D Ou.c/].
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From (8.86) we learn that the value of the Lagrange multiplier Ouj equals the
value of the partial derivative (the value of the (partial) slope) with respect to cj of
the objective function F (see (8.68)) at the critical point Ox. To say it in other words:
The multipliers Ouj measure the sensitivity of the optimal value of F to changes in the
right sides cj of the constraints (see (8.69)).

To show this in a special case we consider again Example 1, that is, prob-
lem (8.71) now becomes the parameter c 2 RCC, and the Lagrange function differs
from (8.72) in that 360 is replaced by c:

L.x1; x2; u/ D x1=41 x1=22 C u � .c � 3x1 C 4x2/: (8.87)

It is easy to show that for each c 2 RCC there exists exactly one critical point,
namely

.Ox1; Ox2; Ou/ D .
c

9
;

c

6
;
1

8
.

c

9
/1=4.

c

9
/�1=2/: (8.88)

(Prove it). Is (8.86) satisfied at this point? The answer is yes, since for the derivative
dU.Ox1; Ox2/=dc (see (8.71)), the marginal utility of the money or budget c, equals

d. c
9
/1=4. c

9
/�1=2

dc
D 1

4
.

c

9
/�3=4

1

9
.

c

6
/1=2 C .

c

9
/1=4

1

2
.

c

6
/�1=2

1

6

D 1

8
.

c

9
/1=4.

c

6
/�1=2Œ

2

9
.

c

9
/�1

c

6
C 2

3
�

D 1

8
.

c

9
/1=4.

c

6
/�1=2 D Ou:

Note that 2
9
. c
9
/�1 c

6
C 2

3
D 2

9
9
c

c
6

C 2
3

D 1
3

C 2
3

D 1. For c D 360 we have Ou D
1
8
401=460�1=2 � 0:04 (see (8.73)).

8.6.1 Exercises

1. Calculate d2u.x/=dx2 for the function u W �0; 120Œ ! RC given by u.x/ D x1=4 �
.90 � 3

4
/1=2.

2. Determine the determinant of H3 in (8.75).
3. Determine the principal minors D3 and D4 of

(a) matrix (8.82),
(b) matrix (8.83).

4. Determine the critical point of the Lagrange function (8.87).
5. Given a differentiable utility function U W R2C ! R, a budget b > 0 to buy two

goods 1 and 2 in quantities x1, x2 at prices p1, p2, respectively, consider the
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problem of the classical theory of the consumer household: maximise U.x1; x2/
under the budget equation p1x1 C p2x2 D b. Let U be so that

• there is exactly one critical point .Ox1; Ox2; Ou/ of the Lagrange function L of this
problem,

• at .Ox1; Ox2/ there is the unique (constrained) maximum of U.

Show for this problem that at .Ox1; Ox2/
(a) the value Ou of the Lagrange multiplier equals the ratio of the marginal utility

and the price of good 1 as well as that of god 2,
(b) the ratio of the marginal utilities of goods 1 and 2 equals the ratio of their

prices,
(c) the value Ou equals the marginal utility of the money, that is the derivative,

dU.x1; x2/=db,
(d) the so called budget line, that is, the geometric representation of the budget

equation in the coordinate plane, is the tangent at the indifference curve
fx1; x2 j U.x1; x2/ D c; c 2 RC g through .x1; x2/.

6. For the problem: maximise F.x1; x2/ D �3 C 7
4
x1 � x21 C x31

3
C x2 under the

condition x1 C x2 D 3, x1 2 RC, x2 2 RC determine
(a) the critical points of the Lagrange function,
(b) the local extrema,
(c) the global extrema.

8.6.2 Answers

1.
d2u.x/

dx2
D � 3

16
x�7=4.90 � 3

4
x/1=2

D � 3

16
x�3=4.90� 3

4
x/�1=2 � 9

64
x1=4.90 � 3

4
x/�3=2: Note that this is <0 for

all x 2�0; 120Œ, in particular for x D 40.
2. Calculation of the determinant of H3 in (8.75) by expanding along the first row:

detH3 D 0 � det

 
� 3
16

x�7=4
1 x1=22

1
8
x�3=4
1 x�1=2

2
1
8
x�3=4
1 x�1=2

2 � 1
4
x1=41 x�3=2

2

!

C .�1/ � 3 � det

 
3 1

8
x�3=4
1 x�1=2

2

4 � 1
4
x1=41 x�3=2

2

!

C 4 � det

 
3 � 3

16
x�7=4
1 x1=22

4 1
8
x�3=4
1 x�1=2

2

!
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D 0C .�3/ � .3 � �1
4

x1=41 x�3=2
2 / � .1

8
x�3=4
1 x�1=2

2 / � 4/

C 4 � .3 � 1
8

x�3=4
1 x�1=2

2 � .� 3

16
x�7=4
1 x1=22 / � 4/

D right-hand side of (8.76):

3. (a) Calculation of the principal minors D3 and D4 of (8.82) by expanding them
along the first column:

D3 D det

0

@
0 4 4

4 � 1
2
0

4 0 � 1
2

1

A

D 0 � det

�� 1
2
0

0 � 1
2

�

C .�1/ � 4 �
�
4 4

0 � 1
2

�

C 4 �
�
4 4

� 1
2
0

�

D 0 � Œ.� 1
2
/.� 1

2
/ � 0 � 0�

C .�4/ � Œ4 � .� 1
2
/� 4 � 0�C 4Œ4 � 0 � 4 � . 1

2
/�

D 0C 8C 8 D 16:

D4 D det

0

B
B
@

0 4 4 4

4 � 1
2
0 0

4 0 � 1
2
0

4 0 0 � 1
2

1

C
C
A

D 0 � det

0

@
� 1
2
0 0

0 � 1
2
0

0 0 � 1
2

1

AC .�1/ � 4 � det

0

@
4 4 4

0 � 1
2
0

0 0 � 1
2

1

A

C 4 � det

0

@
4 4 4

� 1
2
0 0

0 0 � 1
2

1

AC .�1/ � 4 � det

0

@
4 4 4

� 1
2
0 0

0 � 1
2
0

1

A

D 0 � .� 1
2
/3 C .�4/ � Œ4 � det

�� 1
2
0

0 � 1
2

�

C .�1/ � 0 � det

�
4 4

0 � 1
2

�

C 0 � det

�
4 4

� 1
2
0

�

�C 4 � Œ.�1/ � 4 � det

�� 1
2
0

0 � 1
2

�
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C 0 � det

�
4 4

0 � 1
2

�

C .�1/ � 0 � det

�
4 4

� 1
2
0

�

�

C.�1/ � 4 � Œ4 � det

�� 1
2
0

0 � 1
2

�

C .�1/ � 0 � det

�
4 4

0 � 1
2

�

C 0 � det

�
4 4

� 1
2
0

�

�

D 0C .�4/ � Œ4 � Œ.� 1
2
/ � .� 1

2
/ � 0 � 0�� 0C 0�

C4 � Œ.�4/ � Œ.� 1
2
/ � .� 1

2
/� 0 � 0�C 0 � 0�

.�4/ � Œ4 � Œ.� 1
2
/ � .� 1

2
/ � 0 � 0� � 0C 0�

D �4 � 4 � 4 D �12:

(Note that the determinants of the last two 3 � 3-matrices are calculated by
expanding them along the second and third column, respectively).

(b) Since det.�A/ D .�1/n det A for any n � n-matrix A, we have D3 D �16,
D4 D �12 for (8.83) (matrix (8.83) is .�1/ times matrix (8.82).

4.
@L.x1; x2; u/

@x1
D 1

4
x�3=4
1 x1=22 � 3u D 0;

@L.x1; x2; u/

@x2
D 1

2
x1=41 x�1=2

2 � 4u D 0;

@L.x1; x2; u/

@u
D c � 3x1 � 4x2 D 0:

Adding .� 4
3
/ times the first equation to the second gives 1

2
x1=41 x�1=2

2 �
1
3
x�3=4
1 x1=22 D 0 or, multiplying this by x3=41 x1=22 , 1

2
x1 � 1

3
x2 D 0. Since

x2 D c
4

� 3
4
x1, we get 1

2
x1 � c

12
C 1

4
x1 D 0 or 3

4
x1 D c

12
, that is, Ox1 D c

9
.

Together with c � 3x1� 4x2 D 0 (see above) this yields Ox2 D c
6
. Inserting Ox1 D c

9

and Ox2 D c
6

into 1
2
x1=41 x�1=2

2 � 4u D 0 gives Ou D 1
8
. c
9
/1=4. c

6
/�1=2.

5. (a) L.x1; x2; u/ D U.x1; x2/C u � .b � p1x1 � p2x2/;
@L.x1; x2; u/

@x1
D @U.x1; x2/

@x1
� up1 D 0;

@L.x1; x2; u/

@x2
D @U.x1; x2/

@x2
� up2 D 0:

This implies, at .Ox1; Ox2; Ou/,
@U

@x1
.Ox1; Ox2/=p1 D @U

@x2
.Ox1; Ox2/=p2 D Ou and

(b)
@U

@x1
=
@U

@x2
D p1=p2:

(c)
@L

@b
.Ox1; Ox2; Ou/ D Ou D @U

@b
.Ox1; Ox2/ see (8.85), (8.86):
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(d) The slope of an indifference curve at .Ox1; Ox2/ is

� @U

@x1
.Ox1; Ox2/= @U

@x2
.Ox1; Ox2/

(see Sect. 3.4). Because of (b) the budget equation p1x1 C p2x2 D b, that is,
x2 D �p1x1=p2 C b=p2 has the same slope at .Ox1; Ox2/.

6. (a) . 3
2
; 3
2
; 1/; . 1

2
; 5
2
; 1/;

(b) the local (constrained) minima of F are at . 3
2
; 3
2
/ and .0; 3/ where F. 3

2
; 3
2
/ D

0 D F.0; 3/, the local (constrained) maxima of F are at . 1
2
; 5
2
/ and .3; 0/

where F. 1
2
; 5
2
/ D 1

6
and F.3; 0/ D 9

4
, respectively,

(c) the global (constrained) minimum of F is 0 D F. 3
2
; 3
2
/ D F.0; 3/, the global

(constrained) maximum of F is 9
4

D F.3; 0/.

8.7 Extrema of an Objective Function Depending
on Parameters. Envelope Theorems. LeChatelier Principle

At the end of the last section we discussed how the solution(s) of constrained
optimisation problem (8.68), (8.69) depend upon the constants c1; : : : ; cm in (8.90).
We considered these constants as parameters and found an interesting connec-
tion between the partial derivative (with respect to cj) of the objective function
F (see (8.68) in Sect. 8.6) and the Lagrange multiplier uj at a critical point
.Ox1; : : : ; Oxn; Ou1; : : : Oum/ of the Lagrange function (see (8.85) in Sect. 8.6, (8.86) in
Sect. 8.6).

What we have found there is a special case of a class of theorems called envelope
theorems. These are theorems on parameterised optimisation problems that describe
the impact of a change of one of the parameters on the value of the objective
function.

To explain the name “envelope theorem” we start with an example of an
unconstrained problem:

Let the function F W R2 ! R be given by

F.x; a/ D �x2 C 2ax � a2 C 4;

where x 2 R is a variable and a 2 R a parameter (to be also varied eventually). For
each choice of the parameter a

maximise F(x,a) with respect to x: (8.89)

From

dF

dx
.x; a/ D �2x C 2a D 0;

d2F

dx2
.x; a/ D �2 < 0
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it follows that at x D a the function F reaches its maximum value. In this context
the function V W R ! R defined by

V.a/ D max
x

fF.x; a/ j x 2 R g (8.90)

is called the value function for the maximisation problem (8.89). Obviously, in our
example the value function V is given by

V.a/ D F.a; a/ D �a2 C 2a2 � a2 C 4 D 4:

As Fig. 8.9 shows the graph of V is a kind of envelope of the graphs of the functions
a 7! F.x; a/, that is,

a 7! �.a � x/2 C 4:

We consider more general situations, where x D .x1; : : : ; xn/ 2 M � Rn, a D
.a1; : : : ; ar/ 2 A � Rr, F W M � A ! R, and M and A are open sets.

Let, for instance, F.x1; : : : ; xn; a1; : : : ; ar/ be the profit of a firm when it sells the
quantities x1; : : : ; xn of the goods 1; : : : ; n in a parameter constellation a1; : : : ; ar.
The numerical values of the parameters a1; : : : ; ar may be the prices set for the
goods (then r D n) and for the prices paid for the inputs necessary to produce the
goods or other parameters, for instance macro-economic or political ones that have
an impact on the firm’s profit. We then call the function F W M � A ! R the profit
function of the firm. We suppose that the firm wants to maximise its profit F.x; a/.

Generalising (8.89), (8.90) for the maximisation problem

maximise F(x,a) with respect to x 2 M; (8.91)

1

2

3

4

1 2 3 4 512345

Fig. 8.9 The graph of a 7! V.a/ D 4, that is, the horizontal line through the point .0; 4/, is the
“envelope” of the graphs of the function a 7! F.x; a/ D �.a � x/2 C 4, x 2 R
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we define the value function V W A ! R for each choice of the parameter vector
a 2 A by

V.a/ D max
x

fF.x; a/ j x 2 M 
 Rn g: (8.92)

Notice, that V is defined only if the maximum in (8.92) exists for each a 2 A. We
assume further that the following two conditions are fulfilled:

(i) For each choice of the parameter vector a 2 A, F is a continuously differentiable
function of x 2 M.

(ii) In some neighbourhood N.Qa/ 
 A of Qa 2 A there is a unique continuously
differentiable function X W N.Qa/ ! Rn satisfying

V.a/ D F.X.a/; a/: (8.93)

Here x D X.a/ indicates the dependence of x upon a, and Qx D X.Qa/ is the
maximum point.

Then we get via the chain rule (see Sect. 6.5)

@V

@aj
.Qa/ D

nX

kD1

@F

@xk
.X.Qa/; Qa/@xk

@aj
.Qa/C @F

@xj
.X.Qa/; Qa/

D @F

@xj
.X.Qa/; Qa/ for j D 1; : : : ; r;

since

@F

@xk
.X.Qa/; Qa/ D 0 for k D 1; : : : ; n: (8.94)

Equations (8.94) hold because F has its maximum at .X.Qa/; Qa/ D .Qx; Qa/. In our
interpretation of F as a profit function we can say that the conditions (8.94)
guarantee that there are no marginal gains from small changes in the quantities of
the goods offered when we start from a profit maximising point.

We have proved the so-called envelope theorem for maximisation of a function
depending on parameters:

Let F W M � A ! R, where M 
 Rn and A 
 Rr are open sets, be a continuously
differentiable function of x 2 M for each a 2 A. Let Qx 2 M be a maximiser of F for
Qa 2 A and let for the value function V (see (8.92)) the identity

V.a/ D F.X.a/; a/
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hold for a unique continuously differentiable function X defined in a neighbourhood
of Qa that belongs to A. Then

@V

@aj
.Qa/ D @F

@aj
.X.Qa/; Qa/ for j D 1; : : : ; r: (8.95)

Clearly there is a similar envelope theorem for minimisation of a function
depending on parameters when Qx 2 M is not a maximiser but a minimiser of F
for Qa 2 A and the value function V is defined in (8.92) with min instead of max.

We emphasise that in (8.95) the left-hand side is the partial derivative with respect
to aj of the function V of a at Qa, whereas the right-hand side is the partial derivative
with respect to aj of the function

.a1; : : : ; ar/ 7! F.x1; : : : ; xn; a1; : : : ar/

at

.Qx1; : : : ; Qxn; Qa1; : : : ; Qar/ D .X1.Qa/; : : : ;Xn.Qa/; Qa1; : : : ; Qar/

(see (8.93)).
The envelope theorem, in particular equation (8.90), is useful, since in many

applications the right-hand side of (8.95) or rather the calculations determining it are
easier than the way to get the left-hand sides. We show this in Examples 1 and 2:

Example 1 Consider the function F W R � R2 ! R given by

F.X; a1; a2/ D �x2 C 2.a1 C a2/x C a21 C a22: (8.96)

First we determine the value function V for the problem of maximising F with
respect to x. The equation for the maximiser of F is

@F

@x
.x; a1; a2/ D �2x C 2.a1 C a2/ D 0

(notice that the second derivative with respect to x is �2). So,

x D a1 C a2 D X.a1; a2/ (8’) �rx

(see (ii)). Putting this into F.X.a1; a2/; a1; a2/ leads to

F.X.a1; a2/; a1; a2/ D �.a1 C a2/
2 C 2.a1 C a2/

2 C a11 C a22;

(continued)
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that is, the value function V is given by

V.a1; a2/ D .a1 C a2/
2 C a21 C a22:

Now we can calculate the left-hand sides in (8.95) at a (parameter) point
.Qa1; Qa2/:

@V

@a1
.Qa1; Qa2/ D 4Qa1 C 2Qa2; @V

@a2
.Qa1; Qa2/ D 2Qa1 C 4Qa2: (8.97)

We show that it is easier to apply the envelope theorem, that is, to start out
with the right-hand sides in (8.95). This leads (see (8.96)) directly to

@F

@a1
.x; a1; a2/ D 2a1 C 2x D 2a1 C 2a2; (8.98)

@F

@a2
.x; a1; a2/ D 2a2 C 2x D 4a2 C 2a1; (8.99)

10: (8.98) 11: (8.98) since, by (1), x D X.a1; a2/ D a1Ca2 (compare to (8.95)
and (8.97)).

An interpretation of (8.98) is: When Qx maximises F in the parameter
constellation .Qa1; Qa2/ and Qa1 is increased then

F.Qx; Qa1; Qa2/ D F.X.Qa1; Qa2/; Qa1; Qa2/ D F.Qa1 C Qa2; Qa1; Qa2/

will increase at the rate 4Qa1C2Qa2. Equation (8.99) can be interpreted similarly.

Example 2 We consider the function F W R2CC � R3CC ! R, given by

F.x1; x2; p1; p2; p3/ D x1=21 x1=32 p3 � x1p1 � x2p2; (8.100)

the profit function of a firm, where x1, x2 are the quantities of the two inputs
1 and 2, x1=21 x1=32 is the maximum quantity of an output good that can be
produced with the aid of x1 and x2, p3 is the price paid for the output good,
and p1, p2 are the prices of the inputs, respectively. We consider p1, p2 and p3
as parameters and determine the maximisers of F from the equations

@F

@x1
.x1; x2; p1; p2; p3/ D 1

2
x�1=2
1 x1=32 p3 � p1 D 0;

(continued)
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@F

@x2
.x1; x2; p1; p2; p3/ D 1

3
x1=21 x�2=3

2 p3 � p2 D 0

as

x1 D .p33=12p21p2/
2; x2 D .p23=6p1p2/

3: (8.101)

Notice that F takes its maximum at (8.101), since for the Hessian of F,

0

B
B
@

@2F

@x21

@2F

@x1@x2
@2F

@x2@x1

@2F

@x22

1

C
C
A D

0

B
@

�1
4

x�3=2
1 x1=32 p3

1

6
x�1=2
1 x�2=3

2 p3
1

6
x�1=2
1 x�2=3

2 p3 �2
9

x1=21 x�5=3
2 p3

1

C
A DW H;

we have

D1 D �1
4

x�3=2
1 x1=32 p3 < 0;

D2 D det H D 2

36
x�1
1 x�4=3

2 p23 � 1

36
x�1
1 x�4=3

2 p23

D 1

36
x�1
1 x�4=3

2 p23 > 0

(D1, D2 principal minors; see Sect. 8.2).
Putting (8.101) into (8.100) leads to

F.x1; x2; p1p2; p3/ D p33
12p21p2

p23
6p1p2

� .
p33

12p21p2
/2p1 � . p23

6p1p2
/3p2

D p63
432p31p

2
2

;

that is, the value function V . From this we get

@V

@p1
.p1; p2; p3/ D �p�4

1 p�2
2 p63

144
; (8.102)

@V

@p2
.p1; p2; p3/ D �p�3

1 p�3
2 p63

216
; (8.103)

@V

@p3
.p1; p2; p3/ D p�3

1 p�2
2 p53
72

: (8.104)

(continued)
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For instance, equation (8.104) says that when in the price constellation
.p1; p2; p3/ D .1; 1; 6/ the output price p3 D 6 is increased then the maximal
profit (gained at .x1; x2/ D .324; 216/; see (8.101)) will increase at a rate of
108.

We point out that equations (8.102), (8.103), (8.104) can be deduced
much easier than above with the aid of the envelope theorem, that is, by
application of the right-hand side in (8.95): Inserting (8.101) into the partial
derivatives of (8.100) with respect to p1, p2, p3 gives (8.102), (8.103), (8.104),
respectively.

Our next example applies the envelope theorem to an important problem
of production theory.

Example 3 Consider a firm that produces s goods, using n inputs. The
amounts (quantities) of the goods are y1; : : : ; ys, those of the inputs x1; : : : ; xn,
that is, we have the output vector y D .y1; : : : ; ys/ and the input vector
x D .x1; : : : ; xn/. Let y 2 RsCC, x 2 RnCC. For the prices pj of input j
(j D 1; : : : ; n) we assume .p1; : : : ; pn/ D p 2 RnCC. Given p the firm wants
to minimise the cost

x � p D x1p1 C : : :C xnpn

of production y. Let the firm’s input correspondence (see Sect. 2.2),
M W RsCC ! power set of RnCC, be given by

M.y/ WD ˚
x 2 RnCC

ˇ
ˇ y 2 RsCCcan be produced with the help of x

�
:

(8.105)

Considering the price vector p as parameter vector we have to solve the
minimisation problem

minimise F.x;p/ WD x � p with respect to x 2 M.y/ (8.106)

for each choice of both p 2 RnCC and y 2 RsCC. Compare this with
problem (8.91), where M was a (constant) subset of Rn. In (8.105), M.y/
is a subset of RnCC for each value of y, thus a subset of RnCC depending upon
the parameter(s) y D .y1; : : : ; ym/.

Notice that as (8.92) is the value function for (8.91) so the function
C W RsCC � RnCC ! RCC given by

C.y;p/ D min
y

fx � p j xg 2 M.y/; p 2 RnCC (8.107)
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is the value function for (8.106). Here we are interested only in situations, where
conditions (a), (b), (c) hold:

1. the minimum in (8.107) exists for each choice of the pair of points y 2 RsCC,
p 2 RnCC,

2. p 7! C.y;p/ is concave from below and continuously differentiable,
3. there exists a unique function X W RsCC � RnCC ! RnCC satisfying

C.y;p/ D X.y;p/ � p: (8.108)

3.Obviously, C is the cost function of the firm, that is, C.y;p/ is the minimum cost
to produce y when the prices of the inputs are p, and X.y;p/ is the cost minimising
input vector for producing y given the input prices p.

Under these conditions we get from the envelope theorem, in particular
from (8.95),

@C

@pj
.y; Qp/ D Xj.y; Qp/ for j D 1; : : : ; n: (8.109)

This statement, well known as Shephard’s lemma (Ronald W. Shephard (1912–
1982)), yields, if p 7! C.y;p/ is twice continuously differentiable,

@Xj

@pj
.y; Qp/ D @Xk

@pj
.y; Qp/ for all j and k:

Shephard’s lemma (8.109) says that the cost minimising quantity of input j in the
case of input prices Qp and output vector y equals the marginal cost with respect to pj

at .y; Qp/.
A direct proof of (8.109) runs as follows. We calculate the derivative of (8.108)

with respect to pj:

@C

@pj
.y;p/ D Xj.y;p/C p � @X

@pj
.y;p/

D Xj.y;p/C p1 � @X1
@pj

.y;p/C : : :C pn � @Xn

@pj
.y;p/:

We have to show that

p � @X
@pj
.y;p/ D 0 at p D Qp: (8.110)
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Since X.y;p/ is the cost minimising input vector for producing y given the input
prices p, we have

p � X.y; Qp/ � C.y;p/ D p � X.y;p/:

Hence the function ˚ W RsCC � RnCC ! RCC defined by

˚.y;p/ WD p � X.y; Qp/ � p � X.y; Qp/ (8.111)

satisfies ˚.y;p/ � 0 and ˚.y; Qp/ D 0 for all p 2 RnCC and since p 7! p � X.y; Qp/ is
linear and p 7! �p � X.y;p/ is convex by assumption (b). These properties and the
differentiability of ˚ with respect to pj imply

0 D @˚

@pj
.y;p/ at Qp

that is (see (8.111))

0 D Xj.y; Qp/� Xj.y;p/� p � @X
@pj
.y;p/ at Qp;

which proves (8.110).
We now generalise the above envelope theorem. In our problem (8.91) the

variable (vector) x was constrained by the conditions on the domain in which x
can move.

Let G1 W M1 � A ! R, : : : Gm W Mm � A ! R, F W M � A ! R, where M1 

Rn; : : : ;Mm 
 Rn, M 
 Rn, A 
 Rs are open sets and M1\M2\: : :\Mm\M 6D ;.
The problem is as follows. For each choice of the parameter vector a 2 A

maximise F.x; a/ with respect to x; (8.112)

where x satisfies the conditions

x 2 M; G1.x; a/ D 0; : : : ;Gm.x; a/ D 0: (8.113)

The value function V W A ! R for this problem is given by

V.a/ D max
x

fF.x; a/ j x 2 M;G1.x; a/ D 0; : : : ;Gm.x; a/ D 0g: (8.114)

We assume that, for any choice of a 2 A, the maximum (8.114) exists. Generalising
conditions (i), (ii) at the beginning of this section we assume:

(i’) For each choice of a 2 A, the functions F, G1; : : : ;Gm are continuously
differentiable functions of x, where

x 2 M1 \ M2 \ : : : \ Mm \ M DW M
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(ii’) In some neighbourhood N.Qa/ 
 A of Qa 2 A there is a unique continuously
differentiable function X W N.Qa/ ! M satisfying

V.a/ D F.X.a/; a/ (8.115)

and

G1.X.a/; a/ D 0; : : : ;Gm.X.a/; a/ D 0; X.a/ D x;X.Qa/ D Qx (8.116)

(so Qx is a maximiser of F for a D Qa).

The Lagrange function L W M � A � Rm ! R for problem (8.112), (8.113) is
given by

L.x; a;u/ D F.x; a/C u1G1.x; a/C : : : umGm.x; a/ (8.117)

(compare to Sect. 8.6). When a D Qa (see (ii’)) we differentiate (8.117) with respect
to x and u to obtain the conditions for the critical points of the problem:

@L

@xk
.x; Qy;u/

D @F

@xk
.x; Qa/C u1

@G1

@xk
.x; Qa/C : : :

Cum
@Gm

@xk
.x; Qa/ D 0 .k D 1; : : : ; n/;

(8.118)

@L

@ul
.x; Qa/ D Gl.x; Qa/ D 0 .l D 1; : : : ;m/: (8.119)

In order to obtain equations easier to handle, we differentiate the value function V
given by (8.115) with respect to the parameters. Using the chain rule (see Sect. 6.5)
we get

@V

@aj
.a/ D

nX

kD1

@F

@xk
.X.a/; a/

@Xk

@aj
.a/C @F

@aj
.X.a/; a/ .j D 1; : : : ; r/:

At a D Qa, X.Qa/ D Qx (see (ii’)) this becomes, because of (8.118),

@V

@aj
.Qa/ D @F

@aj
.X.a/; a/

�
nX

kD1
.u1
@G1

@xk
.X.a/; a/C : : :

Cum
@Gm

@xk
.X.a/; a//

@Xk

@aj
.Qa/:

(8.120)
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For a 2 N.Qa/ 
 A and x D X.a/ 2 M (see (ii’)), in particular (8.116) we
differentiate Gl in (8.113) with respect to aj:

nX

kD1

@Gl

@xk
.X.a/; a/

@Xk

@aj
.a/C @Gl

@aj
.X.a/; a/ D 0

. j D 1; : : : ; rI l D 1; : : : ;m/:

Using the derivative
@Gl

@xk
.X.a/; a/, obtained from these equations at a D Qa, the

equations (8.120) reduce to

@V

@aj
.Qa/ D @F

@aj
.X.Qa/; Qa/

Cu1
@G1

@aj
.X.Qa/; Qa/C : : :C um

@Gm

@aj
.X.Qa/; Qa/

. j D 1; : : : ; r/:

(8.121)

We have proved the envelope theorem for maximisation of a function under
equality constraints, where the function and the constraints depend on parameters:

In the situation described above consider the problem (8.112), (8.113). Suppose
that the above assumptions on the objective function F, on the constraining
functions G1; : : : ;Gm and on the value function V (see (8.114)) hold, in particular
assumptions (i’), (ii’). Let, for Qa satisfying (ii’), the vector Qx D X.Qa/ be a maximiser
of F. Then (8.121) holds. We will not discuss necessary and/or sufficient conditions
here under which the Lagrange multipliers u1; : : : ; um in (8.121) can be uniquely
determined. Instead, we present an application of this theorem for the particular case
described by the problem (8.112), (8.113), where F does not depend on parameters,
thus

@F

@aj
.X.a/; a/ D 0 .j D 1; : : : ;m/ for all a 2 A; (8.122)

and the conditions are

G1.x; a/ WD a1 � g1.x/ D 0; : : : ;Gm.x; a/ WD am � gm.x/ D 0;

less general than those in (8.113). In this case the value function V is given by

V.a1; : : : ; am/ D max
x

fF.x/ j a1 � g1.x/ D 0; : : : ; am � gm.x/ D 0g

and (8.121) becomes, for the solution Qx D X.a1; : : : ; am/, Qu of the Lagrange
problem (if it exists),

@V

@aj
.a1; : : : ; am/ D Quj .j D 1; : : : ;m/;



446 8 Nonlinear Optimisation

since, by (8.122),

@F

@aj
.Qx/ D 0 .j D 1; : : : ;m/:

We note that this particular case of the envelope theorem coincides with both our
results at the end of Sect. (8.7) (see formula (8.107 there) and our interpretation of
the Lagrange multipliers given there.

We conclude this section with some remarks on the extrema of real-valued
functions that are not necessarily differentiable with respect to both their variables
and their parameters.

Let M and A be two non-void sets and let x 2 M and a 2 A be a “variable” and a
“parameter”, respectively. In what follows we deal with functions F W M � A ! R

and their (real) function values F.x; a/. From now on M and A are not necessarily
subsets of Rn or Rr , respectively, that is, x and a are not necessarily n- or r-
dimensional real vectors.

We denote by S.a/ the set of all x 2 M which minimise F.y; a/ subject to the
condition y 2 M. Thus

S.a/ D ˚
x 2 M

ˇ
ˇ F.x; a/ D infy2M F.y; a/

�
:

We show the following. Let a1 2 A, a2 2 A, x1 2 S.a1/, x2 2 S.a2/. Then

F.x2; a2/ � F.x2; a1/ � F.x1; a2/ � F.x1; a1/ (8.123)

with equality holding if and only if x2 2 S.a1/ and x1 2 S.a2/.
The inequality (8.123) follows from

F.x1; a1/ � F.x2; a1/ for x1 2 S.a1/ (8.124)

and

F.x2; a2/ � F.x1; a2/ for x2 2 S.a2/; (8.125)

with equality if and only if x2 2 S.a1/ and x1 2 S.a2/. Adding (8.124) and (8.125)
and then subtracting F.x1; a2/ C F.x2; a1/ from both sides at once yields (8.123).
Clearly equality in (8.123) is possible if and only if equality holds in both (8.124)
and (8.125).

Note that the inequality (8.122) is invariant under a permutation of the indices 1
and 2.

For a maximisation problem we accordingly define

S.a/ D ˚
x 2 M

ˇ
ˇ F.x; a/ D supy2M F.y; a/

�
;

and then the inequality (8.123) is reversed.
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We can illustrate (8.123) as follows. Suppose that the function F describes a
general “system” (economical, chemical, physical). Then x is an element (“point”,
“intrinsic or endogenous variable”) of a “state set” M and a n element (“point”,
“experimental condition”, “control”, “extrinsic or exogenous variable”) of a
“parameter set” A. We define the system as being in “(stable) equilibrium” at
.x; a/ if x 2 S.a/, that is, y 7! F.y; a/ has a minimum at y D x. We may furthermore
consider the difference F.x; a2/�F.x; a1/ as the “effect”, evaluated at x, of a change
in the “conditions” (parameters) from a1 to a2.

In this terminology formula (8.123) can be phrased as follows:
Suppose a system which is in equilibrium at the point .x1; a1/ is disturbed by a

change in the parameter a from a1 to a2 and assumes a new equilibrium state at the
point .x2; a2/. Then the difference

F.x2; a2/� F.x1; a1/;

which is a measure of he effect of the disturbance (i.e., of the reaction of the system
to the change) with respect to the point x2, is less than or equal to the difference

F.x1; a2/� F.x1; a1/;

which is the corresponding measure with respect to the point x1.
As an application let the sets M and A both be Rn, and let F have the form

F.x; a/ D H.x/C a � x; (8.126)

where x D .x1; : : : ; xn/, a D .a1; : : : ; an/, a � x D a1x1 C : : : anxn, H W Rn ! R. Let
a1 2 A, a2 2 A, x1 2 S.a1/, x2 2 S.a2/. Then F.x2; a2/� F.x2; a1/ D .a2 � a1/ � x2,
F.x1; a2/� F.x1; a1/ D .a2 � a1/ � x1 and, by (8.123),

.a2 � a1/ � .x2 � x1/ � 0 (8.127)

with equality holding if and only if x2 2 S.a1/ and x1 2 S.a2/.
Paul A. Samuelson (�1915, �2009) relates (8.127) to a principle of LeChatelier

(Henri Louis LeChatelier (1850–1936)) in physics: “The method employed here
is that which underlies LeChatelier’s principle in physics.” This method of deriv-
ing (8.127) together with formula (8.127) itself and a lot of consequences of (8.127)
are called, by economists, LeChatelier–Samuelson principle.

8.7.1 Exercises

1. Let x 2 R, a 2 R. For the problem
maximise F.x; a/ D �x2 C 4ax C 2a2 with respect to x
determine
(a) the dependency of the maximiser x on a, that is, x D X.a/,
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(b) the value function V ,
(c) the derivative of V ,

(d) the derivative
@F

@a
.x; a/ at .X.a/; a/.

2. Let x 2 R, .a1; a2/ 2 R2CC. For the problem
minimise F.x; a1; a2/ D a1 � a2x C x2 with respect to x
determine
(a) the dependence of the minimiser x on a1, a2, that is, x D X.a1; a2/,
(b) the value function V ,
(c) the derivative of V ,

(d) the derivative
@F

@a1
.x; a1; a2/,

@F

@a2
.x; a1; a2/ at .X.a1; a2/; a1; a2/.

3. Let x 2 R, a 2 RCC. For the problem maximise F.x; a/ D �a5x4C8x3�eax2C9
with respect to x, it is difficult to determine both the maximiser x D X.a/ and the
value function V in a neighbourhood of a certain a, say a D 1 (though they exist
in such a neighbourhood). Show, with the aid of the envelope theorem, that the
maximum of the function x 7! F.x; a/ decreases as a increases.

4. Let .x1; x2/ 2 R2CC, c 2 RCC. For the problem
maximise F.x1; x2/ D x1 C x2 under the restriction
g.x1; x2/ D x21 C x22 C c
determine
(a) the Lagrange function L,
(b) the critical points of L (they depend on c),
(c) @F=@c at the critical points Qx1 D x1.c/, Qx2 D x2.c/.
(d) Show that the critical points Qx1, Qx2 are maximisers.
(e) Let the function F W Rn � Rn ! R be given by F.x;A/ D H.x/ C xAxT ,

where H W Rn ! R, x D .x1; : : : ; xn/, xT is the transpose of x, and A is a
quadratic matrix of n2 real “parameters” ajk .j D 1; : : : nI k D 1; : : : ; n/ that
is symmetric (ajk D akj for all j, k), i.e., the transpose AT of A equals A. For
the “parameter matrices” A1 and A2 let x1 and x2 be minimisers of F.x;A1/

and F.x;A2/, respectively. Show that then .x1�x2/.A1�A2/.x1�a2/T � 0.

8.7.2 Answers

1. (a) x D X.a/ D 2a,
(b) V.a/ D �4a2 C 8a2 C 2a2 D 6a2,
(c) dV

da .a/ D 12a,
(d) @F

@a .x; a/ D 4x C 4a, @F
@a .X.a/; a/ D 4X.a/C 4a D 8a C 4a D 12a.

2. (a) x D X.a1; a2/ D a2=2,
(b) V.a1; a2/ D a1 � a22=2C a22=4 D a1 � a22=4,
(c) @V

@a1
.a1; a2/ D 1, @V

@a2
.a1; a2/ D �a2=2,

(d) @F
@a1
.x; a1; a2/ D 1,

@F
@a2
.x; a1; a2/ D �x D �X.a1; a2/ D �a2=2.
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3. dF
da .x; a/ D �a4x4 � eax2 is negative at all x 6D 0 and all a. Without determining
it explicitly we insert X.a/ for x. We know that as a increases, F.X.a/; a/ is a
decreasing function of a.

4. (a) L.x1; x2; c; u/ D x1 C x2 C u � .c � x21 � x22/,
(b) Qx1 D p

2c=2, Qx2 D p
2c=2, Qu D 1=

p
2c,

(c) @F
@c .Qx1; Qx2/ D 1=

p
2c.

(d) Since @2L
@x21

D @2L
@x22

D �2u, u > 0, @2L
@x1@x2

D 0, we know that Qx1, Qx2 are

maximizers.
5. From the definition of x1 and x2 we have, as in (8.124), (8.125),

H.x1/C x1A1x1
T � H.x2/C x2A1x2T

H.x2/C x2A2x2
T � H.x1/C x1A2x1

T
:

Adding up these inequalities and subtracting H.x1/C H.x2/ on both sides of the
resulting inequality gives

x1A1x1
T C x2A2x2

T � x2A1x2
T C x1A2x1

T
;

that is,

x1A1x1
T � x2A1x2

T C x2A2x2
T � x1A2x1

T � 0;

(compare to (8.123)). The left-hand side of this inequality is what remains when
we calculate .x1�x2/.A1�A2/.x1Cx2/T . (Notice that four of the eight terms of
this product add up to zero because of x1A1x2T D .x1A1x2T

/T D x2A1Tx1T D
x2A1x1T

).

8.8 Extrema of an Objective Function Under Inequality
Constraints

In Sects. 8.6 and 8.7 we were interested in determining extrema of an objective
function of several variables under equality constraints, where at least one of the
elements of the set fobjective function, constraintsg is not linear or affine. In
Sect. 8.7 the functions and constraints depended not only on variables but also on
parameters.

This and the following section consider the case of an objective function under
inequality constraints. As in Sects. 8.6 and 8.7 we deal with nonlinear optimisation.

Application 1 Here x D .x1; : : : ; xn/ 2 RnC is the vector of input quantities (inputs)
for a company, p D .p1; : : : ; pn/ 2 RnC the vector of prices per unit charged for the
n kinds of inputs. Furthermore, P W RnC ! RC is the production function, the value
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P.x/ of which is (see Sect. 7.5) the maximal output value obtainable from the inputs
x1; : : : ; xn during a production “period” (fixed time interval). A problem of interest
for the company is the following. Produce with minimal input costs an output worth
at least b money units, that is, minimise

F.x/ D p � x D p1x1 C : : : pnxn (8.128)

under the conditions (constraints)

P.x/ � b; (8.129)

x � 0: (8.130)

Compare this problem to that in Sect. 2.3. Both there and here the objective
function is linear or affine but here the constraints (8.129) may be nonlinear. This
would be the case, for instance, if P in (8.129) were the Cobb–Douglas function (see
Sect. 7.5, (7.29)). As in Sects. 2.4 and 4.8, further constraints may have to be added,
reflecting limitation of inputs.

Example 1 We chose in (8.128) F.x/ D F.x1; x2/ D 16x1 C 2x2 and,
in (8.129), P.x1; x2/ D 10x2=31 x1=32 , that is, P is a Cobb–Douglas production
function (as in Sect. 6.5) and b D 20. Then our optimisation problem is the
following.

Minimise F.x1; x2/ D 16x1 C 2x2 (8.131)

under the conditions

P.x1; x2/ D 10x2=31 x1=32 (8.132)

x1 � 0; x2 � 0: (8.133)

We will solve this problem by a geometric method and inspection.

We see (Fig. 8.10) that the “feasible domain” (the set of admissible solutions,
compare Sect. 5.2) of the objective function F in (8.131) is given by (8.132)
and (8.133), that is, the part (shaded area) of R2CC (of the “first quarter plan”) above
the curve with the equation

10x2=31 x1=32 D 20; that is x2=31 x1=32 D 2

or explicitly (by taking cubes on both sides and solving with respect to x2)

x2 D 8x�1
1 (8.134)
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Fig. 8.10 Geometric representation of the optimisation problem: Minimise 16x1 C 2x2 under the
constraints 10x

2=3
1 x

1=3
2 � 20, x1 � 0, x2 � 0 (solution point .Ox1; Ox2/)

This curve (see Fig. 8.10) clearly goes through the points .1; 8/ and .2; 2/ because
8 D 8 � 1�2 and 2 D 8 � 2�2.

The contour lines (see Sect. 3.3) of F in (8.131) are given by

16x1 C 2x2 D c:

These are parallel straight lines with the slope �8 (as seen in form x2 D 8x1 C c=2
of the equation). Because of x1 � 0, x2 � 0, we are interested in the segments
of these lines in the first quarter plan. The segment with the smallest c, which has
points in common with the feasible domain, determines the solution .Ox1; Ox2/ of the
optimisation problem (8.131), (8.132) and (8.133) and the minimal value 16Ox1 C
2Ox2. Since the function x1 7! 8x21 (see (8.134)) is differentiable on R C C, the
solution will be the point where the derivative of this function (the slope of the
curve described by (8.134)) will be �8 (see Fig. 8.10). Since

d.8x�2
1 /

dx1
D �16x�3

1 ;
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we are looking for the Ox1 with

�16Ox�3
1 D �8;

that is,

Ox31 D 2; Ox1 D 3
p
2 � 1:26;

and

Ox2 D 8Ox�2
1 � 5:04:

So the solution of (8.131), (8.132) and (8.133) is the point .1:26; 5:04/ (up to the
third decimal) and the minimal value is approximately

F.Ox1; Ox2/ � 16 � 1:26C 2 � 5:04 D 30:24

(compare to Fig. 8.10).
If further conditions (constraints) are imposed upon the inputs then the feasible

domain may be restricted and the previous solution point may not be contained in it
anymore. If, for instance, the further conditions are

x1 C 3x2 � 9; (8.135)

x1 � 5; x2 � 2:5 (8.136)

then the feasible domain is restricted to the shaded area in Fig. 8.11.
The new solution point will be the “upper left corner” of this area, a point of

intersection of the curve segment with equation (8.134) and the straight line segment
with equation

x1 C 3x2 D 9;

both with 0 � x1 � 5, 0 � x2 � 2:5. The new solution point .Nx1; Nx2/ has thus to
satisfy

Nx2 D 8Nx�2
1 ;

Nx1 C 3Nx2 D 9 .0 � Nx1 � 5; 0 � Nx2 � 2:5/:

As Fig. 8.11 shows, Nx2 � 2:5 is no genuine restriction. Putting the first equation into
the second, we get

Nx1 C 24Nx�2
2 D 9
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Fig. 8.11 Geometric representation of the optimisation problem dealt with in Fig. 8.10, under the
further constraints x1 C 3x2 � 9, x1 � 5, x2 � 2:5 (solution point .Nx1; Nx2/)

or, multiplied by Nx21,

Nx31 � 9Nx22 C 24 D 0:

This equation of third degree (cubic equation) has three solutions (as Fig. 8.11
shows, one is close to 8:7; another not shown on the figure is close to �1:5) but only
one satisfies 0 � Nx1 � 5, it is approximately Nx1 � 1:83. Since Nx2 D 8Nx�2

1 � 2:39,
also 0 � Nx2 � 2:5 is satisfied. So the new solution point is (compare Fig. 8.11)
.1:83; 2:39/ (up to the third decimal) and the new minimal value is 16Nx1 C 2Nx2 �
34:06.

Application 2 This time x D .x1; : : : ; xn/ 2 RnC is the vector of the quantities of
the n goods and services which a household may use; the vector of their prices per
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unit is again p D .p1; : : : ; pn/ 2 rznC. Furthermore, let B 2 RCC be the budget of
the household and U.x/ 2 R the utility of these quantities of goods and services
for the household (notice that the utility may also be negative). According to the
principle of efficiency in economics, we have to

maximise U.x/ (8.137)

under the conditions

p � x D p1x1 C : : :C pnxn � B; (8.138)

x � 0; that is x1 � 0; : : : ; xn � 0: (8.139)

If the utility function U W RnC ! R is nonlinear then this too is a nonlinear
optimisation problem.

Example 2 We chose in (8.137), budget as B D 9 and the prices as p1 D 3,
p2 D 1 (in whatever money unit we deal). So the problem is to

maximise U.x1; x2/ D 6x1 � x21 C 4x2 � x22 (8.140)

under the conditions

3x1 C x2 � 9; (8.141)

x1 � 0; x2 � 0: (8.142)

The law of diminishing marginal returns in utility from Hermann Heinrich
Gossen (1810–1858) requires that the utility function U be strictly concave
(strictly convex from above). According to Sect. 8.2 this means that the
Hessian matrix U00.x/ be negative definite. This is indeed the case:

@2U

@x21
D �2; @2U

@x1@x2
D 0;

@2U

@x22
D �2;

U00.x1; x2/ D
��2 0

0 �2
�

:

The eigenvalues of this matrix are the solution of

0 D det

��2 � � 0

0 �2 � �

�

D .�2 � �/2:

The (double) solution of this equations is negative �1 D �2 D �2. So the
Hessian matrix is negative definite and U is indeed strictly convex from above.
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Fig. 8.12 Geometric
representation of the problem
of maximising
6x1 � x21 C 4x2 � x22 under the
conditions 3x1 C x2 � 9,
x1 � 0, x2 � 0 and of its
solution .Ox1; Ox2/

x

y

z

We will see later (“convex optimisation”) that the convexity (or concavity) of
the objective function is very helpful in the solution of optimisation problems.
Here, however, we will solve the problem (8.140), (8.141) and (8.142) by intuitive
geometric considerations. First a false start: U.x1; x2/ in (8.140) can be written as

U.x1; x2/ D 13 � .x1 � 3/2 � .x2 � 2/2: (8.143)

This shows immediately that U has at x1 D 3, x2 D 2 a unique global maximum
on R2C with the value 13. (It shows also that U.x1; x2/ can be negative, for instance
at x D .6; 5/. This is not absurd: There are households for which consumption
of relatively big quantities of nonrenewable goods have negative utility). However,
x1 D 3, x2 D 2 do not satisfy (8.141). .3; 2/ is not in the feasible domain, shaded in
Fig. 8.12.

An argument similar to that by which we solved (8.131), (8.132) and (8.133) may
be more successful: The contour lines of the function described by (8.143) have the
equation

13� .x1 � 3/2 � .x2 � 2/2 D c; that is; .x1 � 3/2 C .x2 � 2/2 D 13� c .c 2 R/:

So the contour lines are concentric circles around .3; 2/ with radius .13 � c/1=2.
Accordingly, the smaller the radius, the greater the U-value c. Thus we are looking
for the circle with the smallest radius which has points in common with the feasible
domain described by (8.141) and (8.142). Since, see Fig. 8.12, this domain is
the rectangular triangle (interior and boundaries), bounded by the horizontal and
vertical axes and by the segment in the first quarter plane of the straight line with
equation

3x1 C x2 D 9; (8.144)

the circle with the smallest radius will be the one whose tangent is this straight
line. We could again proceed by differentiating but we know that the tangent of a
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circle is perpendicular to its radius at that point. Since (8.144) can be written as
x2 D �3x1 C 9, the tangent has the slope �3, so the radius line’s slope is 1=3 and
its equation is

x2 D 1

3
x1 C b:

We can determine b from the knowledge that this straight line goes through the
centre .3; 2/ of the circle, so

2 D 1

3
3C b; b D 1

and the equation is

x2 D 1

3
x2 C 1:

For the point of intersection .Ox1; Ox2/ of this straight line and that described by (8.144)
(which is the point where the latter touches the circle)

3Ox1 C .
1

3
Ox1 C 1/ D 9;

that is,

Ox1 D 24

10
D 2:4; Ox2 D 1

3
Ox1 C 1 D 1:8:

So the solution point of the optimisation problem (8.140), (8.141) and (8.142) is
.2:4; 1:8/ and the conditional maximum value is 6 �2:4�2:42C4 �1:8C1:82 D 12:6

(as expected smaller than 13, the unconditional global maximum value of U).
In these examples it was relatively easy to find the solution, because the objective

functions and conditions were simple, there were only two variables and the
geometric representation was quite intuitive. The methods of solution were ad hoc,
suggested by particularities of these problems.

A more systematic and general method but still with geometric motivation, is the
method of steepest ascent (for maxima) or of steepest descent (for minima) which
we encountered in the context of linear optimisation already in Sects. 2.4 and 5.2.
The basic idea is to start from a feasible point (which we found somehow) and
advance on that straight path on which the values of the objective function show the
greatest increase (decrease) till the boundary of the feasible domain (beyond which
at least one of the constraints would be violated). The thus obtained point is closer
to the solution of the optimisation problem but needs not be the solution point itself.
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We will not discuss here in general how to go further from this point but will do
so in one particular case, that of the nonlinear optimisation problem (8.140), (8.141)
and (8.142).

Let us start, for instance, with the origin .0; 0/, which certainly is in the feasible
domain, and advance on the straight line leading to the global maximum point
(without constraints) which, as we happen to know, is .3; 2/. This will be the path
of steepest ascent. Its equation is

x2 D 2

3
x1:

We have to stay in the permissible domain, so (8.141) has to be satisfied:

3x1 C x2 D 1

3
x1 � 9:

The largest (farthest from 0) x1 satisfying the inequality is Nx1 D 27=11. Then Nx2 D
2=3 �27=11D 18=11 and we got the point .Nx1; Nx2/ D .27=11; 18=11/ (see Fig. 8.12).
At this feasible point

U.Nx1; Nx2/ D 6 � 27
11

� �
27
11

	2 C 4 � 18
11

� �
18
11

	2 � 12:57;

somewhat short of the actual maximal value 12:60 calculated above:
How should we go further? In what direction? It is easy to see that we have to

move on the boundary line

3x1 C x2 D 9:

Indeed, points above it are not feasible (because they do not satisfy (8.32)) and for
any point below it we can get one on the boundary with greater U value by moving
on the (straight) line of steepest ascent (towards the centre of the concentric circles)
till the boundary. Starting with the point .Nx1; Nx2/ D . 27

11
; 18
11
/ determined above, the

points on the boundary can be given in parametric form as

.Nx1; Nx2/ D �
27
11
; 18
11

	C �.�1; 3/; .� 2 R/; (8.145)

because the boundary is parallel to the vector .�1; 3/. The value of the objective
function U is on this line

U.x1; x2/ D 6
�
27
11

� �	 � �
27
11

� �
	2 C 4

�
18
11

C 3�
	� �

18
11

C 3�
	2 DW f .�/:

So we look for the maximum of this function (compare Sect. 5.3). The derivation

f 0.x/ D �6C 2. 27
11

� �/C 12� 6. 18
11

C 3�/
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is 0 at O� D 3
55

and

f 00.�/ D �2 � 18 D �20 < 0

everywhere. So we have a maximum at O� D 3
55

. By (8.145), we arrive at the point

.Ox1; Ox2/ D . 27
11
; 18
11
/C 3

55
.�1; 3/ D . 12

5
; 9
5
/ D .2:4; 1:8/;

the solution point which we had obtained before.
If the contour lines and constraints are not so simple then we find out, as follows,

which way to move from .Nx1; Nx2/ D Nx. As in Sect. 5.4, we have

U.Nx C h/ � U.Nx/C @U

@x1
.Nx/h1 C @U

@x2
.Nx/h2 D U.Nx/C 5U.Nx/ � h

approximately. Another way to look at this expression is to notice that

@U

@x1
.Nx/ h1

jhj C @U

@x2
.Nx/ h2

jhj D @U

@x1
.Nx/ cos˛ C @U

@x2
.Nx/ sin˛

is the directional derivative (see Sect. 5.2) of U at Nx or measure of ascent in the
direction ˛ (see Fig. 8.13). We first find out in which direction U.x C h/= jhj is
maximal in this approximation which is, as we know, the more accurate the smaller
jhj is. So we have a short step in that direction, staying in the feasible domain.
Let the unit vector of our direction vector Nh be Nk and move by Nh D � Nk to get
to NNx D Nx C Nh D Nx C � Nk with a small � D ˇ

ˇ Nhˇˇ and the best unit vector Nk just

Fig. 8.13 Geometric
background concerning the
derivative of a function
defined by U W R2

C ! R at
Nx D .Nx1; Nx2/ in the direction ˛

x

y

z

(x1, x2)
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determined. We will have U.NNx/= ˇˇNhˇˇ � U.Nx/= ˇˇNhˇˇ, that is, U.NNx/ > U.Nx/ (if � is
small enough). Then we advance from NNx by the same method till we reach a still
feasible Ox from which we cannot get to any feasible point with larger (not smaller)
U value. This will be at least an approximation of a local condition maximum point
(not necessarily sharp). This works also for functions of more than two variables.

After these rather intuitive arguments in special cases, we formulate now the
general, in particular nonlinear optimisation problem and, mostly without proof,
some results about its solution.

In Application 1 we had to minimise a function F while in Application 2 the
problem was to maximise U. The latter, however, is equivalent to minimising the
function F D �U. Also, all conditions (constraints) (8.20), (8.21), (8.29), (8.30), in
particular (8.23), (8.24), (8.32), (8.33), can be written in the form

G1.x1; : : : ; xn/ � 0; : : : Gm.x1; : : : ; xn/ � 0: (8.146)

If we also had equality constraints in our applications, for instance, if we had
g1.x1; : : : ; xn/ D 0, : : :, gr.x1; : : : ; xn/ D 0, they could have been written in the
form (8.146): g1.x1; : : : ; xn/ � 0, �g1.x1; : : : ; xn/ � 0, : : :, gr.x1; : : : ; xn � 0,
�gr.x1; : : : ; xn/ � 0. Notice also that, as with linear programming, the domain is
described by (part of) the constraints (8.37) (for instance (8.23), (8.24), (8.32)), so it
seems that we could leave the functions F; G1; : : : ; Gm defined on all of Rn (or, for
practical reasons, RnC). It may not be possible, however, to define some functions on

all of Rn or RnC (for instance .x1; x2/ 7! .1�x21�x22/
1
2 is not defined if x21Cx22 > 1).

Therefore we will keep saying “on the whole domain” occasionally, instead of “on
Rn” or “on RnC”.

As mentioned before, an optimisation problem is nonlinear if at least one of the
functions F; G1; : : : ; Gm is not linear or affine. An optimisation problem may have
infinitely or finitely many solutions or just one (unique) solution or no solution at
all.

In the usual vector form with the notations

x D .x1; : : : ; xn/; G D .G1; : : : ;Gm/;

the optimisation problem consists of

minimising F.x/

under the constraints

G.x/ <D 0:

Unfortunately, there are no general methods for the solution of nonlinear
optimisation problems comparable, for instance, to the simplex algorithm in
linear optimisation. We can formulate, however, conditions, neither necessary nor
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sufficient, for a vector x to

minimise F.x/ under the constraints G.x/ <D 0 (8.147)

These can be formulated with aid of Lagrange functions. These are functions
L W Rn � Rn ! R defined by

L.x;u/ D F.x/C u � G.x/

D F.x/C u1G1.x/C � � � C umGm.x/;
(8.148)

where x 2 Rn, u 2 Rm (later u 2 RmC, x 2 RnC). The components u1; : : : ; um of u
are the Lagrange multipliers. If a Lagrange multiplier uk is nonnegative, it can be
considered penalty per unit by which Gk.x/ is above 0. As mentioned, for the time
being, we let the domain of F be the entire Rn or, at least, RnC.

It is remarkable that, while in Sect. 8.3 (local) saddle points figured as alternatives
to local maxima or minima without constraints, here a certain kind of global
saddle points of the Lagrange function can help us to solve the global minimum
problem (8.147) with constraints. These are points (vectors) .Ox; Ou/ in the .n C m/-
dimensional space Rn � Rm such that

L.Ox;u/ � L.Ox; Ou/ � L.x; Ou/ for all x 2 RnI u 2 Rm: (8.149)

We called such saddle points global, because (8.149) is supposed to hold for all
x 2 Rn, u 2 Rm,

For n D m D 1 such points .x; u/ are clearly saddle points of the type in Fig. 8.6
of Sect. 8.3; see also Fig. 8.7. Notice that, because of the special form (8.148) of the
Lagrange functions, the functions

u 7�! L.x;u/ D F.x/C u � G.x/

are affine for all x. Specially for x D Ox, by (8.149), u 7! L.Ox;u/ has to have a global
maximum at Ou, so, being affine, it has to be constant (compare Fig. 8.14:

L.Ox;u/ D c (constant): (8.150)

Restricting u>D 0, we have, in terms of L.x;u/, the following sufficient condition
for Ox to be a global minimum of F under the condition(s) G.x/ <D 0. If .Ox; Ou/ is
a saddle point of the Lagrange function L, defined by (8.148) (for u>D 0), that is
(compare (8.149))

F.Ox/C u � G.Ox/ � F.Ox/C Ou � G.Ox/ � F.x/C Ou � G.x/ for u>D 0; (8.151)

and for all x in the domain then Ox is a solution of the optimisation problem (8.147).



8.8 Extrema of an Objective Function Under Inequality Constraints 461

x

y

z

Fig. 8.14 Global saddle point .Ox; Ou/ D .5; 3/ on R 	 R of the Lagrange function
L W R 	 R ! R, L.x; u/ D x2 � 13x C 50C .x � 5/u, for the problem: Maximise x2 � 13x C 50

under the constraint x � 5

Indeed, the first inequality in (8.151) can be written as

u � G.Ox/ � Ou � G.Ox/: (8.152)

For u D 0 this gives Ou � G.Ox/ � 0, while with u D 2 Ou we get Ou � G.Ox/ � 0. So

Ou � G.Ox/ D 0: (8.153)

But then (8.152) reduces to

u � G.Ox/ � 0; that is, u1G1.Ox/C : : :C umGm.Ox/ � 0

Since uk � 0 (k D 1; : : : ;m), this is possible only if Gk.Ox/ � 0 (k D 1; : : : ;m) (if
we had Gk0 .Ox/ > 0 then, with uk D 0 for k 6D k0 and uk0 D 1, we would have
u � G.Ox/ > 0, that is,

G.Ox/ <D 0: (8.154)
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So Ox satisfies the m conditions (one vector condition) G.x/ <D 0 in (8.147).
With (8.153) the second inequality of (8.151) becomes F.Ox/ � F.x/C Ou � G.x/. For
all x satisfying the constraint G.x/ <D 0 in (8.147) we get

F.Ox/ � F.x/;

that is, Ox indeed minimises F.x/ if G.x/ <D 0, as asserted.
As we saw (see (8.149), (8.150)), .Ox; Ou/ is a (global) saddle point of L if

(a) the function u 7! L.Ox;u/ is constant (in this case for u>D 0) and
(b) Ox is a global minimum (or maximum) of x 7! L.x; Ou/.

We saw in the previous proof the importance of (8.153) and (of course) of (8.154).
We mention without proof that (a) can be replaced by (8.153) and (8.154) for L
given by (8.148) that is, .Ox; Ou/ is a saddle point of L belonging through (8.148) to the
optimisation problem (8.147) (with u>D 0) if and only if, (b) and (8.153) and (8.154)
are satisfied.

Notice the remarkable fact that neither of the two results just mentioned
supposed any regularity (continuity, convexity, differentiability) of the functions F,
G1; : : : ;Gm. Neither of the conditions (a), (b), (8.153) or (8.154) is, however, easy
to check. We will later have conditions which are easier to verify (the Kuhn-Tucker
conditions) in the case when these functions are continuously differentiable (that is,
their derivatives are continuous functions).

First we mention, however, convex optimisation, that is, the case where F,
G1; : : : ;Gm are all convex from below on the domain in which we are interested.
Multiplying the appropriate functions by �1 shows that maximising a function F
convex from above (concave) and/or changing the constrains into

G1.x/ � 0; : : : ;Gm.x/ � 0

but then supposing G1; : : : ;Gm to be convex from above (concave) are also problems
of convex optimisation, equivalent to the one above. Since affine functions are
convex (Sect. 3.6), linear optimisation is a particular case of convex optimisation.
We speak of quadratic optimisation if, in (8.147) or its “maximise” equivalent, F is
a quadratic form and G1; : : : ;Gm are affine functions.

A noteworthy advantage of convex optimisation is that conditional local minima
are also conditional global maxima for them. These two concepts are defined as
follows. For the optimisation problem (8.147), Ox is aconditional local minimum if
G.Ox/ <D 0 (that is, (8.154) holds) and there exists an (open) neighbourhood of Ox such
that, for all Ox satisfying G.x/ <D 0 in that neighbourhood,

F.Ox/ � F.x/: (8.155)
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On the other hand, Ox is a conditional global minimum for (8.147) if G.Ox/ <D 0
and (8.155) holds for all x satisfying G.x/ <D 0 in the domain of F. The equality of
local and global conditional minima in convex optimisation problems is proved the
same way as it was done in Sect. 8.3 for unconditional extrema of convex functions.

As for linear optimisation (Sect. 5.2), also for convex optimisation problems, the
set of solution vectors is a convex set (Sect. 3.5). Indeed, if Ox and Qx are solution
vectors then

F.Ox/ � F.x/ and F.Qx/ � F.x/

for all x satisfying G.x/ <D 0. If we multiply the second inequality by � 2�0; 1Œ and
the first by .1 � �/, we get from the convexity of F from below

F..1� �/Ox C �Qx/ � .1 � �/F.Ox/C �F.Qx/ � F.x/

or all x satisfying G.x/ <D 0. So .1 � �/Ox C �Qx is also a solution, as asserted.
In the case of convex optimisation, the above sufficient condition involving

L.x;u/ D F.x/C u � G.x/ is also necessary for F to be a global minimum, provided
G.x/ <D 0, if we slightly strengthen this last assumption in the following sense: In
addition to G.x/ <D 0 for all x in the domain we suppose that

there exists an x0 for which G.x0/ < 0 (strictly). (8.156)

This is called the Slater condition. If, under this condition, Ox minimises the convex
function F then there exists a Ou>D 0 such that .Ox; Ou/ is a saddle point of L.x;u/ D
F.x/C uG.x/ (u>D 0). We do not prove this but note that, combined with the above
sufficient condition, we have now the following result.

If, in the convex optimisation problem (8.147), there exists an x0 with the
strict inequality G.x0/ < 0 and the Lagrange function defined by (8.148) has a
saddle point .Ox; Ou/ then F has a conditional global minimum at Ox. Conversely,
if Ox is a solution of the convex optimisation problem (8.147) under the Slater
condition (8.156), then there exists a Ou>D 0 such that .Ox; Ou/ is a saddle point of
L.x;u/ D F.x/C u � G.x/. These are the Kuhn-Tucker conditions.

8.8.1 Exercises

1. (a) Determine, by a graphical method similar to that applied in this section, the
solution point .bx1;bx2/ to the problem:

Minimise F.x1; x2/ D x31 � 3x1x2
subject to 2x1 � x2 C 5 D 0, 37 � 5x1 � 2x2 � 0, x1 � 0, x2 � 0.

(b) Calculate the (constrained) minimum of F.
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2. (a) Determine, by graphical method similar to that applied in this section, the
solution point .bx1;bx2/ to the problem:

Minimise F.x1; x2/ D p
x1x2

subject to x1 C 4x2 � 40, x1 � 0, x2 � 0.
(b) Calculate the (constrained) maximum of F.

3. (a) Is the problem of quadratic optimisation:
Minimise F.x1; x2/ D x21 C x22
subject to x1 C 4x2 � 5, 4x1 C x2 � 5, x1 � 0, x2 � 0

a convex optimisation problem?
(b) Determine the solution of this problem.

4. (a) Is the problem of quadratic optimisation:
Minimise F.x1; x2/ D x21 � x22
subject to x1 C x2 � 5, x1 C 5x2 � 10, x1 � 0, x2 � 0

a convex optimisation problem?
(b) Determine the solution of this problem.

5. Let the system of (convex) constraints of a nonlinear optimisation problem be

G1.x1; x2; x3/ D x21 C x22 C x23 � 1 � 0;

G2.x1; x2; x3/ D x41 C x42 C x43 � 1

4
� 0;

G3.x1; x2; x3/ D ex1Cx2Cx3 � 5 � 0:

Is there an .x0
1; x

0
2; x

0
3/ satisfying the Slater condition (8.156)?

8.8.2 Answers

1. (a) .Ox1; Ox2/ D . 5; 15/, (b) F.Ox1; Ox2/ D �100.
2. (a) .Ox1; Ox2/ D .20; 5/, (b) F.Ox1; Ox2/ D 10.
3. (a) Yes, F.x1; x2/ D x21 C x22 is (strictly) convex from below,

5 � x1 � 4x2 � 0 and 5 � 4x1 � x2 � 0 are convex from below.
(b) The (unique) solution point is .Ox1; Ox2/ D .1; 1/, the (constrained) minimum

of F is F.1; 1/ D 2.
4. (a) No, F.x1; x2/ D x21�x22 is neither convex from below nor convex from above.

(b) The (unique) solution point is .Ox1; Ox2/ D .5; 0/, the (constrained) minimum
of F is F.5; 0/ D 25.

5. Yes, for instance .x0
1; x

0
2; x

0
3/ D . 1

2
; 1
2
; 1
2
/:

G1.
1
2
; 1
2
; 1
2
/ D 3

4
� 1 D �1

4
< 0;

G2.
1
2
; 1
2
; 1
2
/ D 3

16
� 1

4
D � 1

16
< 0;

G3.
1
2
; 1
2
; 1
2
/ D e3=2 � 5 � 4:481689� 5 D �0518311 < 0:
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8.9 The Kuhn–Tucker Conditions

Now we get the promised Kuhn–Tucker conditions. They provide a solution method
for problem (8.39) (in Sect. 8.8) when the functions F, G1; : : : ;Gm are continuously
differentiable. Harold William Kuhn (�1925) and Albert William Tucker (�1905)
showed, among others: If .Ox; Ou/ is a saddle point of L (see (8.40) and problem (8.39))
then the conditions (8.157), (8.158), (8.159), (8.160), (8.161), (8.162), (8.163),
(8.164), (8.165) and (8.166) below are satisfied. In other words, these conditions
are necessary for .Ox; Ou/ to be a saddle point of L. From now on we suppose Ox � 0.
We denote the gradient (derivative, compare Sect. 6.11) of L with respect to x or u
by rxL and ruL, respectively.

If .Ox; Ou/ 2 RnC � RmC is a saddle point of L W RnC � RmC ! R then

rxL.Ox; Ou/ � 0; that is;
@L

@xj
.Ox; Ou/ � 0 .j D 1; : : : ; n/; (8.157)

Ox � rxL.Ox; Ou/ D 0; that is;
nX

jD1
Oxj
@L

@xj
.Ox; Ou/ D 0; (8.158)

ruL.Ox; Ou/ � 0; that is;
@L

@uk
.Ox; Ou/ � 0 .k D 1; : : : ;m/;

(8.159)

Ou � ruL.Ox; Ou/ D 0; that is;
mX

kD1
Ouk
@L

@uk
.Ox; Ou/ D 0: (8.160)

The conditions (8.157), (8.158), (8.159) and (8.160) as well as the following
conditions (8.161), (8.162), (8.163), (8.164), (8.165) and (8.166) are the Kuhn–
Tucker conditions. Because of Ox � 0 and (8.157) all terms in (8.158) have to be
nonnegative. Also Ou � 0 and(8.159) imply that all terms in (8.160) are nonpositive.
But they have to add up to 0, so each term has to be zero; therefore (8.158)
and (8.160) can be replaced by

Oxj
@L

@xj
.Ox; Ou/ D 0 .j D 1; : : : ; n/ (8.161)

and

Ouk
@L

@uk
.Ox; Ou/ D 0 .k D 1; : : : ;m/; (8.162)
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respectively. Since (see (8.40)) L.x;u/ D F.x/C uG.x/, (8.161) becomes

@F

@xj
.Ox/C

mX

kD1
Ouk
@Gk

@xj
.Ox/ � 0 .j D 1; : : : ; n/; (8.163)

Oxj

 
@F

@xj
.Ox/C

mX

kD1
Ouk
@Gk

@xj
.Ox/
!

D 0 .j D 1; : : : ; n/; (8.164)

and (8.159) and (8.162) can be written as

Gk.Ox/ � 0 .k D 1; : : : ;m/ (8.165)

and

OukGk.Ox/ D 0 .k D 1; : : : ;m/; (8.166)

respectively. Of course, (8.165) is just the condition (8.47). Notice that (8.166)
and (8.164) imply that, if Ouk > 0 for a k, then Gk.Ox/ D 0 for that k and if, for a
j, Oxj > 0 then, for that j,

@F

@xj
.Ox/C

mX

kD1
Ouk
@Gk

@xj
.Ox/ D 0:

In addition to the equation (8.165) and to the continuous differentiability of
F, G1; : : : ;Gm let these functions be also convex and the Slater condition (8.117)
be satisfied. Then Ox � 0 is a global minimum point of this convex optimisation
problem if, and only if, there exists a Ou � 0 with which the Kuhn–Tucker
conditions (8.163), (8.165) and (8.166) are satisfied. So, in this situation the Kuhn–
Tucker conditions are necessary and sufficient.

We do not prove these results. We note, however, the following. The condi-
tions (8.165)–(8.166) are in general not sufficient for Ox to be a global minimum in
the optimisation problem (8.39) if not all of F, G1; : : : ;Gm are convex (or we have
no proof that they are) or we do not know whether (8.117) is satisfied. However, the
Kuhn–Tucker conditions can be useful even in these cases. Indeed they then give
all candidates for global minima: no Ox � 0 for which there does not exist a Ou � 0
such that (8.165)–(8.166) are satisfied, can be a solution of (8.39). So, if we can
solve (8.163), (8.164), (8.165) and (8.166), we substitute the solutions into F; the
solution Ox which gives the smallest F.Ox/ value will give the global minimum of F
under the conditions G.x/ � 0.

We apply these results to Example 2 (see Sect. (8.8)) where we can compare the
result to what we obtained previously.

In order to bring (8.140), (8.141) and (8.142) to the form (8.39), we define F by

F.x1; x2/ D �U.x1; x2/ D x21 � 6x1 C x22 � 4x2 (8.167)
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and write (8.141), (8.142) as

G1.x1; x2/ D 3x1 C x2 � 9 � 0; (8.168)

G2.x1; x2/ D �x1 � 0; (8.169)

G3.x1; x2/ D �x2 � 0: (8.170)

We have shown, when we introduced Example 2 in Sect. 8.8 that U is strictly
concave (strictly convex from above); G1, G2, G3 are concave (not strictly), since
they are affine. Furthermore the Slater condition (8.117) is satisfied, for instance
for x0 D .1; 1/: G1.x0/ D �5 < 0, G2.x0/ D G3.x0/ D �1 < 0. Also,
F, G1, G2, G3 are, of course, continuously differentiable, so the Kuhn–Tucker
conditions (8.157), (8.161), (8.159), (8.162) are necessary and sufficient for the
global conditional minimum of F.

The definition (8.40) of the Lagrange function in Sect. 8.8 is in this example

L.x;u/ D x21 � 6x1 C x22 � 4x2 C u1.3x1 C x2 � 9/� u2x1 � u3x2;

so (8.157), (8.161), (8.159), (8.162) give

@L
@x1

D 2x1 � 6C 3u1 � u2 � 0;

@L
@x2

D 2x2 � 4C u1 � u2 � 0;
(8.171)

x1 @L
@x1

D x1.2x1 � 6C 3u1 � u2/ D 0;

x2
@L
@x2

D x2.2x2 � 4C u1 � u2/ D 0;
(8.172)

@L
@u1

D 3x1 C x2 � 9 � 0;

@L
@u2

D �x1 � 0; @L
@u3

D �x2 � 0;
(8.173)

u1
@L
@u1

D u1.3x1 C x2 � 9/ D 0;

u2 @L
@u2

D �u2x1 D 0; u3 @L
@u3

D �u3x2 D 0;
(8.174)

respectively. None of the points x1 D .0; t/, x2 D .s; 0/ .s; t 2 RC/ are global
conditional minimum points, since F.0; t/ D t2 � 4t > F.1; t/ D �5 C t2 � 4t,
F.s; 0/ D s2 � 6s > F.s; 1/ D s2 � 6s � 3. So the conditional minimum points
are not on the boundary, and we may suppose Ox1 6D 0, Ox2 6D 0 for the solution.
Then by (8.174), Ou2 D Ou3 D 0. If we had also Ou1 D 0, then (8.172) would give
2x1 � 6 D 0, 2x2 � 4 D 0, that is, x1 D 3, x2 D 2 which does not satisfy (8.168) (or
the first inequality of (8.173)). So Ou1 6D 0 and (8.172), (8.174) give

2Ox1 C 3Ou1 D 6;

2Ox2 C Ou1 D 4;

3Ox1 C Ox2 D 9:
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The (unique) solution of this system of linear equations is (compare Sect. 4.6)
Ox1 D 2:4, Ox2 D 1:8, Ou1 D 0:4. So the (only) vector minimising (8.167) under
the conditions (8.168), (8.169) and (8.170) is .2:4; 1:8/, in accordance with what
we previously found by geometric methods.

8.9.1 Exercises

1. Problem: Minimise F.x1; x2/ D x21Cx22�x1x2�4x2�x1C17 subject to x1C2x2 �
6 and x1 � 0, x2 � 0.
(a) Determine the Lagrange function L of this problem.
(b) Determine all points .Ox; Ou/ that satisfy the Kuhn–Tucker conditions.
(c) Determine the solution point Ox and the solution value F.Ox/ of the problem.
(d) Are the conditions satisfied which guarantee that the Kuhn–Tucker condi-

tions are sufficient for Ox to be a global solution of the problem?
2. Solve the following problems.

(a) Determine, by a graphical method similar to that applied in Sect. 8.8 the
solution point .Ox1; Ox2/ to the problem:

Minimise F.x1; x2/ D x21 C 4x22 � x1 � 4x2
subject to 2x1 C x2 � 1, x1 � 0, x2 � 0.

(b) Calculate the (constrained) minimum of F.
3. Solve the following problems.

(a) Given the problem in Exercise 2, write out the Kuhn–Tucker conditions for
the Lagrange function L.x1; x2; u1; u2; u3/ D x21 C 4x22 � x1 � 4x2 C u1.2x1 C
x2 � 1/C u2.�x1/C u3.�x2/.

(b) Calculate the Lagrange multipliers Ou1, Ou2, Ou3 belonging to .Ox1; Ox2/ (see
Exercise 2).

4. State the Kuhn–Tucker conditions of the Lagrange function
L.x1; x2; u1; u2; u3/ D 16x1 C 2x2 C u1.20 � 10x2=31 x1=32 / C u2.�x1/ C u3.�x2/
for the initial problem in Example 1 of Sect. 8.8. Determine with their aid the
Lagrange multipliers Ou1, Ou2, Ou3 belonging to the solution point .Ox1; Ox2/ D .21=3; 8�
2�2=3/ � .1:26; 5:04/.

5. Carry through the process described in Exercise 4 with the additional condi-
tions (8.135), (8.136) of Sect. 8.8 taken into consideration.

8.9.2 Answers

1. (a) L.x1; x2; u1; u2; u3/
D F.x1; x2/C u1G1.x1; x2/C u2G2.x1; x2/C u3G3.x1; x2/
D x21 C x22 � x1x2 � 4x2 � x1 C 17

Cu1.x1 C 2x2 � 6/� u2x1 � u3x2:
(b) .Ox1; Ox2; Ou1; Ou2; Ou3/ D . 10

7
; 16
7
; 6
7
; 0; 0/.

(c) .Ox1; Ox2/ D . 10
7
; 16
7
/; F.Ox1; Ox2/ D 73

7
� 10:43.
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(d) Yes: The functions F, G1, G2, G3 given by

F.x1; x2/ D x21 C x22 � x1x2 � 4x2 � x1 C 17;

G1.x1; x2/ D x1 C 2x2 � 6;

G2.x1; x2/ D �x1; G3.x1; x2/ D �x2

are convex, and the Slater condition (8.117) is satisfied, for instance by x0 D
.1; 1/:

G1.1; 1/ D 1C 2 � 6 < 0; G2.1; 1/ D �1 < 0; G3.1; 1/ D �1 < 0:

2. (a) .Ox1; Ox2/ D . 9
34
; 8
17
/, (b) F.Ox1; Ox2/ D � 81

68
.

3. (a) We calculate

@L

@x1
.x1; x2; u1; u2; u3/ D 2x1 � 1C 2u1 � u2 � 0;

@L

@x2
.x1; x2; u1; u2; u3/ D 8x2 � 4C u1 � u3 � 0;

x1
@L

@x1
.x1; x2; u1; u2; u3/C x2

@L

@x2
.x1; x2; u1; u2; u3/

D x1.2x1 � 1C 2u1 � u2/C x2.8x2 � 4C u1 � u3/ D 0;

@L

@u1
.x1; x2; u1; u2; u3/ D 2x1 C x2 � 1 � 0;

@L

@u2
.�/ D �x1 � 0;

@L

@u3
.�/ D �x2 � 0;

u1
@L

@u1
.�/C u2

@L

@u2
.�/C u3

@L

@u3
.�/

D u1.2x � 1C x2 � 1/C u2.�x1/C u3.�x2/ D 0:

(b) . Ou1; Ou2; Ou3/ D . 4
17
; 0; 0/:

4. . Ou1; Ou2; Ou3/ D . 2
7=3C24=3

5
; 0; 0/ � .1:51; 0; 0/:

5. .Nx1; Nx2/ � .1:83; 2:39/; .Nu1; Nu2; Nu3; Nu4/ � .2:41; 1:55; 0; 0/:
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8.10 Optimisation with Several Objective Functions

Up to now we considered optimisation problems (both linear and nonlinear; also
unconditional extremum problems) with just one (scalar valued) objective function.

In economics and other practical situations one may have several objectives. For
instance a firm may wish to maximise not just its profit but also its market share
and the quality of its products (supposed here to be measurable by a numerical
measure). If there are several objective functions (or, equivalently, a vector valued
objective function) then we have a problem of multi objective optimisation (or vector
optimisation).

So now we have q real valued objective functions

F1 W Rn �! R; : : : ; Fq W Rn �! R

or one vector valued objective function

F D .F1; : : : ;Fq/ W Rn �! Rq:

(In practical situations Fl is often not defined on the whole of Rn but rather on
a domain of definition Dl, l D 1; : : : ; q, which is a subset of Rn.) In the above
example the profit F1.x/, the market share F2.x/, and the measure F3.x/ of a quality
gained from the inputs .x1; : : : ; xn/ D x 2 RnC would have to be maximised or,
equivalently �F1.x/, �F2.x/, and �F3.x/ minimised under certain conditions (in
what follows we will speak about minimising).

When q � 2, however, then we have problems both with maximising and with
minimising since, as we saw in Sects. 1.4 and 2.2, two vectors (with two or more
components) need not be comparable with respect to <D (or � or<). In other words,
<D does not induce a total order on Rq if q � 2 (consider, for instance, which is
greater, .1; 2; 4/, .2; 1; 4/ or .3; 1; 2/?)

This gap is partially bridged by the following definition. A vector Oy is minimal of
efficient or Pareto-optimal in a set S 
 Rq if there exists no y 2 S with Oy � y (which
means, as we know, y<D Oy, but y 6D Oy). Maximal vectors are similarly defined. (Note
that a set of q-dimensional vectors can have many maximal or minimal elements if
q � 2; for instance, in the above example, all three vectors are minimal, maximal
(efficient, Pareto-optimal). But there are also sets of q-dimensional vectors that have
neither a maximal nor a minimal element.)

We can now formulate the multi objective optimisation (in this case minimisa-
tion) problem: Determine the vectors Ox for which F.Ox/ is minimal in the set

˚
y D F.x/

ˇ
ˇ y 2 Rq; x 2 Rn; G.x/ <D 0I G.x/ 2 Rm

�
: (8.175)

These vectors Ox are the solutions of this vector optimisation problem. Just as for
q D 1 (without supposing strict convexity), there may be infinitely or finitely
many solutions or one (unique) solution or no solution at all (there are no minimum
solutions, if the set (8.175) has no minimal element).
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It is often not easy to determine all solutions of a multi objective optimisation
problem. In such cases one wishes to determine at least a subset of the set of
solutions. This can happen by introducing a total order for the elements of the
set (8.175) which, as we have seen, had none. Here are three methods to do this.

(i) Method of goal priority. One puts the objectives (goals) in order of priority
(importance). Then, for (8.175), one considers first the objective function with
first priority goal (“first priority function” for short). If, for an element y.1/

of (8.175), the value of this function is greater than for y.2/ then, by definition,
y.1/ is “greater by priority” than y.2/. Only if the values of the first priority
function are equal for two elements of (8.175), do we consider the objective
function with second priority goal and define that element “greater by priority”
for which the value of this “second priority function” is greater, if any, and so
on: If the values of the 1-st, : : :, k-th priority functions are equal for y.1/ and
y.2/, we consider the .k C 1/-st (k D 1; : : : ; q � 1). Only if they are equal for
all of F1; : : : ;Fq, are y.1/ and y.2/ “equal by priority”. In Mathematics, this is
called a “lexicographic order” (cf. Sect. 1.4).

(ii) Method of goal weighting. Weights a1; : : : ; aq are assigned to the q goals and
thus to the q (scalar valued) objective functions, reflecting, upon their relative
importance. We form

˚ D a1F1 C : : :C aqFq (8.176)

as a new (scalar valued) objective function and consider that element
(of (8.175)) greater for which the value of ˚ is larger. Since ˚ is scalar
valued, this (or, to be exact: y.1/ greater than y.2/, if a1y

.1/
1 C : : : C aqy.1/q >

a1y
.2/
1 C : : : C aqy.2/q ) is a total order. The weights a1; : : : ; aq are, of course,

positive. It needs to be supposed that they add up to 1, since this can always be
attained without changing the order they induce by dividing each of them by
their sum a1 C : : : C aq. The (conditional) minimum will be at the same point
(vector).

So now we have to minimise the one scalar valued function ˚ (under
the constraints G.x/ <D 0) and we are back to a single-objective optimisation
problem, to which we can apply the methods which we learned in Sects. 8.8
and 8.9.

Example We keep the conditions (8.141), (8.142) from Example 2 in
Sect. 8.8 but, instead of (8.140) we want to minimise the vector valued
function F W R2C ! R3, whose components are given by

F1.x1; x2/ D x21 � x1x2 � x22 � 12

5
x1 � 12x2;

(continued)
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F2.x1; x2/ D x21 C 1

2
x1x2 C 4x22 � 9x1 C 12x2;

F3.x1; x2/ D x21 C x1x2 C 1

3
x22 � 8x1 � 12x2:

If we choose the weights as a1 D 5
12

, a2 D 1
3
, a3 D 1

4
(a1 C a2 C

a3 D 1) then (conveniently but not typically), we get the optimisation
problem (8.140), (8.141) and (8.142) again (for ˚ in place of F):

˚.x1; x2/ D 5

12
F1.x1; x2/C 1

3
F2.x1; x2/C 1

4
F3.x1; x2/

D 1

12
.5x21 � 5x1x2 � 5x22 � 12x1 � 60x2;

C4x21 C 2x1x2 C 16x22 � 36x1 C 48x2;

3x21 C 3x1x2 C x22 � 24x1 � 36x2/

D x21 C x22 � 6x1 � 4x2:

The solution of this optimisation problem is, as we know, Ox D .2:4; 1:8/.
So Ox D .2:4; 1:8/ is one solution of the above multi objective opti-
misation problem. Indeed, and this argument works also for (8.176) in
general, if it were not a solution, that would mean that there exists an x0
such that Fk.x0/ � Fk.Ox/ for k D 1; 2; 3 but Fk0 .x

0/ < Fk0 .Ox/ for at least
one k0 2 f1; 2; 3g (and G.x0/ <D 0). But then we would have

˚.x1; x2/ D 5

12
F1.x0/C1

3
F2.x0/C1

4
F3.x0/ <

5

12
F1.Ox/C1

3
F2.Ox/C1

4
F3.Ox/;

that is, Ox would not be a conditional minimum point of ˚ : a contradic-
tion!

Of course, there can be several other solutions of the multi-objective
optimisation problem, some of which could be obtained, for instance, by
choosing weights different from 5=12, 1=3, 1=4.

(iii) Method of goal programming. This method consists of stating a goal, say c D
.c1; : : : ; cq/, which we would like for F D .F1; : : : ;Fq/ to reach, then define
as new (nonnegative) scalar valued objective function the distance (compare
Sect. 1.6) between F.x/ and c or its square, that is

�.x/ D .F1.x/� c1/
2 C : : :C .Fq.x/� cq/

2: (8.177)
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The method would consist in minimising the above expression under the
condition G.x/ <D 0. If, however, we choose c as a non-minimal element
of (8.175) then we would get the minimum value 0 of (8.177) at the non-
minimal point x0 for which F.x0/ D c, G.x0/ <D 0. This would, of course,
make the method useless. So we have to choose as c either a minimal element
of (8.175), which we do not know (yet), or an element which is certainly
smaller (with respect to the partial order induced by <D ) than each minimal
element of (8.175) (if at least one exists). This can be accomplished by
choosing

cl � min
˚
yl D Fl.x/

ˇ
ˇ x 2 Rn; G.x/ <D 0

�
.l D 1; : : : ; q/

if these minima exist and are all finite (not �1). If one or more of these minima
do not exist but the sets

˚
yl D Fl.x/

ˇ
ˇ x 2 Rn; G.x/ <D 0

�
.l D 1; : : : ; q/

are bounded from below (compare Sect. 7.2), say by bl, then choose cl � bl

(l D 1; : : : ; q). By a similar proof as in our example one can show that a
(conditional) minimum point of the function � , defined by (8.177) with such a
c D .c1; : : : ; cq/, is a solution of our multi-objective optimisation problem.
The set of solutions thus obtained is again in general not the set of all
solutions of the original problem. One way of obtaining further solutions
is to consider other distance definitions. Such distances different from the
“geometric distance” which we used here and in Sect. 1.6 do exist. For instance,
if a firm wants to choose the best location with regard to suppliers, it may be
better advised to minimise the sum of delivery times from suppliers rather than
the sum of geometric distances from them. So the choice of “distance” may
depend also upon the context of the real-life problem.

8.10.1 Exercises

1. Determine, by graphical method similar to that applied in Sect. 8.8, the set of the
maximal (efficient, Pareto-optimal) points .Ox1; Ox2/ to the problem:

Maximise

 
F1.x1; x2/

F2.x1; x2/

!

D
 
4x1 C 2x2
8x1 C 20x2

!

subject to x1 � 60; x2 � 40; x1 C x2 � 70

x1 C 2x2 � 100; x1 � 0; x2 � 0:



474 8 Nonlinear Optimisation

2. With aid of weights a and 1 � a .0 � a � 1/ get one objective function ˚ D
aF1 C .1� a/F2 from the two objective functions F1 and F2 in Exercise 1. Solve
the problem in Exercise 1 for ˚ instead of F1, F2 for each value of a. (We thank
Werner Dinkelbach (�1934) for the problems in Exercise 1 and 2.)

3. Determine, by a graphical method, the set of the minimal (efficient, Pareto-
optimal) points .Ox1; Ox2; Ox3/ to the problem:

Maximise

 
F1.x1; x2; x3/

F2.x1; x2; x3/

!

D
 

�3x1 � 2x2 C 2x3
4x1 C x2 � x3

!

subject to x1 C x2 C x3 � 1; x1 � 0; x2 � 0; x3 � 0:

4. Let two objective functions F1 and F2 be given by

F1.x1; x2/ D x21 C x22; F2.x1; x2/ D .x1 C 1/x2:

With the constraints

x1 � 4x2 � 1; �x1 � x2 � �2;
�3x1 � x2 � �3; x1 � 0; x2 � 0

determine the optimal points .Ox1; Ox2/ and the minima for the problems:
(a) Minimise F1.x1; x2/,
(b) Minimise F2.x1; x2/,
(c) Minimise .F1.x1; x2/ � c1/2 C .F2.x1; x2/� c2/2

for the goal .c1; c2/ D .0; 0/.
5. Let 1; 2; 3 be the order of priority of the objective functions F1, F2, F3. Solve the

problem: points .Ox1; Ox2/ for the problem:

Maximise by goal priority

0

@
F1.x1; x2/
F2.x1; x2/
F3.x1; x2/

1

A D
0

@
x1 C x2
x21 C x22

x1x2 C x1

1

A

subject to 6x1 C x2 � 27; x1 C 6x2 � 27

x1 C x2 � 7; x1 � 0; x2 � 0:

8.10.2 Answers

1. f.x1; x2/ j x1 C x2 D 70; 20 � x1 � 49g
[ f.x1; x2/ j x1 C 2x2 D 100; 40 � x1 � 60g:
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2.

.Ox1; Ox2/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

.20; 40/ for a 2 Œ0; 2=5Œ;

.20�C 40.1� �/; 40�C 30.1� �// for

�
a D 2=5

.0 � � � 1/;

.40; 30/ for a 2�2=5; 6=7Œ;

.40�C 60.1� �/; 30�C 10.1� �// for

�
a D 6=7

.0 � � � 1/;

.60; 10/ for a 2�6=; 1Œ:

4. (a) .Ox1; Ox2/ D .1; 1/; F.1; 1/ D 2;

(b) .Ox1; Ox2/ D .1:8; 0:2/; F.1:8; 0:2/ D 0:56;

(c) .Ox1; Ox2/ � .1:359; 0:641/; F1.Ox1; Ox2/2 C F2.Ox1; Ox2/2 � 7:384,

.F1.Ox1; Ox2/2 C F2.Ox1; Ox2/2/
1
2 � 2:717:

5. .Ox1; Ox2/ D .4; 3/;

0

@
F1.Ox1; Ox2/
F2.Ox1; Ox2/
F3.Ox1; Ox2/

1

A D
0

@
F1.4; 3/
F2.4; 3/
F3.4; 3/

1

A D
0

@
7

25

16

1

A :

Note that F1.3:5; 3:5/ D 7, but F2.3:5; 3:5/ D 24:5 < 25; and that
�F1.3;4/

F2.3;4/

	 D
�
7
25

	
, but F3.3; 4/ D 15 < 16.



9Set Valued Functions: Equilibria—Games

The development of general equilibrium theory represents one
of the greatest advances in economic analysis in the latter half
of the twentieth century.

BRYAN ELLICKSON, UCLA

9.1 Introduction

In Chap. 8 we showed how problems of determining maxima and minima (extrema)
of scalar valued of (Sect. 8.9 vector valued) function of several variables can be
solved. We were interested in optimal points in the domains of definition of these
functions.

This chapter deals with set valued functions and with games. This time the
important problem is not to find maxima or minima; their definition could be
controversial in these situations and their importance would be limited anyway.
Accordingly, the main notion in Sects. 9.3 and 9.4 is not so much optimal points
as equilibrium points.

We introduce this concept with a very simple model of a duopoly market. Assume
that only two firms (the duopolists) supply one good each, and that the two goods
are very similar. The profit which each of the two makes in a certain time interval
I (“sales period”) depends not only on the price she sets during I, but also on the
price set by the competitor during I. We assume that the first duopolist takes into
consideration only three prices, namely the prices 10, 12 and 14, and the second
only two prices, 11 and 13.

This is a simple market model. It can be treated by applying some notions and
methods of the theory of games—not necessarily of the theory of zero-sum-games
which we considered in Sect. 5.4. In the terminology of game theory the two firms
are called players, the sets f10; 12; 14g and f11; 13g of prices are called set of three
or two price strategies, respectively, and the profits depending on the six price
vectors .10; 11/, .12; 11/, .14; 11/, .10; 13/, .12; 13/, .14; 13/ are called payoffs.

© Springer International Publishing Switzerland 2016
W. Eichhorn, W. Gleißner, Mathematics and Methodology for Economics,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-23353-6_9
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The set consisting of these price (or strategy) vectors is the domain of definition of
the payoff (or profit) function F1 of the first player (firm, duopolist) and F2 of the
second. We assume that these functions are given by

F1.10; 11/D1000; F1.12; 11/D 950; F1.14; 11/D980;
F1.10; 13/D1100; F1.12; 13/D1110; F1.14; 13/D 990

and

F2.10; 11/D800; F2.12; 11/D920; F2.14; 11/D 970;

F2.10; 13/D750; F2.12; 13/D910; F2.14; 13/D1050

respectively. For instance, the profit of the first duopolist is 950 if she sets the price
12 and the second one sets the price 11. In our case of only two players and only
very few strategies one usually represents the two payoff functions F1 and F2 by
two matrices, the so-called payoff matrices of the players; see Table 9.1

For instance, Table 9.1 shows that F1.10; 11/ D 1000, that is, the profit of the
first duopolist is 1000 when she sets the price at 10 and the second duopolist sets
the price 11. Similarly, F2.12; 13/ D 910means that the second duopolist, who sets
the price at 13, gains 910 if the price set by the first is 12. If the second duopolist’s
price is set at 11, then we see from Table 9.1 that the first duopolist gains most by
setting the price at 10. Similarly, if the second duopolist demands the price 13 then
12 is the optimal price for the first. Further we see that, for both the prices 10 and
12 of the first duopolist, the second gains most by setting the price at 11, while for
the price setting 14 of the first the price 13 is optimal for the second.

More substantial is the observation that .10; 11/ is the one point which is stable
in the following sense. If the first duopolist adheres to the strategy to keep the price
at 10 then keeping the price at 11 is the best strategy for the second and conversely, if
the second duopolist’s strategy is to keep the price at 11 then keeping the price at 10
is the optimal strategy for the first. Such stable points are called Nash equilibrium
points (see in Sect. 9.4 the definition in a more general situation). A quick check
shows that there are no further Nash equilibrium points in Table 9.1.

From now on we suppose that cooperation of the two players (firms, duopolists)
is not permitted and that none of them can choose her strategy (price) after the other
has chosen her strategy.

Finding the Nash equilibrium point is just one possible way to act in noncoop-
erative games and not necessarily the best one. We see, for instance, in Table 9.1,
that in the point .12; 13/which is not stable in the above sense, both the first and the

Table 9.1 The payoff
matrices (payoff functions) in
a duopoly

F1 11 13 F2 11 13

10 1000 1100 10 800 750

12 950 1110 12 920 910

14 980 990 14 970 1050
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second duopolist gain more (1110 as compared to 1000 and 910 as compared to 800,
respectively). In such cases we say that .10; 11/ is not Pareto-optimal. Also .10; 11/
is not optimal with respect to the total profit of the two duopolists: that total profit
is 1800 for .10; 11/ but 2040 for the non stable point .14; 13/. While in Table 9.1
the Nash equilibrium point .10; 11/ at least represents the lowest prices, this is not
always so, as we will see in Sect. 9.4.

If one replaces, in Table 9.1, 980 by 1010 (or by any number greater than 1000)
then there is no Nash equilibrium point. We will give conditions in Sect. 9.4 under
which there always exists at least one Nash equilibrium point in an n-person m-
goods game. There always exist Nash equilibrium points also in a modified n-person
game, where the strategy sets are finite but each strategy is chosen—“played”—with
some predetermined probability. Such games are, however, of minor importance in
oligopoly theory.

If we replace, in Table 9.1, 910 by 921 then there are two Nash equilibrium
points, .10; 11/ and .12; 13/, but in each of them the total profit is smaller than the
maximal 2040 in .14; 13/.

We get a generalisation of the Nash equilibrium point by considering the
following particularly risk-averse behaviour of duopolists or, in the case of more
than two, but not too many competitors or players, “oligopolists”: When a “match”
(a sales period with certain prices set) is over then the j.th player does not change
strategy if all possible changes could result in changes of strategy of competitors
which lead to less profit for her. Such equilibrium points need not be of the Nash
type; for instance, in Table 9.1, .12; 13/ is such a non-Nash equilibrium point (also
the Nash equilibrium point .10; 11/ has this property).

Notwithstanding all drawbacks Nash equilibrium points have in achieving profits
in noncooperative game theory, they play an important role in some popular
oligopoly models. In Sect. 9.4 we will give the more general definitions and deal
also with k-goods oligopoly models and Nash equilibria in these models.

Equilibria of another (but not completely different) kind will be defined and
considered in Sect. 9.3, so called competitive equilibria, that is, equilibria in a
competitive exchange economy with many economic agents. (Note that above we
spoke always about two (duopoly) or only few (oligopoly) competitors).

The theory of competitive equilibria rests essentially on the notion of set values
functions (correspondences). Such functions will be considered in Sect. 9.3.

Another application of correspondences can be made in production theory; see,
in this connection, Shephard’s axioms in Sect. 9.2.

9.2 Set Valued Functions (Correspondences): Shephard’s
Axioms

Till now we dealt with functions whose values were scalars (real numbers) or
vectors, Only in Sects. 3.2 and 3.3 did we mention, on hand of examples from
consumption, preference, utility and production theory, functions which map points
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(vectors) of RnC into subsets of RmC, meaning that a subset is assigned by the
mapping to each vector. Such mappings are called correspondences. In order
to pinpoint those correspondences which are of interest to production theory
(“production correspondences”) the mathematical economist Ronald W. Shephard
(�1912–�1982)formulated certain conditions (postulates) which are now called
“Shephard’s axioms”. We remind the reader that we had also described classes
of scalar valued functions (for instance price indices in Sect. 3.7) by conditions
(suppositions, postulates, “axioms”).

Let E.RmC/ denote the set of all subsets of RmC, the so-called power set of

RmC (often denoted by 2R
m
C ). A production correspondence (or “output correspon-

dence”)

P W RnC �! E.RmC/

is meant to assign to the input vector x D .x1; : : : ; xn/ the set of all output
vectors u D .u1 : : : ; um/ which can be produced from x in a given situation
(technological knowledge, etc.) during a production period. In view of this, the
following assumptions (“axioms”) seem natural.

S1 P.0/ D f;g; 0 2 P.x/ for all x 2 RnC but there is at least one u > 0 for
which there exists an x � 0 such that u 2 P.x/.

Interpretation (explanation): No input produces no output (“there ain’t no such
thing as a free lunch”); it is also possible to produce nothing from any input, but
there are also “some things” (positive outputs) which can be produced by some
input vector with at least one positive component. At this point we remind the reader
that, in the partial ordering of vectors (Sect. 1.4), x > y means that each component
of x is greater than the corresponding component of y, while, if x>D y then each
component of x is just not smaller than that of y; finally x � y is x>D y but with at
least one component of x greater than the corresponding component of y.

S2 For every x 2 RnC, the set P.x/ is bounded, that is, there exists an m-
dimensional interval Œa;b� depending on x such that P.x/ 
 Œa;b� (compare
also Sect. 3.2).

This means simply that no finite input can produce arbitrarily large output.

S3 P.�x/ � P.x/ for all x 2 RnC and all � 2 Œ1;1Œ.

Explanation: Whatever can be produced with the input x, can also be produced
with �x where � � 1. This is also described as free disposal of inputs in case that
all input components are proportionally enlarged. (The producer is free to use the
inputs fully or only in part.)

S4 If u 2 P.x/ then also �u 2 P.x/ for all � 2 Œ0; 1� and all x 2 RC.

Interpretation: If the output u can be produced from the input x then any
proportionally smaller (not larger) output can also be produced from the same input
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x. So there is, in a sense, free disposal of outputs. (The producer is free to use the
outputs fully or only in part.)

S5 If, for u � 0, there exists an x � 0 with u 2 P.x/ then, for these x and u
and for all � 2 RCC, there exists a � 2 RCC with �u 2 P.x/.

This means that proportional output changes are possible under appropriate
proportional changes of input.

S6 The graph
˚
.x;u/

ˇ
ˇ x 2 RnC; u 2 P.x/

�
of P is a closed set.

For the definition of closed sets see Sect. 8.3. From there we also see that
this “technical” condition S6 guarantees, together with S2, for instance, that the
maximum max fu j x 2 RC; u 2 P.x/g exists (here m D 1).

A correspondence P W RnC ! E.RmC/ is an output production correspondence if
it satisfies Shephard’s axioms S1–S6.

For every system of axioms (conditions) the question arises, whether there exist
at all objects which satisfy all these conditions. It is easy to find P W RnC ! E.RmC/
which satisfy S1–S6. For example, take functions Fj W RnC ! E.RmC/, continuous
and strictly increasing in each variable, homogeneous of degree r > 0 (Fj.�x/ D
�rFj.x/ for all � 2 RCC) and such that Fj.0/ D 0 (j D 1; : : : ;m), for instance
Fj.x/ D cj1xr

1 C : : :C cjnxr
n (cjk 2 RCC; j D 1; : : : ;m; k D 1; : : : ; n) and define

P.x/ D ˚
u D .u1; : : : ; um/

ˇ
ˇ 0 � uj � Fj.x/; j D 1; : : : ;m

�
:

In principle, with any output correspondence P, also its “inverse”, the “input
correspondence” P�1 W RmC ! E=RnC, is defined, by

P�1.u/ D fx j u 2 P.x/g:

Notice, that P�1 assigns to each output vector u the set of all input vectors x
from which, under the given circumstances, u can be produced during a production
period. Keep in mind that P�1 is not the inverse mapping of P in the sense of
Sect. 3.2 since the values of P are sets of vectors, while the arguments of P�1 are
individual vectors.

Homogeneous correspondences of degree r can be defined, in complete analogy
to homogeneous functions (see Sects. 6.11 and 7.4 3) by

P.�x/ D �rP.x/ WD f�ru j u 2 P.x/g for all � 2 RCC; x 2 RnC (9.1)

or, spelled out for production correspondences: when the input vector x can produce
the output u, then the proportionally increased (or decreased) input �x can produce
�ru. Here too, we get linear homogeneity in the case r D 1. Clearly, (9.1) implies

P�1.�u/ D �1=rP�1.u/ for all � 2 RCC; u 2 RmCC: (9.2)
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Now suppose that for the cost c.x/ of the input vector x we have

c.x/ � c.y/ H) c.�x/ � c.�y/ for all � 2 RC: (9.3)

This is the case, for example, if the prices .q1; : : : ; qn/ D q of the inputs are
constant, that is, if

c.x/ D q1x1 C : : :C qnxn D q � x;

but also for more general cost functions. For instance, for any homogeneous function
c W RnC ! RC of degree r > 0 (not necessarily r D 1) we have (9.3):

c.x/ � c.y/ H) c.�x/ D �rc.x/ � �rc.y/ D c.�y/:

The minimal cost C of production of the output vector u 2 RnC is defined by

C.u/ D min
˚
c.x/

ˇ
ˇ x 2 P�1.u/

�C �;

where � represents the fixed cost.
Any input vector x establishing this minimal cost is a minimal cost combination

for u with respect to P and c. If c is continuous and P�1.u/ compact, then the
minimum defining C exists by what we learned in Sect. 6.8.

In what follows we answer the question how a minimal cost combination will
vary if the output is changed from u� to �u� with � 2 RCC.

Let P be an output production correspondence that is homogeneous of degree r
(r 2 RCC). Let the cost c.x/ of the input vector x satisfy condition (9.3). If x� is
a minimal cost combination for u� with respect to P and c then, for all � 2 RCC,
�1=rx� is a minimal cost combination for �u� with respect to P and c.

To prove this we show first that

�u� 2 P.�1=rx�/; (9.4)

that is, output �u� is obtainable with input �1=rx�. Indeed, by assumption, u� 2
P.x�/. Hence, by (9.1),

�u� 2 �P.x�/ D .�1=r/rP.x�/ D P.�1=rx�/

and this is (9.4).
It remains to show that

c.x/ � c.�1=rx�/ for all x 2 P�1.�u�/ (9.5)
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that is, no input vector x yielding at least �u� is cheaper than �1=rx�. Indeed,
multiply �u� 2 P.x/ by ��1 in order to obtain (by (9.1))

u� 2 ��1P.x/ D .��1=r/rP.x/ D P.��1=rx/;

that is, u� is obtainable with ��1=rx. Since x is assumed to be a minimal cost
combination for u� with respect to P and c, we have

c.��1=r/ � c.x�/:

By (9.3), this inequality implies (9.5). This completes the proof.
We have shown that, for homogeneous P and for the input cost c satisfying (9.3),

the following is true: Given any scalar multiple �u� of u� (� 2 RCC) and a minimal
cost combination x� for u�, there exists a scalar multiple of x�, in this case �1=rx�,
which is a minimal cost combination for �u�. We will say that a homogeneous
output production correspondence P yields linear expansion paths.

The (minimal) cost for producing the output vector �u� 6D 0 is

C.�u�/ D min
˚
c.x/

ˇ
ˇ x 2 P�1.�u�/

�C �:

We are interested in establishing explicitly its dependence upon � 2 RCC. Under
the assumptions (9.1) and (9.3), we have, as already shown,

C.�u�/ D c.�1=rx�/C � .� 2 RCC/

or, if c is given by c.x/ D q � x, where q is the constant and positive price vector of
the inputs,

C.�u�/ D a�1=r C � .a WD q � x� > 0/: (9.6)

Here, a WD q � x� is greater than 0, since q > 0 and, by S1 and since u� � 0,
x� � 0.

Hence, for production systems with homogeneous P and constant prices of the
inputs there exist no “classic cost functions”, that is, strictly increasing functions
� 7! C.�u�/ which are strictly concave (convex from above) on an interval Œ0; b�
and strictly convex from below to the right of b 2 RCC; see Fig. 9.1.

9.2.1 Exercises

1. Give an example of a correspondence Q W RnC ! E.RmC/ satisfying the condi-
tions S1–S5 and the following further condition:

The set
˚
.Qx;u/ ˇˇ Qx 2 RnC fixedI u 2 Q.Qx/� does not contain any efficient

vector.
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Fig. 9.1 Graphs of a “classic cost function” (black line) and of the cost functions (9.6) with three
different r’s (shaded area)

2. Suppose a correspondence Q W RnC ! E.RmC/ satisfying Shephard’s axiom S2.
Formulate an equivalent axiom for the inverse Q�1.u/ D fx j u 2 Q.x/g of Q.

3. Same problem as in Exercise 2 for Shephard’s axiom S3.
4. Same problem as in Exercise 2 for Shephard’s axiom S5.
5. Take the correspondence P W R2C ! E.R2C/ given by

P.x1
x2
/ WD

�
�u1

u2

	
ˇ
ˇ
ˇ
ˇ
�u1

u2

	 D �
�1
�2

	 2 R2C;
�
3
4
1
6

1
8
5
6

�
�
�1
�2

	
<D
�x1

x2

	
�

(“Leontief output correspondence”).
(a) Determine P�1.u/.
(b) Show that P is linearly homogeneous: P.tx/ D tP.x/, t > 0.

(c) Determine the minimal cost combination
�x�
1

x�
2

	
for

�u�
1

u�
2

	 D �
16

24

	
.

(d) Show that the minimal cost combination for
�3u�

1

3u�
2

	 D �
48

72

	
is three times the

minimal cost combination
�x�
1

x�
2

	
determined in (c).

9.2.2 Answers

1. Q.Qx/ D ˚
u D .u1; : : : ; um/

ˇ
ˇ 0 � uj < Fj.Qx/; j D 1; : : : ; m

�
, where

Fj W RnC ! R are functions as defined after S6 in Sect. 9.1. For each .Qx;u/
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satisfying u < .F1.Qx/; : : : ; Fm.Qx// there exists a vector v < .F1.Qx/; : : :Fm.Qx//
such that v > u, .Qx; v/ � .Qx;u/.

2. An equivalent axiom is:

ju.k/ ! 1j for k ! 1 implies
1\

kD1
Q�1.u.k// D ;:

3. An equivalent axiom is:

x 2 Q�1.u/ implies �x 2 Q�1.u/ for all � 2 Œ1;1Œ:

4. An equivalent axiom is: If, for x � 0, there exists an u � 0 such that x 2 Q�1.u/
then, for these x and u and for all � 2 RCC, there exists a � 2 RCC with
�x 2 Q.�u/.

5. (a) P�1
 

u1
u2

!

D
( 

x1
x2

!

2 R2C

ˇ
ˇ
ˇ
ˇ
ˇ

 
x1
x2

!

>D
�
3
4
1
6

1
8
5
6

� 
u1
u2

!)

.

(b) P

 
tx1
tx2

!

D
( 

u1
u2

!

D
 
�1

�2

!

2 R2C

ˇ
ˇ
ˇ
ˇ
ˇ

�
3
4
1
6

1
8
5
6

� 
�1

�2

!

<D
 

tx1
tx2

!)

D
( 

u1
u2

!

D
 
�1=t

�2=t

!

2 R2C

ˇ
ˇ
ˇ
ˇ
ˇ

�
3
4
1
6

1
8
5
6

� 
�1=t

�2=t

!

<D
 

x1
x2

!)

D tP.

 
x1
x2

!

/:

(c) The minimal cost combination for
�u�

1

u�
2

	 D �
16
24

	
is
�x�

1

x�
2

	 D �
16
22

	
since

P�1
 
16

24

!

D
( 

x1
x2

!

2 R2C

ˇ
ˇ
ˇ
ˇ
ˇ

 
x1
x2

!

>D
�
3
4
1
6

1
8
5
6

� 
16

24

!

D
 
16

22

!)

.

(d) P�1
 
3u�

1

3u�
2

!

D P�1
 
48

72

!

D
( 

x1
x2

!

2 R2C

ˇ
ˇ
ˇ
ˇ
ˇ

 
x1
x2

!

>D
�
3
4
1
6

1
8
5
6

� 
48

72

!

D
 
48

66

!)

.

9.3 Competitive Equilibria: Kakutani’s Fixed Point Theorem

Set–valued maps (correspondences) play a prominent role not only in production
theory, that is, in the theory of supply, but also in the theory of demand (including
consumption preference and utility theory) and in the theory of economic equi-
librium. The objects of the latter are conditions under which supply and demand
balance out.
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The model proposed by LEON WALRAS (�1834 – �1910) for an “exchange
economy” became quite famous. For simplicity it excludes production, still its
main point is the balance of supply and demand. Each economic agent has an
initial supply (or endowment) of l possible goods in store which it can offer in
exchange. If this initial supply (endowment) consists, for the economic agent A,
of the quantities e1, : : :, el, united in the “vector (or bundle) of commodities”
e D .e1; : : : ; el/ 2 RlC, and if the prices are p1,: : :,pl, respectively, forming the
price vector p D . p1; : : : ; pl/ 2 RlC then the “wealth” of A will be

p � e D p1e1 C � � � C plel: (9.7)

In the Walras–model the supposition is that A can obtain goods only up to this
value (no credit). So, A’s total demand may be represented by any element of the
“budget set”

B.p; e/ WD fx j p � x � p � e g (9.8)

(given the prices p D . p1; � � � ; pl/ and A’s initial supply e D .e1; : : : ; el/). So the
mapping B is a correspondence which assigns to p and e the set of bundles of
commodities that can be obtained by using all or part of A’s wealth.

Most of the time, however, A is not equally interested in all bundles of
commodities which are elements of B.p; e/. When A is more interested in bundle
y 2 B.p; e/ than in bundle x 2 B.p; e/ we say that A prefers y to x. Note that the
preferences of A and the other agents in the exchange economy may be different.

The formal structure of preferences is often described by the following require-
ments P1, P2, P3. In what follows, for x 2 RlC and y 2 RlC the “preference
relation” x � y means that y is weakly preferred to x, i.e., y is preferred to x or
there is indifference between x and y.

P1 Reflexivity: for all x 2 RlC: x � x.

In our context this requirement is fulfilled as we will show below.

P2 Transitivity: for all x 2 RlC, y 2 RlC, z 2 RlC: the preference relations x � y
and y � z imply x � z.

This consistency requirement means the following: If, for A, y is weakly
preferred to x and z is weakly preferred to y then z is also weakly preferred to
x.

P3 Complete (or total) ordering: for all x 2 RlC, y 2 RlC: either x � y or y � x
or both have to hold.

This means that A is able to choose one (“the preferred one”) or, in case of
indifference, either bundle from any pair x, y of bundles of commodities.

A few further definitions and notations follow:

y � x means the same as x � y

(both also verbalised as “y is at least as desirable as x”).
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Indifference between x and y (or equal desirability), denoted by x  y, is defined
by x � y and y � x holding simultaneously. This can also be written as y  x. Its
negation is denoted by x 6 y (or y 6 x).

Strict preference, denoted by x � y (or y � x), means x � y but x 6 y. In view
of P3 we can have x 6 y exactly if either x � y or x � y.

Also by P3, x � x holds for all x 2 RlC (see P1), since either x � x or x � x
or both have to hold but the two are the same. For the same reason x  x for all
x 2 RlC, by the definition of . So x � x cannot hold for any x 2 RlC.

The requirements P2, P3 should not be taken lightly. We saw, for instance, in
Sect. 1.3 that the inequality <D between vectors of Rn, defined by

x<D y ” x1 � y1; x2 � y2; : : : ; xn � yn; (9.9)

is not a complete order, that is P3 is not satisfied if <D is taken for � (for instance,
neither .2; 3/ <D .4; 1/ nor .4; 1/ <D .2; 3/ holds). The ordering by (9.9) satisfies both
reflexivity and transitivity, P1 and P2. Although transitivity seems normatively
compelling, examples are easily devised where it is fair. These are all based on
the principle that the source of the ordering is somewhat complex. The most famous
example is due to the MARQUIS DE CONDORCET (�1743 – �1794). One speak
of Condorcet’s paradox. He shows that there can be even very simple examples
which are not transitive (do not satisfy P2). Let the economic agent A (for instance
a household) consist of three persons N1, N2, N3 with the following individual
preferences:

for N1: x � y; y � z; x � z;

for N2: x � y; z � y; z � x;

for N3: y � x; y � z; z � x;

which satisfy P1. But the collective (majority) preference of the economic agent
(household) A, which is decided by democratic vote:

for A: x � y; y � z; z � x;

does not satisfy P2. (One may think that this means that x, y and z are considered
“equally desirable” for A but the paradox holds also with strict preference �).

Another class of intransitive examples arise when the objects being ordered are
multidimensional and the choice pair causes the decision maker to focus on a subset
of the dimensions, one subset when judging between x and y, another when judging
between y and z, and yet another subset when judging between x and z. The reader
is invited to generate a specific example of this character using three dimensions of,
say, automobiles.

Nevertheless, P2 and also P3 are often supposed to hold for preferences, that is,
one considers transitive and complete preference orderings.
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Often one supposes that a � x and a � y imply a � �x C .1 � �/y for all
� 2 Œ0; 1� (�xC.1��/y is the convex combination of x and y, compare to Sect. 9.3),
that is, that fx j x � a g is a convex set. The preference ordering � is convex if the
set
˚
x 2 RlC j x � a

�
is convex for all a 2 RlC.

Let a preference ordering � for x 2 RlC, y 2 RlC satisfy

x � y if x<D y

(see (9.9) for the definition of x<D y). It is called (strictly) monotonic (strictly
increasing) if any vectors x D .x1; : : : ; xl/, y D .y1; : : : ; yl/ satisfying x � y, that
is, x1 � y1; : : : ; xl � yl, but x 6D y, also satisfy x � y.

The preference ordering � is continuous if xn � yn (n D 1; 2; : : :) and

lim
n!1 xn D x; lim

n!1 yn D y

(in the sense of the convergence of sequences of vectors, see Sect. 6.9 2) imply
x � y.

We mention, without proof, a result by Gerard Debreu (�1921, Nobel Prize
in Economics 1983, �2004) which connects preference orderings with utility
functions (compare Sects. 8.6). If � is a continuous (and, of course, complex and
transitive) preference ordering then there exists a utility function, that is, a function
u W RlC ! R which “generates” the preference ordering in the sense that

x � y if and only if u.x/ � u.y/: (9.10)

Consequently,

x � y if and only if u.x/ < u.y/;

and

x  y if and only if u.x/ D u.y/:

We note that the suppositions (transitivity, completeness and continuity of �)
could have been weakened and the result would still hold, we made the above
assumptions of the sake of simplicity.

Obviously, for any strictly increasing function f W RlC ! R, with u W R ! R

also f ı u satisfies (9.10), i.e., generates the same preference ordering as u. This
means that the utility functions so defined are ordinal (as opposed to cardinal) utility
functions: The sign of the difference u.x/� u.y/ is important because it determines
the preferred vector of goods, whereas the value of this difference is meaningless
since it will change with any transformation f as defined above.

As is easily seen, the set of ordinal utility functions that each represent a
particular preference ordering is huge. Much smaller than this set is the set of utility
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functions v W RlC ! R that satisfy: If v W RlC ! R represents a preference ordering
then only functions v W RlC ! R given by

v.x/ D a C bu.x/ .a 2 R; b 2 RCC constants/ (9.11)

also represent it. Functions of this kind have the property: Let x 2 RlC, y 2 RlC,
x0 2 RlC, y0 2 RlC such that x0 � y0 (which implies u.x0/ > u.y0/, v.x0/ > v.y0/).

v.x/� v.y/
v.x0/� v.y0/

D a C bu.x/� .a C bu.y//
a C bu.x0/� .a C bu.y0//

D u.x/� u.y/
u.x0/ � u.y0/

;

that is, the ratio of utility differences is uniquely determined. (Remember that in
the case of ordinal utility functions only the sign of the difference u.x/ � u.y/
makes sense). A utility representation u W RlC ! R that is unique up to an affine
transformation (9.11) is called cordial.

We move now from the budget set (9.8) to the “demand set”

D.p; e/ WD fx 2 B.p; e/ j x � y for all y 2 B.p; e/ g (9.12)

of the economic agent A. It consists of those bundles of commodities in A’s budget
set which are most desirable for A, given the prices p D . p1; : : : ; pl/ and the initial
endowment e D .e1; : : : ; el/. Just as B, also D is a correspondence, that is, may
contain several elements x. But note that frequently D has only one element.

This demand set D.p; e/ has, in the case of a continuous preference ordering, the
following properties, which we enumerate here without proof. It is nonempty and
compact (see Sect. 8.3) for all positive price vectors p > 0 and, i the preference
ordering is also convex, then the set D.p; e/ is convex for all nonnegative price
vectors p>D 0. For monotonic preference orderings Walras’s law

p � x D p � e holds for all x 2 D.p; e/: (9.13)

The graph
˚
.p; x/

ˇ
ˇ p 2 RlCC; x 2 D.p; e/

�
of the correspondence p 7! D.p; e/

(p > 0) is closed for every e 2 RlC if the preference ordering is continuous.
Compare this to S6 in Sect. 9.2, where the closure of the graph of a correspondence
is an “axiom”.

Now, instead of individual economic agents with initial supplies (endowments)
e, consider entire exchange economies, consisting of the set RlC of possible bundles
of commodities (goods), of their prices .p1; : : : ; pl/ D p, of m economic agents, of
their initial supplies

e1 D .e11; : : : ; e
1
l /; : : : ; e

m D .em
1 ; : : : ; e

m
l /

and of a continuous preference ordering �j for each economic agent j ( j D
1; : : : ;m).
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Important vectors and sets of vectors in such exchange economies are the
following. The total supply

e1 C : : :C em D .e11; : : : ; e
1
l /C : : :C .em

1 ; : : : ; e
m
l /

of commodities (goods), the total demand

D1.p; e1/C : : :C Dm.p; em/

D ˚
x1 C : : :C xm

ˇ
ˇ x1 2 D1.p; e1/ : : : ; xm 2 Dm.p; em/

�

(this is how addition of sets is done in general, xk D .xk
1; : : : ; x

k
l /, k D 1; : : : ;m),

given the prices . p1; : : : ; pl/ D p, and the excess demand

�.p/ WD
mX

kD1
Dk.p; ek/�

mX

kD1
ek WD ˚Pm

kD1 xk �Pm
kD1 ek

ˇ
ˇ x2Dk.p; ek/

�
(9.14)

(this shows also how elements are added to or subtracted from sets), depending
again upon the price vector p. Also � is, of course, a correspondence.

The properties of the demand correspondence D (see (9.12), enumerated above,
have for the excess demand correspondence p 7! �.p/, in case p > 0, the following
consequences. The graph

˚
.p;d/

ˇ
ˇ p 2 RlCC; d 2 �.p/

�

is closed, each �.p/ (p 2 RlCC) is compact (see Sect. 8.3), each �.p/ is a convex
set if all preference orderings are convex, and Walras’s law

p � d D 0 holds for all d 2 �.p/ (9.15)

when all preference orderings are strictly monotonic (compare (9.13)).
A central problem of mathematical economics is whether in such exchange

economies there exists at least one (competitive) equilibrium point. Such a point
expresses a balance of exchange in economic competition—competition as far as
each agent intends to maximise utility. The balance of exchange is attained when
the excess demand is zero. So the question is whether there exists a Op 2 RlC for
which

0 2 �. Op/: (9.16)

If this is the case then for this price vector Op there exists an allocation

Ox1 2 D1. Op; e1/; : : : ; Oxm 2 Dm. Op; em/
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(see (9.12), (9.14)) which assigns (“allocates”) to each economic agent a “most
desirable” bundle of goods which exactly exhausts (thus redistributes) the total
initial supply:

mX

kD1
Oxk D

mX

kD1
ek

(compare to the definition (9.14) of �.p/). Such an allocation completely satisfies
the aspirations of all economic agents. This is called a Walras exchange equilibrium
and the price system Op 2 RlC is a competitive equilibrium price vector.

Here we formulate an existence result developed, among others, by Leon Walras
and Gerard Debreu: If, in the above exchange economy, all preference orderings
are convex, continuous and (strictly) monotonic and if the total initial supply
(endowment) is positive .e1C� � �Cem > 0/ then there exists at least one competitive
equilibrium price vector and, consequently, a Walras exchange equilibrium.

Here we only sketch the proof. The vectors Op satisfying (9.16) are constructed by
a similar algorithm as the solutions Ox 2 S of

0 D f.x/

(f W S ! Rn, S 
 Rn) in Sect. 6.10, where it was done by successive approximation
of a fixed point x D F.x/ of the function F W S ! Rn, defined by F.x/ WD x � f.x/.
There we applied the fixed point theorem of Banach, here the following similar fixed
point theorem of Shizuo Kakutani (�1911–�2004) for correspondences is useful:

Let S 6D ; be a convex compact subset of Rl and ˚ W S ! E.S/ (the set of all
subsets of S) a closed and convex valued correspondence. Then ˚ has at least one
fixed point, that is, an Ox 2 S such that Ox 2 ˚.Ox/,

We conclude this section with the following remarks. The existence of equilibria
in certain models of competitive exchange economies proves that both competition
in the above sense and balance of exchange are simultaneously possible. To show
this in relatively simple models is a first step to find an answer to the following
question: Which rules or regulations of competition are, in real market economies,
sufficient to yield a competitive equilibrium, i.e., a balance of exchange? In this
context another important economic question arises: Are the allocations in such
competitive equilibria Pareto-optimal? An allocation

Qx1; : : : ; Qxm satisfying Qx1 C � � � C Qxm <D e1 C � � � C em

is Pareto-optimal if there is no allocation

x1; : : : ; xm satisfying x1 C � � � C xm <D e1 C � � � C em
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that Pareto-dominates it in the following sense: An allocation Qx1; : : : ; Qxm Pareto-
dominates another allocation x1; : : : ; xm if for all j D 1; : : : ;m we have

Qxj � xj and there is a k such that Qxk � xk

(see, in this context, Sect. 8.9: efficient vectors in sets of vectors). Economically
speaking, a Pareto-optimal allocation Qx1; : : : ; Qxm is an allocation of the following
kind: The available resources, that is e1 C : : : C em, cannot be redistributed from
Qx1; : : : ; Qxm to another allocation that would make one or more agents better off
without making others worse off.

We asked: Are the allocations in competitive equilibria Pareto-optimal? If they
are not, that would disappoint those who believe that competition is the mean to
maximise welfare.

Fortunately, in our model of a competitive exchange economy the following
holds: Any competitive equilibrium allocation in an exchange economy with strictly
monotonic preferences is Pareto-optimal.

This theorem is called the first welfare theorem. We will not prove it here. Note
that this theorem does not require convexity of preferences. This is in contrast to the
so called second welfare theorem, that is, the above theorem on the existence of (at
least one) competitive equilibrium together with the following proposition: For an
exchange economy as defined above, let e1; : : : ; em be an endowment allocation that
is Pareto-optimal for the economy. Let the preferences of the m agents be continuous,
convex and strictly monotonic. Then there exists a price vector Op 2 RlC such that
. Op; e1; : : : ; em/ is a competitive equilibrium for the economy.

9.3.1 Exercises

1. Let p1 D 3 and p2 D 4 be the prices for the commodities 1 and 2, respectively,
that are supplied by an economic agent A. Let the quantities e1 and e2 of the
commodities, that is the endowment of A, be 2 and 5, respectively. Determine
(a) the wealth of A, (b) the budget set B. p1; p2I e1; e2/ of A.

2. Assume that, in the situation formulated in Exercise 1, the utility function
u1 W R2C ! RC of A is given by u1.x1; x2/ D x1=31 x2=32 . Determine
(a) A’s demand set D1. p1; p2I e1; e2/ D D1.3; 4I 2; 5/ and
(b) the function value of A’s utility function for .x1; x2/ D .e1; e2/ D .2; 5/ and

for .x�
1 ; x

�
2 / 2 D1.3; 4I 2; 5/.

3. Consider the situation formulated in Exercise 1. Assume that agent A gets a
“competitor” (better: partner), agent B, with endowment vector e2 D .3; 4/ and
utility function u2 W R2C ! RC given by u2.x1; x2/ D x1=41 x3=42 . Determine, for
the arbitrary price vector . p1; p2/ 2 R2CC,
(a) B’s demand set D2. p1; p2I 3; 4/ and
(b) A’s demand set D1. p1; p2I 2; 5/.
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4. Determine, for the exchange economy defined in Exercise 3,
(a) the excess demand set �. p1; p2/ and
(b) those price vectors . p�

1 ; p
�
2 / for which 0 2 �. p�

1 ; p
�
2 /, that is, for which the

excess demand vector is zero.
5. Consider the correspondence ˚ W RlC ! E.RlC/ given by

˚.x1; : : : ;l / D ˚
y D .y1; : : : ; yl/

ˇ
ˇ 0 � yj � .xj=yj/

.1=2/; j D 1; : : : ; l
�
:

(a) Which of the points .0; : : : ; 0/, .1; : : : ; 1/, .1; 2; : : : ; l/ 2 RlC is a fixed point
of ˚?

(b) Find a fixed point of ˚, different from the points in (a).

9.3.2 Answers

1. (a) p1e1 C p2e2 D 3 � 2C 4 � 5 D 26

(b) B. p1; p2I e1; e2/ D B.3; 4I 2; 5/ D f.x1; x2/ j 3x1 C 4x2 � 26g.
2. (a) D1.3; 4I 2; 5/ D f. 26

9
; 13
3
/g,

(b) u1.x1; x2/ D x1=31 x2=32 D 21=3 � 52=3 � 1:2599 � 2:9240 D 3:6839,

u1.
26
9
; 13
3
/ � 3:7855

3. (a) D2. p1; p2I 3; 4/ D f. p2
p1

C 3
4
; 9
4

p1
p2

C 3/g,

(b) D1. p1; p2I 2; 5/ D f. 5
3

p2
p1

C 2
3
; 4
3

p1
p2

C 10
3
/g.

4. (a) �. p1; p2/ D f�1. p1; p2I 2; 5/C �1. p1; p2I 3; 4/ � .2; 5/� .3; 4/g
D
n
f. 5
3

p2
p1

C 2
3
; 4
3

p1
p2

C 10
3
/g C f. p2

p1
C 3

4
; 9
4

p1
p2

C 3/g � .5; 9/
o

D
n
. 8
3

p2
p1

C 17
12
; 43
12

p1
p2

C 19
3
/� .5; 9/

o

D
n
. 8
3

p2
p1

C 43
12
; 43
12

p1
p2

C 8
3
/
o
;

that is, here the excess demand set contains infinitely many vectors,
(b) . 8

3

p2
p1

C 43
12
; 43
12

p1
p2

C 8
3
/ D .0; 0/ exactly for p2 D 43

32
p1, that is, the excess

demand vector is zero if the ratio p2=p1 of the prices p1 and p2 is 43=32.
5. (a) .0; : : : ; 0/ 2 ˚.0; : : : ; 0/, (b) .1; 1

2
; : : : ; 1l / 2 ˚.1; 1

2
; : : : ; 1l /.

9.4 Applications in the Theory of Games: Nash Equilibrium

In Sect. 8.5 we applied to linear regression what we had learned in Sect. 6.8 about
extrema of functions in several variable. They play an important role also in
oligopoly theory and, in general, in the theory of games, more exactly in interactive
decision theory. The situation here is somewhat more complicated than it is in
Sect. 4.8: Each agent/player/oligopolist tries to determine the extrema (usually
maxima) of functions or which the values of some variables are determined by
her/his opponents.



494 9 Set Valued Functions: Equilibria—Games

Notice that this is in contrast to the situation of the agents in the model of an
exchange economy considered in the preceding section. There the value of the
variables in the utility function of agent A are determined by her-/himself and by
nobody else.

We discussed already, in Sect. 5.4, a very special kind of games, the zero-sum
games for two players. As we saw there, they can be applied to the formalisation
of several “parlour games” (bridge, poker, chess, etc.) and to some economic
situations, simplified for the purpose of easier analysis, with the assumption that
the total gain of one player or coalition of players is the total loss of the other.

On the other hand, the theory of non-zero-sum games serves well for the analysis
of situations where there are again conflicts of interest among agents or “players”
(decision makers such as “natural persons”, firms, institutions, organisations, etc.)
but the “payoffs” which result from the players’ actions do not need to sum up to
zero. Such situations often arise in the economy but also in social life, in politics,
and in warfare.

Moreover we will deal with m-person games, where the payoff (measured in
money or utility) resulting from the action of one player depends also on the actions
of the other m � 1 players. The actions permissible for the players are called
strategies (we give below a more detailed description). When each player acted upon
one of her/his strategies then a one-move match has been played. So a one-move
match can be considered to be a “vector” whose components are the m strategies
which were carried through. The functions assigning the payoffs to each player are
called “payoff functions” in the theory of games. So there are m payoff functions in
an m-player game, one for each player.

We denote by Sj the set of possible strategies of the j-th player. If each player
chooses a strategy sj 2 Sj (j D 1; : : : ;m) independently from the other players then
the “strategy vector” .s1; s2; : : : ; sm/ 2 S1 � S2 � � � � � Sm (see Sect. 1.4 for the
Cartesian product of sets) is fixed for the match. If the functions

Fj W S1 � S2 � � � � � Sm �! R .j D 1; : : : ;m/

are the payoff functions, then the j-th player’s payoff in this match is Fj.s1; : : : ; sm/.
Obviously, a game of this kind is completely described by the vector

.s1; s2; : : : ; smI F1;F2; : : : ;Fm/:

It is called an m-person game in normal form.
Here each player chooses, independently from the others, just one move, i.e., one

strategy and the match is finished, the payoffs are tied up. An example is furnished
by a market with m suppliers who advertise their prices at the beginning of each
sales period (season) and do not change them during the period (season). At the end
of the season each player (supplier in this “multiple-good oligopoly”) will know the
result of the “match”.

Extensive games or games in extensive form are, on the other hand, games where
(as in parlour games) each player has, during a multi-move match, at any stage of the
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game choice of one move (out of many) that precedes, meets, or follows the moves
of the other player(s). These games can be reduced to normal form if we replace
individual behaviour during a series of moves by strategies. A strategy of a player
is a complete action plan which prescribes what the player has to do in any possible
situation of the game.

Of course, even simple parlour games permit very large numbers of different
strategies. When the number of strategies is finite even for such complicated games
as chess, there still does not exist a complete list of all possible strategies of chess.
But the advantage of the concept of strategy is, as we hinted above, that with its help
we can reduce extensive games to normal form. Indeed, these can be considered
normal games: each of the players chooses only one “move”. As we have learned,
these “moves” can be very complicated strategies.

As an example, we consider a price oligopoly. This is a market for goods (and/or
services) that are offered by m suppliers whose selling strategies depend upon the
prices as follows: What oligopolist j (j D 1; : : : ;m) sells during a fixed sales period
does not only depend upon the prices set by j but also upon the prices set by the
m � 1 competitors. If m D 2 then we have a duopoly. Notice that the (supposedly
very numerous) households (consumers) on the demand side of the market are not
regarded as players in the (oligopoly) game, although they are, as a whole, causally
related to the demand that meets each of the m suppliers.

For the sake of simplicity we suppose first that there is just one good in the market
and that any price p 2 RC can be demanded. Then the strategy sets of m oligopolists
(suppliers, players) are given by Sj D RC (j D 1; : : : ;m) and the strategies of the
j-th oligopolist are given by sj D pj (j D 1; : : : ;m). Let fj be the price-demand
function during a fixed sales period. This function depends upon the price set by the
j-th oligopolist and upon the price p1; : : : ; pj�1; pjC1; : : : ; pm set by the competitors.
So fj.p1; : : : ; pm/ is the quantity of the good which the j-th oligopolist can sell
(j D 1; : : : ;m). Let us denote the cost function of the j-th supplier by Cj. Then the
payoff function, yielding the profit of this supplier is given by

Fj. p1; : : : ; pm/ D pjfj. p1; : : : ; pm/ � Cj. fj. p1; : : : ; pm// .j D 1; : : : ;m/ (9.17)

(price times quantity less costs).
It is highly improbable that the total profit

F1. p1; : : : ; pm/C � � � C Fm. p1; : : : ; pm/

is constant for all price vectors (strategy vectors) . p1; : : : ; pm/. This was different in
parlour games: there the sums of payoff functions are constant:

mX

jD1
Fj.s1; s2; : : : ; sm/ D c for all .s1; s2; : : : ; sm/ 2 S1 � S2 � � � � � Sm:
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These games are called “constant-sum games”. If c D 0, we are back at zero-
sum games which we discussed in the case m D 2 ( two-person zero-sum games) in
Sect. 5.4.

In two-person zero-sum or constant-sum games the gain of one player determines
the gain or loss of the other. Therefore there is not much advantage for them in
cooperation. In m-person games (m � 3) or non-constant-sum two-person games,
cooperation, if permitted by the rules of the game, may make sense. But such a
cooperation in oligopoly or duopoly markets may harm the consumer, therefore
it is prohibited in many jurisdictions. Accordingly, in what follows we will deal
mostly with noncooperative games, even though cooperative games are of interest
too (forming of coalitions, their rules of procedure, distribution of profit, etc.).

Of course, for a player in a noncooperative game the vital question is which
strategy sj 2 Sj to choose. This would be simplest if the j-th player could wait till all
other made their choices of strategies, but this is against the rules. It would also be
non symmetric: only one player can play a game in this way. We will disregard this
in favour of other “winning strategies”.

In the introduction of Sect. 9.1 we gave a numerical example and defined Nash
equilibrium points in the particular case of one-good duopoly. Before dealing with
“multi-good oligopoly models” we give more general definitions. In a noncoopera-
tive m-person game

.S1; : : : ; SmI F1; : : : ;Fm/

a strategy vector .s�
1 ; : : : ; s

�
m/ 2 S1 � � � � � Sm is a Nash equilibrium point if, for all

j 2 f1; : : : ;mg and for all sj 2 Sj, the inequality

Fj.s
�
1 ; : : : ; s

�
j�1; s�

j ; s
�
jC1; : : : ; s�

m/ � Fj.s
�
1 ; : : : ; s

�
j�1; sj; s

�
jC1; : : : ; s�

m/

holds. Clearly in such a point there is no incentive for any player to change strategy
if the strategies of the other remain the same.

One can show that there is at least one Nash equilibrium point in the m-
person game .S1; : : : ; SmI F1; : : : ;Fm/ if the following three conditions hold for
j D 1; : : : ;m:

(i) Sj is a compact convex (see Sects. 3.3 and 6.7 for definitions) subset of R

j

C
(j D 1; : : : ;m; the natural numbers 
1; : : : ; 
m may be different).

(ii) The partial payoff functions

sj 7�! Fj.s1; : : : ; sj�1; sj; sjC1; : : : ; sm/ .j D 1; : : : ;m/

are convex from above.
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(iii) The payoff functions

.s1; : : : ; sm/ 7�! Fj.s1; : : : ; sm/ .j D 1; : : : ;m/

Fj W S1 � : : : � Sm ! R are continuous.

In what follows we sketch an argument which shows that under certain conditions
there exists exactly one Nash equilibrium point—in this case rather equilibrium
vector—for noncooperative games involving m-person, n-good oligopolies, with
price settings as strategies, payoffs as profits, and with affine (see Sect. 4.2) cost
functions and price-demand functions. The same argument determines that unique
Nash equilibrium vector explicitly. We will compare it to the price vector which
maximises the total profit in the case where all oligopolists cooperate. (This will be
our foray into the field of cooperative games). Dealing with an n-good model, we
will mark the goods for simplicity by 1; 2; : : : ; n and denote by Nj the ordered set (in
the order of these numbers) of all goods offered by the j-th supplier. It is customary
to denote the number of elements in the set Nj by #Nj (or by

ˇ
ˇNj

ˇ
ˇ but we will not

use the latter notation to avoid mixup with length of vectors and absolute values of
numbers).

For simplicity we will suppose that the m suppliers are engaging exclusively in
price policy, that is the strategy set Sj consists of the prices p j

r � 0 (r 2 Nj) which
the j-th supplier may set for the goods offered by her/him:

Sj WD ˚
p j

r � 0
ˇ
ˇ r 2 Nj

�
.j D 1; : : : ;m/:

We unite the individual prices p j
r (r 2 Nj) into the price vectors (column vectors)

p j D . p j
r/ .j D 1; : : : ;m/:

Thus the price of the r-th food can be uniquely found in each price vector which
contains it at all.

The essential assumption and restriction in this model is that the column vector
of sales by the j-supplier,

xj D .xj
r/ .r 2 Nj/;

is an affine function (see Sect. 4.2) of all price vectors (of that supplier and of those
of the competitors), that is, the price-demand function is affine:

xj D
mX

kD1
Ajkpk C c j .j D 1; : : : ;m/: (9.18)

The so called saturation quantities cj
r are positive (since we obviously assume

that sales xj
r are positive, if all prices are zero). We donate the components of the m2
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individual #Nj � #Nk matrices Ajk by

ajk
rs .j D 1; : : : ;mI k D 1; : : : ;mI r 2 Nj; s 2 Nk/: (9.18’)

Not all will be positive. In fact, all diagonal elements of the Ajj matrices will be
supposed to be negative:

ajj
rr < 0 .r 2 NjI j D 1; : : : ;m/; (9.19)

that is, we will suppose that, everything else being equal, if the j-th supplier raises
the price p j

r of the good r then this supplier’s sales of that good will decrease.
However, for j 6D k we will suppose that

ajk
rr � 0 .r 2 Nj \ NkI j D 1; : : : ;mI k D 1; : : : ;m/; (9.20)

that is, if one other supplier raises the price of good r then, everything else being
equal, the sales of this good by a supplier who did not raise its price will not
decrease. Clearly, these are quite reasonable suppositions.

The following is not a supposition but enumeration and interpretation of possible
case. For r 6D s (r 2 Nj, s 2 Nk; j D 1; : : : ;m; k D 1; : : : ;m; j and k may be different
or equal) we have (see (9.18), (9.18’))

(a) ajk
rs > 0 if an increase in the price of the good s by supplier k raises the demand

for supplier j’s good r (in this case good r is said to be substitute for good s),
(b) ajk

rs < 0 if an increase in the price of the good s by supplier k lowers the demand
for supplier j’s god r (good r is a “complement” of good s),

(c) ajk
rs D 0 if raising or lowering the price of the good s by supplier k does not

influence the demand for supplier j’s good r ( “demand indifference”).

Now we make the further assumption of the dominance of direct price impacts:
It is possible to choose the quantity units (ounces, kilograms, litres, gallons, etc.)
for the n goods so that in (9.18) the resulting components (9.18’) of the matrix Ajk

satisfy

1

2

X

s2Nj
s 6Dr

ˇ
ˇajj

rs C ajj
sr

ˇ
ˇ <

ˇ
ˇajj

rr

ˇ
ˇ .r 2 NjI j D 1; : : : ;m/ (9.21)

and

X

s2Nj

ˇ
ˇ
ˇajk

st

ˇ
ˇ
ˇ <

ˇ
ˇajj

rr

ˇ
ˇ .r 2 Nj; t 2 NkI j D 1; : : : ;mI k D 1; : : : ;mI j 6D k/:

(9.22)
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(The summation in the second inequality varies through all elements of Nj while,
in the first inequality, it goes through all elements of Nj except r). If, as it is
reasonable to suppose, ajj

rs and ajj
sr are either both nonnegative or both nonpositive

for any given j, r, s (r 6D S) then (9.21) and (9.22) mean, compare (9.18), (9.18’),
the following: When the j-th supplier changes the price of her/his r-th good by h
percent then the impact of this price change on the sales of this r-th good is stronger
then the effect of an h percent price change of her/his s-th good (s 6D r) or of any
good supplied by competitor k (k D 1; : : : ;m; k 6D j).

If (9.19), (9.20), (9.21) and (9.22) are satisfied then we say that the direct price
impact is negative (see (9.19)) and dominant (see (9.21), (9.22)).

Here the payoff functions in the “game” of the m oligopolists are profit functions
F1; : : : ;Fm. We determine them under the supposition that, similarly as the price-
demand function in (9.18), the cost function Cj is affine:

Cj.xj/ D ˛j C bj � xj .j D 1; : : : ;m/: (9.23)

Here ˛j > 0 are the fixed costs of the j-th supplier (j D 1; : : : ;m), while the
components bj

r > 0 of the vector

bj D .bj
r/ .r 2 NjI j D 1; : : : ;m/

are the (partial) marginal costs of the j-th supplier with respect to the r-th good. Of
course, bj � xj is the inner product (Sect. 1.4 3) of this vector and of the vector xj of
quantities of goods offered by the j-th supplier.

As a generalisation of (9.17), now the profit function of the j-th supplier is given
by

Fj.p1; : : : ;pm/ D
X

r2Nj

p j
rx

j
r � Cj.xj/ D pj � xj � Cj.xj/ .j D 1; : : : ;m/ (9.24)

(again sales in money units less costs). Under the assumptions (9.18) and (9.23) this
becomes

Fj.p1; : : : ;pm/ D .pj � bj/ �
mX

kD1
.Ajkpk C cj/� ˛j .j D 1; : : : ;m/: (9.25)

While the prices are, of course, natural numbers (times 0.01), as usual (see
Sects. 3.1 and 5.1), we “interpolate” and let them be any nonnegative real number.
While in Sects. 3.1 and 5.1 we emphasised that there are many ways to obtain, by
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“interpolation”, a “smooth” function on an interval from one defined at isolated
points, here it is natural to preserve (9.25) as a quadratic function (compare Sect. 6.3
1). Of course, quadratic functions can be twice (partially) differentiated. We get

@Fj.p1; : : : ;pm/

@p j
r

D .0; : : : ; 0; 1; 0; : : : ; 0/ �
 

mX

kD1
Ajkpk C cj

!

C.pj � bj/ � Ajj

0

B
B
B
B
B
B
@

0
:::

1
:::

0

1

C
C
C
C
C
C
A

:

(9.26)

As we have seen in Sect. 6.7, Fj can have a maximum (that is, the profit of the j-th
supplier can be maximised) only for those positive prices p j

r for which

@Fj.p1; : : : ;pm/

@p j
r

D 0 .r 2 NjI j D 1; : : : ;m/: (9.27)

(Since we want the prices p j
r to be nonnegative, therefore we are in the compact

set

˚
.p1; : : : ;pm/

ˇ
ˇ pj D . p j

r/r2Nj ; 0 � p j
r � � .r 2 NjI j D 1; : : : ;m/

�
;

where � is greater than any possible price). We look first at the coefficient of pj

in (9.26). We see that pj figures at two places:

.0; : : : ; 0; 1; 0; : : : ; 0/ � Ajjpj and pj � Ajj

0

B
B
B
B
B
B
@

0
:::

1
:::

0

1

C
C
C
C
C
C
A

:

So the coefficient of pj is the matrix Bj whose components are ajj
rt C ajj

tr where
both r and t move through Nj. The vectors pk with k 6D j figure only in

.0; : : : ; 0; 1; 0; : : : ; 0/ � Ajkpk:

So the coefficients of the pk (k 6D j) are the matrices �Cjk WD Ajk whose components
are the ajk

rs, where r goes through Nj and s through Nk. We wrote �Cjk because we
will carry it over to the right hand side of the equation (9.27) (whose left hand side
is determined in (9.26)). Finally, the terms in (9.26) without pk (which will also go
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to the right hand side of (9.27)) from the vector �dj, whose components are

� dj
t D cj

t �
X

r2Nj

bj
ra

jj
rt .t 2 Nj/: (9.28)

Thus equation (9.27) becomes

Bjpj D
mX

kD1
k 6Dj

Cjkpk C dj: (9.29)

We suppose that (9.19), (9.20), (9.21) and (9.22) hold and that the above case (b)
of complementary demand is excluded. By (9.19), the components in the diagonal
of Bj are negative and, by (9.21) and (9.22), they “dominate” the non diagonal
components, which by (a) and (c) are nonnegative. In (9.29), the components of pk

are nonnegative and, by (9.20) and (a), (c), those of Cjk D �Ajk (k 6D j) nonpositive.
By (9.28), if the (positive) saturation quantities cj

t are large enough, dj and thus
the right hand side of (9.29) is negative. At this stage we state without proof the
theorem:

Let B be a quadratic matrix whose diagonal components are negative and whose
non diagonal components are nonnegative. Then for every c<D 0 there exists a
unique p>D 0 such that Bp D c if and only if B has a dominant diagonal. The inverse
B�1 of such a B exists and its components are nonpositive. From this it follows that
the system of linear equations (9.29) has a unique nonnegative solution vector pj.
This will then be

pj D .Bj/�1

0

B
@

mX

kD1
j 6Dk

Cjkpk C dj

1

C
A : (9.30)

Of course (see Sect. 6.7), (9.27) is only necessary for Fj to have a maximum
at (9.30). However, from (9.26) also

@2Fj.p1; : : : ;pm/

@p j
r@pj

t

D ajj
rt C ajj

tr .r 2 Nj; t 2 NjI j D 1; : : : ;m/

follows and from (9.19) and (9.21) one can conclude that the matrix with these
components is negative definite. So the function given by (9.25) has indeed a
maximum at (9.30). Obviously it is global, that is the price vector (9.30) maximises
the profit made by the j-th supplier, given the price vectors (“price lists”) pk (k 6D j)
of the competitors.

We arrive now at the result which we have announced. For a multi-good
oligopoly, with the profit functions (9.25), we assume, as in (9.19), negative direct
price impacts and also their dominance by requiring (9.21) and (9.22) to hold,
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furthermore, that the positive saturation quantities cj
r in the affine price-demand

function (9.18) are sufficiently large. Then there exists exactly one nonnegative Nash
equilibrium vector (really “vector of vectors”)

Np D

0

B
@

Np1
:::

Npm

1

C
A

and exactly one nonnegative vector of the quantities of goods which sell at the prices
Np and which lead to positive profits Fj. Np/ (j D 1; : : : ;m) for each supplier.

We do not present the complete proof of the result. We just mention that,
writing (9.29) for j D 1; : : : ;m, we have

N WD
mX

jD1
#Nj

linear equations which we write as

.I � T/p D a;

where T is the N � N “hyper matrix” (matrix of matrices)

T D

0

B
B
B
@

0 .B1/�1C12 � � � .B1/�1C1m

.B2/�1C21 0 � � � .B1/�1C1m

:::
:::

: : :
:::

.Bm/�1Cm1 .Bm/�1Cm2 � � � 0

1

C
C
C
A
;

and a and p are N-dimensional “vectors of vectors”:

a D

0

B
@

.B1/�1d1
:::

.Bm/�1dm

1

C
A ; p D

0

B
@

p1
:::

pm

1

C
A :

Of course, I is the unit matrix

I D

0

B
B
B
@

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

1

C
C
C
A
;

consisting of N rows and N columns.
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In the above situation (“dominant negative diagonal” and “nonnegative off-
diagonal components” in Bj and “sufficiently large” positive cj

t), all components of
the vector (“vector of vectors”) a are nonnegative (see the theorem mentioned some
pages earlier). If in this situation the absolute values of the diagonal components in
Bj are sufficiently large then the 1’s in the diagonal of the matrix .I � T/ dominate
the non diagonal components, which are nonpositive since the components of the
matrices in T,

.Bj/�1; Cjk .j D 1; : : : ;mI k D 1; : : : ;mI j 6D k/;

are nonpositive (note that �Cjk D .ajk
rs/ is nonnegative as supposed in (9.20), (a) and

(c)). Thus the inverse .I � T/�1 exists and is nonnegative. So we get an appropriate
profit-maximising price vector

Np D .I � T/�1a>D 0:

Now we come to the question whether the thus obtained Nash equilibrium prices
are more favourable for the consumer than those maximising the sum of the profits
of cooperating oligopolists. One would guess that they are and the next result
we quote here gives conditions under which this is indeed so, but read on (also
remember the example in Sect. 9.1).

The result, which we again quote without proof, is the following. Here too,
we suppose, for a multi-good oligopoly, that the profit functions are of the
form (9.25), that the direct price impacts are negative (see (9.19)) and dominant
(see (9.21), (9.22)), that the saturation quantities are large enough and that the
demand for any pair of the n goods offered by the m oligopolists is substitutional (see
(a) above). Then there exists a unique nonnegative price vector Op D . Op1; : : : ; Opm/,
which maximises the total profit

F1.p1; : : : ;pm/C � � � C Fm.p1; : : : ;pm/ (9.31)

of the m oligopolists. Furthermore, for this Op we have Op>D Np, where Np is the Nash
equilibrium price vector, calculated above.

If the requirement (a) (“for any pair of the n goods offered by the m oligopolists
the demand is substitutional”) is dropped then Op>D Np need not hold anymore, as the
following simple example shows.

Two suppliers offer one good each. Let the price-demand functions be given by

x D �5p � q C 100;

y D �p � 5q C 100;

where x, y are the sold quantities and p, q, respectively, are the prices of the two
goods. As we see, the sales of one supplier for one good go down conversely. This
is a case (b) of complementary (demand for two) goods (as for coffee and cream: if
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coffee would be more expensive than it is now, not only the demand for coffee but
also for cream would be lower). Let the cost functions be given by

C1.x/ D 120C 2x; X2.y/ D 120C 2y:

So we get for the profit functions (see (9.24) and (9.27))

F1. p; q/ D px � C1.x/ D . p � 2/x � 120 D �5p2 � pq C 110p C 2q � 320;

F2. p; q/ D qy � C2.y/ D .q � 2/y � 120 D �5q2 � pq C 110p C 2p � 320;
@F1. p; q/

@p
D �10p � q C 110;

@F2. p; q/

@q
D �10q � p C 110:

The last two are simultaneously 0 (case of equilibrium) exactly for

p D Np D 10; q D Nq D 10:

Since

@2F1. p; q/

@p2
D �10; @2F2. p; q/

@q2
D �10;

we have maxima of

p 7! F1. p; q/; q 7! F2. p; q/

at Np D 10, Nq D 10. so .10; 10/ is the (only) Nash equilibrium vector.
Now suppose that the suppliers cooperate in order to maximise their total profit

F. p; q/ D F1. p; q/C F2. p; q/ D �5p2 � 5q2 � 2pq C 112. p C q/� 640:

We calculate

@F. p; q/

@p
D �10p � 2q C 112 D 0;

@F. p; q/

@q
D �10q � 2p C 112 D 0;

@2F. p; q/

@p2
D �10; @2F. p; q/

@q2
D �10 @F. p; q/

@p @q
D @F. p; q/

@q @p
D �2:

The first two equations yield p D Op D 28
3

, q D Oq D 28
3

. Since (see Sect. 6.8) the
matrix

��10 �2
�2 �10

�
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is negative definite, therefore (see Sect. 6.8) the total profit F has a maximum at

.Op; Oq/ D
�
28

3
;
28

3

�

:

From the form of F it follows that this is the global maximum of F. Note that .Op; Oq/ <
.Np; Nq/. The profits of the suppliers for the two pairs .Np; Nq/ and .Op; Oq/ of prices will be

F1.Np; Nq/ D F1.10; 10/ D �5 � 102 � 10 � 10C 110 � 10C 2 � 10� 320

D F2.10; 10/;

F1.Op; Oq/ D F1.
28

3
;
28

3
/ D �5 � 28

2

32
� 28

3
� 28
3

C 110 � 28
3

C 2 � 28
3

� 320

D 202:67 D F2.
28

3
;
28

3
/:

This shows on one hand that there exist games whose payoffs in certain non
equilibrium situations are greater than the payoffs paid in the Nash equilibrium. On
the other hand, the following is possible in the case (b) of complementary (demand
for two) goods: A price fixing agreement to maximise the total profit for the suppliers
can lead to lower prices for the consumers than competition in prices resulting in
equilibrium.

9.4.1 Exercises

Consider a duopoly, where duopolist A supplies two goods and duopolist B one
good. Each of the three goods is a substitute for each of the other two goods. Denote
the prices and quantities of A’s goods by p, q and x, y, respectively, and the price
and quantity of B’s good by r and z, respectively. Let the price-demand functions of
the market be given by

x D �8p C 2q C 4r C 200;

y D 2p � 8q C 4r C 200;

z D 3p C 3q � 9r C 300;

A’s cost function C by

C.x; y/ D 2x C 2y C 40;

and B’s cost function K by

K.z/ D z C 30:
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1. Determine A’s profit function F and B’s profit function G as functions of the
prices p, q and r.

2. Determine the (unique) Nash equilibrium price vector .Np; Nq; Nr/ of the market.
3. Determine the (unique) price vector .Op; Oq; Or/ that maximises the total profit

F. p; q; r/C G. p; q; r/ of the duopolists.
4. Evaluate F.Np; Nq; Nr/, F.Op; Oq; Or/, G.Np; Nq; Nr/, G.Op; Oq; Or/.
5. In the above set of exercises:

(a) Is .Np; Nq; Nr/ < .Op; Oq; Or/?
(b) Is F.Np; Nq; Nr/C G.Np; Nq; Nr/ < F.Op; Oq; Or/C G.Op; Oq; Or/? If yes, why?

6. We consider a set S of matrices

A D

0

B
@

a11 � � � a1n
:::

:::

an1 � � � ann

1

C
A .ajk 2 R/

satisfying ajj > 0 (j D 1; : : : ; n), Ajk � 0, j 6D k and
Pn

kD1 ajk � 0 .j D 1; : : : ; n/.
We notice that here the diagonals are dominant only in a weak sense.
(a) Give an example of a matrix A 2 S whose inverse does not exist, that is

det A D 0.
(b) Give an example of a matrix A 2 S such that det A > 0, and determine A�1.
(c) Give an example of a matrix A 2 S that satisfies aj1 C � � � C ajn D 0 for at

least one j 2 f1; : : : ; ng. Apply the following cancellation method: If

nX

kD1
k 6Dj

ˇ
ˇajk

ˇ
ˇ < ajj

than cancel row j and column j of A. Do the same with the remaining matrix
and so forth. If all rows and columns of A can be cancelled with this method
then det A > 0. (We thank WILLI HUMMEL (�( – ��)1931) for this and the
following information: If det A > 0 for A 2 S then all rows and columns
can be cancelled according to the above method). If det A D 0 (det A > 0)
in case of your example, give another example A� satisfying det A� > 0

(det A� D 0).

9.4.2 Answers

1. F. p; q; r/ D xp C yq � C.x; y/
D xp C yq � 2x � 2y � 40

D .�8p C 2q C 4r C 200/p C .2p � 8q C 4r C 200/q
�.�8p C 2q C 4r C 200/ � 2 � .2p C 8q C 4r C 200/ � 2 � 40

D �8p2 � 8q2 C 4pq C 4pr C 4qr C 212p C 212q � 16r � 800;
G. p; q; r/ D zr � K.z/ D zr � z � 30
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D .3p C 3q � 9r C 300/r � .3p C 3q � 9r C 300/� 30

D 3pr C 3qr � 9r2 � 3p � 3q C 309r � 330:

2. .Np; Nq; Nr/ D . 655
27
; 655
27
; 178
9
/  .19:78; 19:78; 24:26/.

3. . Op; Oq; Or/ D . 467
13
; 467
13
; 479
13
/  .35:92; 35:92; 36:85/.

4. F.Np; Nq; Nr/ � 5905:695; F. Op; Oq; Or/ � 8905:254,
G.Np; Nq; Nr/ � 3522:938; G. Op; Oq; Or/ � 3091:373.

5. (a) Yes (see 2 and 3),
(b) Yes (see 4), since . Op; Oq; Or/ maximizes . p; q; r/C G. p; q; r/.

6. (a) A D
0

@
2 �2 0

�3 3 0

�2 �1 4

1

A ; det A D 0.

(b) A D
�

2 �1
�2 3

�

; det A D 4; A�1 D
�
3
4
1
4

1
2
1
2

�

.

(c) A D
0

@
2 �1 �1

�3 3 0

�2 �1 4

1

A. Since �2 � 1 C 4 > 0, the last row and column can

be cancelled, and the matrix
�
2�1

�3 3

	
remains. Here 2 � 1 > 0, that is, the

first row and the first column can be cancelled. So .3/ remains which can be
cancelled. One knows that then det A > 0. Indeed, det A D 3.

A matrix A 2 S satisfying det A D 0 is the matrix in (a). Here we can
cancel the last row and the last column and get the matrix�
2�2

�3 3

	
for which further cancelling is impossible.
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Let f W I �! R be given, where I � R is an interval. Try to
find all differentiable functions F W I �! R such that F0 D f .
Realize that this is your first step into calculating the areas of
certain surfaces.

10.1 Introduction: Definite Integral

In Chaps. 5, 6, 7, 8, and 9 we gave examples of applications to economics of
derivation, among others. In this chapter we introduce integration which is, in
a sense, the inverse operation of derivation, and which will also prove to be an
important tool for describing processes in the social sciences.

Example A money market fund pays, on an investment of $1;000, the
dividend

s4 D 1000
�y.1/
4

C y.2/
4

C y.3/
4

C y.4/
4

�

where y.j/ is the lowest of the interest rates of six-month treasury bills during
the j-th quarter (j D 1; 2; 3; 4) of the year. Clearly a dividend

S4 D 1000

�
Y.1/
4

C Y.2/
4

C Y.3/
4

C Y.4/
4

�

;

where Y.j/ is the highest treasury bill interest rates during the j-th quarter,
would be higher than s4 (or equal to s4 if by chance the six-month treasury bill
interest rates would stay constant during each quarter, though they could still

(continued)
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change from one quarter to the other). In other words, s4 and S4 are capital
times the arithmetic mean of the lowest or the highest treasury bill interest
rates during each of the four quarters, respectively.

In Fig. 10.1 we represented the daily interest rates of the six-month treasury
bills, connected by a curve. Clearly s4 and S4 are 1000 times the sums of areas of
four quadrangles each, that is, the areas of polygons ABC1B2C2B3C3B4CD and of
ABC�

1B�
2C�

2B�
3C�

3B�
4C�D�, respectively. From reflection or inspection of the figure

it is clear that, if the dividend were

s12 D 1000
� y1
12

C y2
12

C : : :C y12
12

�

(the capital times the arithmetic mean of lowest six-month treasury bill interest rates
yk during the k-th month (k D 1; : : : ; 12)), that would be larger (not smaller) than
s4:

s4 � s12:

A

D

D

B

C1

C1

C2

B2

C2

B2

C3

B3

C3

B3

C

B4

C

B4

Fig. 10.1 Daily, minimum and maximum monthly, and minimum and maximum quarterly six-
month treasury bill interest rates
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Similarly

S12 D 1000

�
Y1
12

C Y2
12

C : : :C Y12
12

�

� S4

where Yk (k D 1; : : : ; 12) is the highest treasury bill interest rate during the k-th
month. Again s12 and S12 are 1000 times the areas of the corresponding polygons
under and above the curve each consisting of twelve rectangles. One sees also that
S12 is closer to s12 than S4 to s4:

S12 � s12 � S4 � s4:

If one would move on to lowest and highest interest rates during weeks, s52 and
S52 would be even closer and one gets the impression that 1000 times the area under
the curve BC would be the fairest dividend. This area is called the definite integral
of function f whose graph is the curve AB and is written as

Z 1

0

f .x/ dx:

Of course, one can similarly define the definite integral

Z b

a
f .x/ dx

over the (closed) interval Œa; b�, a < b of the X-axis and under the graph of the
function as the area bordered by the X-axis, lines perpendicular to the X-axis at the
points a and b and by the graph of the function f .

There is a “catch”, though: One would have to define the “area”. Why? Because
it is not exactly clear what we mean by the area under the graph of a function.
Consider, for instance, the function in Example 3 of Sect. 6.4 (for which f .x/ D 1

if x is irrational and f .x/ D 0 if x is rational), say between x D 0 and x D 1. What
would be the area under the graph there? (Actually, after appropriate definitions that
area would turn out to be 1).

But we will not worry about this: If f is sectionally continuous (see Sect. 6.3) on
Œa; b� then the area under the graph of f over Œa; b�, that is, the definite integral

Z b

a
f .x/ dx

can be defined exactly as the common limit, as n ! 1, of the lower and upper
approximating sums sn and Sn as in Fig. 10.1 but with an arbitrary subdivision of
the interval Œa; b� (there Œ0; 1�) as long as the length of even the largest subinterval
tends to 0 when n ! 1. (One can prove that for sectionally continuous functions
this common limit always exists.)
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Thus

Z b

a
f .x/ dx D lim

n!1

max jxk�xk�1j!0

nX

kD1
.xk � xk�1/mk

D lim
n!1

max jxk�xk�1j!0

nX

kD1
.xk � xk�1/Mk;

(10.1)

where

mk D min
xk�1�x�xk

f .x/;

Mk D max
xk�1�x�xk

f .x/;

(remember from Sect. 5.3 that functions continuous on a close interval have largest
and smallest values, max and min there; the same is true for sectionally continuous
functions on closed intervals).

These definitions make sense and the following rules remain true also if f .x/ is
negative or changes signs.

10.2 Properties of Definite Integrals

From the definition (10.1) of definite integrals and from its interpretation as area
under (if f is negative then (�1) times area over) the graph of f and over (under)
Œa; b�, the following properties are obvious:

Z c

a
f .x/ dx D

Z b

a
f .x/ dx C

Z c

b
f .x/ dx .a � b � c/; (10.2)

Z a

a
f .x/ dx D 0; (10.3)

Z a

b
f .x/ dx D �

Z b

a
f .x/ dx (10.4)

(because then the sign of xk � xk�1 reverses in each term of (10.1)),

Z b

a
.Af .x/C Bg.x// dx D A

Z b

a
f .x/ dx C B

Z b

a
g.x/ dx (10.5)

(A;B constants),

m.b � a/ �
Z b

a
f .x/ dx � M.b � a/; (10.6)
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where m � f .x/ � M on Œa; b�, (see Fig. 10.1). In particular, we can have

m D min
a�x�b

f .x/; M D max
a�x�b

f .x/:

10.2.1 Exercises

1. Given the definite integrals
R b

a f .x/ dx,
R b

c f .x/ dx,
R d

c f .x/ dx, where a < c <

b < d, determine
R d

a f .x/ dx.
2. The inequalities (10.6) give intervals that contain the value of the definite integralR b

a f .x/ dx, a < b. Determine the smallest of these interval for the case f .x/ D
2C sin x, a D 0, b D 2� .

3. Same problem as in Exercise 2 for f .x/ D ln x, a D e � 2:718281828 : : :,
b D e2 � 7:389056099 : : :.

4. Same problem as in Exercise 2 for f .x/ D x3 � x2 � x C 2, a D �1, b D 3=2.
5. Same problem as in Exercise 2 for f .x/ D e�x, a D 2, b D 5.

10.2.2 Answers

1.
Z d

a
f .x/ dx D

Z b

a
f .x/ dx �

Z b

c
f .x/ dx C

Z d

c
f .x/ dx

D
Z b

a
f .x/ dx C

Z c

b
f .x/ dx C

Z d

c
f .x/ dx:

2. min.M � m/.b � a/ D .3 � 1/.2� � 0/
D 4� � 4 � 3:141592654D 12:566370616.

3. min.M � m/.b � a/ D .2 � 1/.e2 � e/
D e2 � e � 7:389056099� 2:718281828D 4:670774271.

4. min.M � m/.b � a/ D . 59
27

� 1/.1:5 � .�1//
D 32

27
� 2:5 � 1:185185185 � 2:5 D 2:9629629625.

5. min.M � m/.b � a/ D .e�2 � e�5/.5 � 2/ D 3 � .e�2 � e�5/
� 3 � .0:135335283� 0:006737947/D 3 � 0:1285973360:385792008.

10.3 Indefinite Integrals (Antiderivatives)

Suppose now that f is continuous and so the area under the graph of f exists from
a0 till an arbitrary x (at least till an arbitrary x in some interval of positive length).
Of course, the area will depend upon x. In accordance with the previous section we
write this as

F.x/ D
Z x

a0

f .t/ dt: (10.7)
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(Just as it makes no difference which letter is used as subscript in a sum, such as

nX

jD1
aj D

nX

kD1
ak;

1X

kD0
ak D

1X

nD0
an;

it does no make any difference either by which letter the variable inside a definite
integral is denoted:

Z b

a0

f .x/ dx D
Z b

a0

f .t/ dt:

However, in (10.7) there is an x outside of the integral (on top of the integral sign),
so, in order to avoid confusion, x should not be used as inside variable.)

We will prove a highly remarkable relation between F and f :

F0.x/ D f .x/: (10.8)

s Indeed, let us form first the difference quotient of F:

F.x C h/� F.x/

h
D 1

h

�Z xCh

a0

f .t/ dt �
Z x

a0

f .t/ dt

�

D 1

h

Z xCh

x
f .t/ dt;

(10.9)

the last equality holding because (see (10.2)) the area from a0 to x C h equals the
area from a to x plus that from x to x C h. By (10.6) (compare Fig. 10.2),

hm �
Z xCh

x
f .t/ dt � hM;

Therefore, from (10.9) and from the “squeeze rule” (compare Sect. 6.2),

F0.x/ D lim
h!0

F.x C h/� F.x/

h
D f .x/

which proves (10.8), so f .x/ is indeed the derivative of F.x/ D R x
a0

f .t/ dt (and that
F is differentiable) (Fig. 10.3).

The fact alone that, as in (10.8), F0.x/ D f .x/, makes F, by definition, the
indefinite integral or antiderivative of f ; f is the integrand. From (10.2), (10.4) in
Sect. 10.2 and from (10.7) we have

Z b

a
f .x/ dx D

Z b

a0

f .x/ dx �
Z a

a0

f .x/ dx D F.b/� F.a/:
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a b

m

M

Fig. 10.2 m.b � a/ � R b
a f .x/ dx � M.b � a/

x x h

m
M

Fig. 10.3 Calculating the difference quotient of F.x/ D R x
a f .t/ dt

This simple result has the ambitious name “Newton-Leibniz-formula” (Sir ISAAC

NEWTON (�1642 – �1727) and Gottfried WILHELM LEIBNIZ (�1646 – �1716) were
the founders of differential and integral calculus).
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Anyway, we know how to determine the definite integral, that is, the area between
the graph of f (of which we know the antiderivative) and the segment Œa; b� of the
x-axis:

where m and M are the smallest and largest values of f .x/ on the interval Œx; x C
h�, respectively. So m � 1

h

R xCh
x f .t/ dt � M, which confines the right hand side

of (10.9). Since f is continuous, as h ! 0 both m and M tend to f .x/.

Z b

a
f .x/ dx D F.b/� F.a/; (10.10)

where F is any antiderivative of f , that is, as we know, any function for which

F0.x/ D f .x/

holds (see 10.8). It is clear that with F.X/ also any QF.x/ D F.x/C c satisfies (10.8)
where c is an arbitrary constant. It is easy to see that these are the only functions
satisfying (10.8).

We will write the antiderivative as

F.x/ D
Z

f .x/ dx

(here we wrote x after the
R

sign, since there are no other x on the right hand side).
From (10.5) in Sect. 10.2,

Z
.Af .x/C Bg.x// dx D A

Z
f .x/ dx C B

Z
f .x/ dx: (10.11)

(A and B are again constants).
In view of (10.10), the determination of F.x/ for a given f .x/ is quite important.

We give below the antiderivatives of a few functions; they follow from the derivation
formulas and rules as in Sects. 6.4, 6.5, 7.2

1.
Z

xn dx D xnC1

n C 1
C c .n 6D �1/I

Z
1

x
dx D ln x C c .x > 0/;

in particular, taking also (10.11) into consideration, for any constant b.

2.
Z

b dx D bx C c and also
Z
0 dx D c:

3.
Z

ex dx D ex C c:

4.
Z

ax dx D ax

ln a
C c .a > 0I a 6D 1I for a D 1 see 2/:

5.
Z

cos x dx D sin x C c;
Z

sin x dx D � cos x C c:

6.
Z

1

.cos x/2
dx D tan x C c;

Z
1

.sin x/2
dx D � cot x C c:
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7.
Z

1p
1 � x2

dx D Arc sin x C c D �Arc cos x C c .jxj < 1/:

8.
Z

1

1C x2
dx D Arc tan x C c D �Arc cot x C c:

(As we saw in Sect. 6.5 5 there are several Arc sin, Arc cos, Arc tan, Arc cot
functions which differ from Arc sin etc. in constants. These constants can be merged
into c.)

The definite integral can then be calculated with the formula (10.10). For instance
(notice the use of vertical line to indicate the substitutions),

Z 4

1

x2 dx D x3

3

ˇ
ˇ
ˇ
ˇ

xD4

xD1
D 43

3
� 13

3
D 64

3
� 1

3
D 21:

10.3.1 Exercises

1. Determine the antiderivatives F W R ! R of the functions f W R ! R given by
(a) f .x/ D 4x3 � 3x2 C 2x � 1,
(b) f .x/ D 2x � 3 cos x C 4 sin x,
(c) f .x/ D 5

1Cx2
� 7x6.

2. Determine the antiderivative F W RCC ! R of the function f W RCC ! R given
by

f .x/ D 1

2
x� 1

2 � x�1 � x�2 C 2x�3 � 3x�4:

3. Determine the antiderivative F W �0; �
2
Œ ! R of the function f W �0; �

2
Œ ! R given

by

f .x/ D .
3

cos x
/2 � .

2

sin x
/2:

4. Determine the antiderivative F W � � 1; 1Œ ! R of the function
f W � � 1; 1Œ ! R given by

(a) f .x/ D
r

16

1 � x2
C 4 � 4x2

1 � x4
,

(b) f .x/ D
p
1 � x2

.1C x/.1 � x/
.

5. Calculate the definite integrals
(a)

R 2
0
.4x3 � 3x2 C 2x � 1/ dx,

(b)
R �
�=2
.2x � 3 cos x C 4 sin x/ dx,

(c)
R 2
1
.5x�1 � x�2 C 2x�3 � 3x�4/ dx.
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10.3.2 Answers

1. (a) F.x/ D x4 � x3 C x2 C c,
(b) F.x/ D 2x= ln 2 � 3 sin x � 4 cos x C c,
(c) F.x/ D 5 arc tan x � x7 C c D �5 arc cot x � x7 C c. [-1ex]

2. F.x/ D x
1
2 � ln x C x�1 � x�2 C x�3 C c. [-1ex]

3. F.x/ D 9 tan x C 4 cot x C c. [-1ex]
4. (a) F.x/ D 4.arc sin x C arc tan x/C c,

(b) F.x/ D arc sin x C c D �arc cos x C c.

5. (a)
Z 2

0

.4x3 � 3x2 C 2x � 1/ dx

D .x4 � x3 C x2 � x/ jxD2
xD0 D 16 � 8C 4 � 2 D 10;

(b)
Z �

�
2

.2x � 3 cos x C 4 sin x/ dx

D .
2x

ln 2
� 3 sin x � 4 cos x/ jxD�

xD �
2

D 2�

ln 2
� 3 sin� � 4 cos� � 2

�
2

ln 2
� 3 sin �

2
� 4 cos �

2

D 2�

ln 2
� 3 � 0 � 4 � .�1/� 2

�
2

ln 2
� 3 � 1 � 4 � 0

D 2�

ln 2
� 2

�
2

ln 2
C 1

� 8:825=0:693� 2:971=0:693C 1

� 9:447:

(c)
Z 2

1

.5x�1 � x�2 C 2x�3 � 3x�4/ dx

D .5 ln x C x�1 � x�2 C x�3 C c/ jxD2
xD1

D 5 ln 2C 1=2� 1=4C 1=8C c � 1 � c
� 5 � 0:693� 5=8 D 2:840:

10.4 Methods to Calculate Integrals

Calculating integrals is by no means so easy or “mechanical” as differentiating.
(There are computer programs like Macsyma and Maple which determine indefinite
integrals in explicit form; there are many more which calculate definite integrals
numerically). Nevertheless we mention a few helpful methods.

1. Integration by parts or product integration.

By integrating

.u.x/v.x//0 D u0.x/v.x/C u.x/v0.x/;
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(see Sect. 6.5 2) we get the rules

Z
u.x/v0.x/ dx D u.x/v.x/ �

Z
u0.x/v.x/ dx

(often written as

Z
u dv D uv �

Z
v du

and

Z b

a
u.x/v0.x/ dx D u.b/v.b/� u.a/v.a/�

Z b

a
u0.x/v.x/ dx:

Example 1 We assume x 2 RCC and u.x/ D ln x, u0.x/ D 1
x , v.x/ D x,

v0.x/ D 1:

Z
ln x dx D

Z
ln x � 1 dx D x ln x �

Z
1

x
x dx

D x ln x �
Z
1 dx D x ln x � x C c;

in view of Sect. 10.3 2. [Check: .x ln x � x C c/0 D ln x C x 1x � 1 D ln x].

Note: It is a good idea to check every indefinite integral by derivation.

2. Substitution.

From the chain rule of derivation,

. f Œg.x/�/0 D f 0Œg.x/�g0.x/

(see Sect. 6.5 4) we get by integration

Z
f 0Œg.x/�g0.x/ dx D f Œg.x/�C c: (10.12)
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Example 2 Here g.x/ D sin x (say, x 2�0; �Œ), g0.x/ D cos x, f .t/ D ln t
(t 2 RCC), f 0.t/ D 1

t .

Z
cot x dx D

Z
cos x

sin x
dx D

Z
1

sin x
.sin x/0 dx D ln j sin xj C c:

Similarly for, say, x 2� � �
2
; �
2
Œ,

Z
tan x dx D

Z
sin x

cos x
dx D �

Z
1

cos x
.cos x/0 dx D � ln j cos xj C c:

The rule (12) can be written, with u D g.x/, as

Z
f 0.u/ du D f .u/C c

but then it has to be used carefully for definite integrals. In the following
example u D cos x and the numbers below and above the

R
sign have to be

changed accordingly (cos 0 D 1, cos �
4

D 1p
2
):

Z �=4

0

tan x dx D
Z �=4

0

1

cos x
sin x dx

D �
Z �=4

0

1

u.x/
u0.x/ dx D �

Z 1=
p
2

1

1

u
dx

D � ln u juD1=p2
uD1 D � ln.1=

p
2/ � .� ln 1/

D � ln 1 � .� ln
p
2/C ln 1 D ln

p
2 D 1

2
ln 2:

The following application of rule (12) is much simpler.

Example 3 Here u D g.x/ D x � A, u0 D g0.x/ D 1. By 1,

Z
1

x � A
dx D

Z
1

u
du D ln juj C c D ln jx � Aj C c:

3. Partial fractions.

As mentioned in Sect. 6.3, every rational function can be broken into primitive
partial functions. This can be used to integrate rational functions. Since, however,
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zeros of polynomials with real coefficients can be complex numbers which always
appear in pairs of conjugate complex numbers ˛ C ˇi and ˛ � ˇi, we are better
off uniting the corresponding primitive partial fractions into real fractions of second
degree (called again primitive partial fractions), by

1

x � ˛ C ˇi
C 1

x � ˛ � ˇi
D x � ˛ � ˇi C x � ˛ C ˇi

.x � ˛/2 � .ˇi/2
D 2.x � ˛/

.x � ˛/2 C ˇ2

(10.13)
or

i

x � ˛ C ˇi
� i

x � ˛ � ˇi
D 2ˇ

.x � ˛/2 C ˇ2
:

Example 4 The denominator of the fraction in the following integral is x4 �
4x3 C 5x2 D x2.x2 � 4x C 5/. The zeros of x2 � 4x C 5 are

x1 D 4C p
16� 20

2
D 2C

p�4
2

D 2Ci and x2 D 4 � p
16� 20

2
D 2�i

So

x2 � 4x C 5 D .x � 2 � i/.x � 2C i/ D .x � 2/2 C 1:

In

Z
x3 � 3x C 10

x4 � 4x3 C 5x2
dx D

Z
x3 � 3x C 10

x2Œ.x � 2/2 C 1�
dx .x > 0/

we try to expand the integrand as

x3 � 3xC10
x4 � 4x3 C 5x2

D Ax C B

x2
C Cx C D

x2 � 4x C 5
.x > 0/

(if, in a primitive partial fraction, x is in the denominator with n as greatest
exponent, we have to write a polynomial of degree .n � 1/ in the numerator).
Bringing both sides to common denominator, which will, of course, be x4 �
4x3 C 5x2, and comparing the two numerators, we get

x3 � 3x C 10 D .Ax C B/.x2 � 4x C 5/C .Cx C D/x2

D .A C C/x3 C .�4A C B C D/x2 C .5A � 4B/x C 5B:

(continued)
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The coefficients of each power of x (including x0 D 1) have to be equal, so

A C C D 1; �4A C B C D D 0; 5A � 4B D �3; 5B D 10:

From the last equation B D 2, so the before last becomes

5A � 8 D �3; that is, 5A D 5; A D 1

and the first two become

1C C D 1; that is,I C D 0

and

�4C 2C D D 0; that is, D D 2:

Since, as we have seen, x2 � 4x C 5 D .x � 2/2 C 1, we get by using the method
2 of substitution (with U D x � 2)

Z
Cx C D

x2 � 4x C 5
dx D

Z
2

.x � 2/2 C 1
dx D

Z
2

u2 C 1
du

D 2Arc tan u C c D 2Arc tan.x � 2/C c

and

Z
x3 � 3x C 10

x4 � 4x3 C 5x2
dx D

Z
1

x
dx C

Z
2

x2
dx C

Z
2

.x � 2/2 C 1
dx

D ln x � 2

x
C 2Arc tan.x � 2/C c .x > 0/:

ŒCheck: .ln x � 2

x
C 2Arc tan.x � 2/C c/0 D 1

x
C 2

x2
C 2

.x � 2/2 C 1

D .x C 2/.x2 � 4x C 5/C 2x2

x2.x2 � 4x C 5/
D x3 � 3x C 10

x4 � 4x3 C 5x2
�:

10.4.1 Exercises

1. Apply integration by parts to determine the antiderivatives F W R ! R of the
functions f W R ! R given by
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(a) f .x/ D xex, (b) f .x/ D x2ex,

(c) f .x/ D x3 sin x (d) f .x/ D 4xe2x.

2. Apply integration by parts to determine the antiderivatives F W RCC ! R of the
functions f W RCC ! R given by

(a) f .x/ D .x C 2/ ln x, (b) f .x/ D .3x2 � 1/ ln x � 2x2:

3. Apply integration by substitution to determine the antiderivatives F W R ! R of
the functions f W R ! R given by

(a) f .x/ D 2x

.1C x2/2
, (b) f .x/ D x2ex3 ,

(c) f .x/ D ex cos ex.

4. Apply integration by substitution to determine the antiderivatives F W RCC ! R

of the functions f W RCC ! R given by

(a) f .x/ D ln x

x
, (b) f .x/ D 1

x ln c
,

(c) f .x/ D 1C 2x C 3x2

x C x2 C x3
, (d) f .x/ D 1

.1C x/2
.

5. Evaluate

(a)
R t
0

ex cos x dx, (b)
Z 3

0

2x

1C x2
dx.

6. By applying partial functions determine the antiderivatives F of the rational
functions f given by

(a) f .x/ D x C 2

x2 C x C 1
,

(b) f .x/ D 3x4 � 9x3 C 4x2 � 34x C 1

.x � 2/3.x C 3/2
for x > 2,

(c) f .x/ D 2x4 � 5x3 C 8x2 C 4x � 20
x2.x2 C 4/.x2 � 2x C 10/

for x 6D 0.

10.4.2 Answers

1. (a) F.x/ D xex � ex C c,
(b) F.x/ D ex.x2 � 2x C 2/C c,
(c) F.x/ D �x3 cos x C 3x2 sin x C 6x cos x � 6 sin x C c,
(d) F.x/ D 2xe2x � e2x C c.
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2. (a) F.x/ D . x2

2
C 2x/ ln x � x2

4
� 2x C c,

(b) F.x/ D .x3 � x/ ln x � x3 C x C c.
3. (a) F.x/ D � 1

1Cx2
C c, (b) F.x/ D 1

3
ex3 C c,

(c) F.x/ D sin ex C c.

4. (a) F.x/ D .ln x/2

2
C c, (b) F.x/ D ln.ln x/C c,

(c) F.x/ D ln.x C x2 C x3/C c, (d) F.x/ D x
1Cx C c.

5. (a)
R x
0

et cos t dt D R u
1

cos u du D .sin u C c/ juDex

uD1 D sin ex � sin 1.

(Here we substituted x D ln u, that is, u D ex. Note that x D 0 implies
u D e0 D 1).

(b)
R 3
0

2x
1Cx2

dx D R 10
0

du
u D .ln u C c/ juD10

uD1 D ln 10C c � ln 1 � c D ln 10.

(Assuming u � 1 we substituted here x D .u � 1/1=2, that is, u D 1 C x2.
Note that x D 0, x D 3 imply u D 1, u D 10, respectively).

6. (a) F.x/ D 1
2

ln.x2 C x C 1/C p
3arc tan 2xC1p

3
C c,

(b) F.x/ D ln.x � 2/C 3
2

1
.x�2/2 C 2 ln.x C 3/C 5

xC3 C c,

(c) F.x/ D 1
2x � 1

4
ln x2C4

x2�2xC10 C 3
4
arc tan x

2
C 1

6
arc tan x�1

3
C c.

10.5 An Application: Calculating Present Values

In Sect. 8.3 we saw examples of discrete and continuous compounding and dis-
counting (determining the present value) of one amount A. We saw also how one
can switch from discrete to continuous compounding (er D 1 C i if r is the stated
and i the effective yearly interest rate).

Now we first want to determine the present value (e.g., value on January 1, year
1) of a payment of several amounts

A1;A2; : : : ;AN

paid at the end of years 1, 2, : : :, N, respectively. If the annual (effective) interest rate
is i (that is, 100i%) then the present value of the individual amounts A1;A2; : : : ;AN

is

A1.1C i/�1; A2.1C i/�2; : : : ; AN.1C i/�N ;

respectively

NX

tD1
At.1C i/�t:

(As observed previously, it does not matter, which letter is used as subscript in a sum.
Here we write t, because that is what we used in Sect. 7.3 and because it makes this
formula more similar to what we will have below in the “continuous case”.) For now
we stay a little longer with the “discrete case”, that is the case, where the payments
arrive at discrete points of time.
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Suppose payments (including zero amounts) do not only arrive at the end of year
1; 2; : : : ;N, as above but also at the end of each half year, quarter, month, day or
more generally, at the end of every n-th part of each year (n D 2; 3; 4; : : :) with
amounts

Ak=n .k D 1; : : : ; nN/:

Then we get, with

Œk=n� WD max fi 2 N0 j i � k=n g; n D 2; 3; 4; : : : ;

as the present value of all the amounts paid during the N years,

nNX

kD1
Ak=n � .1C r/�Œk=n�.1C .k=n � Œk=n�/r/�1;

where r is the stated yearly interest rate.
The question is how the present value of payments during N years can be

determined when these payments are not made at equidistant points of time. Let

at1 ; at2 ; : : : ; atq .0 � t1 < t2 < : : : < tq � N/

be the q amounts paid during the N years at arbitrary points in time

t1; t2; : : : ; tq .0 � t1 < t2 < : : : < tq � N/:

The present value (value at t D 0) of the p payments is

qX

jD1
atj � .1C r/�Œtj �.1C .tj � Œtj�/r/

�1: (10.14)

Let us now assume that the payments are o frequently and intensely made
that they can be satisfactorily described by a continuous or sectionally continuous
function a W Œ0;N� ! R, a so called payment density.

A payment density a W Œ0;N� ! R is defined by the following property. For each
time interval the sum S.u; u C t/ of the amounts paid during the interval Œu; u C t� 

Œ0;N�, u 2 RC, t 2 RCC, equals the integral of a form u to u C t:

S.u; u C t/ D
Z uCt

u
a.s/ ds:

For u D 0 this becomes, with C.t/ WD S.0; t/,

C.t/ D
Z t

0

a.s/ ds: (10.15)
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As in the discrete case we now determine in the continuous case the present value
of future payments, that is, the value at t D 0 of amounts being paid during the time
interval Œ0;N�, when the stated yearly interest rate is r.

For this purpose we consider an initial amount that grows by both the
receipts (10.15) and the interest paid on its growing cash balance. Let B.t/ be
this cash balance at the moment t. Then

B.t/ D
Z t

0

a.s/ ds C
Z t

0

B.s/r ds; (10.16)

with derivative

dB.t/

dt
D a.t/C B.t/r:

This equation is equivalent to

d

dt
.e�rtB.t// D e�rta.t/ (10.17)

which follows from

d

dt
.e�rtB.t// D de�rt

dt
B.t/C e�rt dB.t/

dt

D �re�rtB.t/C e�rt dB.t/

dt

(10.18)

and from the fact, that we can cancel e�rt > 0 after substituting for the left-hand
side in (10.17) the right-hand side in (10.18).

Integrating equation (10.17) from 0 to N gives

.e�rtB.t//
ˇ
ˇN
0

D
Z N

0

a.t/e�rt dt;

that is, since B.0/ D 0 (see (10.16)),

e�rNB.N/ D
Z N

0

a.t/e�rt dt: (10.19)

As we know from Sect. 8.3, e�rN is the discount factor in continuous compounding
and e�rNB.N/ is the present value of B.N/. Note that 0 < e�rN < 1. Hence, in
continuous compounding,

Z N

0

a.t/e�rt dt (10.20)
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is the present value (value at t D 0) of (future) amounts paid from t D 0 to t D N,
when a W Œ0;N� ! R is the (sectionally continuous) payment intensity and r is the
stated yearly interest rate.

It is interesting to know that the present values (10.20) and (10.14) in continuous
and discrete compounding, respectively, are more similar than it seems at first
glance. In (10.14) let t1 D 0 and tq D N. Then the first and the last term of the sum
in (10.14) are a0 and aN times discount factor, respectively. Similarly, the integrand
in (10.20) runs from a.0/ to a.N/ times discount factor. The discount factors

.1C r/�Œtj �.1C .tj � Œtj�/r/�1 and e�rt

in (10.14) and (10.20), respectively, are the closer together the smaller > 0 and
t D tj > 0 are. Let, for instance, r D 0:01, t D tj D 2:25. Then

1:01�2.1C 0:25 � 0:01/�1 � 0:97785; e�0:01�2:25 � 0:97775:

For r D 0:03, t D tj D 5:75 we get

1:03�5.1C 0:75 � 0:03/�1 � 0:84363; e�0:03�5:75 � 0:84156:

There are situations in which no bound can be reasonably set to the duration N
(see (10.20)) of the money flow, for instance, when land keeps bringing revenue
for a long time (remember that “1” in mathematics means in practice something
like “very long”, “very big”, “in life span”). In this case the payment intensity
a W Œ0;N� ! R is defined for all nonnegative numbers and its present value is

Z 1

0

a.t/e�rt dt WD lim
N!1

Z N

0

a.t/e�rt dt

if the limit on the right exists (and is finite). This is then called an improper integral.
We will deal with improper integrals in more detail in the next section but we can
calculate a simple such improper integral already here, thus showing that this limit
may indeed exist and be finite.

Choose a.t/ to be constant: a.t/ D b (t 2 RC). Then the present value of the
money flow during Œ0;N� is (as we know, t 7! be�rt is continuous)

Z N

0

be�rt dt D
�

b
e�rt

�r
C c

�ˇˇ
ˇ
ˇ

tDN

tD0
D b

r
.1 � e�rN/

(compare to Sect. 10.3 3). If N ! 1 then, as shown in Sect. 7.2, limN!1 e�rN D
limN!1.e�r/N D 0, so that the above expression indeed has a finite limit, the
following improper integral exists, is finite and is the present value of the constant
infinite money flow under the stated yearly interest rate:

Z 1

0

be�rt dt D B

r
:
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This is called also the present “asset capitalisation value”, under the stated yearly
interest rate r, of an asset which has the same yield b every year “from here to
eternity”, that is, from t D 0 to t D N ! 1.

10.5.1 Exercises

1. Let 1; 2; : : : ; 10 denote the end of years 1; 2; : : : ; 10, respectively. Determine,
for the beginning of year 1, values (“present values”) of the individual amounts
A1 D 1100, A2 D 1200, : : :, A10 D 2000 paid at the end of year 1; 2; : : : ; 10,
respectively,
(a) when the annual effective interest rate is i D 0:05 during each year,
(b) when the annual effective interest rate during year 1; 2; : : : ; 10 is

i1 D 0:05, i2 D 0:055, i3 D 0:06, i4 D 0:065, i5 D 0:06,
i6 D 0:055, i7 D 0:05, i8 D 0:045, i9 D 0:04, i10 D 0:035,
respectively.

(c) Determine the sum of the present values evaluated in (a).
(d) Determine the sum of the present values evaluated in (b).

2. Determine the stated (yearly) interest rates r1; r2; : : : ; r10 belonging to the
effective interest rates t1; i2; : : : ; i10, respectively, that are given in Exercise 1.

3. On the first of January somebody expects a flow of money paid to him during the
next four years as follows: At the end of the first, second, third, fourth quarter of
the

• first year: 1:5 thousand dollars (T$),
• second year: 2:25 T$,
• third year: 1:75 T$,
• fourth year: 1:25 T$.

Consider the function A W Œ0; 4� ! R that satisfies A.0/ D 0, A.m/ D sum
(“flow”) of payments during the year �m � 1;mŒ, m D 1; : : : ; 4; A.t/ D A.m/
for all t 2�m � 1;mŒ.
(a) Is A uniquely defined everywhere on Œ0; 4�?
(b) Is A continuous on Œ0; 4�?
(c) Determine the function values of A at the following values of t:

1=6; 2=5; 3=4; 1; 5=4; 15=8; 2; 11=4; 3; 18=4; 4.
(d) The function A W Œ0; 4� ! R can be considered to be a payment intensity.

Is it that payment intensity a W Œ0; 4� ! R for which, given any u 2 RC,
t 2 RCC satisfying Œu; u C t� 
 Œ0; 4�, the integral

R uCt
u a.s/ ds is the sum of

the amounts paid during Œu; u C t�?
4. For the function A defined in Exercise 3, evaluate

(a)
4X

tD1
A.t/e�0:04879t D

4X

tD1
A.t/.1C 0:05/�t;
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(b)
16X

tD1
A.t=4/e�0:04879.t=4/ 1

4
;

(c)
Z 4

0

A.t/e�0:04879t dt:

5. Determine, for r > 0, the integrals

(a)
R N
0

te�rt dt, (b)
R N
0

t2e�rt dt.

10.5.2 Answers

1. (a) 1047:62; 1088:44; 1122:99; 1151:78; 1175:29;

1193:94; 1208:16; 1218:31; 1224:76; 1227:83;

(b) 1047:62; 1078:14; 1091:51; 1088:25; 1120:89;

1160:39; 1208:16; 1265:73; 1334:91; 1417:84:

(c) 11659:12, (d) 11813:44:
2. Since er D 1C i, this is r D ln.1C i/, we have

r1 D r7 D ln 1:05 � 0:04879; r2 D r6 D ln 1:055 � 0:05354;

r3 D r5 D ln 1:06 � 0:05827; r4 D ln 1:065 � 0:06297;

r8 D ln 1:045 � 0:04402; r9 D ln 1:04 � 0:03922;

r10 D ln 1:035 � 0:03440:

3. (a) Yes, (b) no (not continuous at t D 0; : : : ; 4),
(c) A.1=6/ D A.2=5/ D A.3=4/ D A.1/ D 6;

A.5=4/ D A.15=8/D A.2/ D 9;

A.11=4/ D A.3/ D 7; A.18=4/ D A.4/ D 5;

(d) no, since, for instance,
R 1:4
1:3

a.t/ dt, whereas
R 1:4
1:3

a.t/ dt D 0:1 � 9 D 0:9.
4. (a) Z N

0

te�rt dt D
�

�e�rt

�
t

r
C 1

r2

�

C c

�ˇˇ
ˇ
ˇ

tDN

tD0

D 1

r2
� e�rN

�
N

r
C 1

r2

�

;

(b) Z N

0

t2e�rt dt D
�

�e�rt

�
t2

r
C 2t

r2
C 2

r3

�

C c

�ˇˇ
ˇ
ˇ

tDN

tD0

D 2

r3
� e�rN

�
N2

r
C 2N

r2
C 2

r3

�

:
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10.6 Improper Integrals (Integrals on Infinite Intervals or on
Intervals Containing Points Where the Function Tends to
Infinity)

In Sect. 10.2 we defined definite integrals, on finite closed intervals, for functions
which are sectionally continuous on these intervals. Sometimes (not always) the
definition can be extended to infinite intervals or to intervals on one (finite) end of
which the function tends to infinity. (If the latter would happen in the interior of the
interval of integration, then we would prefer to split the interval and the integral in
the spirit of (10.2) in Sect. 10.2). We saw in Sect. 10.5 an example of the former:
an integral on an infinite interval. In this section we give a broader treatment and
further examples.

Take (as in (10.7), Sect. 10.3)

F.x/ D
Z x

a
f .t/ dt:

If f is defined on Œa; b� exists (a < b < 1) and F has a limit at 1 (as defined in
Sect. 6.2) then we define

Z 1

a
f .t/ dt WD lim

x!1

Z x

a
f .t/ dt:

as the improper integral of f over Œa;1Œ. Similarly, if f is defined on � � 1; b� its
integral exists over every Œa; b� (�1 < a < b), and the limit on the right hand side
below exists, then we define the improper integral of f over � � 1; b� as follows:

Z b

�1
f .t/ dt WD lim

x!�1

Z b

x
f .t/ dt:

Furthermore, if the function f defined on �a; b�, converges (say from the right)
to C1 (or to �1) at a but the integrals and the limit on the right hand side below
exists, then we define

Z b

a
f .t/ dt WD lim

x!aC

Z b

x
f .t/ dt:

as the (improper) integral of f over Œa; b� even though f is not defined at a and its
limit there is C1 (or �1). Similarly, if f is defined on Œa; bŒ, converges (from the
left) to infinity at b but the integrals and the limit below on the right hand exists,
then we define the improper integral of f over Œa; b� as follows:

Z b

a
f .t/ dt WD lim

x!b�

Z x

a
f .t/ dt:
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Examples

1.
R1
1

x�4 dx. Here x�4 is defined on Œ1;1Œ, and by Sect. 10.3 1,

Z b

1

x�4 dx D x�3

�3
ˇ
ˇ
ˇ
ˇ

xDb

xD1
D 1

3
� 1

3

1

b3

and, by the definition in Sect. 6.2, noting that b > 1, we have

lim
b!1

1

b3
D 0

since, for every " > 0, there exists an M.� "�1=3/ such that
ˇ
ˇ 1

b3
� 0ˇˇ D

1
b3
< " if b > M � "�1=3 (in slower steps: b > 1="1=3 , b3 > 1=" ,

1=b3 < ", the cube being (strictly) increasing and the reciprocal (strictly)
decreasing). So, by the rules on the limit (end of Sect. 6.2), the following
limit and thus the improper integral, exists and we have

Z 1

1

x�4 dx D lim
b!1

Z b

1

x�4 dx D lim
b!1

 
1

3� 1
3
1
b3

!

D 1

3
:

(In comparison to the first definition above, we wrote here x in place
of t and b in place of what was x there: we want the reader to realise
that symbols are interchangeable, as long as we use them in a consistent
manner.)

2.
R1
2

��1
t

	
dt. Again, 1=t is defined on Œ2;1� and even limt!1 1=t D 0

hold, but by Sect. 10.3 1,

Z x

2

�

�1
t

�

dt D .� ln t/jtDx
tD2 D ln 2 � ln x

and, using a logical consequence of the definitions in Sect. 6.2, we have

lim
x!1 ln x D C1;

because, for all (large, positive) M there exists an M0 D eM such that

jln xj D ln x > M if x > M0 D eM:

(We used also from Sect. 7.2 that eM is continuous and limx!1 ex D 1).
So

(continued)
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Z 1

2

�

�1
t

�

dt D lim
x!1.ln 2 � ln x/ D �1:

Since we accepted infinity as limit we accept it also as value of improper
integral, so

R1
2 .� 1

t / dt exists but is �1.
3.
R �

�1 sin t dt. We calculate first
R �

x sin t dt D .� cos t/jtD�
tDx D cos x C 1.

But cos x (and therefore cos x C 1) has no limit as x ! �1 (or as x ! 1
for that matter): it keeps oscillating between 1 and �1 (going through all
values in between also infinitely often). So

R �
�1 sin t dt does not exist (and

neither does, say
R1
0

sin t dt).
4. Consider the integral

Z 1

0

t�2 dt D lim
x!0C

Z 1

x
t�2 dt D lim

x!0C .�t�1 C c/
ˇ
ˇtD1
tDx

D lim
x!0C

�

�1C 1

x

�

D C1;

since limx!0C 1
x D C1 (cf. Sect. 6.2, Example 2). So the improper

integral exists but is C1.
5. Consider the integral

Z 4

0

.6t
1
2 C t/ dt D lim

x!0C

Z 4

x
.6t� 1

2 C t/ dt

D lim
x!0C

 

6
t
1
2

1
2

C t2

2

!ˇˇ
ˇ
ˇ
ˇ

tD4

tDx

D lim
x!0C.12 � 4 12 C 16

2
� 12x

1
2 � x2

2
/

D 32� lim
x!0C.12x

1
2 C x2

2
/;

if the limit exists. Now, limt!0C t� 1
2 D C1, but, by the result in Sect. 6.4,

every function which is differentiable at a point is also continuous there
and, by formula (6.7) of Sect. 6.5, xn is differentiable with derivative nxn�1
everywhere, where the latter expression exists (make sense) so, for n D 2,
also at 0. So x2 is also continuous at 0 and limx!0C x2 D 0. But also
limx!0C x

1
2 D 0, because for all " > 0 there exists a ı, for instance ı D "2,

such that,
ˇ
ˇ
ˇx

1
2 � 0

ˇ
ˇ
ˇ D x

1
2 < " if 0 < x < ı D "2. So this improper integral

exists and is finite (its value is 32):

(continued)
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Z 4

0

.6t�
1
2 C t/ dt D 32 � 12 lim

x!0C x
1
2 � 1

2
lim

x!0C x2 D 32:

10.6.1 Exercises

1. Evaluate

(a)
R1
2

x�6 dx (b)
R 2
0

x�6 dx (c)
R1
1

x3Cx2C1
x5Cx3

dx.

2. Calculate

(a)
R e
0
1
x dx, (b)

R1
�1

1
1Cx2

dx, (c)
R1
0

x
1Cx2

dx.

3. Compare

(a)
R 0

�1 ex dx to (b)
R1

�1 ex dx and (c)
R1

�1 e�x dx.

4. Determine, for r > 0, the integrals

(a)
R1
0

te�rt dt, (b)
R1
0

t2e�rt dt.

(c) Calculate the integral in (a) for r D 0:06.

(d) Calculate
R 200
0

te�0:06t dt (see Exercise 10.4.1 5. (a)).

5. Evaluate

(a)
R1
1

x�3=2 dx, (b)
R1
0

�
sin x

x C cos x
x2

	
dx.

6. Do the following integrals exist

(a)
R1
0

sin x
x dx, (b)

R1
0
.2 sin x C 3 cos x/ dx.

10.6.2 Answers

1. (a) 5�1 � 2�5 D 160�1 D 0:00625; (b) C1; (c) �
4

C 1
2

� 1:285398.
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2. (a) Z e

0

1

x
dx D lim

a!0C

Z e

a

1

x
dx D lim

a!0C .ln x C c/jxDe
xDa

D ln e � lim
a!0C ln a D 1 � .�1/ D 1C 1 D 1:

(b) Z 1

�1
1

1C x2
dx

D lim
a!�1

Z b

a

1

1C x2
dx C lim

r!1

Z r

b

1

1C x2
dx .a < b < r/

D lim
a!�1 .arc tan x C c1/jxDb

xDa C lim
r!1 .arc tan x C c2/jxDr

xDb

D lim
a!�1.arc tan b � arc tan a/C lim

r!1.arc tan r � arc tan b/

D �.��
2
/C �

2
D �:

(c) Z 1

0

x

1C x2
dx

D lim
r!1

Z r

0

x

1C x2
dx D lim

r!1 .
1

2
ln.1C x2/C c/

ˇ
ˇ
ˇ
ˇ

xDr

xD0

D lim
r!1.

1

2
ln.1C r2// � 1

2
ln 1 D 1 � 0 D 1:

3. (a)
R 0

�1 ex dx D 1; (b)
R1

�1 ex dx D 1; (c)
R1

�1 e�x dx D 1:

4. (a)
R1
0 te�rt dt D 1=r2,

(b)
R1
0

t2e�rt dt D 2=r3, as follows from Exercise 10.4.1.5,

(c)
R1
0

te�0:06t dt D 277:778,

(d)
R 200
0

te�0:06 dt D 277:756.

5. (a)
Z 1

1

x�3=2 dx D lim
r!1

Z r

1

x�3=2 dx D lim
r!1

�
�2x� 1

2 C c
�ˇˇ
ˇ
xDr

xD1

D lim
r!1

�

� 2

r
1
2

�

�
�

� 2

1
1
2

�

D 0C 2 D 2:

(b)
Z 1

�

sin x

x
C cos x

x2
dx D lim

r!1

Z r

�

sin x

x
C cos x

x2
dx

D lim
r!1

�� cos x

x
C c

�ˇˇ
ˇ
xDr

xD�
D lim

r!1
�
�cos r

r

�
�
�
�cos�

�

�

D 0 � 1

�
� �0:31831:

6. (a) Yes. (b) No.



11Differential Equations

A (system of) differential equation(s) relates some unknown
function(s) with some of its (their) derivatives. In applications,
the functions usually represent physical, engineering,
biological or economic quantities, and the derivatives represent
their rates of change.

11.1 Introduction

Let the amount of money M1 in an economy (money in circulation and sight deposits
by domestic depositors other than banks) be y.t/ at a point t in time. Then, h time
units later, the amount will be y.tCh/, so it increased by y.tCh/�y.t/ (it decreased
if the difference is negative). Such differences are often denoted by

�y.t/ WD y.t C h/� y.t/

and accordingly one writes occasionally

�t WD h; so y.t/ D y.t C�t/ � y.t/:

Now the central bank tries to “smooth” this increase by choosing its policy so that
�y.t/ is approximately proportional both to the amount y.t/ of money at time t and
to h D �t

�y � ay.t/�t; a 2 RCC:

The sign � means

lim
�t!0

�y

�t
D ay.t/ or lim

h!0

y.t C h/� y.t/

h
D ay.t/:

© Springer International Publishing Switzerland 2016
W. Eichhorn, W. Gleißner, Mathematics and Methodology for Economics,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-23353-6_11
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Here the left hand side is exactly the derivative of the function y at t, so we have

y0.t/ D ay.t/: (11.1)

As we see, this is an equation connecting the values of an unknown function y.t/
with the values of its derivative at each point t. As we remember, the derivative is
sometimes written with the aid of “differentials” as y0.t/ D dy.t/=dt, so 11.1 can be
written as

dy.t/

dt
D ay.t/;

and is called a differential equation. More generally spoken a differential equation
relates some unknown function with some of its derivatives.

Remembering also that the derivative y0.t/ is the slope of the tangent of the
graph of y.t/ at the point t Eq. (11.1) means geometrically that this slope (growth of
money) is, in this example, proportional to the amount y.t/ of M1 money at time t.

The question for differential equations, as for other equations is, whether there
exist “solutions” (in this case functions) which satisfy the equation (“existence
problem”), and if yes, how many solutions do there exist. Furthermore, can one
reduce, possibly by further boundary or initial conditions, the number of solutions
to one (“uniqueness problem”). In this case substitution shows that the exponential
functions of rate a given by

y.t/ D beat (11.2)

satisfy (11.1) whatever the real constant b is. Indeed for this function

y0.t/ D baeat D ay.t/:

So there exist solutions of (11.1), namely those given by (11.2). We will show
that there are no other solutions.

First we have to clarify the domain and range of y.t/. While we could permit
negative time (time preceeding a starting point agreed upon) and (God forbid!)
even 0 or negative amount of money in the whole economy, it seems reasonable
to suppose y W RC �! RCC. Accordingly, we will suppose (11.1) to be valid
and (11.2) to be defined for t 2 RC only, and we shall take b > 0 in (11.2).

Now we show that there are no solutions of (11.1) which are not of the
form (11.2). For this we write (11.1) as

y0.t/
y.t/

D a

and recognise that the left hand side is the derivative of ln y.t/ with respect to t.
while the right hand side is the derivative of at. This means that these two functions
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can only differ by a constant c:

ln y.t/ D at C c; that is; y.t/ D eatCc D beat with b D ec:

So (11.2) indeed gives all solutions y W RC �! RCC of (11.1).
We still have an arbitrary constant (“parameter”) in (11.2). This makes it possible

to fix an initial value, that is, the value y0 of y at a point t0 (often, in particular, t0 D 0

is chosen). Indeed, then

beat0 D y0; that is; b D y0e
�at0 and y.t/ D y0e

a.t�t0/;

which satisfies both (11.1) and y.t0/ D y0, is the unique solution of the differential
equation (11.1) with the initial condition y.t0/ D y0. (If t0 D 0 then the unique
solution is y.t/ D y0eat.) This solves the uniqueness problem.

A geometric representation of the problem is given by direction fields (Fig. 11.1).
At every point .t; y/ of the plane we draw a little segment of the slope ay.t/. This
segment may be considered to be a tangent at .t; y.t// to the graph of a still unknown
solution of the equation going through that point. One “sees” that every solution
“fits” into this direction field. The solution with the initial condition y.t0/ D y0
can be approximated as follows (for the case t0 D 0; y0 D 1; y0.t/ D y.t/=2 as in
Fig. 11.1). From t0; y.t0/ D .0; y0/ D .0; 1/ we advance “a little bit” in the direction
of the slope y0.0/ D y.0/=2 D 1=2 to the point .t1; y.t1//, from where we advance

Fig. 11.1 The solution of the
differential equation
y0.t/ D y.t/=2 and its vector
field
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on the segment with slope y0.t1/ D y.t1/=2, again “a little bit”, say till .t2; y.t2//,
and so on for ever.

The following is another example leading to an explicit (because y0.t/ is on the
left hand side) differential equation, actually to a slight modification of the previous
one. There the amount of money y.t/ D beat remains finite at every finite time t (no
hyperinflation). As we remember, this was the solution of the differential equation

y0.t/ D ay.t/

describing constant relative circulation speed of M1 money. We now ask, what
happens, if the amount y.t/ of M1 money supply at time t satisfies the slightly
different differential equation

y0.t/ D ay.t/1C" t 2 RC; y W RC �! RCC (11.3)

(slightly, because " is supposed to be a small positive number). One may be inclined
to guess that the situation remains the same (no hyperinflation), if " is very close to
0 (since (11.3) becomes (11.1) if " ! 0). This turns out to be false. Indeed , if we
write (11.3)

y.t/�1�"y0.t/ D a;

we recognise that the left hand side is the derivative of y.t/�"= � " and the right
hand side is the derivative of at. The integrals of both sides can differ at most by a
constant c:

y.t/�"

�" C c D at; that is; y.t/ D 1

".c � at/

(which shows that necessarily c � at > 0 since both y.t/" and " are positive). Thus
we get that

y.t/ D 1

..c � at/"/1="

represents the general solution of the differential equation (11.3). (One still has to
check that it satisfies (11.3), but this is easy.) This shows that the amount of money
y grows to 1 as the time approaches c=a (hyperinflation!) and this value is even
independent of " as long as " is a positive constant. We note again that there was no
such point in time for " D 0, that is, the differential equation (11.1).

Incidentally one also sees that the unique solution of (11.3) satisfying also the
initial condition y.t0/ D y0, is given by

y.t/ D 1
�
y�"
0 � a.t � t0/"

	1=" : (11.4)
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11.1.1 Exercises

1. Show that for " ! 0 (11.4) approaches the solution y.t/ D y0e
a.t�t0/ of the

differential equation (11.1) with the initial condition y.t0/ D y0. [Hint: take the
logarithm of (11.4) and apply the Bernoulli-L’Hospital rule to the derivatives of
both sides.]

11.1.2 Answers

1. The answer is obvious.

11.2 Basics

In the differential equations (11.1) and (11.3) the unknown function y.t/ was a
function of a single (real) variable. Such equations are called ordinary differential
equations. In the case of unknown functions of several variables (multiplace
functions), the equations between them and their partial derivatives are called partial
differential equations (PDEs). Here are some examples of the latter:

@y.x;t/
@x C @y.x;t/

@t D y.x; t/2 or @y
@x C @y

@t D y2 for shortI
@y.x1;x2/
@x1

x1 C @y.x1;x2/
@x2

x2 D ry.x1; x2/ or @y
@x1

x1 C @y
@x2

x2 D ry for shortI

@2y.x;t/
@x2

D a @y.x;t/
@t or @2y

@x2
D a @y

@t for shortI

@2y.x1;x2/
@x21

C @2y.x1;x2/
@x22

D 0 or @2y
@x21

C @2y
@x22

D 0 for short:

The second example is Euler’s partial differential equation for positively homo-
geneous function (of two variables) of degree r. We saw in Sect. 7.4 that indeed
positively homogeneous functions of degree r, that is, those differentiable functions
y which satisfy

y.�x1; �x2/ D �ry.x1; x2/

for all � > 0 and all .�x1; �x2/, .x1; x2/ in the domain of y, are its solutions and only
these. The other examples are also important for applications.
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The order of the highest order derivative is the order of the differential equation.
The first and the second equation above are of first oder, the third and the fourth are
of second order, while

d3y.t/

dt3
C 2y.t/4 D sin t; or

d3y

dt3
C 2y4 D sin t or y000 C 2y4 D sin t for short;

is of third order.
If the derivative of the unknown function y.t/ only appears in first order, and

if there are no products of the unknown function with its derivatives then the
differential equation is linear, otherwise nonlinear. Among the above examples the
first and the last equation are nonlinear (They contain the second or the fourth power
of the unknown function respectively.), the other three examples are linear.

The general form of an ordinary differential equation of n-th order is

F.t; y.t/;
dy.t/

dt
; � � � ; dny.t/

dtn
/ D 0 or F.t; y; y0; � � � ; y.n// D 0 for short:

Here F is an .n C 2/-place function, which is not constant with respect to place
n C 2. Any function y W I ! R (I a real interval) satisfying the equation for all
t 2 I is again called a solution of the differential equation, or its integral (a more old
fashioned expression). The graph of this function is accordingly called a solution-
curve or integral-curve of the differential equation.

The above general form is that of an implicit ordinary differential equation of
n-th order. If it can be written in the form

y.n/ D f .t; y; y0; � � � ; y.n�1//

then it is an explicit differential equation.
The set of all solutions of a differential equation is its general solution. This set

may be empty as for the equation

y02 C y2 C 1 D 0

or consists of one single solution as for

y02 C y2 D 0

(y.t/ 	 0 is the only solution) but usually the general solution contains as many
arbitrary constants (“parameters”) as the order of the differential equation. We saw
this for the two equations in Sect. 11.1. Often, as in (11.2) the general solution may
be represented by one or more formulas. (Note also that the general solution may
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depend upon the domain and the range of the unknown function. For instance the
choice of RCC as range in the examples (11.1) and (11.3) excluded the “trivial
solution” y.t/ 	 0. Moreover, if C is the range of y then the above equation y0.t/2 C
y.t/2 D 0 has not only the “trivial solution” y.t/ 	 0 but also y.t/ D beit and y.t/ D
be�it with arbitrary constant b.) As we also saw, an initial condition y.t0/ D y0, may
specify the constant and thus give a unique solution of the initial value problem for
a differential equation of first order (but not always, as we saw in the example of the
real-valued solutions of y02 C y2 C 1 D 0 and of y02 C y2 D 0).

For an n-th order differential equation

F.t; y; y0; � � � ; y.n// D 0;

the initial value problem consists in finding a solution y so that y; y0; � � � ; yn�1
assume given values y0; y0

0; � � � ; yn�1
0 at t0, that is, to find a function y which satisfies

F.t; y; y0; � � � ; y.n// D 0; y.t0/ D y0; y
0.t0/ D y0; � � � ; y.n�1/.t0/ D y.n�1/

0 :

Again the questions are whether such solutions exist (existence problem) and
whether there is just one such function (uniqueness problem).

11.2.1 Exercises

1. Each differential equation 1–8 listed below belongs to several of the following
classes:

(i) ordinary differential equation,
(ii) partial differential equation,

(iii) first order differential equation,
(iv) second order differential equation,
(v) third order differential equation,

(vi) n-th order differential equation (ni>3),
(vii) linear differential equation,

(viii) nonlinear differential equation,
(ix) implicit ordinary differential equation,
(x) explicit ordinary differential equation.

State for each differential equation to which classes it belongs.

1
dy.t/

dt
D ay.t/C b (a, b real constants).

2
dy.t/

dt
D ay.t/.b � y.t//C c (a, b, c real constants).

3
@2y.x1; x2/

@x21
D a

@y.x1; x2/

@x2
(a real constant).



542 11 Differential Equations

4
@3y.x1; x2/

@x21@x2
C a.x1; x2/

@2y.x1; x2/

@x22
C b.x1; x2/

@y.x1; x2/

@x1
D c.x1; x2/

(a, b, and c real-valued functions).
5 .y00/2 C y00y0 C .y0/2 C y0y C y2 C y D 0

6 a1.t/C a2.t/y.t/C a3.t/y
0.t/C a4.t/y

00.t/C � � �
Can.t/y

.n�2/.t/C anC1.t/y.n�1/.t/C anC2.t/y.n/.t/ D 0

(a1; a2; � � � ; anC2 real-valued functions).
7 .y000/4 C a.y00/3 C b.y0/2 C cy C d D 0

(a, b, c and d real constants).

8
@2y.x1; x2; x3/

@x1@x2

@2y.x1; x2; x3/

@x1@x3

@2y.x1; x2; x3/

@x2@x3
D a.x1; x2; x3/

(a real-valued function).

11.2.2 Answers

1. 1 (i), (iii), (vii), (x),
2 (i), (iii), (viii), (x),
3 (ii), (iv), (vii),
4 (ii), (v), (vii),
5 (i), (iv), (viii), (ix),
6 (i), (vi), (viii), (ix);

(x) instead of (ix) whenever y.n/.t/ can be brought to the right-hand side of the
equation. This is possible, whenever anC1.t/ has no zeroes.

7 (i), (v), (viii), (ix);
8 (ii), (iv), (viii).

11.3 Linear Differential Equations of First Order

In a way, the simplest ordinary differential equations are those which are both linear
and of first order:

a1.t/y
0.t/C a2.t/y.t/C a3.t/ D 0:

Clearly (11.1) is a very special case of this. We suppose this equation to be valid
on an interval I, where a1, a2, a3 are defined and where a1 has no zero and look for
solutions y W I ! R. Because of the condition on a1, we can divide by a1 and get

y0.t/ D a.t/y.t/C b.t/ .t 2 I/ (11.5)

(a.t/ WD �a2.t/=a1.t/, b.t/ WD �a3.t/=a1.t/), an explicit linear differential equation
of first order. If b.t/ 	 0 on I then the equation is homogeneous (because, rearranged
and written as y0 �ay D 0, the left hand side is a linearly homogeneous function of y
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and y0), otherwise inhomogeneous. The term b.t/, if not identically 0, is sometimes
called a perturbation.

Remembering the motivation for (11.1) we can explain first the homogeneous
explicit linear differential equation

y0.t/ D a.t/y.t/ .t 2 I/ (11.6)

by saying that, in view of changing circumstances (for instance rate of growth—
or decline—of the net national product), the central bank “smoothes” the increase
of the amount M1 of money supply by a factor depending on time. By the same
argument as in Sect. 11.1, this leads to (11.6).

We will suppose that the function a W I ! R is sectionally continuous (see
Sect. 6.3) and solve the differential equation (11.6) (that is, determine its general
solution). First we show that the function Qy given by

Qy.t/ D e
R t
˛ a.x/dx (11.7)

satisfies (11.6). Here ˛ is a constant (for instance the left end of the interval I if
it is bounded and closed from below) and the integral in the exponent exists, as
mentioned in Sect. 10.5, because a is sectionally continuous.

Qy0.t/ D a.t/e
R t
˛ a.x/dx:

Clearly, with Qy, also every ˇQy (ˇ an arbitrary constant) satisfies (11.6). We prove
that there are no other solutions, that is, the general solution of (11.6) is given by

y.t/ D ˇe
R t
˛ a.x/dx: (11.8)

To see this take an arbitrary solution y of (11.6) and calculate

�
y.t/

Qy.t/
�0

D Qy.t/y0.t/ � Qy0.t/y.t/
Qy.t/2 D Qy.t/a.t/y.t/ � a.t/y.t/Qy.t/

Qy.t/2 D 0;

because both y and Qy satisfy (11.6). Note that, by (11.7), Qy.t/ > 0 for every t 2 I. So
y.t/=Qy.t/ is constant on I:

y.t/

Qy.t/ D ˇ; y.t/ D ˇe
R t
˛ a.x/dx

as asserted. If we also want the initial condition y.t0/ D y0 to be satisfied then
(see (11.8))

y0 D y.t0/ D ˇe
R t0
˛ a.x/dx; ˇ D y0e

� R t0
˛ a.x/dx;
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and

y.t/ D y0e
R t

t0
a.x/dx

.t 2 I/

is the unique solution of the differential equation (11.6) which also satisfies the
initial condition y.t0/ D y0.

Example 1 y0.t/ D 2ty.t/ .t 2 R; y.0/ D 3, the function t 7�! 2t is
continuous,

R t
˛
2xdx D t2 � ˛2, so the general solution of the differential

equation y0 D 2ty is given by

y.t/ D ˇet2�˛2 D �et2 .t 2 R/;

where �.WD ˇe�˛2 / is an arbitrary constant and the solution of the initial value
problem is

y.t/ D 3et2 :

We now consider the inhomogeneous equation

y0.t/ D a.t/y.t/C b.t/ .t 2 I; b.t/ 6	 0/; (11.9)

that is equation (11.5), where b.t/ 6	 0. It can again be motivated by
the central bank regulating the M1 money supply, taking this time external
influences (perturbation) into consideration, too, for instance the demand
abroad for the currency. We give two ways to find the general solution
of (11.9), again under the supposition that the function a W I ! R is
sectionally continuous.

In the first procedure we suppose that we know one (“particular”) solution yp

of (11.9):

y0
p.t/ D a.t/yp.t/C b.t/ .t 2 I/:

Then, for any solution y

.y.t/� yp.t//
0 D y0.t/ � y0

p.t/ D a.t/y.t/C b.t/ � a.t/yp.t/ � b.t/

D a.t/.y.t/ � yp.t//;
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that is, the function t 7�! y.t/ � yp.t/ satisfies the corresponding homogeneous
equation (11.6). So, by (11.8),

y.t/ D yp.t/C ˇe
R t
˛ a.x/dx (11.10)

gives the general solution of (11.9). (It is easy to check that this function indeed
satisfies (11.9).) In other words: The general solution of the inhomogeneous
equation equals a particular solution plus the general solution of the corresponding
homogeneous equation. So finding one solution of (11.9) is essentially sufficient to
determine all its solutions.

Our second method is called (variation of constants). We suppose now that b also
is sectionally continuous. We look for solutions of (11.9) of the form

y.t/ D ˇ.t/e
R t
˛ a.x/dx; (11.11)

that is, we replace in the general solution (11.8) of (11.6) the constant ˇ by a
function of t. (Therefore “variation of constants”.) Note that not only every solution
of (11.9), but every function y can be written in this form, one only has to define

ˇ.t/ WD y.t/e� R t
˛ a.x/dx:

Now let us try to satisfy (11.9) by a function of the form (11.11).

�
e
R t
˛ a.x/dx

�0 D a.t/e
R t
˛ a.x/dx;

we want to have

0 D y0.t/ � a.t/y.t/ � b.t/

D ˇ.t/a.t/e
R t
˛ a.x/dx C ˇ0.t/e

R t
˛ a.x/dx � a.t/ˇ.t/e

R t
˛ a.x/dx � b.t/;

that is,

ˇ0.t/ D b.t/e� R t
˛ a.x/dx:

Since b is sectionally continuous and
R t
˛

a.x/dx is continuous, it remains continuous
when composed with the exponential function and the product remains sectionally
continuous:

ˇ.t/ D
Z

b.t/e� R t
˛ a.x/dx C �:



546 11 Differential Equations

Notice that this second exterior integral is an indefinite integral. So it contains
an arbitrary constant � . (We also could have replaced

R t
˛

a.x/dx by an indefinite
integral, only the resulting formula would look messy.) So, from (11.11), the general
solution of (11.9) has to be of the form

y.t/ D
�Z

b.t/e� R t
˛ a.x/dxdt

��
e
R t
˛ a.x/dx

�
C �e

R t
˛ a.x/dx:

Here, too, the second term is the general solution of the homogeneous equa-
tion (11.6), while the first one is a solution of (11.9), as in our first method. But
we now have a formula to calculate it. Of course, sometimes it may be easier to
calculate a particular solution yp by trial and error.

Example 2 y0 D 3y C 2C t2: We look for a particular solution of the form

yp.t/ D c0 C c1t C c2t
2:

Comparing the coefficients of t2, t, and the constant terms, we get the
equations

0 D 3c2 C 1; 2c2 D 3c1; and c1 D 3c0 C 2:

This yields

c2 D �1
3
; c1 D �2

9
; and c0 D �20

27

and

yp.t/ D �20
27

� 2

9
t � 1

3
t2;

which indeed satisfies y0 D 3y C 2 C t2. By (11.10) (choosing ˛ D 0) the
general solution of

y0 D 3y C 2C t2

is given by

y.t/ D �20 � 6t � 9t2

27
C ˇe3t:

(continued)
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If we want to solve initial value problems, it is easier, in cases such as this, to
make a straight forward substitution. If the initial condition is y.0/ D 2, then

2 D �20
27

C ˇ; so ˇ D 74

27

and the solution of the initial value problem is

y.t/ D 74e3t � 20 � 6t � 9t2

27
:

There are some important differential equations which are nonlinear but can be
reduced to linear differential equations. We give two examples.

1. The Bernoulli equation, which is named after Jakob Bernoulli(1654–1705)
(not the same as Johann Bernoulli of the Bernoulli-L’Hospital rule; there was a
whole dynasty of mathematicians in the Swiss Bernoulli family) is a nonlinear
explicit first order equation

y0.t/ D a.t/y.t/C b.t/y.t/r .t 2 I/; (11.12)

where r is a real constant. If r D 0 or r D 1, we get, of course, linear differential
equations. But we can reduce the Bernoulli equation (11.12) to linear equations
for r 62 f0; 1g. We suppose a to be sectionally continuous and look for solutions
y W I ! RCC of (11.12). (I an interval, we want the values of y to be positive in
order that yr makes sense for any real r.) For this we define z W I ! RCC by

z.t/ D y.t/1�r:

Then, by the usual rules for derivations and, since y satisfies (11.12),

z0.t/ D .1 � r/y.t/�ry0.t/ D .1 � r/a.t/y.t/1�r C .1 � r/b.t/;

that is,

z0.t/ D .1 � r/a.t/z.t/C .1� r/b.t/; (11.13)

which is indeed a linear first order differential equation which we solve as above
and then the general solution of the Bernoulli equation (11.12) is given by

y.t/ D z.t/1=.1�r/:

Clearly one can also determine the solution of (11.12) with the initial condition
y.t0/ D y0 by choosing that solution of (11.13) which satisfies z.t0/ D y1�r

0 . As
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we have seen, there is exactly one such solution for the linear equation (11.13); its
1=.1� r/-th power will be the solution of the initial value problem for the Bernoulli
equation (11.12).

2. The Riccatti equation (due to Jacopo Francesco Riccatti (1676–1754))

y0.t/ D f .t/y.t/2 C g.t/y.t/C h.t/ (11.14)

is clearly a generalisation both of the case r D 2 of the Bernoulli equation (for
h.t/ D 0) and of the general explicit inhomogeneous linear equation (for f .t/ D 0).
We can reduce it to a Bernoulli equation with r D 2 if we know a particular solution
yp of (11.14). Indeed, then we subtract

y0
p.t/ D f .t/y2p.t/C g.t/yp.t/C h.t/

from the equation (11.14) which contains its general solution y. We simplify by
defining

u.t/ WD y.t/ � yp.t/

and thus get

y.t/C yp.t/ D u.t/C 2yp.t/:

So we obtain (by use of y2 � y2p D .y � yp/.y C yp/

y0.t/ � y0
p.t/ D u0.t/ D f .t/u.t/.u.t/C 2yp.t//C g.t/u.t/;

that is,

u0.t/ D .2f .t/yp.t/C g.t//u.t/C f .t/u.t/2;

a Bernoulli equation of the form (11.12) with r D 2. As we saw

u.t/ D z.t/�1

where z.t/ is the general solution of the linear differential equation

z0.t/ D �.2f .t/yp.t/C g.t//z.t/ � f .t/: (11.15)

Thus the general solution of the Riccatti equation (11.14) is given by

y.t/ D yp.t/C z.t/�1;
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where yp is a particular solution of (11.14) and z is the general solution of the linear
differential equation (11.15). Again it is preferable to solve initial value problems
for Riccatti equations by straight forward substitution.

11.3.1 Exercises

Determine the general solutions of the following differential equations.

1. y0.t/ D y.t/ cos t;
2. y0.t/ D y.t/ cos t C 1 � cos t,
3. y0.t/ D ay.t/.1 � y.t//, (a ¤ 0 a real constant),
4. y0.t/ D 3t2y.t/ � 3t2y.t/2,
5. y0.t/ D y.t/ � y.t/3.
6. Determine the solution of the first equation which satisfies

(a) y.0/ D 3,
(b) y.�

2
/ D e2.

7. Determine the solution of the third equation which satisfies
(a) y.0/ D 1=2,
(b) y.0/ D 3=4.

11.3.2 Answers

1. y.t/ D Aesin t (A here and in 1 to 5 is an arbitrary real constant.),
2. y.t/ D t C Aesin t,

3. y.t/ D Aeat

1C Aeat
, y.t/ 	 1,

4. y.t/ D Aet3

1C Aet3
, y.t/ 	 1,

5. y.t/ D Aet

p
1C A2e2t

, y.t/ 	 1, y.t/ 	 �1.

6. (a) y.t/ D 3esin t;

(b) y.t/ D eesin t:

(a) y.t/ D eat

1C eat
,

(b) y.t/ D 3eat

1C 3eat
.

11.4 An Application: Saturation of Markets: “Logistic Growth”

Suppose that a product has the market share y.t/ at time t and let Qy be the “saturation
share”, the greatest achievable market share. This clearly cannot be greater than 1,
that is 100 % (total saturation). Suppose further that, at an initial time t0, the market
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share y.t0/ is small but positive. Neglecting external influences, it is reasonable
to suppose that the growth of the market share at any moment depends upon the
market share y.t/ already achieved, and upon the “market potential”, the “room for
improvement” Qy � y.t/:

y0.t/ D F.y.t/; Qy � y.t/:

A particularly attractive (and simple) supposition is

y0.t/ D cy.t/.Qy � y.t//; .c 2 RCC/ (11.16)

An interpretation of this differential equation could be that, at the initial time t0, the
market share is small and grows “almost proportionally” with its size since cyQy �
cy2 � cyQy, if y is small

�

lim
y!0

cyQy � cy2

cyQy D 1

�

. When the market share comes closer

to Qy then u.t/ D Qy � y.t/ gets “small” and cy.Qy � y/ D cyu as lim
y!0

cyQy � cy2

cyQy D 1:

the small factor u D Qy � y “dampens the growth”.
Now we choose t0 D 0 and y.t0/ D y0 “positive but small”, certainly under

the saturation share Qy (0 < y0 < Qy). Equation (11.16) is a Bernoulli equation, see
(11.12) in the previous section. Here

y0.t/ D cQyy.t/ � cy.t/2;

that is, r D 2, a.t/cQy, b.t/ D �c. So z.t/ D 1=y.t/ satisfies the linear differential
equation

z0.t/ D �cQyz.t/C c; (11.17)

corresponding to (11.13). A particular solution clearly is the constant

zp.t/ D 1

Qy :

So the general solution of (11.17) is, according to Sect. 11.3

z.t/ D 1

Qy C �e�cQyt; .� WD ˇecQy˛ with some constant ˛/:

Therefore

y.t/ D 1

z.t/
D Qy
1C � Qye�cQyt

D Qy
1C Ce�cQyt
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is the general solution of the differential equation (11.16), where C is an arbitrary
constant, in this context positive. If we also take the initial condition y.0/ D y0 into
consideration, we get

y0 D Qy
1C C

; C D Qy � y0
y0

;

which shows that C is indeed positive since Qy > y0 > 0, and

y.t/ D Qy
1C Qy�y0

y0
e�cQyt (11.18)

is the solution of the initial value problem. This function is often called a logistic
function and its graph the logistic curve (see Fig. 11.2)

Exercise Show that

�
ln.Qy � y0/� ln y0

cQy ;
Qy
2

�

is the point of inflection of the logistic

curve.
In nature the so called “organic growth” (growth of plants, or of a species of ani-

mals) can, in absence of external disturbing influence, often be well approximated
by logistic functions with well chosen “parameters” y0, Qy, c.

point of inflection

y

y0

y
2

ln(y y0) ln y0
cy

Fig. 11.2 The logistic curve
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If one chooses Qy D 1 (“norming to 1”, really just a choice of units), then (11.15)
becomes the “market share function”

y.t/ D 1

1C . 1y0
� 1/e�ct

:

As t ! 1 this converges to 1 (because c > 0). Since now y0 < 1, this market share

function increases (because t 7!
�
1

y0
� 1

�

e�ct decreases and thus is less than 1 for

every finite t.
We can also write the last equation in the equivalent forms

1 � y.t/

y.t/
D
�
1

y0
� 1

�

e�ct or ln
y.t/

1 � y.t/
D ct C ln

y0
1 � y0

:

Since the right hand side of the last equation is affine, it is particularly easy to draw
a figure, even from approximate data, smoothing them by Gausses method of least
squares (see Sect. 8.5).

The above method has been quite successful in researching the “conquest of
markets” of different sources of energy (wood, coal, oil, gas, hydro or nuclear
energy). If a new source of energy prevailed over the existing ones then the market
share was well approximated by (11.18), that is, for the latter the observed points

.t; ln
y.t/

1 � y.t/
/ were situated “in a cloud around a straight line”.

11.5 Linear Second Order Differential Equations with Constant
Coefficients

The following model of the business cycle results in a linear differential equation of
second order. Such macroeconomic models have been developed by A.W. Phillips
(1914–1975).

Our model is represented by the following system of assumptions.

A1: The macroeconomic consumption C.t/ in the economy is proportional to the
national gross product y.t/:

C.t/ D cy.t/: (11.19)

Here c 2�0; 1Œ. We suppose that the consumption Ch.t/ during Œt; t C h� is
approximately hC.t/. Thus

C.t/ D lim
h!0

Ch.t/

h
:
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A2: If for the point t in time a capital stock (rent capital which can be used for
production) QK.t/ is projected and, say, K.t/ is in fact realised, then also QK.t/ is
proportional to the national product y.t/:

QK.t/ D �y.t/;

where � is a positive constant.
A3: The investment is the total investment less depreciation. Let QI.t/ and I.t/ be

projected or realised net investments, respectively, during the year following
t. As in A1, we suppose that the projected or realised net investments in
the time interval Œt; t C h� will approximately be h QI.t/ and hI.t/ respectively.
Net investments equal the change in the projected or realised capital stock,
respectively. Therefore

QK.t C h/C QK.t/ D h QI.t/ and K.t C h/� K.t/ D hI.t/;

which yield

QI.t/ D lim
h!0

QK.t C h/� QK.t/
h

D QK0.t/;

and

I.t/ D lim
h!0

K.t C h/� K.t/

h
D K0.t/:

K.t/ and QK.t/ are differentiable by A1 and A2, and so are C.t/ and y.t/. We
suppose moreover that I.t/ and QI.t/ are differentiable, thus K.t/, QK.t/, C.t/, y.t/,
and A.t/ (see A5) are twice differentiable.

A4: The projected net investment QI.t/ for the time Œt; t C 1� is proportional to the
difference between the projected and the realised capital stock at that time:

QI.t/ D ˇ. QK.t/ � K.t//:

Here ˇ is a positive constant.
A5: One has to add the “exogenous, autonomous” demand A.t/ to the real or

projected intrinsic demand (consumption or investment) C.t/CI.t/ or C.t/C QI.t/,
respectively. So the supply in the economy, which we identify with the national
gross product, will be

y.t/ D C.t/C I.t/C A.t/: (11.20)

The excess demand will be C.t/C QI.t/C A.t/� y.t/ D QI.t/� I.t/ during the year
Œt; t C 1�, so h. QI.t/ � I.t// during Œt; t C h�.
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A6: The change y.t C h/� y.t/ in the supply is proportional to the demand during
Œt; t C h�. So

y.t C h/� y.t/ D ˛h
� QI.t/ � I.t/

	
;

and as in A3

˛
� QI.t/ � I.t/

	 D lim
h!0

y.t C h/� y.t/

h
D y0.t/: (11.21)

Here ˛ is a positive constant.

We now differentiate the equation in A4 (possible because of A3)

QI0.t/ D ˇ
� QK0.t/ � K0.t/

	 D ˇ
�
�y0.t/ � I.t/

�
:

The assumption in A3 similarly permits us to differentiate (11.21) and the equation
in A1. So we get

y00.t/ D ˛
� QI0.t/ � I0.t/

	 D ˛
�
ˇ�y0.t/ � ˇI.t/ � I0.t/

�
:

Now

I.t/ D y.t/ � C.t/ � A.t/ D y.t/� cy.t/ � A.t/;

follows from (11.18) and from A1, and we get

y00.t/ D ˛
�
ˇ�y0.t/ � ˇ.1 � c/y.t/C ˇA.t/ � .1 � c/y0.t/C A0.t/

�
;

that is,

y00.t/C ˛.1 � c C ˇ�/y0.t/C ˛ˇ.1 � c/y.t/ D ˛ˇA.t/C ˛A0.t/:

This is a linear differential equation of second order with constant coefficients

a D ˛.1 � c C ˇ�/ and b D ˛ˇ.1� c/:

The right hand side

f .t/ D ˛ˇA.t/C ˛A0.t/
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is the so-called perturbation, and the whole equation is the general form of a linear
differential equation of second order with constant coefficients:

y00.t/C ay0.t/C by.t/ D f .t/: (11.22)

Notice that the perturbation needs not be constant.—These differential equations
are called homogeneous if f .t/ 	 0, otherwise they are called inhomogeneous. The
homogeneous differential equations

y00.t/C a.t/y0.t/C b.t/y.t/ D 0 (11.23)

y00.t/C ay0.t/C by.t/ D 0 (11.24)

corresponding to the inhomogeneous equation (11.22) with a function f .t/ on the
right hand side are of importance.

One proves exactly as in Sect. 11.3 that the general solution of the inhomoge-
neous equation (11.22) is the sum of a particular solution of the inhomogeneous
equation and the general solution of the corresponding homogeneous equation. The
same holds, if a and b are functions of t. There is also an analogue of the “variation
of constants” (compare Sect. 11.3) for these equations with a slight twist. In order
to explain what we mean by this, we give the details for Eq. (11.22).

First we find the general solution of the homogeneous equation (11.24). Of
course y.t/ 	 0 gives a trivial solution. Using an idea going back to Leonhard
Euler, we look for particular solutions of the form

y.t/ D e�t; (11.25)

where � is a constant which we want to determine such that (11.24) is satisfied.
Putting (11.25) into (11.24) we get

�2e�t C a�e�t C be�t D 0:

Since the exponential function is nowhere zero, this equation can hold if and only if
the “characteristic equation”

�2 C a�C b D 0 (11.26)

of the differential equation (11.24) is satisfied.
As we know from high school, the solutions of the algebraic equation (11.26) are

given by

� D �a ˙ p
a2 � 4b

2
:
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Here are three cases, according to whether the “discriminant”

D D a2 � 4b

is positive, zero or negative.

Case 1: D D a2 � 4b > 0. In this case (11.26) has two distinct real solutions

�1 D �a C p
a2 � 4b

2
and �2 D �a � p

a2 � 4b

2

The differential equation (11.24) has two distinct solutions of the form

y1.t/ D e�1t and y2.t/ D e�2t:

A general principle for homogeneous linear differential equations is the principle
of linear combinations: if y1 and y2 are solutions of such an equation then every
function y D c1y1 C c2y2 with constants c1; c2 2 R is also a solution (compare
linearity in Sects. 4.2 and 4.3). One sees this immediately by substitution. So

y.t/ D c1y1.t/C c2y2.t/ D c1e�1t C c2e�2t (11.27)

with arbitrary constants c1 and c2 is also a solution of (11.24).
In Sect. 11.3 we were able to find a solution of the homogeneous linear

differential equation of first order, which satisfies an arbitrary initial condition
y.t0/ D y0. Here our differential equation is of second order, so we need two initial
conditions

y.t0/ D y0; y0.t0/ D y0
0 (11.28)

to be satisfied by a solution of the form (11.27). Indeed this requires that

c1e
�1t0 C c2e

�2t0 D y0 and c1�1e
�1 t0 C c2�2e

�2t0 D y0
0:

We obtained the second equation by differentiating (11.27) for some c1, c2. We solve
this system of linear equation and get

c1 D �2y0 � y0
0

�2 � �1 e�1t0 and c2 D y0
0 � �1y0
�2 � �1 e�2 t0

as unique solutions of the initial value problem (11.24) and (11.28). We see that such
a solution indeed always exists, since the denominator �2 � �1 is not zero, because
the characteristic equation has two distinct real solutions.
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Case 2: D D a2 � 4b D 0. In this case the characteristic equation (11.26) has just
one solution of multiplicity 2

�1 D �2 D � D �a

2
:

Setting

y.t/ D c1e�t C c2te�t with c1; c2 2 R;

one sees that this function satisfies (11.24). So we have a linear combination of
two essentially different solutions e�t and te�t. There is exactly one choice of
c1 and c2 for which the two initial conditions y.t0/ D y0 and y0.t0/ D y0

0 are
satisfied. They give the following system of linear equations:

e�t0c1 C t0e
�t0c2 D y0 and e�t0c1 C e�t0c2 C t0e

�t0c2 D y0
0:

It has the unique solution

c1 D .y0 C .�y0 � y0
0/t0/e

��t0 and c2 D .y0
0 � �y0/e

��t0 :

Case 3: D D a2 � 4b < 0. The two distinct complex solutions �1 and �2 are

�1 D ˛ C ˇi; �2 D ˛ � ˇi with

˛ D a

2
and ˇ D

p
4b � a2:

One complex general solution of (11.24) is as in case 1

Oy1.t/ D Qc1e�1t C Qc2e�2t D .Qc1 C Qc2/e˛t cosˇt;

which is in fact real. Another general solution is

Oy2.t/ D Qc1e�1t � Qc2e�2t D .Qc1 � Qc2/e˛t sinˇt;

which is purely imaginary. Dividing the latter by the complex unit i, we get two
real-valued solutions of (11.24) which are linearly independent. The differential
equation is satisfied if and only if the real and the imaginary part are satisfied
separately as follows from Sect. 1.7. Hence the general real solution is

y.t/ D c1e
˛t cosˇt C c2e

˛t sinˇt
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with

c1 D Qc1 C Qc2; c2 D Qc1 � Qc2
i

:

We now determine the constants c1 and c2 such that the initial conditions y.t0/ D
y0 and y0.t0/ D y0

0 are satisfied. This yields the following system of linear equations

c1e
˛t0 cosˇt0 C c2e

˛t0 sinˇt0 D y0;

c1˛e˛t0 cosˇt0 � c1e
˛t0 sinˇt0 C c2˛e˛t0 cosˇt0 D y0

0:

The reader should calculate or at least verify that its solutions are

c1 D e�˛t0 .ˇy0 cosˇt0 C ˛y0 sinˇt0 � y0
0 sinˇt0/

ˇ
;

c2 D e�˛t0 .ˇy0 sinˇt0 C y0
0 cosˇt0 � ˛y0 cosˇt0/

ˇ
:

Since this solution is unique the differential equation (11.23) with the initial
values (11.27) only has one solution.

Exactly as for first order equations one verifies that the general solution of the
inhomogeneous equation is the sum of a particular solution of the inhomogeneous
equation and the general solution of the homogeneous equation. Thus the problem
is to find a particular solution of the inhomogeneous equation. One could do it by a
modified version of the variation of constants known from first order equations. But
in most cases it is better to make sophisticated guesses as we shall demonstrate in
two examples.

Example 1 y00.t/� 2y0.t/C y.t/ D 3

A particular solution is yp.t/ D 3. The characteristic equation of the
homogeneous equation is �2�2�C1 D 0. Its double zero is � D 1. Therefore
the general solution of the inhomogeneous equation is

y.t/ D c1e
t C c2te

t C 3:
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Example 2 y00.t/� y0.t/ � 2y.t/ D 4t
Its characteristic equation �2 � � � 2 D 0 has the zeros �1 D �1, �2 D 2.
Thus the general solution of the homogeneous equation is

Qy.t/ D �1e
�t C �2e

2t:

To find a particular solution y�.t/ of the inhomogeneous equation one looks
for a solution of the form

y�.t/ D ˛t C ˇ:

Comparing coefficients one finds ˛ D �2 and ˇ D 1. Thus the general
solution is

y.t/ D �1e
�t C �2e

2t � 2t C 1:

11.5.1 Exercises

Solve the following second order equations:

1. y00.t/ � 2y0.t/C y.t/ D t2

2. y00.t/C y.t/ D 3t
3. y00.t/C 4y.t/ D t3

11.5.2 Answers

1. y.t/ D c1et C c2tet C 4t C 6

2. y.t/ D c1 sin t C c2 cos t C 3t
3. y.t/ D c1 sin 2t C c2 cos 2t C 2t3�3t

8

11.6 The Predator-PreyModel

A famous example for a system of two nonlinear differential equations is the
predator-prey model of Alfred James Lotka (1880–1949) and Vito Volterra (1860–
1940), which has both economic and ecological aspects. In this model we have at
any given time t a population of x.t/ animals (the preys) with inexhaustible natural
resources (food etc.) and a single natural enemy, the predators, a population of y.t/
animals of another species, which feed exclusively on these preys. One supposes,
which is indeed a good approximation, that the original prey population would, in
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the absence of predators, grow exponentially with time, that is, it would satisfy the
differential equation

x0.t/ D ax.t/; a > 0:

With the predators, however, the instantaneous increase x0.t/ is reduced by a
magnitude proportional to both x.t/, the number of preys, and y.t/, the number of
predators:

x0.t/ D ax.t/� bx.t/y.t/; a > 0; b > 0: (11.29)

Similarly, in absence of preys (“food”), the predator population would decrease
exponentially, that is, satisfy

y0.t/ D �cy.t/; c > 0:

But with preys the instantaneous decrease from above will be reduced again by a
magnitude proportional to both the number of predators and the number of preys,
that is,

y0.t/ D �cy.t/C kx.t/y.t/; c > 0; k > 0: (11.30)

The “Lotka-Volterra equations” (11.29) and (11.30) form a nonlinear dynamical
system. First we look for equilibrium points, that is, stationary (constant) solutions:

x.t/ D ˛; y.t/ D ˇ:

Clearly these satisfy (11.29) and (11.30) if and only if

0 D ˛.a � bˇ/ and 0 D ˇ.�c C k˛/:

From these equations we get the trivial solution

x.t/ D y.t/ D 0;

and the less trivial one

x.t/ D c

k
; y.t/ D a

b
:
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We now proceed to determine the trajectories, at least in R2CC. If y D f .x/ .x >
0; y > 0/ is the equation of a trajectory, then, as we have seen, the differential
equation (11.29) has to be satisfied, which in this case is

f 0.x/ D �cf .x/C kxf .x/

ax � bxf .x/
D �c C kx

x

f .x/

a � bf .x/
(11.31)

that is,

�
a

f .x/
� b

�

f 0.x/ D �c

x
C k:

From Sect. 10.2 we know that the indefinite integral of both sides can differ only by
a constant C:

a ln f .x/ � bf .x/ D �c ln x C kx C C: (11.32)

While this produces f .x/ only implicitly as a solution of an equation, we can write
it in a more agreeable form by taking the exponential function on both sides:

f .x/a

ebf .x/

xc

ekx
D D; (11.33)

where D D eC is a constant.
The trajectory is an implicit function. It is remarkable that it is either a closed

curve, or that it remains in a bounded part of the plane. Independent of our
calculations such trajectories show up in several situations. One is covered by the
following result of Henri Poincaré (1854–1912) and Ivar Bendixson (1861–1935).
To formulate it we need to know what closed and connected point sets are in the
plane.

A closed set S is one which contains all its accumulation points. A point P, which
does not necessarily belong to S is an accumulation point or cluster point, if every
neighbourhood of P contains infinitely many points of S.

A set S in the plane is connected (path-connected to be more exact), if for any two
points A;B 2 S there exists a continuous curve connecting them, that is, a pair of
real numbers a; b and a pair of continuous functions x W Œa; b� ! R, y W Œa; b� ! R

such that .x.a/; y.a// D A, .x.b/; y.b// D B. (Note that these definitions correspond
to the intuitive notion of accumulation points, closed, and connected sets.)

Now we can formulate (but will not prove) the Poincaré-Bendixson theorem. If
the closed, connected, and bounded set M � R2 contains an equilibrium point of
the system

x0.t/ D F.x.t/; y.t//; y0.t/ D G.x.t/; y.t//; (11.34)
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where the functions F W R2 �! R and G W R2 �! R have continuous partial
derivatives with respect to x and y (Note that the equations (11.29) and (11.30) are
special cases of (11.34).), then every trajectory f.x.t/; y.t//I t � t0g is either a
cycle or a spiral converging to a cycle from one side as t ! 1.

The Poincaré-Bendixson theorem shows that all solution curves (trajectories),
which stay in the closed, connected, and bounded set M, are “stable” in the following
sense (not to be confused with “asymptotically stable” as defined earlier in this
section): they are either cycles or converge to cycles as t ! 1.

For the Lotka-Volterra equations (11.29), and (11.30) the cycle trajectories mean
that neither the predators nor the preys become extinct (quite reassuring), as long as
these equations and their cyclic solutions describe adequately what is happening.

The cycle-solutions are also called “periodic”, because the pair of functions .x; y/
describing them is periodic:

x.0/ D x.T/; y.0/ D y.T/

for the time t D T, at which the point .x.t/; y.t// on the trajectory returns to the
point where it was at the initial time 0 and from there one has

x.t/ D x.t C T/; y.t/ D y.t C T/:

We now calculate for such a periodic solution (cycle trajectory) of the above
predator-prey process the average sizes of the predator and the prey populations
during this time T, that is,

Nx D 1

T

Z T

0

x.t/dt; Ny D 1

T

Z T

0

y.t/dt:

We obtain

Nx D c

k
; Ny D a

b
:

The reader is invited to verify these results. So, remarkably, the average sizes of
the predator and the prey populations on any cycle-trajectory of the Lotka-Volterra

model equal the respective population at the nontrivial equilibrium point
�c

k
;

a

b

�
.

11.6.1 Exercise

Let the parameters in the Lotka-Volterra equations (11.29) and (11.30) be a D 1:0,
b D 0:001, c D 0:1, k D 0:00001, respectively. With the aid of formula (11.33),
determine D and the points
.551; y0/, .2000; y1/, .2000; y2/, .12000; y3/, .12000; y4/,
.30000; y5/, .30000; y6/, .40000; y7/, .40000; y8/, .44470; y9/
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of the trajectory running through the point .x; y/ D .8000; 500/. Make a sketch of
the trajectory.

11.6.2 Answer

D D 687:68

y0 D 1000, y1 D 594:5, y2 D 1558, y3 D 499:4, y4 D 1758,
y5 D 608:5, y6 D 1532, y7 D 761, y8 D 1284, y9 D 1000.



12Difference Equations

Difference equations relate to differential equations as discrete
mathematics does to continuous mathematics.

12.1 Introduction

In most of our previous deliberations we considered the variables to move “con-
tinuously” (regardless whether the functions were continuous or not) to assume all
values in an interval of the number line. This was an abstraction: In reality arbitrarily
small weights, lengths, amounts of money, etc., even time either do not exist or
cannot be measured. There are smallest units appropriate to the problem, even if
they are as small as milligrams, cents (or one 100-th of the smallest unit of the most
inflated currency), nanoseconds, etc., and in these cases the variables assume only
discrete values. Moreover, even if we could locate the present value of either of
these variables and of others anywhere on the (say real) number line their increases
or decreases may be measured only in such units. Indeed we stressed that observing
h tends to 0 stretches or shrinks the imagination. This was for us just a convenient
device to describe processes with the help of powerful (differential, integral) calculi.

Often, however, we can take only these discrete values and/or increases
(decreases) of the variables (and functions) into consideration. While for the
description of the “continuous” processes in the above sense (and even for
approximating the “discrete” ones) the differential equations method described
in the last Chap. 11 was particularly appropriate, one can go quite far also with their
“discrete analogues”, the difference equations, in describing discrete processes,
where variables change by “finite increments” (one milligram, millicron, cent,
nanosecond, or an integer multiple thereof). This will be the subject in this chapter.
If only one unit and its multiples figure for one variable, then this unit may always
be described by the number 1 and differences of functions (independent of whether
they are defined on real intervals or only on a set of consecutive integers, and of
what the function values are) as long as subtraction makes sense in the range.

© Springer International Publishing Switzerland 2016
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One defines the operator� as follows

�f .t/ D f .t C 1/� f .t/: (12.1)

It has the following properties

�2f .t/ D �.�f .t// D �. f .t C 1/� f .t// D f .t C 2/� 2f .t C 1/C f .t/;

or in general

�nf .t/ D �.�n�1f .t// D f .t C n/�
 

n

n � 1

!

f .t C n � 1/

C
 

n

n � 2

!

f .t C n � 2/ � � � C .�1/n�2
 

n

2

!

f .t C 2/

C.�1/n�1
 

n

1

!

f .t C 1/C .�1/nf .t/; n D 1; 2; � � � I

for the definition of the binomial coefficients
�n

k

	
see Sect. 7.2. The formula for

�nf .t/ should really be proved by induction from that of �n�1f .t/. But a few
trials �2f .t/, �3f .t/, �4f .t/ may be convincing enough. Equations containing such
differences are called difference equations.

Accordingly the difference analogue, for instance, of the second order linear
differential equation with constant coefficients (Sect. 11.5) will be the second order
homogeneous difference equation with constant coefficients

�2Y.t/C a�Y.t/C bY.t/ D 0: (12.2)

There is, however, also another way of writing difference equations. Take, for
instance (12.2) and insert (12.1):

Y.t C 2/� 2Y.t C 1/C Y.t/C aY.t C 1/� aY.t/C bY.t/ D 0:

So, with the new constants ˛ WD a � 2, � WD b � a C 1, we can write

Y.t C 2/C ˛Y.t C 1/C �Y.t/ D 0: (12.3)

Sometimes the form (12.2), at other times (12.3) is more advantageous for this
and other difference equations. The advantage of (12.2) is its similarity to the
corresponding differential equation (in this case equation (11.24) in Sect. 11.5).
Also the methods of solution are similar, the characteristic equation (11.25) plays a
similar role, too. The advantage of the form (12.3) is that, if Y is defined on N only,
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and if the values of Y are known say at 1 and 2 (or at some other t0, t0 C 1 2 N),
then (12.3) and similar more general solutions completely determine Y on N (or on
ft0; t0 C 1; t0 C 2; � � � g, respectively). Indeed if, say Y.1/ D Y1, Y.2/ D Y2 then

Y.3/ D �˛Y2 � �Y1; Y.4/ D �˛Y.3/ � �Y2 D .˛2 � �/Y2 C ˛�Y1;

and so on. In (slight) analogy to differential equations, Y1 and Y2 are called “initial
values”. Other ways of writing (12.3) are

Y.t/ D �˛Y.t � 1/� �Y.t � 2/;
Yt D �˛Yt�1 � �Yt�2; or
Yn D ˛Yn�1 � �Yn�2;

(12.4)

in which case, however, t; n � 3 (or � t0C2) should be supposed. In the latter form
the sequence Yn is given recursively from Y1 and Y2 by (12.4). With a slight abuse
of language we speak in such cases about recursive sequences (or in the case (12.4)
of “two-step recursions”).

However, if Y is also defined for negative integers, say for all of Z, and if (12.4)
is valid on Z then Y is determined by (12.4) on all of Z as long as � ¤ 0 (if we had
� D 0, then Y2 would not be needed and fYng would be determined by the “one-step
reduction” Yn D �˛Yn�1). Indeed then

Yt�2 D �˛
�

Yt�1 � 1

�
Yt:

So

Y0 D �˛
�

Y1 � 1

�
Y2; Y�1 D �˛

�
Y0 � 1

�
Y1 D ˛2 � �

�2
Y1 C ˛

�2
Y2;

and so on.
If t means time, then we speak again about dynamical models, this time about

“discrete dynamical models”. One really needs them because data are always
collected during finite time intervals (a year, a quarter, a month, a day), and in real
life one cannot (except by “abstraction” or “guessing”) consider arbitrarily small
time intervals. The price is the loss of some convenience of the “smooth” methods
of differential calculus in favour of somewhat “rougher” tools.

As an example we deal with a situation similar to that at the beginning of
Sect. 11.5 constructing this time a simplified discrete dynamical model for the
business cycle in a closed economy following Paul A. Samuelson (1915–2009;
Nobel laureate in 1970). A closed economy is one without foreign trade. The
following three assumptions are made.

S1: The consumption C.t/ during the time interval Œt; t C 1� is an affine function
of the national income (or national product) Y.t � 1/ during Œt � 1; t�:

C.t/ D c0 C cY.t � 1/
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(compare to A1 in Sect. 11.5). Here c0 2 RC, c 2�0; 1Œ are constants.
S2: The amount of investments I.t/ during Œt; t C 1Œ is proportional to the

difference between the consumptions during Œt; t C 1Œ and that during Œt � 1;

tŒ (C.t/ and C.t � 1/ respectively):

I.t/ D ˇ.C.t/ � C.t � 1//:

This is the “investment originating from the growth of consumption”. ˇ 2 RC is
again a constant.

S3: The national income Y.t/ is the sum of the consumption C.t/, the investment
I.t/ “originating from the growth of consumption”, and the autonomous invest-
ment A.t/ (independent from the other quantities in the model) during Œt; t C 1Œ:

Y.t/ D C.t/C I.t/C A.t/

(compare to A5 in Sect. 11.5).

This model is in a way simpler and more restricted than that in Sect. 11.5, for
instance, the capital stock is left out of consideration, no distinction is made between
projected and realised investments, and A.t/ is restricted to the investment part of
the autonomous demand. But, on the other hand, no “asymptotic equations”, limits,
and derivatives are needed, in accordance with the “discrete” nature of economic
life.

Economists call the “delay” between t � 1 and t in S1 the “Robertson delay”
and the equations in S2 and S3 the “principle of acceleration” and the “equilibrium
equation”, respectively. Indeed, the former says that the increase in consumption,
C.t/ � C.t � 1/, if positive, “accelerates” the investment I.t/, while the latter
finds equilibrium in the closed economy, when the national income is the sum
of consumption, investment and autonomous investment. The constants ˇ and c
are called “accelerator” and “marginal consumption rate”, respectively. The latter
reflects the vague notion that, in the simplified, because time-independent equation
C D c0 C cY we would have dC

dY D c. Anyway, even c is only “approximately” (this
time not in the sense of any limit value) constant in time and may be and usually is
different for different countries.

Substituting the equations in S1 and S2 into S3 we get

Y.t/ D c0 C cY.t � 1/C ˇ .c0 C cY.t � 1/� c0 � cY.t � 2//C A.t/;

that is,

Y.t/ D c.1C ˇ/Y.t � 1/C ˇcY.t � 2/ D c0 C A.t/ (12.5)

an inhomogeneous linear difference equation of second order with constant coeffi-
cients or, if co C A.t/ D 0, a homogeneous one of the form (12.3) (put Qt D t �2 into
(12.5)).
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As mentioned above, if Y.1/ and Y.2/ or Y.0/ and Y.1/ or, more generally,

Y0 D Y.t0/; Y1 D Y.t1/ (12.6)

are given then, by equation (12.5), so is

Y.t0 C 2/ D c.1C ˇ/Y1 � ˇcY0 D c0 C A.t0 C 2/

and similarly Y.t0 C 3/, Y.t0 C 4/ and so on: “In principle”, Y is determined on the
domain t0; t0 C 1; t0 C 2; � � � (on N if t0 D 1/. Thus the “the initial value problem”
of the difference equation (12.5) with (12.6) is solved. Here we point out that initial
value problems for differential equations cannot be solved in such a “step by step”
way, no matter how small these “steps” are: we saw in Sect. 11.1 that even by
advancing by very small steps in the “direction field” one can deviate from the exact
solution curve.

As an example of solving a second order linear difference equation with constant
coefficients, in this case the difference equation (12.5) for the national income Y.t/,
with the initial condition (12.6), we specify

ˇ D 1; c D 3

4
; c0 D 20; A.t/ D 80; t0 D 0; Y0 D Y0 D 320; Y1 D Y1 D 340

that is, we have the initial value problem

Y.t/ D 3
2
Y.t � 1/� 3

4
Y.t � 2/C 100 (12.7)

Y.0/ D 320; Y.1/ D 340: (12.8)

We get as above

Y.2/ D 370; ; Y.3/ D 400; Y.4/ D 423; Y.5/ D 434; Y.5/ D 434;

Y.6/ D 434; ; Y.7/ D 425; Y.8/ D 413; Y.9/ D 400; Y.10/ D 391;

Y.11/ D 386; ; Y.12/ D 386; Y.13/ D 389; Y.14/ D 395; Y.15/ D 400;

Y.16/ D 404; ; Y.17/ D 406; Y.18/ D 406; Y.19/ D 405; Y.20/ D 402;

Y.21/ D 400; ; Y.22/ D 398; Y.23/ D 397; Y.24/ D 397; Y.25/ D 398;

Y.26/ D 399; ; Y.27/ D 400; Y.28/ D 401; Y.29/ D 401; Y.30/ D 401;

While these values are rounded up or down to the next integer, it is clearly
“visible”—and even more so from Fig. 12.1—that the graph of Y shows a “damped
oscillation” around a value y which seems to be close to 400. Actually for t ! 1 y
tends to 400 as we can see in (12.7). This equation shows that Y.t/ D 400 is itself a
solution, a constant solution giving the equilibrium value of the national income.
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Fig. 12.1 Difference equation for the national income

If, as above, Y.t/ is the national income in the time interval Œt; t C 1Œ, and the
consumption C.t/ in the same time interval satisfies S1, then C has to show the
same kind of damped oscillation with 3/4 times as large an amplitude (amount of
oscillation) and “retarded” by the shift 1.

As we see, difference equations are extremely easy to solve numerically step by
step. However, general formulas would be useful and, independently, fundamental
questions about the qualitative behaviour of the solution, whether we know it
quantitatively or not, are important. For instance, for which ˇ, c, c0, and linear A
has the difference equation (12.5) uniform, exploding or damped (stabilising) or
oscillating solutions, strictly monotonic solutions, solutions converging, as y ! 1
to the value of a constant “equilibrium” solution. We will discuss such questions in
the next section.

12.1.1 Exercises

1. Solve the first order difference equation xn D 2xn�1C1 with the initial condition
x1 D 1. (Remark: This equation determines either the number of moves for the
towers of Hanoi or the number of knots in a maximal balanced binary tree. Look
up the backgrounds in the internet!)
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12.1.2 Answers

1. xn D 2n � 1

12.2 Linear Difference Equations

We summarise some definitions.
Let n be any natural number. An equation is called a linear difference equation,

if it is of the form

bn.t/Y.t C n/C bn�1.t/Y.t C n � 1/C � � � C b1Y.t C 1/C b0.t/Y.t/ D g.t/;
(12.9)

where b0, b1, � � � , bn, and the perturbation g are given real-valued functions on

D WD ft0; t0 C 1; t0 C 2; � � � g;

where t0 is a fixed number (often t0 D 0) and Y is an unknown real-valued function
on D. Equation (12.9) is exactly of n-th order if bn.t/ 6	 0 and if b0.t/ 6	 0 then, as
we see by writing � WD t C 1, the equation is really of (n � 1)-th order. If bn.t/ ¤ 0

for all t 2 D, we can divide (12.9) by bn.t/ and get, by defining

an�1.t/ WD bn�1.t/
bn.t/

; � � � ; a0.t/ WD b0.t/

bn.t/
; f .t/ WD g.t/

bn.t/
;

the linear difference equation of n-th order (a0.t/ 6	 0) in explicit form.

Y.t C n/C an�1.t/Y.t C n � 1/C � � � C a1.t/Y.t C 1/C a0.t/Y.t/ D f .t/
(12.10)

An example of a linear difference equation of second order is

tY.t C 2/C 2Y.t C 1/� .t C 1/2Y.t/ D sin t: (12.11)

The difference equation of third order

Y.t C 3/Y.t C 1/� Y.t C 1/C Y.t/2 D t

is not linear because of the terms Y.t C 3/Y.t C 1/ and Y.t/2.
It may happen that a linear difference equation has no solution for some initial

conditions and many solutions for others. For instance the equation

tY.t C 1/C Y.t/ D 0 (12.12)
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has no solution that satisfies the initial condition Y.0/ D 1. However, for the initial
condition Y.0/ D 0 there are infinitely many solutions as Y.1/ can be chosen
arbitrarily.

The linear difference equations (12.9) and (12.10) are called homogeneous if
g.t/ 	 0 and f .t/ 	 0, respectively. Compare similar notions in the last chapter,
Sect. 11.5. For example,

tY.t C 2/C 2Y.t C 1/� .t C 1/2Y.t/ D 0

is a linear homogeneous equation of second order. As it is the same equation as
(12.11) except for the term sin t, it is called the homogeneous difference equation
corresponding to (12.11). In general, if the coefficients a0.t/; � � � ; an�1.t/ and the
perturbation f .t/ in (12.10) are defined for all t 2 D, and if the initial values

Y0 WD Y.t0/;Y1 WD Y.t0 C 1/; � � � ;Yn�1 WD Y.t0 C n � 1/ (12.13)

are given one calculates from (12.10)

Yn WD f .t0/� a0.t0/Y0 � a1.t0/Y1 � � � � � an�1.t0/Yn�1;

YnC1 WD f .t0 C 1/� a0.t0 C 1/Y1 � a1.t0 C 1/Y2 � � � � � an�1.t0 C 1/Yn;

and so on. So one gets, step by step, the unique solution of equation (12.10) that
satisfies the initial conditions (12.13).

By the same argument as in the case of linear differential equations in the
last chapter one can show the following. The general solution of (12.10) on D is
obtained by adding one particular solution of (12.10) to the general solution of the
corresponding homogeneous equation.

If Y1 and Y2 are solutions of the equation (12.10) with f .t/ 	 0 on D then any
linear combination

Y D c1Y1 C c2Y2; (12.14)

where c1; c2 2 R are arbitrary constants, is a solution of (12.10) with f .t/ 	 0 on
D.

From now on we assume that the coefficients of equation (12.10) are real
constants. Let us first consider equation (12.10) in the case

n D 1; f .t/ 	 0; a0.t/ D �a .a 2 R; constant/;

that is, we consider the homogeneous linear difference equation of first order

Y.t C 1/� aY.t/ D 0 or Y.t C 1/ D aY.t/; (12.15)



12.2 Linear Difference Equations 573

or equivalently

Y.t C 1/� Y.t/C .1 � a/Y.t/ D �Y.t/C .1 � a/Y.t/ D 0 (12.16)

that is Y grows, if a > 1, Y remains constant, if a D 1, and Y decreases, if a 2�0; 1Œ.
Now let Y have the value Y0 at t D 0: Y.0/ D Y0. Then, from (12.15)

Y.1/ D aY.0/ D aY0;

Y.2/ D aY.1/ D a.aY0/ D a2Y0;

:::
:::

Y.t/ D aY.t � 1/ D a.at�1Y0 D atY0:

Hence the unique solution of (12.15) that satisfies the initial condition Y.0/ D Y0 is
Y.t/ D Y0at.

Now let us compare this unique solution of the initial value problem for the
difference equation or the equivalent initial value problem

�Y.t C 1/ D .a � 1/Y.t/; Y.0/ D Y0 (12.17)

to the solution of the initial value problem of the following differential equation

dy.t/

dt
D .a � 1/y.t/; Y.0/ D Y0: (12.18)

Setting

�hY.t/ D Y.t C h/� Y.t/

h
; (12.19)

one obtains the difference equation �1Y.t/ D Y.t C 1/ � Y.t/ D .a � 1/Y.t/, and
for h ! 0 one gets

lim
h!0

�hY.t/ D lim
h!0

Y.t C h/� Y.t/

h
D Y.t/

h
D .a � 1/Y.t/:

The difference equation has the solution

Y.t/ D Y0a
t D Y0e

t ln a;

and the differential equation has the solution

y.t/ D Y0e
.a�1/t:
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Using the Bernoulli-L’Hospital rule one sees that the exponents are asymptotically
equal for a ! 1:

lim
a!1

ln a

a � 1 D lim
a!1

1=a

1
D 1:

The domains of y and Y may be different: it is enough if Y is defined on f0; 1; 2; � � � g.
In the case of the amount of M1 money in Sect. 11.1 a is indeed close to 1 under

normal economic situations. However, the solutions of (12.17) and (12.18) are close
to each other, if we are more careful changing the time span from 1 to h. Indeed, if
we replace �Y.t/ in (12.17) by�hY.T/ as defined in (12.19), we get

Y.t C h/� Y.t/ D h.a � 1/Y.t/; Y.0/ D Y0; (12.20)

that is,

Y.t C h/ D .ha � h C 1/Y.t/ D ˛hY.t/; Y.0/ D Y0;

where

˛h D h.a � 1/C 1:

As before we get

Y.h/ D ˛hY0; Y.2h/ D ˛2hY0; � � � Y.nh/ D ˛n
hY0;

that is,

Y.t/ D ˛
t=h
h Y0 D .h.a � 1/C 1/t=hY0; for t 2 f0; h; 2h; � � � g: (12.21)

Taking logarithms we get

ln Y.t/ D t ln.ha � h C 1/

h
C ln Y0:

For h ! 0 one can apply the Bernoulli-L’Hospital rule and gets

lim
h!0

t ln.h.a � 1/C 1/

h
D lim

h!0

t.a � 1/

h.a � 1/C 1
D t.a � 1/:

Thus the solution (12.21) of (12.20) converges, as h ! 0, to the solution of (12.18),
that is, to

Y.t/ D Y0e
.a�1/t:
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Next we look at the second order linear difference equations with constant
coefficients:

Y.t C 2/C aY.t C 1/C bY.t/ D f .t/; a 2 R; b 2 R; b ¤ 0:

In particular, we look at the homogeneous version of it:

Y.t C 2/C aY.t C 1/C bY.t/ D 0 .t 2 ft0; t0 C 1; � � � g; t0 2 N [ f0g/:
(12.22)

Similarly as we experimented with y.t/ D e�t as solution of the homogeneous linear
differential equation of second order with constant coefficients, here we try

Y.t/ D �t:

Trial and error shows that e�t does not work in this case, but �t does. We supposed
in (12.22) that t is a nonnegative integer. �t also makes sense, if � is negative or
even complex. (� D 0 is excluded because 00 is not defined.) We substitute this into
(12.22) and get

�tC2 C a�tC1 C b�t D 0:

We divide by �t (again � ¤ 0 is important) in order to obtain

�2 C a�C b D 0: (12.23)

This is the same equation as for the linear differential equation in Sect. 11.5, and
here, too, it is called the characteristic equation—and �2 C a�C b the characteristic
polynomial—of the difference equation (12.22). (We see again that � D 0 can safely
be excluded, since Y.t C 2/C bY.t C 1/ D 0 is not really a second order difference
equation, see our remark after equation (12.9).)

We continue as in Sect. 11.5: The characteristic equation (12.23) has either two
distinct real solutions

�1 D �a C p
a2 � 4b

2
; �2 D �a � p

a2 � 4b

2
; (12.24)

one real solution

�1 D �2 D �a

2
;

or two distinct conjugate complex solutions

�1 D �a C i
p
4b � a2

2
; �2 D �a � i

p
4b � a2

2
; (12.25)
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according to whether the discriminant D WD a2�4b is positive, zero or negative. The
solutions of the characteristic equation are also called zeros or roots or eigenvalues
of the characteristic polynomial �2 C a�C b.

Since as mentioned about the more general homogeneous linear difference
equation (12.14), if Y1 and Y2 are solutions of (12.22), so is

Y D c1Y1 C c2Y2

for arbitrary real constants c1 and c2. In the first case, where D > 0, we have

Y.t/ D c1�
t
1 C c2�

t
2 (12.26)

as a solution, where �1 and �2 are given by (12.24).
In the second case, D D 0, one solution is Y1.t/ D �t. Another solution is, in

analogy to the same situation in Sect. 11.5 Y2.t/ D t�t. The reader is asked to verify
this contention. So

Y.t/ D c1�t C c2t�t (12.27)

is a solution of (12.22), where � D �a

2
.

In the third case, where D < 0 and �1 ¤ �2 are conjugate complex numbers, one
can immediately give the general complex solution

Y.t/ D Qc1�t
1 C Qc2�t

2:

By the same way of arguments as in Sect. 11.5 one can give the general real
solution. The difference equation must be fulfilled by the real and the imaginary
part separately. From Sect. 1.7 we know that �1 and �2 can be written in the form

�1 D r.cos� C i sin �/; and �2 D r.cos� � i sin�/:

Therefore the general real solution of (12.22) is

Y.t/ D rt.c1 cos t� C c2 sin t�/; (12.28)

where c1 and c2 are arbitrary real constants.
Next we show that in all three cases the initial conditions

Y.t0/ D Y0; Y.t0 C 1/ D Y1 (12.29)

with arbitrary Y0;Y1 2 R can be uniquely satisfied by choosing the constants
c1; c2 appropriately in (12.26), (12.27), and (12.28). As in Sect. 11.5, we write
these solutions from now on as

Y.t/ D c1Y1.t/C c2Y2.t/:
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We are looking for real numbers c1, c2 such that

c1Y1.t/C c2Y2.t/ D Y0;

c1Y1.t C 1/C c2Y2.t C 1/ D Y1:

This again is a system if inhomogeneous linear algebraic equations, which, as we
saw in Sect. 4.7, has a unique pair of solutions if and only if

ˇ
ˇ
ˇ
ˇ

Y1.t0/ Y2.t0/
Y1.t0 C 1/ Y2.t0 C 1/

ˇ
ˇ
ˇ
ˇ ¤ 0:

If �1 ¤ �2 (i.e. cases 1 and 3), the determinant equals:

ˇ
ˇ
ˇ
ˇ
�

t0
1 �

t0C1
1

�
t0
2 �

t0C1
2

ˇ
ˇ
ˇ
ˇ D �

t0
1 �

t0C1
2 � �

t0C1
1 �

t0
2 D .�1�2/

t0 .�2 � �1/ ¤ 0;

as �1�2 ¤ 0 and �1 ¤ �2. If �1 D �2 D � ¤ 0 (i.e. case 2), the determinant is

ˇ
ˇ
ˇ
ˇ
�t0 t0�t0

�t0C1 .t0 C 1/�t0C1

ˇ
ˇ
ˇ
ˇ D �2t0C1 ¤ 0:

So in every case the initial value problem (12.29) for the linear second order
difference equation (12.22) can be solved uniquely. For this difference equation it
is even easier to prove that (12.26), (12.27), and (12.28) (with arbitrary c1, c2) give
the general solution of (12.22) alone (without initial conditions) than the similar
statement in Sect. 11.5. Indeed, for any solution Y of (12.22) on ft0; t0C1; t0C2; � � � g
(t0 2 N [ f0g) we now denote the values assumed by Y at t0 and t0 C 1 by

Y0 WD Y.t0/; Y1 WD Y.t0 C 1/

respectively. By our step-by-step algorithm in Sect. 12.1 we showed that these
values, that is the initial conditions (12.29) uniquely determine Y on ft0; t0C1; � � � g,
On the other hand, we just proved that all solutions of (12.22) satisfying (12.29) are
of one of the forms (12.26), (12.27) or (12.28). So (12.22) has no other solution than
these.

As mentioned before, while the difference equation itself yields step by step the
values of the unknown function at all places t0; t0 C 1; � � � , we are still interested
in the qualitative behaviour of the solutions, in particular as t ! 1. In the case
of equation (12.22) the solution formulas (12.26), (12.27), (12.28) are of great help.
We distinguish the three cases whether the discriminant D D a2�4b is positive, zero
or negative. The constants c1 and c2 are supposed not to be both zero. This would
yield the trivial solution Y.t/ 	 0, which is of no particular interest. If one of c1
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and c2 is zero the discussion for this case can easily be derived from the arguments
below. Hence we assume c1c2 ¤ 0.

Case 1: D D a2�4b > 0. We assume j�1j > j�2j and distinguish three subcases:

Case 1.1: j�1j > 1. This implies jY.t/j ! 1 for t ! 1. This solution again
is of no particular interest.

Case 1.2: j�1j D 1 implies jY.t/j ! jc1j. The solution is convergent if �1 D 1

and oscillating, if �1 D �1.
Case 1.3: j�1j < 1. Hence jY.t/j ! 0, but this case is not of great interest.

Case 2: D D a2 � 4b D 0. We set �1 D �2 D � and distinguish three subcases
again.

Case 2.1: j�j > 1. See case 1.1 above.
Case 2.2: j�j D 1. Y.t/ D c1�t C c2t�t and jY.t/j ! 1, if c2 ¤ 0. If c2 D 0

then Y.t/ 	 c1, if � D 1 or Y.t/ D ˙c1, if � D �1.
Case 2.3: j�j < 1. In this case jY.t/j ! 0 even if c2 ¤ 0 as lim

t!1 jt�tj D 0.

Case 3: D D a2 � 4b < 0. In this case the solution can be written in the form

�1 D r.cos� C i sin�/; �2 D r.cos� � i sin�/; � 2 Œ0; 2�/;

and the general real solution is of the form

Y.t/ D rt.c1 cos t� C c2 sin t�/:

Again we distinguish three cases.

Case 3.1: r > 1. This implies jY.t/j ! 1 for t ! 1
Case 3.2: r D 1. This is the most interesting case, as the solution is an

equilibrium solution. If � 2 Q, the solution only assumes finitely many
discrete values. If � 2 RnQ, the values Y.t/ are uniformly distributed on
the unit circle. This is stated without proof. It is interesting to investigate,
how (small) changes in the parameters of the corresponding economic model
can change r such that the solution fluctuates around 1 such that the solution
neither diverges nor collapses to zero.

Case 3.3: r < 1. This implies jY.t/j ! 0 for t ! 1.

This explains why the initial value problem (12.7), (12.8) in Sect. 12.1 had
damped oscillations around 400 as solutions. Setting

QY D Y � 400; (12.30)

one obtains the homogeneous equation

QY.t C 2/� 3

2
QY.t C 1/C 3

4
D 0:
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Its characteristic equation has the solutions

�1 D 3

4
C i

p
3

4
; �2 D 3

4
� i

p
3

4
:

Their absolute value is

p
3

2
< 1, and by the above arguments, we have a damped

solution around QY.t/ D 0; i.e. Y.t/ D 400:

A substitution similar to (12.30), actually

QY.t/ D Y.t/ � c

1C a C b
;

reduces every second order inhomogeneous linear difference equation with constant
coefficients a, b and constant perturbation c,

Y.t C 2/C aY.t C 1/C bY.t/ D c; (12.31)

to a homogeneous equation

QY.t C 2/C a QY.t C 1/C b QY.t/ D 0;

if 1 C a C b ¤ 0, no matter what the initial conditions are. The “secret” of how to
choose QY is to substitute Y D QY � K into equation (12.31):

QY.t C 2/� K C a QY.t C 1/� aK C b QY.t/ � bK D c

and then choose K such that the perturbation becomes 0, that is, cCK CaK CbK D
0. Notice that the constant function given by Y.t/ D c=.1C a C b/ is also a solution
of (12.31) (if 1C a C b ¤ 0), the equilibrium solution ( just as Y.t/ D 400 was for
(12.7)). This equilibrium solution is stable, if for all initial value conditions

Y.t0/ D Y0; Y.t1/ D Y1;

the solutions of (12.31) tend to K as t ! 1. By the above this happens exactly
when the solutions of the characteristic equation (12.23) either both have absolute
value smaller than 1 or, trivially, if one of �1, �2 has absolute value smaller than 1
and the coefficient cj of the other is zero.

Since the equilibrium solution Y�.t/ D c=.1C a C b/ is a particular solution of
the inhomogeneous linear difference equation (12.31) (in particular Y�.t/ D 400 is
a solution of (12.7)), if 1C a C b ¤ 0 and since, as mentioned early in this section,
the general solution of an inhomogeneous linear difference equation is the sum of
a particular solution and of the general solution of the corresponding homogeneous
equation, we obtain the general solution of (12.31) as the sum of Y�.t/ and of one
of the functions given by (12.26), (12.27) or (12.28) depending on the value of the
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discriminant D D a2 � 4b, except if a C b D �1. In the hitherto excluded case
a C b D �1, we look for a particular solution of the form Y.t/ D kt. Substitution
into (12.31) gives

k.t C 2/C ak.t C 1/C bkt D c; that is; kt.1C a C b/C k.2C a/ D c:

Since we here deal with the case 1C a C b D 0, we get k D c=.2C a/ and

Y�.t/ D c

2C a
t;

if 2C a ¤ 0. If both 1C a C b D 0 and 2C a D 0, that is a D �2, b D 1, then we
try Y�.t/ D � t2 and get

� t2 C 4� t C 4� � 2.� t2 C 2� t C �/C � t2 D c;

that is 2� D c and

Y�.t/ D c

2
t2

is a particular solution of (12.31) in this last case. Again adding to this Y� the
functions given by (12.26), (12.27) or (12.28) gives the general solution of (12.31)
depending on the value of the discriminant D D a2 � 4b, which we now have for all
values of a, b, and c. We can exclude c D 0, since (12.31) is homogeneous. We had
already excluded b D 0 previously.

So quadratic polynomials were the right kind of particular solutions to experi-
ment with: we could have substituted right away Y�.t/ D � t2 C kt C K. For the
somewhat more general equation

Y.t C 2/C aY.t C 1/C bY.t/ D c˛t; (12.32)

(˛ ¤ 0, c ¤ 0, b ¤ 0, a arbitrary real constants) the exponential polynomial

Y�.t/ D �
� t2 C kt C K

	
˛t

will be an adequate candidate for a particular solution. Substitution and comparing
coefficients gives for t2, t and the constants respectively the following equations:

�.˛2 C a˛ C b/ D 0;

k
�
˛2 C a˛ C b

	C 2�.2˛C a/ D 0;

K
�
˛2 C a˛ C b

	C k˛.2˛ C a/C �˛.4˛ C a/ D c:
(12.33)

Let us proceed the discussion in analogy to the simpler case above and assume at
first ˛2 C a˛C b ¤ 0. Then we infer � D 0 and k D 0 from the first two equations,
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hence K D c

˛2 C a˛ C b
. If

˛2 C a˛ C b D 0; (12.34)

then there are two subcases:

Case 1: � D 0 then k D c

˛.2˛ C a/
.

Case 2: � ¤ 0 then

2˛ C a D 0 (12.35)

and � D c

2˛2
. So there is a nonzero term � t2˛2 in the particular solution of (12.32)

if and only if ˛ is a double solution of the characteristic polynomial of the difference
equation.

For the inhomogeneous equation

Y.t C 2/C aY.t C 1/C bY.t/ D f .t/

we now give without proof the following table of perturbations and forms of
particular solutions Y�

f .t/ D ctm; Y�.t/ D kmtm C � � � C k1t C k0;
f .t/ D c˛ttm; Y�.t/ D .kmtm C � � � C k1t C k0/˛t;

f .t/ D A cos�t C B sin�t; Y�.t/ D k1 cos�t C k2 sin �t;
f .t/ D ˛t .A cos�t C B sin�t/ ; Y�.t/ D ˛t .k1 cos�t C k2 sin �t/ :

Similar results also hold for n-th order linear difference equations with constant
coefficients

Y.t C n/C an�1Y.t C n � 1/C � � � C a1Y.t C 1/C a0Y.t/ D f .t/:

But it is beyond the scope of this book to deal with them in detail.

12.2.1 Exercises

1. Solve the second order homogeneous difference equation xn D xn�1 C xn�2 with
the initial condition x1 D 1; x2 D 1. (Remark: This problem determines the
Fibonacci numbers. Look up the background in the internet.)

2. Solve the second order inhomogeneous difference equation xn D xn�1Cxn�2C1
with the initial conditions x1 D 1; x2 D 2. (Remark: This equation determines
the number of knots in a minimal balanced binary tree. Look up the background
in the internet!)
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3. For the second order difference equation xn C xn�1 C xn�2 D 0 find the complex
and the real solutions and show that they are periodic of length 3 and calculate
their values.

12.2.2 Answers

1. The roots of the characteristic polynomial are xp D 1Cp
5

2
and xm D 1�p

5
2

. The

initial conditions yield the constants cp D 5Cp
5

10
, and cm D 5�p

5
10

. This gives the
solution xn D cpxn

p C cmxn
m.

2. The roots of the characteristic polynomial are xp D 1Cp
5

2
and xm D 1�p

5
2

again.
A particular solution of the inhomogeneousequation is the constant -1. The initial

conditions yield the constants cp D 5C3p5
10

, and cm D 5�3p5
10

. This gives the
solution xn D cpxn

p C cmxn
m � 1.

3. The zeroes of the characteristic equation are xp D �1Ci
p
3

2
and xm D �1�i

p
3

2
.

The complex general solution is xn D c1xn
p C c2xn

m, and the real solution is xn D
r1 cos 2�

3
n C r2 sin 2�

3
n. From this is t follow that the length of the period is 3.

x0 D 1; x1 D �c1C
p
3

2
; x2 D c1�

p
3

2
.

12.3 Some Applications of Linear Difference Equations

12.3.1 The GrowthModel of Roy Forbes Harrod (1900–1978)

We can describe the assumptions as follows.

H1: The total savings S.t/ in the time interval Œt; t C 1Œ are proportional to the
national income Y.t/ in the same interval

S.t/ D sY.t/;

where the positive constant s < 1 is the “savings rate”.
H2: The net investment I.t/ projected for Œt; t C 1Œ is proportional to the increase

of national income for Œt; t C 1Œ compared to Œt � 1; tŒ:

I.t/ D a.Y.t/ � Y.t � 1//;

where the positive constant a is called “accelerator”.
H3: There is an equilibrium in the economy in the sense that the total savings

equal the projected net investment:

S.t/ D I.t/:
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It follows from H1, H2, and H3 that

sY.t/ D aY.t/ � aY.t � 1/

or replacing t by t C 1, as we had done before,

Y.t C 1/ D a

a � s
Y.t/;

gives an explicit first order homogeneous linear difference equation with constant
coefficients, if a � s ¤ 0. If a � s D 0, the equation cannot be made explicit
and reduces to aY.t/ D 0, that is, since we had supposed a > 0, we only get the
equilibrium solution Y.t/ D 0. It would be a very poor economy indeed, where the
national income would be 0 in every year. So we may exclude this trivial solution.
Furthermore, in experience, the accelerator a is greater than the savings rate s. If the
national income during the starting year is

Y.0/ DW Y0

then, as we had calculated in Sect. 12.1 the solution of this initial value problem is

Y.t/ D Y0
� a

a � s

�t D Y0
�
1C s

a � s

�t
;

that is, the national income grows in this model by the constant growth rate s=.a�s/,
if the accelerator is greater than the savings rate.

12.3.2 Settlement of Bond Issues

A debt Y0 is repaid by constant payments R at the end of each year (or at other
agreed regular time intervals). The debt Y.t/ at the point t in time (start of the year
Œt; t C 1Œ grows by a yearly interest rate i which remains constant. So, the debt at
time t C 1 will be

Y.t C 1/ D .1C i/Y.t/ � R; .t D 0; 1; 2; : : : /: (12.36)

This clearly is a first order inhomogeneous linear difference equation with constant
coefficients (the perturbation is �R). A particular solution is the constant equilib-
rium solution

Y�.t/ D R

i
;

which we obtain by setting Y�.t/ D K (a constant to be determined) in (12.36),
while the general solution of the corresponding homogeneous equation, just as in



584 12 Difference Equations

(12.1) and (12.15) above is

Y.t/ D C.1C i/t

with an arbitrary constant C. Therefore the general solution of (12.36) is

Y.t/ D C.1C i/t C R

i
:

The initial condition Y.0/ D Y0 is satisfied if and only if

Y0 D C C R

i
; that is; C D Y0 � R

i
:

So the solution of this initial value problem is

Y.t/ D
�

Y0 � R

i

�

.1C i/t C R

i
D Y0.1C i/t � R

.1C i/t � 1

i
:

It is easy to interpret this formula: the first term on the right hand side is the amount
to which the original debt Y0 grew in t years, while the second subtracted term equals

R C R.1C i/C R.1C i/2 C � � � C R.1C i/t�1;

the accrued value of the yearly payments R (annuities).
The same model also serves for calculating the capital Kn decreased from K0 by

yearly payments R (annuities). In this case n is written for t and Kn is written for
Y.n/:

Kn D K0.1C i/n � R
.1C i/n � 1

i
:

This is how the “constant year-end payments formula” is usually written.
If the “year-end” (or end of another time interval) payments are not constant but

equal to R.t/, which depends on t, then (12.36) is replaced by the difference equation

Y.t C 1/ D .1C i/Y.t/ � R.t/:

If Y.0/ D Y0 is the initial debt then

Y.1/ D .1C i/Y0 � R.0/;

Y.2/ D .1C i/Y.1/� R.1/ D .1C i/2Y0 � .1C i/R.0/� R.1/;

Y.3/ D .1C i/3Y0 � .1C i/2R.0/� .1C i/R.1/� R.2/;
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and so on. So the solution of this initial value problem is

Y.t/ D .1C i/tY0 �
tX

jD1
.1C i/t�jR. j � 1/;

and the capital Kn decreased from K0 in the beginning after n years of year-end
payments R.0/;R.1/; � � � ;R.n � 1/ is

Kn D .1C i/nK0 �
tX

jD1
.1C i/t�jR. j � 1/:

12.3.3 Distribution ofWealth

David Gawen Champernowne (1912–2000) suggested the following simple model
for the distribution of households into distinct income classes C0, C1, C2, � � � . These
contain Y.0/;Y.1/;Y.2/; � � � households respectively. The probability (chance) of
“descending” into the previous income class is everywhere 10% D 0:1 (say). The
chance to “ascend” from C0 into C1 is 30% (say), from C1 into C2 is 15%, from
C2 into C3 is 10%, in general the chance from Ct into CtC1 is 30=.t C 1/% D
0:3=.t C 1/.

This time Y.0/ D Y0 and Y.1/ D 3Y0 are given. According to Champernowne
there is an equilibrium in this model, if (here t does not denote time)

Y.t/ D 0:3

t � 1Y.t � 1/C
�

1 � 0:1 � 0:3

t C 1

�

Y.t/C 0:1Y.t C 1/:

The number Y.t/ of households in class Ct consists of those descended from CtC1,
whose number is 0:1Y.t C 1/, plus those ascended from Ct�1, whose number is
.0:3=t/Y.t � 1/, and those which remained in Ct after 10% of them descended into
Ct�1 and 30=.t C 1/% ascended into CtC1, which gives additional

Y.t/ � 0:1Y.t/C 0:3

t C 1
Y.t/

households. Multiplying by 10 and replacing t by t C 1 gives

Y.t C 2/ D
�

1 � 3

t C 2

�

Y.t C 1/� 3

t C 1
Y.t/;

which is a second order homogeneous difference equation with non constant
coefficients. (The reader should verify this equation along the above given hints.)

We want to draw attention to the fact that in the above model the time aspect was
neglected.
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12.3.4 TheMulti-sector Multiplier Model

To prepare the next section, systems of linear difference equations, we introduce an
elementary version of the multi-sector multiplier model developed by Richard M.
Goodwin (1913–1996) and John S. Chipman (1926–). Here the economy is divided
into two sectors 1 and 2. We assume that sector 1 purchases some of its own output
and some of the output of sector 2, and vice versa. Let Y11.t/ represent the purchase
of sector 1 of its own output during the time interval Œt; t C 1Œ, and Y21.t/ represent
its purchase of the output of sector 2. Analogously we define Y12.t/ and Y22.t/. If
Y1.t/ and Y2.t/ are the respective total incomes of sectors 1 and 2 during Œt; t C 1Œ

we have summing up the incomes of each sector

Y1.t/ D Y11.t/C Y12.t/; Y2.t/ D Y21.t/C Y22.t/: (12.37)

Suppose now that the purchases of sector 1 of its own output and of the output of
sector 2 during the time interval Œt; t C 1Œ are affine functions of the current income
of sector 1 and that the same assumption applies to sector 2. Then

Y11.t C 1/ D c11 C a11Y1.t/;
Y21.t C 1/ D c21 C a21Y1.t/;
Y12.t C 1/ D c12 C a12Y2.t/;
Y22.t C 1/ D c22 C a22Y2.t/;

where the c’s and a’s are real constants. Substituting these relationships into the
above equations (12.37) we obtain

Y1.t C 1/ D .c11 C c12/C a11Y1.t/C a12Y2.t/;
Y2.t C 1/ D .c21 C c22/C a21Y1.t/C a22Y2.t/;

a system of two linear difference equations for the unknown functions Y1 and Y2. In
the next section we shall discuss this kind of systems of difference equations.

12.4 Systems of Linear Difference Equations

It will be useful to use vectors (in particular vector-valued functions) in place of n
scalar functions and matrices. Since Chap. 4 we are accustomed to using lower case
and bold face letters for vectors and upper case and bold face letters for matrices.
So we revert to denoting the unknown functions in a difference equation by y or

y D

0

B
B
B
@

y1
y2
:::

yn

1

C
C
C
A
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in a system of difference equations (or in a vector difference equation) rather than
by Y as we did in this chapter till now. The following is a system of n explicit linear
first order difference equations with constant coefficients and constant perturbation

y1.t C 1/ D a11y1.t/C a12y2.t/C � � � C a1nyn.t/C b1;
y2.t C 1/ D a21y1.t/C a22y2.t/C � � � C a2nyn.t/C b2;

:::
:::
:::

y1.t C 1/ D an1y1.t/C an2y2.t/C � � � C annyn.t/C bn

(12.38)

or in vector notation

y.t C 1/ D Ay.t/C b; (12.39)

where y is as above, while the constant matrix A and the constant vector b are given
by

A D

0

B
B
B
@

a11 a12 � � � a1n

a21 a22 � � � a2n
:::

:::
:::

a11 a12 � � � a1n

1

C
C
C
A
; b D

0

B
B
B
@

b1
b2
:::

bn

1

C
C
C
A
:

Each vector-valued function y W D �! R .D WD ft0; t0 C 1; � � � g, t0 2 N [
f0g which satisfies (12.39) is called a solution of (12.39) and the components of
y are solutions of the system (12.38) on D. We now impose on (12.39) the initial
conditions

y.t0/ D y0:

With this initial value we get from equation (12.39) for t D t0

y.t0 C 1/ D Ay.t0/C b D Ay0 C b;

and

y.t0 C 2/ D Ay.t0 C 1/C b D A.Ay.t0/C b/C b D A2y0 C .A C I/b;

where I is the unit matrix. The same process gives

y.t C 3/ D A3y0 C �
A2 C A C I

	
b;

and in general for each natural number k,

y.t0 C k/ D Aky0 C
k�1X

jD0
Ajb .A0 WD I/:



588 12 Difference Equations

Setting k D t � t0, we get

y.t/ D At�t0y0 C
t�1X

jDt0

Aj�t0b; .t D t0 C 1; t0 C 2; � � � /: (12.40)

Obviously this is the only solution of (12.39) and its components are the only
solutions of the system (12.38) that satisfy the initial condition y.t0/ D y0.

If the matrix .I � A/ has an inverse, that is, if

det.I � A/ ¤ 0; (12.41)

then it follows from

�
I C A C A2 C � � � C At�t0�1	 .I � A/ D I � At�t0

that

I C A C A2 C � � � C At�t0�1 D .I � At�t0 /.I � A/�1:

In this case one can write the solution (12.40) in the form

y.t/ D At�t0y0 C .I � At�t0 /.I � A/�1b .t D t0 C 1; t0 C 2; � � � /: (12.42)

Again it is of interest to examine the behaviour of the solution of (12.39) for large
t, that is, to ask what happens to (12.42) when t ! 1. For this purpose we need
some facts about series and limits of matrices, which we list here without proof.

The convergence of a matrix series means the convergence of all components. It
can be proved that the matrix series

I C A C A2 C � � � (12.43)

converges, if all eigenvalues of A have absolute values smaller than 1, that is, if for
all solution � of det.A � �I/ D 0 we have j�j < 1. In this case we can define

.I � A/�1 D I C A C A2 C � � � ;

in analogy to the series in Sect. 6.7

.1 � a/�1 D 1C a C a2 C � � � ; if jaj < 1

(there t D �a). What is important for us is that I�A has an inverse if all eigenvalues
of A have absolute values smaller than 1, an alternative condition for (12.41).

Just as we defined the convergence of a series of matrices component wise, the
limit of a matrix-valued function of a real variable is the matrix consisting of all
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limits of the components of that matrix-valued function, if they exist. One handles
such limits similarly to those of real-valued functions in Sect. 6.7. As it happens,
also

lim
t!1 At D 0

holds, if all eigenvalues of A have absolute values smaller than 1. Actually, exactly
this guarantees the convergence of the series (12.43). Thus in this case

lim
t!1 y.t/ D lim

t!1
�
At�t0y0 C .I � At�t0 /.I � A/�1b

	

D lim
t!1 At�t0y0 C lim

t!1.I � At�t0 /.I � A/�1b

D 0y0 C .I � 0/.I � A/�1b D .I � A/�1b:

Notice that this limit is independent of the initial value y0 and that the limit is 0
if and only if b D 0, that is, in the case of systems of explicit homogeneous linear
difference equations. Notice also that the only constant solution of (12.39) is

y.t/ D .I � A/�1b:

Here, too, this is called the equilibrium solution, and it and the vector difference
equation (12.39) are called stable, if every solution of (12.39) converges to this
equilibrium solution as t ! 1. As we have seen this stability occurs if all absolute
values of the eigenvalues of A are smaller than 1 and, as can be shown, in no other
case.

Example Take the system

y1.t C 1/ D 1
2
y1.t/C 1

4
y2.t/C 1;

y2.t C 1/ D 1
4
y1.t/C 1

2
y2.t/C 2:

(12.44)

We look for a solution y D
�

y1
y2

�

which has at t0 D 0 the initial value

y.0/ D
�

y1.0/
y2.0/

�

D
�
0

1

�

:

(continued)
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With the notations

A D
�
1
2
1
4

1
4
1
2

�

; b D
�
1

2

�

; y.t/ D
�

y1.t/
y2.t/

�

the problem to be solved is

y.t C 1/ D Ay.t/C b; y.0/ D
�
0

1

�

: (12.45)

Since

det.I � A/ D det

�
1
2

� 1
4

� 1
4

1
2

�

D 3

16
¤ 0;

the formula (12.42) can be used, this time with t0 D 0:

y.t/ D Aty0 C �
I � At

	
.I � A/�1b:

Now (check (.I � A/�1.I � A/ D I),

.I � A/�1 D
�
8
3
4
3

4
3
8
3

�

; .I � A/�1b D
�
8
3
4
3

4
3
8
3

��
1

2

�

D
�
16
3
20
3

�

;

and thus the solution of (12.45) can be written as

y.t/ D At

�
0

1

�

C .I � At/

�
16
3
20
3

�

: (12.46)

To examine the behaviour of this solution (12.46) for large values of t, the
eigenvalues of A must be calculated. These are the roots of

det
�

A � �I
	 D det

�
1
2

� � 1
4

1
4

1
2

� �
�

D �2 � �C 3

16
;

that is,

�1 D 3

4
; �1 D 1

4
:

Thus the eigenvalues of A are both positive and less than 1, that is, the system
is stable. Therefore At converges to the zero matrix as t ! 1 and from

(continued)
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(12.46) it follows that

lim
t!1 y.t/ D

�
16
3
20
3

�

:

We note that y.t/ D
�
16
3
20
3

�

is the equilibrium solution of the system (12.44)

as it should be.

Again some of our results can be generalised to systems of n (explicit) inhomo-
geneous linear difference equations of order m (we use m since n already denotes
the number of equations in the system). In vector notation this is written as

y.t C m/C Am.t/y.t C m � 1/C � � � C A1.t/y.t C 1/C A0.t/y.t/ D f.t/;
(12.47)

where t 2 D WD ft0; t0 C 1; : : : g (t0 2 N [ f0g), the A0.t/ 6	 0;A1.t/; � � � , Am�1.t/
are n � n-matrix-valued coefficients depending on t 2 D, f W D �! Rn is the
perturbation, and y W D �! Rn is the unknown function. Compare this to the scalar
difference equations in Sect. 12.2, which reads in our present notation

y.t C m/C Am.t/y.t C m � 1/C � � � C A1.t/y.t/C A0.t/y.t/ D f.t/:

In both situations the initial conditions

y.t0/ D y0; y.t0 C 1/ D y1; : : : ; y.t0 C m � 1/ D ym�1

determine step by step the solution of (12.47), so also this initial value problem
has a unique solution. Also in complete analogy to the scalar case (12.47) is called
homogeneous if f .t/ 	 0 (actually it is the homogeneous equation corresponding
to (12.47)) and the general solution of (12.47) is the sum of one of its particular
solutions and of the general solution of the corresponding homogeneous equation.
The latter is a linear combination c1y1 C � � � C cnyn (c1; � � � ; cn arbitrary real
constants) of n linearly independent solutions y1; � � � ; yn (that is, for which ˛1y1.t/C
� � � C ˛nyn.t/ 	 0 can hold if and only if ˛1 D � � � D ˛n D 0/. In particular, for any
two solutions y1; y2 of the homogeneous linear difference equation and any two real
constants c1; c2, also c1y1 C c2y2 is a solution.

However, even the system (12.47) of n linear difference equations of order m
can be reduced to a system of mn first order linear difference equations as follows:
Define

y1.t/ WD y.t/; y2.t/ WD y.t C 1/; � � � ; ym.t/ WD y.t C m � 1/:
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Then, for these “unknown functions”, (12.47) is equivalent to the system

y1.t C 1/ D y2.t/

y2.t C 1/ D y3.t/

:::

ym�1.t C 1/ D ym.t/

ym.t C 1/C Am�1.t/ym.t/C � � � C A1.t/y2.t/C A0.t/y1.t/ D f.t/

of m first order n-component vector difference equations, that is, of mn first order
scalar difference equations. A similar statement also holds for nonlinear vector
difference equations. But, if in (12.47) the matrix-valued coefficient functions
A0;A1; � � � ;Am�1, and the vector-valued perturbation function are constants then it
can be reduced to a system of mn (rather than n) scalar first order linear difference
equations with constant coefficients and constant perturbation of the form (12.38),
with which we started this section.

12.5 Nonlinear Difference Equations, Chaos

An explicit nonlinear difference equation is of the form

Y.t C n/ D G.t;Y.t C n � 1/; � � � ;Y.t C 1/;Y.t//;

where the function G is not affine, in particular not linear, in its last n variables.
As with linear difference equations it is of n-th order, if G is not constant in its last
variable Y.t/.

With initial conditions

Y.t0/ D Y0; Y.t0 C 1/ D Y1; � � � ; Y.t0 C n � 1/ D Yn�1

it can be solved step-by-step, just as we solved linear difference equations in
Sects. 12.1 and 12.2:

Y.t0 C n/ D G.t0;Y.n � 1/; � � � ;Y.1/;Y.0//
Y.t0 C n C 1/ D G.t0 C 1;Y.t0 C n/;Y.t0 C n � 1/; � � � ;Y.t0 C 1//

:::
:::
:::

Of course, here too, this algorithm does not yield the qualitative properties of
the solution, such as the behaviour of Y.t/ as t ! 1. Now we will deal with such
questions.
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Nonlinear difference equations show a peculiarity which we did not encounter
in the case of linear ones, and which makes their application to exact medium or
long range forecasts (for example in economics or meteorology) difficult, if not
impossible: Small errors in the initial conditions (resulting, for instance, from small
inaccuracies in measurement) may lead to very large deviations from the solution of
the initial value problem with exact initial conditions already after a few steps.

We give an example often used in the so-called theory of chaos: the “logistic
difference equation”

y.t C 1/ D b1y.t/� b2y.t/2 (12.48)

(b1; b2 positive constants). Its name comes from its connection to the logistic
differential equation (defining “logistic functions”)

y0.t/ D ˇy.t/ � �y.t/2

(ˇ, � positive constants in Sect. 11.4. If we replace, as we had done in other
occasions, see Sect. 12.1, the derivative y0.t/ by the difference quotient .y.t C h/ �
y.t//=h, we then get

y.t C h/� y.t/

h
D ˇy.t/ � �y.t/2:

If, in particular, h D 1 and if we write b1 D ˇ C 1, b2 D � then we indeed obtain

y.t C 1/ D b1y.t/ � b2y.t/
2:

While, as we have seen in Sect. 11.4 the solutions of the logistic differential
equation are continuous, strictly monotonic and bounded, the solutions of the
logistic difference equation show for certain values of the constant parameters a
peculiar behaviour, which is called “chaotic”.

First we simplify (12.48) by introducing

Y WD b1
b2

y

and b for b2. We get the explicit difference equation of order 1

Y.t C 1/ D bY.t/.1 � Y.t//: (12.49)

As in Sect. 12.4 we are interested in nonnegative solutions of (12.49). The left
hand side, that is Y, is nonnegative if and only if the right hand side is nonnegative,
which happens if and only if

Y.t/ 2 Œ0; 1� for all t: (12.50)
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The right hand side of (12.49) can be written (omitting t) as

bY � bY2 D b

4
� b

�

Y � 1

2

�2
:

Since

�

Y � 1

2

�2
is nonnegative, this difference is not greater than

b

4
and equal to

b

4

exactly if Y D 1

2
.

The sequence fY.t/g defined by (12.49) converges to a finite

Y� WD lim
t!1 Y.t/;

if Y0 WD Y.0/ is in a neighbourhood of Y�, in which

jF0.Y/j � c < 1 (12.51)

(c independent of Y) and if, with any Y, also F.Y/ is in that neighbourhood. Here F
is defined by

F.Y/ D bY.1 � Y/

and Y� is a fixed point of F, that is, the only fixed points in this case are

Y�
1 D 0 and Y�

2 D b � 1

b
:

If b 2�0; 1Œ then the second fixed point Y2 is negative, which contradicts (12.50)
(The limit of a sequence with nonnegative terms cannot be negative.), so we can
neglect it. Also 0 < F.Y/ D bY.1 � Y/ < 1, if 0 < Y < 1. Moreover

jF0.Y/ D bj1� 2Yj � b < 1for all Y 2 Œ0; 1�;

so (12.51) is satisfied. Therefore starting with any Y.0/ 2 Œ0; 1Œ, even with Y.0/ D 1,
as one easily calculates, one will have

lim
t!1 Y.t/ D 0:

One can prove that this is true for b D 1, too. Note that in this case the two fixed
points are equal.

If b 2�1; 3Œ then the second nonzero fixed point Y� D .b � 1/=b will be in �0; 1Œ.
Moreover, from F.Y/ D bY.1 � Y/ we get

F0.Y/ D bj1� 2Yj � c < 1;
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if

j1 � 2Yj � c

b
; that is; � c

b
� 1 � 2Y � c

b

or, what is the same

Y 2

1

2
.1 � c

b
/;
1

2
.1C c

b
/

�

DW I:

If c is close enough to 1 then the fixed point Y� D .b � 1/=b is in the same interval
I because

1

2
.1 � 1

b
/ D b � 1

2b
<

b � 1

b
<

b C 1

2b
D b � 1

b
C 3 � b

2b
:

Furthermore, at least for b <
p
3, and if Y 2 I then also F.Y/ 2 I as required.

Without going into details we state that one can also prove that starting with any
Y.0/ 2�0; 1Œ one has

lim
t!1 Y.t/ D b � 1

b
;

where fY.t/g satisfies the “logistic difference equation” and b 2�1; 3� (b D 3

included). Such a fixed point is called an attractor or an attractive fixed point, as
the sequence converges to it, if it starts in its neighbourhood.

The reader is invited to verify this contention for two examples. Setting b D 2

and Y0 D 0:8 the solution converges to 0.5, and setting b D 2:8 and Y0 D 0:2 the
solution converges to 0.643. In addition the convergence is rather fast in these two
cases.

The situation changes dramatically when b > 3. Then

jF0.Y�
2 j D bj1� 2 b�1

b j D jb � 2b C 2j D j2 � bj > 1;
jF0.Y�

1 j D bj1� 0j D b > 1;
and jF0.Y1/j D bj1 � 0j D b > 1:

Numerical calculations with some computer algebra program such as Maple,
Mathematica, Matlab or Sage show that Y.t/ is repulsed as it approaches Y�

2 .
Playing with different initial values, which are very close, shows that after few
iterations already the solutions differ greatly. They jump around in the interval Œ0; 1�
erratically. This behaviour is called chaotic.

So one has to be careful when problems of forecasting say in economics or
meteorology lead to models with nonlinear difference equations.
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12.5.1 Exercises

1. Let the difference equation x.n C 1/ D ax.n/2, a 2 RCC be given. Find the
general solution for the initial value x.0/ D x0 2 RCC.

2. Find a constant nontrivial solution of the difference equation in 1. choosing a and
x0 appropriately.

3. For the difference equation in 1. choose a and the initial values x0 and Ox0 with
jx0 � Ox0j < 0:01 such that for the respective solutions fx.n/gn�N0 and fOx.n/gn�N0

the following holds lim
n!1 jx.n/� Ox.n/j D 1.

4. For the difference equation in 1. choose a and the initial values x0 and Ox0 such
that for the respective solutions fx.n/gn�N0 and fOx.n/gn�N0 the following holds
lim

n!1 jx.n/� Ox.n/j D 0.

12.5.2 Answers

1. x.n/ D a2
n�1x2n

0

2. a D 1, x0 D 1

3. Take for example a D 1, x0 D 1, and Ox0 D 1C " with 0 < " < 0:01.

4. Take for example a D 1

2
, x0 D 1, and Ox0 D 1C " with 0 < " < 1.



13Methodology: Models and Theories
in Economics

A model shall be as simple as possible, but not simpler.
ALBERT EINSTEIN (1879–1955)

One of the tragedies of life is the murder of a beautiful theory by
a gang of brutal facts.

BENJAMIN FRANKLIN (1706–1790)

13.1 Introduction

According to Wikipedia, the free encyclopedia, “methodology is the systematic,
theoretical analysis of the methods applied to a field of study. It comprises the
theoretical analysis of the body of methods and principles associated with a branch
of knowledge”. In this book the “field of study” and the “branch of knowledge” is
economics.

In what follows, we present tentative steps into the methodology of economics.
For this purpose we concentrate ourselves on the terms “model” and “theory” since
they play an important role in the empirical sciences. Here the focus of our attention
is economics, that is, most of the examples given are from economics.

According to ERICH SCHNEIDER (1900–1970) “the task of economics is to
uncover and explain the interdependencies within the economy”. These “interde-
pendencies” are connections, regularities and laws, regularly observed in practice,
concerning events, facts, processes, trends etc. which are to be encompassed or
covered by a theory. A theory is a collection of axioms, hypotheses, assumptions,
and theorems followed by a chain of consequences, which are obtained by logical
(mostly mathematical) deduction, leading eventually to the mentioned interdepen-
dencies (laws, regularities, connections). A good theory does more: it predicts
new events, rules and connections not yet observed, sometimes “with certainty”,
deterministically (within the theory), at other times only stochastically, “with certain
probability”.
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The famous philosopher and economist JOHN STUART MILL (1806–1873)
and, later, CARL GUSTAV HEMPEL (1905–1997) and others defined scientific
explanation as uniting facts under one or more “laws of nature” (or of economy)
which serve as starting points for logical deductions which eventually, under certain
“initial”, “boundary” and other conditions lead to a description of the observed
facts. This “deductive method”, applied first in the natural but then also in the
social sciences, became the standard method to explain already observed facts and
regularities, and forecast new ones. In spite of that, it is usual in the scientific
community to speak of explanations, forecasts and theories also if there are no
laws involved in the scientific systems of statements which are built up.

What we just said, may give the impression that the theory is primary to the
practice and observations. Really, the situation is quite different: In many cases one
needs lots of observations to subsume them under a theory, the assumptions of which
are chosen exactly so that statements about the observed facts and connections
can be deduced from them. The more “facts of life” (or of science) a theory can
explain the better it is (and it is even better if it can forecast future events). So,
before going from theory to practice, science (both natural and social) goes from
experience to assumptions. Clearly, very often this transition is (pre) theoretically
impregnated by concepts and conceptions. Such concepts and conceptions lead to
so-called “models”.

In mathematics, natural sciences, engineering and in the social sciences, in
particular economics, the notion of a “model” usually means somewhat different
things. We will deal with them in Sects. 13.2 and 13.3. We will see that models in
economics are simplified images, reflections, reconstructions of (parts of) economic
reality. They can be presented for instance verbally, graphically, analytically, and
abstractly as a system of assumptions. These assumptions (Sect. 13.4) become
“kernels” of economic theory (Sect. 13.5). The purpose of Sect. 13.6 is to clarify
the role of models and theory in economics and list at the same time, some of the
most important types of models and theories. In economics theories serve not only
for explanation and forecasting but also as a basis for decision making. Theories
everywhere have to be checked and rechecked by confrontation with empirical facts
and corrected, if necessary. This will be the subject of Sect. 13.7.

13.2 Models in Engineering, Natural Sciences andMathematics

We give short descriptions of what is meant with “models” in engineering, natural
sciences and mathematics so that we can point out, in the next section, the
similarities and differences between these models and the models in the social
sciences (in particular in economics).

1. Models in engineering. In engineering, models are reduced, real size or enlarged
spatial renditions of a technical project or product serving for teaching purposes
(for example a cross section of a machine), as a toy (for instance model railway),
for experiments (e.g. wind channel for testing airplane shapes), as production tool
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(for example a wooden model for producing a cast to mold a metallic object),
etc. They are simplified material concretisations of the respective machines or
transformation systems to visualise and make available transformation functions,
e.g. for manipulation, tuning of variables, etc.

2. Models in the natural sciences. Here not a man-made product or project is
represented but an object or process of nature. As distinguished from the
models mentioned above, models in science usually reflect only those aspects
of the original object or process which are considered important for the actual
research, while neglecting others (“abstraction”). This procedure serves to
explain processes, to forecast future events or to plan experiments. Examples:
models of stars and galaxies in astronomy and cosmology; models of “ideal
gas”, “incompressible fluids”, of atoms and nuclei in physics; models of cells
and genes in biology.

3. Models in mathematics. In mathematics and mathematical logics one describes a
research domain by a system of axioms. The axioms are statements which sound
sufficiently obvious to be accepted by most people but which in their entirety
(that is, all axioms of the system) imply as many theorems (descriptions of facts)
as possible in the axiomatised field. (Concerning “implication” or “deduction”
see Sect. 13.5 a).

The famous logician ALFRED TARSKI (1902–1983) gave the following simple
example. The field here is the part of geometry which deals with straight line
segments and their congruence. Intuitively, two segments are congruent if they are
of equal length but the point is that we use about the objects and their relations only
what is contained in the axioms. For easier writing we call S the set of all segments;
we denote its elements (that is, the segments) by x, y, z etc. and the congruence
relation by , so that x 2 S, y 2 S, x  y means that the segments x and y are
congruent. Our system consists of two axioms:

A1 Reflexivity. If x 2 S then x  x (every segment is congruent to itself).
A2 Skew-transitivity. If x; y; z 2 S; x  z and y  z then x  y (if each of the two

segments is congruent to a third then the two are congruent)

Already from this skimpy system of axioms one can prove simple theorems. For
instance,

T. If y; z 2 S and y  z then z  y (congruence is symmetric).

Proof Take the particular case of A1 where x and z are the same: If z  z and y  z
then z  y. But, by A1, z  z always holds, so this says “if y  z then z  y” as
asserted.

A consequence (called “corollary” in mathematics) is:
C. If x; y; z 2 S; x  z and z  y then x  y (congruence is transitive).
This follows since, by T, one can replace in A2 the supposition y  z by z  y.
Notice that nowhere in the proofs did we use the geometric meaning of segments

and of congruences. We used about them only the formal properties codified in the
axioms. That is how systems of axioms and theory work in mathematics. Therefore,
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they are abstractly formulated. By model in mathematics we mean any set of objects
and relations (mostly within mathematics) which satisfy the axioms and thus also
their consequences. So the straight line segments and their congruences (each of
two congruent segments can be moved so as to completely cover the other) form a
model for the system of axioms A1, A2 (and all its consequences).

It is noteworthy that a system of axioms can have several models (actually every
meaningful system of axioms has more than one model). For instance, the above
system A1, A2 of axioms allows also the following model in arithmetic. Now
S D R (the set of all real numbers) and two real numbers x; y are congruent if their
difference is an integer (positive, negative or 0), for instance 1:223  4:223 and
4:223 6 1:777. These objects, interpreted as segments, and this relation, considered
to be the congruence, clearly satisfy the axioms A1 and A2 and thus also its conse-
quences, for example T and C which therefore give valid theorems of arithmetics.

In addition to models of systems of axioms in “pure” mathematics, an important
task of applied mathematics is to construct models which are mathematical descrip-
tions of fundamental properties of objects (systems) and their interdependencies
(relations) in practice. These are simplifications by necessity but, with the advent of
computers, much more complicated relations and systems can be so described. In
any case, one important purpose of such models is to predict the future behaviour of
the system. And this connects them to models in the social sciences, in particular
economics.

13.3 Models in Economics

To quote ERICH SCHNEIDER again: “The economist’s job necessarily entrains
considering models. The evolution theory, from its beginnings to the present time is
a continuing search for productive and successful models. The history of economic
theory is the history of thinking in models which were constructed successively
to deal with different problems and situations”. Recent literature in economics
and business administration shows that nowadays the significance of “thinking in
models” (modelling) is generally accepted and appreciated. So what is a model in
economics? We have more than one answer to this question:

1. Models in economics as simplified images of parts of economic reality. As in
science (and in applied mathematics), also in economics, models are artificially
constructed representations of real objects. But while in natural sciences the
objects and interdependencies, which are to be reflected, are parts of nature
of the world (more or less) independent of humanity, in economics they come
from the “world of economy” which is overwhelmingly dependent on human
decisions and actions. The choice of objects and interdependencies and the
degree of simplification needed and/or permissible to construct a model depends
on human purposes etc. (compare Sect. 13.6). So the builders of model in
economics have to choose those aspects, properties and relations of (mostly
social) reality, which are essential for the object of their research. In writings
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about models in economics the relation between reality and model is often
described as isomorphy. This is neither quite correct mathematically speaking nor
(conceptually because it indicated a “one-to-one” (bijective; compare Sect. 3.2)
mapping of the set of objects and of the interdependencies of the (economic)
reality onto the model. But the idea in modelling is exactly to simplify in order
to see the interdependencies more clearly so that one can make predictions and
decisions which could not be based on the complicated, messy, detail-ridden, full
reality. The word homomorphism corresponding to injection (compare Sect. 3.2)
would be mathematically and conceptually more correct.

Note that in the above we were describing the concept of model (“paraphras-
ing” it, just as we did “set” in Sect. 1.2) not defining it in any strict logical or
mathematical sense. In 2-5 below we will deal with the question, how models
can be represented. In research activity, construction of a model often comes after
such representations. Both serve to facilitate solutions of practical or theoretical
problems but, in final analysis, they are highly individual and subjective activities
of researchers (individuals or teams of them).

2. Verbal representation (description) of more or less realistic models. This is quite
frequent in the literature of economics. In order for such a representation to be
scientific, it has to be more exact than everyday colloquial discourse or writing,
In particular, the terminology should be unambiguous.

Example 1 Based on a model constructed for this purpose, a researcher
predicts that the price level in a country will go down in the following year.
If the concept of price level (compare Sect. 3.1 13) is not defined exactly then
this researcher can claim success even if only one price went down (slightly)
during that year, while all other prices went up (considerably). All that is
needed to achieve this is to choose skillfully the weights determining the price
level with the “wisdom” of hindsight.

Sometimes, even when the “simplifications” in its construction, and verbal
description are quite unreal, a model can be rather useful.

Example 2 JOHANN HEINRICH VON THÜNEN (1783–1850) described his
famous model of an isolated state as follows: Imagine a big city in the centre
of a big, fertile plane containing, near the city, mines as needed. The plane
in turn is surrounded by unpenetrable wildness. There are no other villages,
towns or cities in the plane and no navigable waterways through it. (Notice
that there were no airplanes at Thünen’s times). So the plane has to supply the
central city with all food and other raw materials while the population of the
city has to furnish all necessary tolls for production and living.—Thünen asks
the question how the intensity of agricultural production at different parts of

(continued)
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the plane depends on their distance from the city.—Unrealistic as this model
may sound, it turned out to be very useful and, to quote Erich Schneider again,
“it became quite fundamental for modern economic and agricultural theory”.

We give one more example of a model in economics which proved to be useful
even though it approximates reality only from afar.

Example 3 A perfect market is one which satisfies the following conditions:

(i) objective homogeneity of goods (no differences in quality);
(ii) no subjective (personal) preferences of buyers for certain sellers or the

other way round;
(iii) no time—or place—dependent differences among sellers or among

buyers;
(iv) complete market transparency.

Again, the model of a perfect market, while impossible to realise completely, is
a basic tool in economics.

It is worth repeating that such “oversimplified” models proved to be useful also in
physics (and other sciences). For instance, there exists no “ideal gas” (by definition,
its molecules, which are considered mathematical points without spatial dimensions,
move freely on straight lines and no forces connect them) but this concept helped
develop the (statistical) kinetic theory of gases, approximately satisfied by “real”
gases, the thinner and of the higher temperature they are, the better.

3. Graphic representation of models. Geographic maps can be considered models
of the part of country they describe. Similarly, but not so frequently models in
economics are also occasionally represented by drawings, in particular “circular-
flow models”. In these models “currents” (for instance of goods, payments, etc.)
flow through “directed edges” (or segments) between “vertices” (or poles; for
instance households, enterprises, governments, countries), forming the “circular
flow” (mathematically: “directed graph”, an object of the mathematical discipline
of combinatorics; those graphs are not the graphs of functions defined in
Sect. 3.2; combinatorics has also important applications in other branches of
economics and of operations research). One can also indicate the intensity of
the currents by the width of the edges (herein the circular-flow models differ
from mathematical “directed graphs” whose edges have no width; however,
there is also a branch of combinatorics which deals with weighted graphs: these
correspond exactly to this situation).—Models and graphs may be represented
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graphically even in three dimensions with aid of mechanical models and
holograms, by the way.

At the Sorbonne university of Paris, in 1958 the bicentennial of an early and
important circular-flow model was celebrated, that of the “tableau de Quesnay”.
FRANÇOIS QUESNAY (1694–1774) was the founder of the “physiocratic school”
of thought in economics and also the private physician of Madame Pompadour,
the mistress of King Louis XV. In analogy to blood circulation in medicine, his
endeavour was to construct a simple and intuitive model of circulation in economics.
In this “tableau” (figure) he represented three “sectors” (land owners, producers of
raw materials, and industry, including commerce) by vertices, which he connected
by edges representing the transactions between sectors. The physiocratic theory
impressed and influenced KARL MARX (1818–1883) to construct a geometrically
similar but economically different graphic model. His classification was “func-
tional” rather then “institutional”, his sectors were “departments” of capital goods
(i.e., means of production), consumption goods and households (embodying, among
others, the labour force). Moreover, while Quesnay’s “tableau” described just
stationary processes, Marx analysed also economies with increasing capital stock.
A graphic representation of Marx’s model for simple reproduction of an economy is
reproduced in Fig. 13.1. In Marx’s terminology the reproduction is simple if in the
process of production the means of production and the labour force are just renewed
(without expansion). In order to renew the labour force, the necessary amount of
durable (houses, appliances, etc.) and perishable (food, clothing,etc.) consumer

Means of Production

of Capital Goods

Means of Production

of Consumption Goods

Capitalists 1

c

Capitalists 2

s

Households 1 Households 2

c = constant capital

v = variable capital

s = surplus

Fig. 13.1 A graphic representation of the model for simple reproduction of an economy
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goods have to be available. In order to produce them, again means of production
are needed. The goods pass through several stages of the process till they get as
products, established by the means of production, into the sector of consumer goods
and from there, after passing through several stages of consumer goods production,
into households. There they are consumed and thus reproduce the labour force,
which in turn produces both the means of production and the consumer goods.—
The boxes and arrows in Fig. 13.1 may be replaced by vertices and directed, even
weighted edges of the weighted directed graphs mentioned above. The quantitative
aspects of this model, in particular the question, when an equilibrium is achieved,
could be analysed by use of its analytic representation (compare to 4 below)

The relation between a model and its graphic representation can be reversed.
For instance, the boxes (vertices) and arrows (directed edges) in Fig. 13.1 can be
considered to be an abstract pattern (directed graph) and then the above economic
interpretation is a model for this pattern in the same mathematical-logical sense
as, in Sect. 13.2 3, the “geometry of segments” and the “arithmetic of reals with
integer differences” were models of the axioms A1, A2. Here too, as there, the same
pattern may have several (economic, business administration) models. For instance,
the following is another model for the pattern in Fig. 13.1.

Replace “capital goods” by “raw material processing”, “consumption goods”
by “production goods”, and “households” by “warehouses and centres of other
activities, such as purchasing, sale” on the vertices in Fig. 13.1. If we now reappraise
the arrows from the warehouses as flows of material, those from “raw material
processing” to “consumption goods” as flows of “finished” raw material, the arrows
between two “raw material processing” boxes as flows of raw materials in different
stages of processing, those between two “production goods” boxes as flows of
(partially finished) products and, finally the arrows to “warehouses, sales” as flows
of finished products, then we get a simple model for some sort of enterprise.—We
give two more examples of directed graphs serving as graphical representations of
models.

Example 4 We represent the model of the information structure, say in an
enterprise, by a directed graph in which an edge is directed from a vertex A
to a vertex B if office B can be directly informed by office (or workplace) A.

Example 5 Now the vertices correspond to enterprises and an edge is directed
from the vertex A to the vertex B if enterprise A supplies enterprises B.
This directed graph represents a model of the network of delivery and receipt
relations in a branch of the economy. If the graph is weighted, it can represent
also the value of the delivered goods.

(continued)
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Models for planning of projects can be represented by special graphs,
networks, which reflect the logical structure of the project and can be
converted into the practical logistics of realising the project.

4. Analytic representation of models. In order to make quantitative statements,
problem solving and forecasting possible, analytic representation of models
became prevalent in economics, that is, their description by mathematical rela-
tions between economic variables in the sense of models in applied mathematics,
as mentioned at the end of Sect. 13.2 and as we have shown by several examples
in this book. Such relations may be equations or inequalities or functions
deterministically (with certainty) or stochastically (depending on probabilities)
connecting economic variables or defining them or stating conditions. Here is an
example:

Example 6 The variables are the national income Y and the sums C and I of
the expenses for consumption and investment, respectively, all during a fixed
period in the economy. The following conditions are again simplifications
(compare Sects. 13.2 3 and 13.3 2).

C1 The economy is “closed” (no commercial or other economic exchange
with other economies), and there is no economic activity of the govern-
ment.

C2 The planned consumption C of all households depends “linearly” (really,
“affinely”, see Sect. 3.1) upon the national income Y:

C D cY C d .c 2 �0; 1Œ; d 2 RC constants/: (13.1)

C3 The groups of all producers plans to invest, during the period under
consideration, the fixed amount A:

I D A .A 2 RCC; constant/: (13.2)

C4 Equilibrium condition. The national income Y should equal the sum of
all expenses for consumption and investment:

Y D C C I: (13.3)

The three variables C, I and Y in the model are often called “endogenous”,
meaning that they have to be determined within the model, while the constants or
“parameters” c, d, a are “exogenous” that is, they are imposed (given) from outside
the model. In the present context, (13.1) and (13.2) describe C and I as functions
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of Y (affine or constant, respectively), while Eq. (13.3) connects them as a further
“equilibrium” condition. We called the constants c, d and A “parameters” because C,
I and Y can be determined from (13.1), (13.2) and (13.3) uniquely, depending only
upon c, d and A: We obtain Y D cY C d C A, so (since, by supposition, 0 < c < b)
we get the following equilibrium values of the model:

Y D d C A

1 � c
; C D cY C d D cA C d

1 � c
; I D A: (13.4)

The existence of such a solution guarantees that, no matter how the parameters
c 2 �0; 1Œ; d 2 RC, A 2 RCC are given, both the investment .I/ and the
consumption .C/ expenditure can be planned so that they be constant .A/ resp.
affine functions (with coefficients c, d) of the national income Y and satisfy the
equilibrium condition (13.3), while the uniqueness of the solution shows that, for
any given c, d, A, there is just one such triple Y, C, I.

This example gives an indication of the advantage of models described quan-
titatively, in the language of mathematics, as compared to models represented
verbally, in everyday language: Mathematics makes a concise, lucid representation
of the model possible. Furthermore, the exact, “syntactic” rules (which concern
the logical, formal structure) of the mathematical language make it possible
to reach unambiguous conclusions, independently of “semantic” aspects (which
depend on the meaning of words and expressions) through formal manipulations
(“calculation”). Then the semantic analysis of the result permits pragmatic, practical
applications of the model. We have just seen, for instance, how formal (syntactic)
manipulation of the conditions (13.1), (13.2) and (13.3) led “automatically” to
the result (13.4). In these calculations the semantic meaning of C, I and Y was
irrelevant. But then the semantic analysis of the result (13.4), applied to the
present problem, showed that there exist unique equilibrium values of expenditure
for consumption and investment and of the value of national income in our
model.

Just as this Example 6, also the Examples 2, 3, 4 and 5 could be given a
mathematical representation in the form of exactly formulated assumptions and, as
a further refinement, even of quantitative relationships.

The great physicist GALILEO GALILEI (1564–1642) wrote that “the book of
nature is written in the languages of mathematics”. Nowadays practically everybody
agrees in the importance of the language of mathematics also in the representation
of models in economics.

5. Representation of models by systems of assumptions. If the concept of
assumptions is taken broadly enough, including axioms, principles, suppositions,
premises, postulates, hypotheses, initial-, boundary- and other conditions
then clearly every model, as defined at the beginning of this section, can be
represented by systems of assumptions. While we want now our assumptions
to be exactly formulated in the mathematical sense, we will keep talking about
systems of assumptions rather than system of axioms (though we sometimes used
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the word axiom parenthetically). The reason is that, historically, by an “axiom”
in mathematics and in mathematical logic (compare Sect. 13.2 3) something like
“generally accepted fundamental principle” has been meant and the assumptions
concerning models in economics are, as a rule, not quite so fundamental.

As mentioned above, every model in economics can be represented by a system
of assumption. One can ask, what requirements, conversely, a system of assumptions
should satisfy in order to serve as representation of a model in economics. In other
words, what kind of assumptions can characterise a simplified image of (a part of)
reality.

We will examine this in the next section.

13.4 Systems of Assumptions

A “subjective” theory in philosophy doubts whether an objective reality exists at all
and, if it does, whether it can be explored. If it did not or could not, then models
could not be considered anymore “simplified images of reality” represented by a
system of assumptions. Then these assumptions would rather define the model.

Be as it may, the question, what requirements a system of assumption has to
satisfy in order to represent a model or to be a model itself, makes sense. Again,
opinions differ not surprisingly, since, for instance, it is to a certain degree a matter
of taste what one accepts as “simplified image of reality”. For the same reason, it
is not our aim here to put together a rigid list of such requirements. Actually, most
such lists would exclude some classic models in economics. In view of the purpose
of creating models one could require, however, that the assumptions for a model in
economics should at least be realistic and informative (see 2 below), corroborated
by previous experience and checking (see 3 below) and consistent, that is, it should
not lead to contradiction (see Sect. 13.5 3).

1. Formulation of assumptions; inductive reasoning. The formulation of assump-
tions is often aided by psychological factors, beyond rational reasoning. Often
“creative intuition” is mentioned in this context, without spelling out what this
is supposed to mean. The so called “factor analysis” originating in experimental
psychology deals, among others, with the subject of systematising intuition by
means of observed data (“factors”).

One of the theoretical explanations of how assumptions are formed is induc-
tive reasoning, as formulated by KARL POPPER (1902–1994). From particular
observations, experiments, etc. one intuitively reaches general conclusions or
hypotheses, which have then to be checked by confronting them with reality (further
observations, experiments, and so on). For instance, in economics one observes
several times that full employment leads to rising prices. We advance therefrom
by “inductive reasoning” to the general assumption that rising levels of employment
always (or usually) lead to higher price levels. If further observation confirms this
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(in most cases) then this assumption can be accepted as part of a model. (Somewhat
analogous to this process is the often unformulated presumption that all or most
people will act as we ourselves act and do as those whom we know.)

The expression “inductive reasoning” is often abbreviated to “induction” which,
of course, has nothing to do with “mathematical induction”. (That says in its
simplest form the following about a statement Sn concerning n 2 N: If S1 is true
and Sn implies SnC1 for all n 2 N then Sn is true for all n 2 N.)

Of course, assumptions may have also other sources. In addition to the purpose
of a system of assumptions (see Sect. 13.6) logical (Sect. 13.5 1, 2, 3), histor-
ical and practical considerations may play a role. For instance, the individual
researcher’s experience in and knowledge of economics, history, sociology, of
political situations, etc. can have an impact, and so can his or her subjective
political-ideological-religious persuasion, personal experiences, ways of thinking,
etc. Even personal likes or dislikes of mathematics and logic make a difference.
Those mathematical-logically inclined will be careful to deal with well defined
concepts and may try to formulate their assumptions on relations and conditions
in a mathematical form. A researcher even more advanced in mathematics and logic
may also be interested, whether the assumptions in the system are independent (no
assumptions follows from another, compare Sect. 13.5 2), complete (all those results
following from it, for the explanation of which has been created) and, necessarily,
whether it is consistent, that is, does not lead to contradictions (no assumption
should contradict any consequence of the others).

Of course, for a system of assumptions in economics to be useful, it has to be at
least approximately correct in its forecast about a wide range of future events and
observations (see 2 and 3 below).

2. Information content of assumptions and their link to reality. Since the purpose
of creating a model in economics is presumably to obtain information about one
or more aspects of reality and to reach optimal decisions on them, it is natural
to require that the assumptions be realistic and informative (contain essential
information). The two requirements are not the same. For instance, the statement
that if nothing changes in the US economy then its growth rate will continue to
develop as before is quite close to reality but contains little if any information.
(There is also the joke about a parachutist landing on top of a tree in a part of the
country which she does not know. But she sees somebody walking by and yells
down to him “where am I?”. He stops, thinks, then answers “you are on the top
of that tree”. She says “so you are a pure mathematician”. He: “yes, how did you
know?”. She: “you carefully deliberated before you answered, your answer was
perfectly exact and completely useless”—or, as we would say, conformed with
reality but gave no new information whatsoever.)

For a system of assumptions in economics to be realistic and informative, it is
important that, in addition to economic data, it should also pay attention to legal,
technical and social conditions.

3. Corroboration of an assumption. One way to ascertain that an assumption
contains much information is to check what possibilities it does exclude. For this,
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Karl Popper (whom we already quoted before) argues essentially as follows. If
an assumption contains more information then, at least in principle, it is easier to
check its correctness because then there are more things which could contradict
it. If an assumption that stands out against attempts to falsify it proves correct
in many practical situations then it is well corroborated. Theories containing
empirical content are characterised by being falsifiable. Of course, one can never
confirm a (falsifiable) hypothesis (assumption) absolutely but, if we confront it
with a great variety of situations where it could fail (be falsified) and it does not,
then we have a good reason to accept it, at least for the time being.

For instance, in Example 6 of Sect. 13.3 we made the assumption that the
consumption C depends upon the national income Y linearly (“in an affine way”,
to be exact):

C D cY C d (13.5)

but we assumed about the constants (“parameters”) only 0 < c < 1 and d > 0. If our
assumption contained, more narrowly, 1=2 < c < 3=4 (while about d we still know
only that it is positive) then its information content increases. Indeed, if numerical
checking of the data gave (13.5) with c D d D 1=4 that does not contradict the first
assumption but it does contradict the second. If the assumption is further restricted
by specifying, say c D 3=4, d D 0 (in which case (13.5) reduces to C D 3Y=4,
a truly “linear” relation), then the information content increases dramatically and
so does the ease of rejection of this final hypothesis: one or, in practice preferably
several, observations with C ¤ 3Y=4 are sufficient to reject it. However, even the
original assumption (13.5) with the lower information content is vulnerable: Even if
up till now all relations between Y and C prove to be affine, future observations may
turn out not to be. That is why it is still an assumption (although well corroborated)
and not an unconditionally true law.

13.5 Theories in the Sciences, in Particular in Economics

We pointed out already in Sect. 13.1 that, in general, a theory T is a system
of statements, that is, assumptions (axioms, postulates, hypotheses, with initial,
boundary and other conditions) and theorems (propositions, lemmata, corollaries)
concerning a field of research. We will deal with particularities of theories in
economics below, in 4. First, we will clarify basic notations concerning theories in
general. Independently of its origins, a theory T is presumed to contain all present
and future consequences (theorems) which follow in a purely logical manner from
the assumptions (axioms) of T. We start, in 1 with the description of this “purely
logical deduction”.

1. The method of deduction. A theory T is developed in the following way from a
system S of statements on the basic objects in a field of research. A statement
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t belongs to the theory T if it is a logical consequence of one or more (or all)
statements s of S. One says in this case that S implies t (in formula: S ) t) or
that t can be deduced (follows) from S or that some (or all) s of S form sufficient
conditions for t. This means also that not all s of S are valid if t is not valid
(because the validity of S would imply that of T). So, conversely, t is a necessary
condition for S. Clearly, S � T.

Having S would, in principle, yield the knowledge of all consequences of S, that
is, of the whole theory T; but only in principle. An analogue of the superhuman
“demon” of the famous mathematician and physicist PIERRE SIMON MARQUIS

DE LAPLACE (1749–1827; the demon would be able, in knowledge of the laws of
physics and the initial state, to determine the present and future state and behaviour
of everything) could deduce from S all of T. But researchers who are only human,
have to be content with deducing a part of the set T of all consequences of S. The
amount and importance of consequences deduced from a system S of assumptions
may be quite impressive but may still only be a minuscule part of T (“our knowledge
is small, our ignorance is immense” to paraphrase again Laplace). It is particular
annoying when statements, which can be formulated in a quite simple way in the
terminology of a theory T, resist for centuries a logical deduction from the system
of axioms (and their consequences) in T. For instance we know (from high school or
from Sect. 1.4, Fig. 1.4) that the lengths of the longest (r) and the two shorter .x1; x2/
sides of a rectilinear triangle are connected by Pythagoras’ equation r2 D x21 C x22.
There are (infinitely) many triples .x1; x2; r/ of positive integers satisfying this
equation, for instance (3, 4, 5). The great French mathematician PIERRE FERMAT

(1601–1665) thought to have proved (he wrote it on the margin of a book with the
comment “I have discovered a truly remarkable proof of this theorem but this margin
is too small to write it here”) that there are no positive integers p; q; r satisfying
pn C qn D rn for any integer n > 2. It took more than 300 years till a long and
pretentious proof of this theorem (that is, a deduction of this statement from the
axioms of number theory and their consequences) was presented that satisfied a
great number of experts. The following example is easier. We deduce, from a system
of three simple assumptions in economics, both related and (seemingly) unrelated
results.

Example 1 Experience shows that the production function F W RnC ! RC for
a certain one-product-enterprise or even for some country’s economy satisfies
the following assumptions:

E1. Output resp. national income strictly increases with increasing input, that
is (compare Sect. 3.4),

x � v ) F.x/ > F.v/: .x 2 RnC; v 2 RnC/

(continued)
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E2. The production function is positively linearly homogeneous (compare
Sect. 3.4):

F.�x/ D �F.x/ for all � 2 RCC; x 2 RnC

or writing F as function of the n (scalar) inputs:

F.�x1; : : : ; �xn/ D �F.x1; : : : ; xn/ for all � > 0; x1 > 0; : : : ; xn > 0:

E3. The production function F W RnC ! RC as function of .n � 1/ of
its variables (inputs) is positively homogeneous of some degree (compare
Sect. 6.12): for some rj 2 RCC,

F.�x1; � � � ; �xj�1; xj; �xjC1; : : : ; �xn/ D �rj F.x1; : : : ; xn/ .j D 1; : : : ; n/

for all � > 0; x1 � 0; : : : ; xn � 0:

We will prove that this implies that F has the Cobb-Douglas form (see
Sects. 6.12, and 8.4.)

F.x1; x2; : : : ; xn/ D Cx1�r1
1 x1�r2

2 : : : x1�rn
n (13.6)

with a positive constant C, furthermore 0 < rj < 1 . j D 1; 2; : : : ; n/ and r1 C
r2 C : : : C rn D n � 1. Conversely, every function F so given satisfies E1, E2 and
E3.—The second, converse part of the statement is easily checked by putting (13.6)
into E1, E2, E3.

In order to prove the first part, that (13.6) and the restrictions on C; r1; r2; : : : ; rn

follow from E1, E2, E3, we use first E2 then E3:

F.x1; x2; : : : ; xn/ D x1x2 : : : xnF

�
1

x2x3 : : : xn
;

1

x1x3 : : : xn
; : : : ;

1

x1x2 : : : xn�1

�

D
�
1

x1

�r1

x1x2 : : : xnF

�
1

x2x3 : : : xn
;

1

x3x4 : : : xn
; : : : ;

1

x2x3 : : : xn�1

�

D � � �

D x1�r1
1 x1�r2

2 : : : x1�rn
n F.1; 1; : : : ; 1/

which, with C D F.1; 1; : : : ; 1/, is exactly (13.6). Since the values of F are
nonnegative .F W RnC ! RC/, we have .� 0/ and; by E1 (F strictly increasing
in each variable, compare Sect. 3.2), 1� r1 > 0, 1� r2 > 0, . . . , 1� rn > 0, C > 0.
Finally, putting (13.6) into E2 gives 1 � r1 C 1 � r2 C : : : C 1 � rn D 1, which
concludes the proof.
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Since x 7! x1�r is strictly convex from above if 0 < r < 1 (see Sect. 3.5) we
get, as an added bonus, the strict law of diminishing returns for each input variable,
that is,

xj 7! F.x1; : : : ; xj�1; xj; xjC1; : : : ; xn/ (13.7)

is strictly convex from above on all of RC for all positive n-dimensional vectors
x1; : : : ; xj�1; xjC1; : : : ; xn . j D 1; 2; : : : ; n/. In other words, the output (income)
increases keep strictly decreasing from 0 on all the way (see Fig. 13.1). This is
remarkable, since nothing in the assumptions seems to have to do with convexity
or diminishing returns.

Often there is not or not yet sufficient evidence to justify assumptions like E1,
E2, E3 above, or assumptions are such that they cannot be directly verified. Then
“the proof of the pudding is in its eating”: the assumptions are first just conjectures
and it are their consequences (that is, the theory T which follows from them) which
have to be tested in order to justify (or reject) the assumptions.

2. Independence of assumptions. Whether the assumptions come from experience
or are just guesses (lucky or otherwise, as shown by testing their consequences),
it is of some advantage to keep the number of assumptions, on which the theory
is built, as small as possible, for otherwise the sheer size of the system S of
assumptions may cause confusion. In particular it is redundant to include in S
a statement which follows from the other assumptions in S. The assumptions in
S are independent if none of them follows from the others. This requirement,
however, is often more a matter of logical beauty and conciseness than of
practicability: sometimes the deduction of a very simple and obviously sounding
statement from a minimal system of assumptions may be quite complicated.
In such cases (and if S cannot be replaced by a more convenient system of
independent assumptions), one may sacrifice independence for simplicity. Be it
as it may, one can prove independence by giving for each assumption a “counter-
example” which does not satisfy that assumption but satisfies all others.

Example 2 The assumptions A1, A2, A3, A4 for price indices in Sect. 3.7 are
independent. To see this, check that among

P1.q0; p0; q; p/ WD .p1=p01/
b1 .p2=p02/

b2 : : : .pn=p0n/
bn

(continued)
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with constant b1 2 R�, bk 2 RCC .k D 2; : : : ; n/ such that b1 C b2 C : : :C
bn D 1,

P2.q0; p0; q; p/ WD p1
p01

C p2
p02

C � � � C pn

p0n
;

P3.q0; p0; q; p/ WD 1

q0 � p0 C 1

 
q0 � p0

n

nX

kD1

pk

p0k
C max

(
p1
p01
; � � � ; pn

p0n

)!

;

and

P4.q0; p0; q; p/ WD p1 C p2 C : : :C pn

p01 C p02 C : : :C p0n
;

Pj does not satisfy Aj . j D 1; 2; 3; 4/ but satisfies all others .Pj W RnCC �
RnCC � RnCC � RnCC ! RCC; j D 1; 2; 3; 4I P1; P2; P4 are independent of
q0 and of q, and P3 is independent of q, but that does not matter).

Example 3 Shephard’s six “axioms” P1-P6 for production correspondences
in Sect. 8.7 are independent. Again the proof consists of giving examples Cj of
correspondences which do not satisfy Pj . j D 1; : : : ; 6/ but satisfy the other
five “axioms”:

3. Consistency of a system of assumptions or of a theory. As we just saw, it
is quite easy to prove the independence of the assumptions of a system (by
constructing appropriate counter-examples, as in Examples 2 and 3), but it
is not a very important property of a system of assumptions. The situation
is quite the opposite for the consistency of a system S of statements
(assumptions and theorems; see Sect. 13.5 1) or, equivalently, of the theory
T consisting of all their consequences: it is vitally important (at least
theoretically) but very difficult to prove. Indeed this consistency means,
as indicated at the beginning of Sect. 13.4, that the theory T should not
contain two contradictory statements. If it would, then the theory would
clearly be useless (so much the more because it can be shown that it
would then lead to infinitely many contradictions). The trouble is, that
such contradictions may show up only very late in the development and
elaboration of the theory. So nothing guarantees that even centuries-old
systems of assumptions will not eventually lead to a contradiction. This is
a problem even in pure mathematics and logic: Let T be a (formalised)
theory formulated in the language of logic and mathematics. It is well

(continued)
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known that the consistency of such a T cannot be proved within T itself,
only for T. If one can construct for such a T, with the language of T, a “well-
formed” formula (i.e., a formula fitting into T according to the formation
rules of the language of T) which can not be derived within T then T is
consistent.

We certainly do not want to go into this here in more detail, we offer instead
comfort in three ways: (i) If we can find objects in practice which satisfy all
assumptions of a system S then S and the theory based upon it is consistent. (ii)
Also, if a reasonably developed theory T did not lead to contradiction during a
considerable time of intensive research, we may use T for the time being. (iii) On
the other hand, it is often (but not always, see above) quite easy to prove, by an
example, that a theory or a system of assumptions is not consistent.

Take, for instance, the assumptions E1, E2, E3 of Example 1 in 1 above and add
this fourth assumption:

E4 There exists a j 2 f1; 2; : : : ; ng and a b 2 RCC such that the partial
function in Fig. 13.2 be convex from below on Œ0; b�. The system E1, E2, E3, E4
of assumptions is not consistent (compare(iii)), since we proved in 1 that E1, E2,
E3 imply that in Fig. 13.2 is strictly convex from above, which contradicts E4.—
But, as we have seen, (13.6) does satisfy E1, E2, E3, so the system E1, E2, E3 of
assumptions is consistent, by (i).

4. Theories in the natural and social sciences, in particular in economics. As we
have seen in Sects. 13.2 and 13.3, in particular in Sects. 13.2 2 and 13.3 5, models
in the natural and social sciences are simplified images of (different parts of)
reality and can be described by systems of assumptions. By what we learnt in
the present section, such a system of assumptions and the consequences deduced
from it form a theory. The theory describes the model in more detail and helps
us bring order and transparency into the often confusing appearance of nature or
of say, the economy, permits us to understand it for the present time and even
make forecasts for the future. The more important aspects of reality we captured
in the model and in the theory, the better our understanding and forecasts will

Fig. 13.2 The strict law of
diminishing returns
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be. In Sect. 13.2 3 we saw that the situation is similar in applied mathematics
but that it is, in a way, reversed in pure mathematics and in logic: there a model
is a realisation of a theory, a bunch of objects and relations which satisfy the
axioms (assumptions) and thus the whole theory. Similarly as in Sect. 13.3 3 with
graphic representations, also the relation between economic model and systems
of assumptions (axioms) or theory can be reversed to conform with the pure
mathematical—logical usage. Then the system of axioms and thus the whole
theory can be considered in an abstract—formal way (as in pure mathematics
or logic) and the (say, economic) model is a realisation of the theory. As in
Sects. 13.2 3 and 13.3 3, again several models (realisations) may be attached to
the same theory or system of assumptions.

For instance, the assumptions in Example 6 (Sect. 13.3 4, (13.1), (13.2), (13.3)),
may be recognised as pure mathematical equations (with constants A 2 RCC, c 2
�0; 1Œ, d 2 RC),

C D cY C d;

I D A;

Y D C C I:

As model (meaning now “realisation”) we had there national income as Y, expen-
diture for consumption .C/ and investment .I/. Another model could be income Y,
consumption C and savings I of private household, with the values (13.4) assumed
again.

We state some further requirements for economic theories to be specifically
“empirical” (similar specifications apply to theories in other social, behavioural and
even natural sciences). In order for a consistent theory to be relevant to economics,
its system of assumptions should represent a model of a branch of economics.
Furthermore, a theory is empirical if it contains statements (“theorems”) which have
been checked in practice and are not (yet) falsified. It is also desirable that the theory
should contain statements about processes of significant extent (“dimension”) in
space and time.

The above shows the importance of the method of deduction also for economics.
It allows to condense a branch of economics into consistent assumptions from which
by logical deduction a theory is built containing statements (“theorems”) which can
be confronted with the economic reality and thus justified or falsified. Nowadays
much of economic theory is created in this way.

However, there exist useful theories in economics and in other sciences, no
assumptions or theorems of which can be exactly verified by experience. We
mentioned in Sect. 13.3 2 the theory of “ideal gases” in physics and that of “perfect
markets” (Sect. 13.3, Example 3) in economics. Since their basic assumptions
are abstractions (idealisations) they cannot be exactly verified by experience.
Nevertheless, the consequences of these assumptions (the theory built upon them)
are approximately correct and help to explain many phenomena of the physical or
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economic reality, respectively. In particular, logical consequences of the assump-
tions describing a perfect market (Sect. 13.3, Example 3) and of assumptions about
human behaviour, which are also abstractions (such as “maximisation of profit” and
“maximisation of utility”) show, among others, that

(i) equilibria exist, that is, supply and demand can be balanced and that
(ii) such equilibria are efficient, that is, one “economic agent” (e.g., individual

enterprise, etc.) can do better than in the equilibrium situation only if one or
more others do worse (see Sect. 13.3).

The purpose is not so much to find quantitatively (numerically) the points of
equilibrium, say. The results mentioned are rather important qualitative (structural)
results. The closer real markets get to fulfilling the perfect market conditions
(Sect. 13.3, Example 3) as is increasingly the case with stock markets the better
the results of this theory approximate the real situation in them.

13.6 Why Construct Models and Theories? Types of Models
and Theories

Depending upon the purpose of constructing models and theories, different types
of them evolved. In this section we shall touch, by means of examples, on some
important types of models and theories, as determined by their purposes, such as
description (1), working hypothesis (2), explanation (3), forecasting (4), decision
making (5) and political justification (6).

1. Description. If one wants to describe a complex situation in the economy one
uses (knowingly or intuitively) models. For instance, if we wish to describe the
flow of goods, services, work and money in the economy of a country, we can
use a circular-flow scheme as in Sect. 13.3 3, the vertices being the households,
enterprises, the state, foreign countries, national savings and investment. If we
wish to obtain more detailed information we have to disaggregate the national
data into those for sectors of the economy, regions of the country, etc.

In general, whenever we use a system A, that is neither directly nor indirectly
interacting with a system B, to obtain information about the system B, we are
using A as a model for B.

2. Working hypothesis. The purpose of some simple models is more modest
than explaining processes, they just present “working hypotheses”, the logical
consequences of which we can then compare to observations.

For instance the affine relation C D cY C d (with constant c 2 �0; 1Œ; d 2
RCC) between consumption and national income in Example 6 (Sect. 13.3),
which we have quoted repeatedly, can be considered as such a working hypoth-
esis. On the one hand, if observations do not corroborate it, we can replace it by
another working hypothesis, say that C is a function of Y strictly convex from
above. On the other hand, if observations confirm it (which is the case in the
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long run in most economies) then we can use them to determine or estimate
“econometrically” the values of the constants (“parameters”) c and d. This gives
the model a quantitative character.

Example 1 We spoke of “econometric” determination or estimation
because such relations are rarely “deterministic”, they are more often
“stochastic” (depending on chance, on minor or rare accidental oscilla-
tions). It is often supposed that two variable quantities (say x and y which
may also be vectors, with x uniting all specific influences upon y) are
connected by a single-valued deterministic function f , that is, y D f .x/,
but only “in average”. More exactly, this means that there exists a “random
variable” u (depending again on chance) so that y D f .x/C u. Of course
the models differ depending on f and u. If f is affine, that is, y D axCbCu,
by an abuse of language one often still speaks about a linear (really: affine)
model.

3. Explanation. Models which serve for explanation of observable processes
(“explanatory models”) usually contain “laws” (such as “Newton’s law of
gravity” in physics), as mentioned in Sect. 13.1. For our purposes, a law is a
truly universal statement (without temporal and spatial as well as any other, e.g.
cultural, social etc., limitation of applicability) of interdependencies
(i) which stand till now all tests, no matter where or when they were carried out,

and
(ii) which, based on past experiences, are expected by an overwhelming majority

of experts to be valid also in the future.
Notice that this definition of a law contains not only objective but also subjective
criteria (“the overwhelming majority of experts”)—this is the case also with the
notation of explanatory model itself, in particular in the social sciences.

Whether a model contains a law in the above sense or not, it is not enough
that one should be able to deduce from it one or a few observed phenomena. As
already the famous economist VILFREDO PARETO (1848–1923) noted, to every
statement or observation B there exists a system of assumptions A1; : : : ; An from
which B follows by logical deduction. The point is that the consequences of the
assumptions in an explanatory model should conform with many observations.
On the other hand there should be enough latitude in the model to explain future
or hypothetical situations such as: what would happen if
(a) the enterpreneur or the consumers behaved differently (in a certain way), or
(b) taxes and/or custom went up or down.

We have often compared models and theories of economics (or, more
generally, the social sciences) to those of physics (or the natural sciences).
However, there are differences: The existence of deterministic and stochastic
laws in physics permit logical deductive explanations of observed definitive
or statistical interdependencies, respectively. In economics the “laws” are not
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so general and categorical, and therefore there are proposals to speak only of
“quasi laws”, trends like regularities, etc. Here the models and theories are based
upon suppositions (hypotheses) about human economic behaviour. This is in
particular true about microeconomic models and theories which deal with the
behaviour and plans of individual households and enterprises. This behaviour
and these plans can change rather abruptly and unpredictably. It is doubtful
whether laws will ever be found from which these changes can be deduced.
For statistical reasons macroeconomic models and theories, which deal with
aggregate quantities (of national income, consumption, investment, etc.) rather
than individual ones, can be based on interdependencies more stable for a
longer period. An example of such stable macroeconomics interdependency is
the affine relation (13.1) in Sect. 13.3 .C D cY C d/ between national income
and consumption. The existence of such (relatively) stable macroeconomic laws
makes forecasting possible.

4. Forecasting. While theories in the social sciences which can predict future events
with anything even close to the exactness of natural sciences (and even there,
predictions are often not very exact: think of weather forecasts), they are still
better than lucky (or unlucky) guesses and prophecies: “forecasting models”
should contain “laws” as described in 3 and be dynamic, that is, at least one
assumption should contain the time (as process, not just one point in time).
Models, which are not dynamic, are called static. A further classification is into
total and partial models. The first reflects the entire economy of a country or of
a group of countries, while the second is more restricted, for instance, to a sector
or to a market.

We should not forget that in economics (and in other social sciences) the
forecast may influence the future. That is why one talks about “self-fulfilling” (or
“self-destroying”) prophecies. A really good model may take also this influence
into account. But economic forecasting is anyway difficult enough. Even short-
and medium-term forecasts for the entire economy make the solution of several
hundred equations and inequalities necessary, in particular if decision making
is to be based on them. The solution is nowadays done with computers. The
following model can be handled without the aid of computers.

Example 2 Samuelson’s dynamic macroeconomic total model for the
“boom and bust” business cycle (Sect. 8.7) shows that simple assumptions
about the (linear or affine) interdependencies between the national income,
consumption and investment may imply, if they take also the time delay
into consideration, cyclic oscillations of these quantities around equilib-
rium values.

5. Decision making. Mainly in business administration but also in (all of) eco-
nomics, the importance of models for rational decision making is growing
in particular in operations research and game theory. Examples are models
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for linear, nonlinear and dynamic optimisation, inventory control, replacement,
queueing, games (against nature or other opponents; zero-sum and non-zero-
sum-games). As in Sect. 13.3 3, also for these decision making models, graphs
(and graph theory) are often used.

As to models for (static, deterministic) models for optimisation, the problem
is usually to find the maximum or minimum of a function f W RnC ! R under m
conditions (restrictions) of the form

gj.x1; : : : ; xn/ � cj .gjIRnC ! RI j D 1; 2; : : : ; m/

(the cj could be immerged into the gj and thus replaced by 0). For instance, the
variables could be the quantities of goods produced by an enterprise, the value
of the function f , the gain, expected from the production of the goods in these
quantities and the restrictions could express bounds of capacity in the enterprise.

If all the above functions f , g1, g2, . . . ,gm are linear then we have a linear
optimisation problem (see Sect. 4.8), otherwise one of nonlinear optimisation
(see Chap. 8) If the values of f , g1, . . . ,gm may in part depend on chance, then this
new, different problem belongs to stochastic optimisation. Nowadays all these
theories are sufficiently advanced to make easier and better decisions possible
than “trial and error”.

More microeconomic models (dealing, say, with individual enterprises) exist
and have been used for decision making than macroeconomic ones (dealing with
sectors of the national or international economy) but it can be expected that
increasingly also the latter will be used in making decisions on questions of
national and even global economics.

6. Justification of politics. In addition to the purposes mentioned till now, construc-
tion of models and theories may also be politically or ideologically motivated,
and the more so, the less they can be tested by experience. The goal of
creating a theory conforming to and explaining one’s ideological bias can
be done even under semblance of objectivity, for instance by excluding (or
including) non-economic influences under the catch phrase “all other things
being equal” (compare Sect. 13.7 1), by separating production and distribution,
or by overidealized assumptions such as unlimited flexibility of all “factors”,
complete information or foresight, rigidity of market-evolution, etc.

13.7 Control, Correction and Applicability of Models
and Theories

Of course, models and theories should not remain unchecked, without feedback
from (further) observations of the real world. This can be done in several ways,
considering also what kind of models are involved.

1. Control and correction of explanatory models and theories in economics. If
a theory in economics claims to be able to explain essential phenomena of
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economic reality and thus to assist decision making (compare to 4 and 5 in
Sect. 13.6) then it should be possible to test (check, control) its assumptions and
their consequences empirically (by observation of the real world). But even if
they turn out to be correct several times, this does not prove or even guarantee
the truth of the theory, since several further observations may disprove (falsify) it.
Karl Popper (whom we quoted in Sect. 13.4 1 on inductive reasoning) observed
that progress in empirical sciences is mostly made not by those who try to justify
or “save” a theory, but by those who try to disprove (falsify) it. If they succeed,
then the theory has to be corrected or a new theory has to be created; if not then
the original theory is greatly strengthened (corroborated). This is the basis of
“critical rationalism”.

Figure 13.3, by HANS KARL SCHNEIDER (1920–2011), is itself a graphic
representation of a model (compare Sect. 13.3 3): it shows how theories in empir-
ical sciences should be created, controlled and corrected. It fits natural sciences
somewhat better than social sciences, understandable, since the models of social
scientists, in particular of economists, have to take into account also a rather difficult
and at times irregular subject: human behaviour.

Unfortunately, even assumptions soundly rejected by experience do survive in
the social sciences. For instance, microeconomic theories are often based on the
assumption that entrepreneurs are always moved by the desire to maximise profit.
While in this generality the assumption has been falsified by counter-examples,
it stubbornly keeps reappearing. Note that the profit-maximising assumption is
legitimate if restricted to carefully outlined occasional activities (see 2 below).

It is quite another story that some theories in the social sciences, in particular
in economics, cannot be confronted with reality at all. This is often achieved by
the “all other things being equal” stipulation. As mentioned in Sect. 13.6 6, in total
models (see Sect. 13.6 4) this achieves the exclusion of non-economic influences. In
partial models it can be used to exclude influences from other parts of the economy.
Whenever observations disprove a tenet of such a theory then its advocates deflect
the blame to “not all other things were equal” (they seldom are). For instance,
Marxist theory postulated that accumulation of capital causes dramatic increase of
poverty, misery, exploitation and degradation of the working masses. When this did
not materialise then, for instance ROSA LUXEMBURG (1870–1919) explained it by
increased exploitation of colonies and other formerly non-capitalistic markets. Even
after decolonialization it lasted some forty years till the theory collapsed.

2. Control and application of models of limited validity. When, as it often happens
in economics and in other social (and even natural) sciences, no general theories
have (yet) been formulated which contain laws explaining certain processes,
sometimes “ad hoc models” (models of restricted validity and with less scientific
foundation; compare also Sect. 13.3 2) can serve well. The assumptions in the
representation of such models may (a) be of limited validity and/or (b) not
be realistic, but their consequences (or some of them), as far as they go, may
conform with and be applicable to economic reality. Thünen’s “isolated state”
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Fig. 13.3 H. K. Schneider’s graph on creation, control and correction of theories in empirical
sciences

and the “perfect market” (Examples 2 and 3) in Sect. 13.3 2 are rather of type (b),
while the “affine equilibrium” of national income, consumption and investment
(Example 6 in Sect. 13.3 4) and production functions satisfying E1, E2, E3
in Example 1 (Sect. 13.5 1) are rather of type (a). Of course, before one uses
such models and their consequences, it has to be checked (empirically, at least
“econometrically”, compare Sects. 13.5 4 and 13.6 2 whether the conditions of
their validity are satisfied, at least approximately.
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Models of limited validity can be applied to short or medium term (say, one
to twelve months) forecasting in the realistic expectation that in time spans of
such brevity the economic circumstances do not change significantly and that
“disturbances” (interdependencies neglected in the model) will not become sig-
nificant. But such changes may make long term forecasts incorrect. On the other
hand, taking disturbances (more interdependencies) into consideration may unduly
complicate the model, making for instance the system of equations and inequalities,
which represent it, too cumbersome even for computers. Moreover, errors often
propagate and increase with the number of steps and calculations. In particular, in
the case of nonlinear dynamical systems (compare Sect. 12.5) small errors in the
data (parameters and initial conditions) may lead in a relatively short time to huge
deviations from the solutions which would result from correct data.

13.8 Concluding Remarks

Opinions vary about the role of models, theories and methods in economics and in
other social sciences. While the reaction of the famous economist ROY FORBES

HARROD (1900–1978) to the advocates of methodology was “stop talking and
get on with the job”, in the opinion of Vilfredo Pareto (whom we quoted in
Sect. 13.6 3 about the role of models) every method is fine, whether using historical
analysis or mathematics, as long as it is expedient. This points in the direction
of interdisciplinary research, for instance by integration of studies in economics,
sociology and psychology (such as behavioural analysis), which is indeed gaining in
importance nowadays. This may lead, as Hans Karl Schneider (also quoted before,
in Sect. 13.7 1, see Fig. 13.3 on theories in sciences) observed, to a general theory
connecting social sciences by integrating economic, sociologic, psychologic and
other aspects of human behaviour. In order to advance towards this goal, no doubt
further research in the theory of scientific research is necessary (though probably
not sufficient, compare Sect. 13.5 1). Such methodological research has gone quite
far in the natural sciences but much remains to be done in the social sciences.

13.9 Exercises

Note. Many of the following exercises require longer answers (almost “essays”) than
most others in this book. Also, there is more than one “correct answer” (the answer
we give to some of these exercises at the end of this book is “one” of several correct
answers). This situation is more common in economics and even mathematics than
one may think at this level.

1. Is a model in economics
(a) a system of assumptions containing economic notations,
(b) a system of equations containing economic variables?
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2. Give argument for and against models based upon idealistic assumptions
(unrealistic but abstracted from reality).

3. What is the role of inductive reasoning in the social sciences?
4. Compare the notions of model in

(a) logic and pure mathematics on one hand and in
(b) applied mathematics and in the sciences on the other.
(c) Can they merge?

5. Formulate statements in economics which have
(a) all three,
(b) exactly two (each couple)
of the following properties: realistic, informative, true.

6. In what sense can a theory T, which “helps us find our way in the vast and
confusing economic reality”, be considered a representation of a model?

7. Show that the assumptions E1, E2, E3 in Example 1 of Sect. 13.5 1 are
(a) consistent and
(b) for all n � 3, independent.

8. What is the difference between
(a) explanatory models and
(b) models based on working hypotheses?

9. Is the model in Example
(a) 6 in Sect. 13.3 4,
(b) 1 in Sect. 13.3 1,
(c) 1 in Sect. 13.3 2,
(d) 2 in Sect. 13.3 4 (Samuelson’s model of the business cycle; see Sect. 8.7)
an affine or nonlinear, deterministic or stochastic, micro- or macroeconomic,
total or partial, static or dynamic one?

10. May one see that the practical applicability of a model in economics is better
the more realistic its assumptions are?

13.10 Answers

1. (a) A model in economics can be represented by a system of assumptions
containing economic notions, but not every system of such assumptions
is a model in economics in the sense of a “simplified image of a part of
economic reality”. The assumptions can, for instance,

(i) contradict experience,
(ii) be logically inconsistent,

(iii) give no information.
(b) There are models in economics which are not easily representable by a

system of equations containing economic variables (see, e.g., Thünen’s
model of the “isolated state” in Sect. 13.7 2). On the other hand, such
a system can be logically inconsistent (i.e., can have no solution) or its
solution(s) may contradict experience.
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2. Frequently idealistic assumptions make logical deductions and clear insight
possible. The logical consequences often can be utilized as useful informations
(compare Example 3 in Sect. 13.7 2 and, following there, the “ideal gas”
model of physics). That is not necessarily so: Sometimes both the idealistic
assumptions and the consequences deduced from them are so idealized that
confrontaton with reality makes no sense or is impossible. Nevertheless, models
based on such assumptions are used for justification of political measures.

3. Inductive reasoning supports the finding of hypotheses. Since only a finite
number of observations or experiments can be made, such hypotheses are
preliminary starting points rather than reliable knowledge.

4. A model is in
(a) logic and pure mathematics any set of objects and relations which satisfy

the axioms of an axiom system,
(b) in applied mathematics and in the sciences a simplified image of a part of

reality.
(c) The two notions of a model can be merged if for any simplified image A of a

part of reality there can be abstractly formulated a system S of assumptions
of the following kind. There exists a useful covering of the sysmbols in the
assumptions with meaning such that S with this realisation of the symbols
represents A.

5. The following statement is
(a) realistic, informative, true:

DM 1.- -=US$ .6627 on Tuesday, September 10, 1996, at 11:28 a.m. in
New York,

(b) realistic, informative, wrong:
DM 1.- -=US$ .6543 on Tuesday, September 10, 1996, at 11:28 a.m. in
New York,
realistic, not informative, true:
if DM 1.- -=US$ .6627 then 1US$=DM 1.5090
(not informative for anybody who knows that 1/.6627=1.5090),
not realistic, informative, true:
if DM 1.- -had been US$ .7000 on Tuesday, September 10, 1996, at 11.28
a.m. in New York then, in view of the transaction costs, all people who
had bought DM 1000.- - for less than US$650.- - some time ago had been
winners.

6. The system of statements, which constitute a theory T, can be considered to
be a system of assumptions. If this represents a simplified image of (a part of)
economic reality, it is a model in economics.

7. (a) The assumptions E1, E2, E3 in Example 1 of Sect. 12.4 1 are consistent,
since the Cobb-Douglas function F W RnC ! RC given by

F.x1; x2; : : : ; xn/ D Cx1�r1
1 x1�r2

2 : : : x1�rn
n (13.8)
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(with a positive constant C; 0 < rj < 1; j D 1; 2; : : : ; n, r1Cr2C: : :Crn D
n � 1) satisfies them all.

(b) The assumptions E1, E2, E3 are independent, since (13.8) with C > 0,
r1 > 1, r2 > 0, . . . , rn > 0, r1Cr2C: : :Crn D n�1 .n � 3/ satisfies E2, E3,
but not E1; since (13.8) with C > 0, 0 < rj < 1, r1 C r2 C : : :C rn ¤ n � 1
satisfies E1,E3, but not E2; since the function F W RnC ! RC given by
F.x1; : : : ; xn/ D x1 C : : :C xn satisfies E1, E2, but not E3.

8. The difference lies in the purpose of the models.
(a) Explanatory models aim at the logical deduction of events or laws from

hypotheses and already known laws.
(b) Models based on working hypotheses have the purposes of finding laws or

(at least) “interdependencies”.
9. (a) affine, deterministic, macroeconomic, total, static,

(b) nonlinear, deterministic, microecnomic (if F is the production function of an
enterprise), macroeconomic (if F is the production function of a country),
partial, static,

(c) affine or nonlinear (if F is affine or nonlinear), stochastic (further properties
depend on the meaning of F),

(d) affine, deterministic, macroeconomic, total, dynamic.
10. In many cases the answer is no. The more details are taken into consideration in

the assumptions of a model in economics, the more extrusive becomes the basic
structure of the model, that is, in many applications, the system of equations
describing this structure. The system may be too complicated to be solved. But
even if such a system of equations or such a structure still can be mastered
logically or numerically, practical applicability may be limited because of the
following reasons:
(i) The inevitable inaccuracy with the determination of data yields propagation

of error such that the solutions generally become the more inexact the more
extrusive the system of equations is.

(ii) Propagation of error of a very disappointing kind can also emerge, if one
tries to solve initial value problems of certain nonlinear difference equations
(which may be not at all complicated or extrusive; see Sect. 12.4).
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