INCLUDES

(\ FREE
NEWNES ONLINE

MEMBERSHIP

Newnes

N

SD CARD PROJECTS
USING THE PIC
MICROCONTROLLER

The only book on the PIC18F series using
C compiler with SD card projects

Improve and enhance your own projects using the
many SD card based projects in this book

Includes source files, hex files, figures, and tables
for all of the projects

Compete with an evaluation version of the
Microchip C compiler and File 1/0 routines

Dogan lbrahim

SD Card Projects Using the
PIC Microcontroller

This page intentionally left blank

SD Card Projects Using the
PIC Microcontroller

Dogan Ibrahim

AMSTERDAM * BOSTON « HEIDELBERG * LONDON
NEW YORK ¢ OXFORD ¢ PARIS * SAN DIEGO
;@/ SAN FRANCISCO « SINGAPORE * SYDNEY « TOKYO

ELSEVIER Newnes is an imprint of Elsevier N ewnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2010 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the Publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our Web site, www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Ibrahim, Dogan.
SD card projects using the PIC microcontroller / Dogan Ibrahim.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-85617-719-1 (alk. paper)
1. Microcontrollers—Programming. 2. Programmable controllers. 3. Computer storage devices. I. Title.
TJ223.P76.1275 2010
004.16—dc22
2009041498

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications,
visit our Web site, www.elsevierdirect.com

Printed in the United States of America
101112 987654321

Typeset by: diacriTech, Chennai, India

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o0 Foundation

www.elsevier.com/permissions
www.elsevierdirect.com

Copyright Exceptions

The following material has been reproduced with the kind permission of the respective
copyright holders. No further reprints or reproductions may be made without the prior written
consent of the respective copyright holders:

Figures 2.1-2.11, 2.23-2.37, 2.39, 2.42-2.56, 4.63, 4.64, 5.2-5.4, 5.12, 5.19, 5.22, 5.23,
7.1-7.3 and Table 2.2 are taken from Microchip Technology Inc. Data Sheets PIC18FXX2
(DS39564C) and PIC18F2455/2550/4455/4550 (DS39632D).

MDD library functions in Chapter 8 are taken from Microchip Application Note AN1045
(DS01045B), “Implementing File I/O Functions Using Microchip’s Memory Disk Drive File
System Library.”

Figure 5.5 is taken from the Web site of BAJI Labs.

Figures 5.6-5.8 are taken from the Web site of Shuan Shizu Ent. Co., Ltd.

Figures 5.9, 5.14, and 5.20 are taken from the Web site of Custom Computer Services Inc.
Figures 5.10 and 5.21 are taken from the Web site of MikroElektronika Ltd.

Figure 5.11 is taken from the Web site of Futurlec.

Figure 5.13 is taken from the Web site of Forest Electronics.

Figure 5.24 is taken from the Web site of Smart Communications Ltd.

Figure 5.25 is taken from the Web site of RF Solutions.

Figure 5.26 is taken from the Web site of Phyton.

Figures 5.1, 5.14, and 5.15 are taken from the Web site of microEngineering Labs Inc.
Figures 5.16 and 5.17 are taken from the Web site of Kanda Systems.

Figure 5.18 is taken from the Web site of Brunning Software.

Figure 5.30 (part no: FL/IDL800.UK) is taken from the Web site of Flite Electronics
International Ltd.

vi Copyright Exceptions

SD card register definitions in Chapter 3 are taken from Sandisk Corporation “SD Card
Product Manual, Rev. 1.9,” Document no: 80-13-00169, 2003.

Appendixes A and D are taken from the Web site of Motorola Semiconductors Inc.
Appendix B is taken from the Web site of Texas Instruments Inc.
Appendix C is taken from the Web site of National Semiconductor Corporation.

Thanks is due to Microchip Ltd for their technical support and permission to include MPLAB
IDE, MDD library, and Student Version of the MPLAB C18 compiler on the Web site that
accompanies this book.

PIC®, PICSTART®, and MPLAB® are all registered trademarks of Microchip Technology Inc.

Contents

PPEACE c.....ueaennenennniirenniinnennieieancsienessssesssssssssssssassssssassssssssssssassssssnssssssnsssssanssnns XiX
AbDOUL the WED Site.......uu..ceeeunnereuniirenniireneioniensosiensssssnsssssassssssssssssssssssssssssses XXiii
Chapter 1: Microcontroller SyStemscceeeeeeeeeiiiiicininnnnnnnnnnnnneieeeeeeeeeeeeeeenens 1
1.1 INEEOAUCTION ...ttt ettt ettt ettt ettt e et e e bt e e bt e e sabeesateesabeesabaeebaeenes 1
1.2 Microcontroller SYSTEIMScccueevuirriirriiriieieete ettt ettt sttt ettt sane e 1
1.2.1 Random AcCCESS MEMOTYccccueeriieeriieiiieeniieeriteeeieeeieeeieeeiteesieeesaaeesnbeesareeas 4

1.2.2 Read Only MEMOTYccceeviiieiiieiiieeeieeeieeeieeetteesite et e steesteeseeeeseeesneeesanas 5

1.2.3 Programmable Read Only Memorycccceccveeeiiirnieeniienieenieeeiee e 5

1.2.4 Erasable Programmable Read Only MemoOry........ccceeevierieenieencieeeeieeeeeee 5

1.2.5 Electrically Erasable Programmable Read Only Memoryc..ccoccevvieriennene 5

1.2.6 Flash EEPROMcc.ooiiiiiiiiieie ettt 6

1.3 Microcontroller FEAtUIEScocuiiiiiiiiiieieeieee ettt 6
1301 BUSES ettt st sttt st sttt sttt sate st 6

1.3.2 Supply VOIEAZE ...oovieiieiieriieeitee ettt st st 6

1.3.3 The CIOCK c..veeiieiietieie ettt sttt sttt 7

1.304 THIMIETS c.teeiteeiiee ettt ettt ettt ettt et et e ettt eb e ettt e sabeesabeesabeesabeeeabaeebaeesabeesabeeas 7

1.3.5 WatChAOZ.....eoieeiieiieieeieene ettt 7

1.3.6 RESEEINPUL...couuiiiiiiiiiieiieiee ettt st s 8

137 INEETTUPLS .nveiniiiiieieeieeieenttenie ettt sttt sttt saeesanesane e 8

1.3.8 Brown-Out DEteCtOTeeviieiiiieiieeiieeite ettt ettt et e e e e s 8

1.3.9 A/D CONVEIET ...uveenrieiieiieniienieeeiteeitesieesite sttt ettt st sttt st saeesaeesaeesane e 8
1.3.10 Serial T/O ot 9
1.3.11 EEPROM Data MEMOTY......ccccueeruiieriieniieeiieeieeeeieeeeeeesseesseesseesnsnessssessnnes 9
1.3.12 LICD DIIVETS «.eeutiiniiiieeiieieeitesieesitesie ettt ettt ettt sbee st 10
1.3.13 ANAlog COMPATALOTveeerieeiieeiieeeieesieesteeeteeeeeeessreessaeesssaesseeenseeesneenes 10
1.3.14 Real-Time ClOCKc.coviiiiiiriiiiiiniieiieieeeeeeeeee e 10
IR B BTN T LY (o T 1< U T 10
1.3.16 POWEI-0N RESEL......coiuiiiiiiiiiiiieeieeteeeee ettt 10
1.3.17 LOW-POWETr OPETationccceiuieriieniieiieieenieenieesieeieeieesieesie et eeas 10
1.3.18 Current Sink/Source Capabilitycccccecveereerienierienieeeeeeeeeeeeeen 11
1.3.19 USB INEEITACE ... ceteetieiieieeieeieeiee ettt ettt as 11
1.3.20 Motor Control INterface...........cceeveerierieneiriereerieseeee e 11

vii

viii Contents

1.3.21 Controller Area Network Interface..........coccoeviiiniiiniiiiiiiiniiiiiiieeieee, 11
1.3.22 Ethernet INterfaceccooviiiiiiiiiiiiciieetc ettt 11
1.3.23 ZigBee INterfacecccovueeeuieiiieiiiieniecitccece ettt 11
1.4 Microcontroller ArChiteCtUIEScc.eevuieriierienieniierieeereene ettt 11
1.4.1 Reduced Instruction Set Computer and Complex Instruction
S COMPULRTvieeiiieetieeieeeite ettt e eteeebeesteesteesnbeesbeessaseessseessseesnseesnseesnseeas 12
1.5 Choosing a PIC MiCTrOCONIIOLIETeeecvireiieeriiieeieeeieeeieeeite et eive e e e e e 12
1.6 INUMDET SYSTEIMS. ..eeetiieieieeeieeeiieeitieeieeeteeeseteessteesseessteessseeeseeesssesssneessseesssessnseessseens 13
1.6.1 Decimal NUMDET SYSTEIMveeeiiiiiiieiiierieeeieeeieeeeeeeee e saeeereeeseeeene e 13
1.6.2 Binary NUMDETr SYSIEMccucveriieeiieeiiieeiieeiieeiieesreeereesteesseessseeeseneesnseenens 13
1.6.3 Octal NUMDET SYSLEIMeeuviiiiiiieiieieeieeieenieenieeste et e bt e e steesbeesbeesbeenbeeeees 14
1.6.4 Hexadecimal NUMDET SYSEMccruiiiuiiriieiiinieenieenieeieerieenieenie et et sieeseeeeees 14
1.7 Converting Binary Numbers into Decimal..........cccccooceeiiiiiiiiiiiiniineecececeeeeen 14
1.8 Converting Decimal Numbers into Binarycoccereeriiniiniienienienieneeneeseeeee 16
1.9 Converting Binary Numbers into Hexadecimalc.ccoceveniniriininininncneneneene 18
1.10 Converting Hexadecimal Numbers into Binarycccccceceeveenienienceneeniecnecneenne. 19
1.11 Converting Hexadecimal Numbers into Decimal...........ccocceoeenieniininicnencnnene. 20
1.12 Converting Decimal Numbers into Hexadecimal...........ccoccooveeniiiiininincncnnnnne. 21
1.13 Converting Octal Numbers into Decimalccoceeviieiiiiiiiiiinieiieeiceeeeee e 21
1.14 Converting Decimal Numbers into OCtalccceevireviiiiiiiniiieniiesieeeiee e 22
1.15 Converting Octal Numbers into Binary.........cccoeeveeviririieiieenieeeieesieeeeee e 24
1.16 Converting Binary Numbers into OcCtal...........ccceecveeriiiriiiriiieeiieeieeie e 24
1.17 Negative INUIMDEISccvieiiiieiieeiie ettt e sreeeteeeteeessaeessteessseeensaesnseeas 25
1.18 Adding Binary NUMDETScccciiriiiieiieeiieenieeeieesieeeieeeeeeeeeeessaeessseessseeenseeennees 26
1.19 Subtracting Binary NUMDETIScccvveivireiiieriiesieesieeeieeeee e ene e sreeeseeennee s 27
1.20 Multiplication of Binary NUMDETScccceerierieiiinierienienieseente et 28
1.21 Division of Binary NUMDETSccccocevirieriininieeenieneneeenesetetere et 29
1.22 Floating Point INUIMDETS.coouiiiiiieiieiieeieeeee ettt e 30
1.23 Converting a Floating Point Number into Decimal............cc.ccoooiniinininnnniene. 31
1.23.1 Normalizing the Floating Point Numbersccccceeveeneenerneeneeneeneenen. 32
1.23.2 Converting a Decimal Number into Floating Point...........ccccceeveeeienieneennen. 33
1.23.3 Multiplication and Division of Floating
POINt NUMDETS ...c..eviiiiiiiiieiiieeee ettt 34
1.23.4 Addition and Subtraction of Floating Point Numbers...........cccccceevveenieenne. 35
1.24 Binary-Coded Decimal NUMDETSc.coociieeiiiiiiiieinieeiie ettt 36
1,25 SUIMIMATY .eouviieeiiieiiieeiee ettt ettt ste e st e et esbeeesttesbteessteesnseesnseesnseesnsaesseesnsseanes 38
1.26 EXEICISES....cueeuveiiiieiieriie ettt ettt ettt sttt st n et aesn et nesaesneennens 38
Chapter 2: PIC18F Microcontroller Series....................ueeeeeueeeeeeennnnnnniiiiiieeeeeennnnns 41
2.1 PICI8FXX2 ATChITECIUIE.....c.eerviriieiieieierieeieienieeet ettt s 44
2.1.1 Program Memory OrganizZation...........ccceerueereereeneenieeneenieesieeneenieenieeseeeneeas 47
2.1.2 Data Memory Organization...........co.cecuerveeueereenienereenieneneeseenseneeeensenseseenes 49
2.1.3 The Configuration RegIStErS.coererieriiniriienienienieienieneeecie et 49
2.1.4 The POWET SUPPLY c.eviiiiiiiiieeeee ettt 50

2015 THE RESEL.... ettt e e ettt e e e e e e eeeaaae 53

Contents ix

2.1.6 The ClOCK SOUTCEScccuviieeiiiiieeiiiieeiiiieeeciteeeteeeesireeeeereeeesbreesesseeesnssseesns 57

2.1.7 WatchdOog TIMETcocviiiiiiiiiieieeieteeec et 62

2.1.8 Parallel I/O POTLSccccuiiieeiiiieeciiee ettt ettt et e e ebe e e e aaee e 63

2.1.9 TIMETS ettt ettt ettt e b et a ettt b e bt e bt eneene s 69
2.1.10 Capture/Compare/PWM ModUIEs..........cccviieriirriieriieiiieeiee et 77
2.1.11 Pulse Width Modulation Moduleccccooceeneriirninnienienieeeeeeceeeen 80
2.1.12 Analog-to-Digital Converter Moduleccccevriieiiiiiiiiiiiieieeeeeeee 84

B B 0 B 00135 4 - PS 91

2.2 SUIMIMATY ..eeeiiieiiieeiieeiteeeetteeeiteesteestteeseteessseesseesseeanseeasseeassseessseessseesssesssseessseesnsees 103
2.3 EXICISES ettt ettt ettt ettt ettt ettt sttt st s at e st shee st e e nae 103
Chapter 3: Memory Cards...............uuueeeeeecnnnnereeeeicnnnnnneeeeecsnnnneeeesesssnnssseeeens 107
3.1 MemOTY Cald TYPES .eeurieerieeiieeiieerte ettt et e et e stee et e ebeeessteesseeessseessseesnseesnseesneeas 107
3.2 Smart Media Cardcccocueeiiriiiiiieeeete ettt 108
3.3 Multimedia Card..........coceiieeiiriiiieeteeeee ettt st 109
3.4 Compact FIash Cardcceecieiiiiiriieiiieeiee ettt eee et sre e seve e reessseeeneeenee s 110
3.5 MemoOry StICK Cardcccooueeiiiiiiiiiieeeee ettt e 111
3.0 MICTOATIVE ...ttt ettt st st s et bt e saeesaeesateeaeeeas 112
T A 4 D X G | ¢« ARSI 112
3.8 Secure Digital Cardcocueeiieiiiiieieeie et s 113
3.8.1 Standard SD Cardsc.ueeeeeuiiiieiiiieeiiieeeciiee e ere e e 113

3.8.2 High-Capacity SD Cards.........ccccervuiriiiriiiniiiienienieeeceeceeeeee e 115

3.9 Memory Card REaders.........cocueviiiiiiiiiiirieiieeceeceeeeteete ettt 116
3.10 Memory Card Physical Properties.cccceevvieriieriieisiieiieerieesieeseeeee e 117
3.11 Memory Card Technical Properties.........ccceeeeuieriiirriiieeriieerieenieesieesie et 117
3.12 Detailed SD Card StUCLULEcccueruirierieriieieeteetente sttt 118
3.12.1 SD Card Pin Configurationccecceeeeueeereeenieenieenieesieesieessieessneeesnveenns 118
3.12.2 SD Card INterface........ccovueriirieriiiiiiiceeeteee et 119

3.13 SD Card Internal REGISTEIS.......ccuevriieriieeiieeiieeieeeieeeite e e ereesteesteesseeeneeenee s 122
3.13.1 OCR REZISIETveeeuvieeiieeiieeiieeeieeeteeeteeeteetee et e e sseessbeessseesnseessseeesnseenns 123
3.13.2 CID REEISIOT..ccuveeevieeiieeiieesteeetteetteeteeesteestteesebeessseessseessseesnseesnsseessseenns 123
3.13.3 CSD REZISIETeeuiieiiieiiieieete ettt sttt st st st s 125
3.13.4 RCA REZISLET ..ottt st s 130
3.13.5 DSR REGISTETeeiuiieiieiieiiete ettt ettt st st 130
3.13.6 SCR REZISLOT ..ottt sttt e 131
3.13.7 SD Status ReZISET.....cccuieiiiiiiieeie ettt 131

3.14 Calculating the SD Card Capacity........ccocceevuervuerierierieenienieeeeeeeeeesee e e 131
3.15 SD Card SPI Bus ProtocCOL..........coooiiiiiiiiiiiiiiiiiteeite ettt 132
3.15.1 Data Readcoooiiiiiiiiiiieie et 132
3.15.2 Data WIIE ..eeeiieiiiiiieteeeet ettt st st s 132
3.15.3 ReSPONSE TOKENSeerviieiieeiiieeiie ettt ettt ettt e e s esveeesaae e 133

3,16 Data TOKENS ...cuveuiiiiiiiieriteeteete ettt sttt sttt 134
317 Card RESEE SLALEccueeruiiriiieiieieeteeterterte ettt sttt st st e s 135
3.18 SUIMIMATY .evvieiiieeiieeiee ettt ettt e e e sbeesbeeeteeessee e seeessseessseesnseesnsaesnseesneenn 135

R LS 25 = (o 11 PR 136

x Contents

Chapter 4: Programming with the MPLAB C18 Compilerccuuueeeeeeee. 137
4.1 C Programming Languages for PIC18 Microcontrollersccccceeverveennenseennenne 137
4.2 MPLAB C18 COMPILETcouiiiiiiiiiiiieiieie ettt 138

4.2.1 Installing the MPLAB C18 COMPIIETcocueeiiiiiiiiiiieieeeeiceeee e 138
4.3 An Example Programcccoceoriiiiiiiiiiiiiiieeceeeee ettt 143
4.3.1 Building the Project.........ccccieiieiiiiiiiiiee ettt 143
4.3.2 Simulating the Projectc.cocveviiiiiiiiiiiniiiiieeeceeec e 147
4.4 Flashing LED EXaMPIEcc.oocuiiiiiriiiiiiiiieiieeeicccetceteee ettt 150
4.4.1 Building and Simulating the Projectcc.coccevirviniiniinninninieeeieeiene 150
4.5 Structure of the MPLAB C18 Compiler.........ccccueiviiiiiiiiiieiiieiiieeiieeeeeie e 152
4.5.1 COMIMENLS.....eoitiriiiiiitieteeteete ettt et ettt e ettt eateete et sabeeaeeeeeeaneeaneeas 152
4.5.2 Terminating Program Statementsccceeeueeerieerieeenieerieesieeeeeeeveeeeeens 154
4.5.3 WHIte SPACESeeeuiiiiieeiiieiieeetee ettt ettt et eebeesteeeaeeesaaessseeesnsaeenseesnseean 154
4.5.4 Cas@ SENSILIVILY .eecuveeriiieiiiesiieeeciieeee et rteesteeebeesteeseeeetreesnseesnsaesnseesnseens 154
4.5.5 Variable NAMEScevuerieriirieeiieie ettt ettt et ettt 155
4.5.6 Variable TYPES ...cccveeiiieriieiieeeiieeieeste et e e e et e st eeeeeesaeesssaesnsaeenseeenseens 155
4.5.77 CONSLANES ..cuteniieiiieiieeie ettt ettt ettt ettt ettt e ateeate s bt eabeeabeeabeeateenteeas 157
4.5.8 ESCAPE SEQUENCES......ccviiiiriiieiieiieie ettt ettt ettt et e ae e 159
4.5.9 Static VariabIes.........coceiiiiiiiiieeeieeee et 160
4.5.10 External Variablesccccoerieiieiiieiiieieeie ettt 160
4.5.11 Volatile Variables..........ccoecieiuieriieiieieeie ettt ettt 160
4.5.12 Enumerated Variables..........ccoceeiiiiiiiiiniiiiiieeceeeeceee e 160
A.5.13 AITAYS ceuvieiteeiieitete et ettt ettt ettt st e a ettt et sttt ettt eane e 161
4.5 14 POINLETSuveeeiieeiieeite et ettt ettt et stte e et esbte s bt e sbbesssteesabeesabeesabeean 162
A.5.15 SHIUCTUIESeoutietieteeieete et ettt ettt ettt ettt et st et e aeeaneeane e 164
4.5.16 UNIONS «.uveiiiiiiiiiieieeteete ettt ettt ettt sttt ettt eaneeas 167
4.5.17 Operators iN €eieviieiiieiieeeiee ettt et e stee e e aressateesbeesbeesnseen 168
4.5.18 Modifying the FIow of CONtrolcccouviviieeiieiiieeiecie e 178
4.5.19 Tteration StatBIMENLS.cocueeueeriierieeieeieeieeie ettt ettt ettt eas 181
4.5.20 Mixing C18 with Assembly Language Statements............cccccvereveercveennnenn. 187
4.6 PIC Microcontroller I/O Port Programimingccceeeeeeerveenieescieescieeeceeeeeesveenes 188
4.7 Programming EXamPIesccceevieiiiiiiiiiiiiieieeiteeeeee et 189
4.8 FUNCHIONS ...ttt ettt ettt ettt et e e bt e bt e bt e bt e bt e nbe e bt e bt enbeenbean 193
4.8.1 FUnCtion ProtOtYPeS.......cccvevieriirerieniinieneeieniesieetetenie et ere st s sveeneens 198
4.8.2 Passing Arrays to FUNCHONScocueviiriiieriiniiieecnienceecenenceee e 199
4.8.3 Passing Variables by Reference to Functions...........c.ccceceevieiieieeneeneeninnns 204
4.8.4 Static Function Variables............ccociiiiiiiniiiniiiniiiiieeieeeceeeeeee e 204
4.9 MPLAB C18 Library FUNCHONS........ccccciiiiiiiiiiiiieieeeeeeiteieeeeeere e 206
4.9.1 Delay FUNCHONS.cooiiiiiiiieiieiteiiececetcee ettt ettt 207
4.9.2 Character Classification FUNCHONS..........ccocerviirniiiniiniiiiiinciiceeeeeiceee 211
4.9.3 Data Conversion FUNCHONScccocievierriiriiriiinieieeieeieeeeteee e 213
4.9.4 Memory and String Manipulation Functionsccccceevvievieenseeenieennnen. 213
4.9.5 ReSet FUNCLIONScoeeriiiiiiiiiiiieiieeecee et 216

4.9.6 Character Output FUNCHONSc.oeeeuieiiiieiiiieriieeiee et 218

Contents xi

4.9.7 Math Library FUNCHONS.coctrviiiiiiiiiiieeieeeett et 222

4.9.8 LICD FUNCHONS ..ccccuiiieieiiieeeciieeeeeiteeeeiteeeeveeeesvee e eetveeeeaaeeeesnsaaesssnseessnnseas 225
4.9.9 Software CAN2510 FUNCLIONSoeeiiiciiiieeiiiee ettt e e eree e 239
4.9.10 Software I?C Bus FUNCLONScccoruerieieiriinieieieieesiesieeecee e 239
4.9.11 Software SPI Bus FUNCHIONS.......ccceoviiiiiiiiiiiiiiieieieceececee e 239
4.9.12 Software UART FUNCHONScccueriiiiiiiiiiinieiiieieeieeeeeee e 239
4.9.13 Hardware Analog-to-Digital (A/D) Converter Functionscccccc....... 245
4.9.14 Hardware Input Capture FUNCHONScceeeviieeciireieeie e 247
4.9.15 Hardware IPC FUNCHONSc..evevieuirieieieiieienieieieeete e eseenas 247
4.9.16 Hardware I/O Port FUNCHONSc.coouiiiiieiiiiiiiiieieeiceeececeeee e 247
4.9.17 Hardware Microwire FUNCHONS.........ccccovviiiiieeciieiiie e 247
4.9.18 Hardware Pulse Width Modulation Functionscccceeveevveeecieeecreennnnenn 247
4.9.19 Hardware SPI FUNCHONS........cceiiiiiiiiiciiieciieeiee et 248
4.9.20 Hardware Timer FUNCLIONS........ccceeiriiiiiiiiiieeeiiee et evee e 248
4.9.21 Hardware USART FUNCHONS........cccoveiiiiiiiieeciieeeeiee et 249

410 SUMIMATY ..ottt ettt ettt ettt et st sne st eas e e et eneene e 252
AU1T EXCICISES .cuutiuriruierieriiettete et et ettt ete ettt et sttt sat ettt esatesaresaneemseeaeeneenneeas 253
Chapter 5: PIC18 Microcontroller Development Toolscueeeceeeeeeeeennnnne. 257
5.1 Software Development TOOISc.ccocirviiriiiiiiriiiiiieieeeeeeeee e 257
S5.1.1 TeXt EQITOTS ..uuvviieiiiieeiiee ettt ettt ettt e e e e e tae e e eeaee e e enbaeeeennaeas 258
5.1.2 Assemblers and COMPILELS......cccccovuirviiriiiriiriiinicricececeeeee e 258

5.1.3 SIMUIALOTS. ...eouiiiiiiiiieiieteee ettt st 259

5.1.4 High-Level Language Simulators...........ccceerieerieenieeniienieesieeeieeeeieeesineenne 259
5.1.5 Integrated Development Environmentscceeeeveerieenieeniieessieesnieesnneenne 260

5.2 Hardware Development TOOIScoocuieeiiieriiiiieeieecieeeite et 260
5.2.1 Development BOArdsccceeeveeriiiiiiiieeiiieeciieecie ettt svee e snne e 260

5.2.2 DevViCe PrOZIammerscccueevveerieeeiieeiieesiieeseeeesreesseesseesseessseessssesssseenns 274
5.2.3 In-Circuit DebDUZEZETS.......ceciiereiieeiieeiieeieeecieeeee e e sreesreeereesseeseneesnreenes 276

5.2.4 In-Circuit EMUIAtors.cooiiiiiiiriiiieeieetene et 280

5.2.5 BreadbOoards.........cocieiiiiiiiieiieieee e e st 283

5.3 Using the MPLAB ICD 3 In-Circuit Debuggercccccoeevierieriierieeieeieeeeeeene 285
5.3.1 The Debugging ProCess.........ccoviiriiiiiiiiieieiieee ettt 288

5.3.2 The MPLAB ICD 3 Test Interface Boardccceevevieniieeiieeciieeieeeeneens 289

5.3.3 Programming with the MPLAB ICD 3 Debugger..........ccccovereiencnicnncnne. 289

5.3.4 MPLAB ICD 3 Debugging Example I........cccccocceriiniiniinnininicncicee 292

5.3.5 MPLAB ICD 3 Debugging Example IL...........cccccooiriininniniinincniceee 293

5.3.6 MPLAB ICD 3 Debugging Example IITc.ccoeoiiiniiiiniiiiniieniieieeiene 294

5.4 SUIMIMATY ...eoiiiiieiiieeiie ettt et e st e et e eebteesateestbeesateesabeesabeesaseesnsaesnsseesnseesnseennses 296
5.5 EXBICISES .ccuiiiuiiiiieiiet ettt sttt sttt 296
Chapter 6: PIC18 Microcontroller MPLAB C18-Based Simple Projects................. 299
6.1 Program Description Language...........ccceeeiieriiiiiiiieiiiie ettt eiee e 299
6.1.1 START-END ..ottt 300

0.1.2 SEQUENCINGeeieiieeeiieeiieeiie et eeieeetee et e e rteeeetee e nteesnseessseessseesnseessneessseenns 300

xii Contents

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.1.3 IF-THEN-ELSE-ENDIFc.ccceiitiiiiiiiiienineeieeneneteee et 301
6.1.4 DO-ENDDO.....c..cootiiiiiiiieiinieeitetesestet ettt ettt ettt 301
6.1.5 REPEAT-UNTILouiiiiiiiiiiieieteeceteee ettt 303
Project 1 — Chasing LEDSccccuiiiiiiiiiiiiiieeiteete ettt sttt st 304
6.2.1 Project DeSCIIPONcccuiieiiieiiieeieeeiee ettt ettt ettt e seeesbeesbeeesare e 304
6.2.2 Project HardWare..........ccceevuiiiiiiiiiie ettt s 305
6.2.3 ProjeCt PDL.....coociiiiiiieie ettt ettt ettt e sneeenre e 306
6.2.4 Project PrOQram.........ccccovieiuieeiiieeiie et eieeeiteeetteeete et ste e st e sseeseeeesnne e 306
6.2.5 Further DevelOpPmMENt.........cccoecieeriieeiie e eieeeiee e e e sre et eeseeseeeeene e 306
Project 2 — LED DICEccueieeeiieiiiesiiesieeetee ettt ete e te e s e steesseesnsaesnneenneenes 308
6.3.1 Project DeSCIiPiONcccuieiiiiirieeie ettt st st 308
6.3.2 Project Hardware..........cccooouiiiiiiiiiiiiieeecee et 308
6.3.3 Project PDLooiiiiee et e 310
6.3.4 Project Programi...........ccccoeciiiiiiiiie ettt 310
6.3.5 Using a Pseudorandom Number Generator............cceceevveeeereereeneeseeneenns 311
Project 3 — TWO0-Dice PrOJECtcocueriiriiriiiiiriiiiiceeeeerececeeeee e 314
6.4.1 Project DeSCriPtion.......ccceecuiriirierieiieniceterteree ettt 314
6.4.2 Project HardwWare.........ccccooviriiriiniiiiiiiiceiceteneceecececeee et 315
6.4.3 ProjeCt PDLccocuiiiiiiiie ettt ettt ettt st 316
6.4.4 Project PrOQram.........ccccciieiieiiieeeiee ettt ettt ettt st e vt e 316
Project 4 — Two Dice Project — Fewer I/O Pins.........cccccvvvviiniiiniiieieeieeeeeiee 318
6.5.1 Project DeSCIIPONcccuvieiiieecieeeieeeiteeieeeiteeite et eveesbeesteesbeeseeeesnneens 318
6.5.2 Project HardWare..........ccoeeoieeiieeiiee ettt ettt e stee e enne e 319
6.5.3 ProjeCt PDL.....cccciiiiiiieiie ettt tte e st e s e sneeenne e 321
6.5.4 Project PrOGram.........cccoiieiiieiiieeiieciie et eeeette et eesveesree e e sseesseaeesnneenes 321
6.5.5 Modifying the Programccccceviiiiiiiiiiiiiiiiieie ettt 322
Project 5 — Seven-Segment LED COUNLETcocueriiiiinieniieieeieeieeee e 326
6.6.1 Project DeSCIiPiONcccueeiiiiiiiieie ettt sttt 326
6.6.2 Project HardwWare...........coocuiiiiiiiiiiiie et 328
6.6.3 Project PDL.......c.ooiiiieeeee et e 330
6.6.4 Project Programi.........occocueviiiiriiiinininieicnesceee ettt 330
6.6.5 Modified Programc.ccoccoeveriiriiiiiiniiiicicneenceeceeee et 332
Project 6 — Two-Digit Multiplexed Seven-Segment LEDcccccoveniiniinicnnene 333
6.7.1 Project DeSCIIPONcccuiiiriiiiiieeeite ettt ettt ettt e st e siee e 333
6.7.2 Project HardWare..........ccooeviiiiiiiiiieeiee ettt ettt 335
6.7.3 ProjeCt PDL.....cccciiiiiiieiie ettt ettt ettt ettt e v e 335
6.7.4 Project PrOQrami.........ccccviiiiiiiiiieeiee ettt ettt ettt et e st e sneeeenne e 337
Project 7 — Two-Digit Multiplexed Seven-Segment LED Counter With
TIMET INEETTUPL ..eeeviieiieeiie ettt ettt e e et eesebeesnbeeenseeensaesnnneenseenns 338
6.8.1 Project DESCIIPLONcccvieiiiecieeeieeeieeeteeesieeeete e e sreesreesreesseesseeessseenns 338
6.8.2 Project Hardware.........cocoovuiiiiiiiiiiiiiiicceeeee ettt e 341
6.8.3 Project PDLc..ooiiiiiiieee et e 341
6.8.4 Project Programi..........cccccoeiiiiiiiiiiiiic et 341

6.8.5 Modifying the Programccccoeciiiiiiiiiiiiiieie et 345

Contents xiii

6.9 Project 8 — Four-Digit Multiplexed Seven-Segment LED Counter With

TIMEr INTETTUPE ..ottt s s s s 347
6.9.1 Project DeSCriPtion.......cccueeuiriirieriiiiericeteete ettt st 347
6.9.2 Project HardWare..........c.cooviieiiiiiiiieiieeieeete ettt 347
6.9.3 ProjeCt PDL.....ccccuiiiiiiiie ettt et ettt st 348
6.9.4 Project PrOGram.........ccocvieiiiieiiieiiee ettt ettt ettt et e st esveeesare e 348
6.9.5 Modifying the Programccccecceeeiiiiiiiieeiie ettt 352
6.9.6 Using MPLAB C18 Compiler Timer Library Routines.............cccceecvvreunennne 352

0.10 SUMIMATY ...eiiiiiieiiieeee et erte et ste e st e sbeeeteeasseeesseessseessseessseessseesnseesnneenn 359
6.11 EXCTCISES..cueeuriririieiiiiriietetente sttt sttt ettt st et sa e st sb e et esae bt et esnennesneeanennes 359
Chapter 7: Serial Peripheral Interface Bus Operationuueeeeeeeennnenennnn. 361
7.1 The Master Synchronous Serial Port Moduleccccoveiriiiinniiinii e 361
7.2 MSSP in SPIMOGE......ceiiiiiiieieiietieee ettt sttt 361
7.3 SPIMOAE REZISIEISccvvieeiieeiiieeiieeieeeiteeeeeste e e steesseessseessseesssaesssseessseesnseeenses 362
T.3.1 SSPSTAT ...ttt 363
7.3.2 SSPCONT ..ottt sttt sttt s e 364

7.4 Operation in SPIMOME..........ooouiiiiiiiiiieie ettt 365
7.4.1 Configuration of MSSP for SPI Master Modeccccceoeeieeiiniiinnienieeenne 365

7.5 SPI Bus MPLAB C18 Library FUNCHONS........c.cooiiiiieiieiieieeieeie e 367
T.5.1 CIOSESPL....ciiiiiieieee ettt ettt st 368

7.5.2 DataRAySPL......oouiiiiiiiiieie et 368

T.5.3 RSP ..ot 368
T.5.4 GRESSPL oottt 368

T.5.5 OPENSPL ...t e et n 368

T.5.6 PULCSPL ..ottt sttt et et n 369

T.5.7 PULSSPL .ottt st et eaee s 369

7.5.8 REAdSPL.....cooiiiiiiieee e e 369

T.5.9 WIIESPL ...ttt s 369

7.6 Example of an SPI BUS Projectccccvveciiieiiiiiieieeceeeee et 369
7.6.1 TCT2 TemMPErature SENSOT.......ccverrveerreerreerreersreessreeessreessseesseesssesssseesssens 370
7.6.2 The Circuit Diagram........ccooueeieriiiiieieeieeie et 374

7.6.3 The Programi.......ccccoiiiiiiiiieie ettt 374
7.6.4 Displaying Negative TempPeraturesccceeceerueerueerieenieesieeieeie e eie e 381

7.6.5 Displaying the Fractional Part............ccoocoeiiiiiiiiiiiiieeececeeeeeeee 382

TT SUIMIMATY .ottt ettt ettt ettt et et st snesneeaseemneeneeane e 393
T8 EXCICISES ..uuveeutieiuieeeiie ettt ettt ettt site et e e et e bt e bt e e bt e e sabeesabeesabeeeabeeenbaeenaaeesabeesares 393
Chapter 8: MPLAB C18 SD Card Functions and Procedures................................ 395
8.1 Installation of the MDD LibIaryccccceceeviiniiniinienienieneeneeneeneeneeseeeeieenee 395
8.2 MDD Library FUNCHONScocuiriiriiriiriiicntcnecreeeeceeeeesecsree et 396
8.2.1 File and Disk Manipulation FUNCtionsccceeveeevieniieenieinieenieesieene 396

8.2.2 LDTary OPLIONS ...cccuveervieriieiiieeiieeeite et esite e st esteeebeeebeeenareessaeesseeesnseesanes 396

8.2.3 MeEMOTY USAZE ...eeeuvieeuiieeiieeiieeiieeeiteeeeteesteesaeesteeebeesseeesaesseeesnseesnseesnses 398

8.2.4 LDTATY SEIUP ..cccuiieeiieeiieeiieeieeeiteeeteeeete et esteesteeesbeeesteeetnessneesnseesnseesnnes 399

xiv Contents

8.3 Sequence of Function CallS........cocooieriiniiiiiniiniiieecceecceeneee e 400
8.3.1 Reading from an EXisting Filecc.cccociiiiiiininineececee 400

8.3.2 Writing Onto an EXisting Filecccccooviiiiiiiiniinincececcee 401

8.3.3 Deleting an EXisting File.........ccocceeviiiiiiiiniiiiiieeceteeecee e 401

8.4 Detailed FUNction CallS.........ccocceriiriiniiniiiiinienicieenteteeesceneeseeese et 401
Bl FSINI..ciuiiiiiiiiiiee ettt e 401

IR SN (0] o /<] KU 402

TR G T RN 0] 013 1104 1 1 USSR 402

844 FSTCIOSE ..ottt 403

845 FSTROT ... et e 403

8.4.6 FSTTEad ...coueiiiiiiieeee e e e 404

84T FSTWIILE ettt st st st 404

8.4.8 FSTEIMOVE....cotiiiiiiiiiieee ettt st st st 405

8.4.9 FSIEMOVEPZIM . ..eoviiiiiiiiiiiiiieiee ettt 405
8.4.10 FSTEWIN ..ooutiiiiiiiiiiiiee ettt sttt 405
B4 1T FSMKAIT....iiiiiiiiiiiieeeee ettt st st 405
8412 FSIMAIT.c...iitiiiieiieieeieeee ettt sttt ettt sate s e st e eneeenes 406
8413 FSCRAIT .eouviiiieiieiieeetee ettt st st 406
8.4.14 FSTOIMAL...ccuiiiiiiiiiiieieeitctet ettt st s s 407
8415 FSINAME.coiuiiiiiiiiiieiieeeeetest ettt 407
8416 FINAFIISt c..eoiiiiiiiiiiieeeete ettt 408
8.4.17 FINAFIrSIPEIM c..vviiiiieiiieciieeiee ettt etee et e e tee e eae e nee e snbeesnes 409
8418 FINAINEXL...couiiiiiiiiiiiieeiteeetes ettt ettt 410
8.4.19 SetCLOCKVAISccueiiiiiiiiieiieiteeert ettt st 410
8.4.20 FSIPIINtE ..ottt e 410

8.5 SUIMIMATY ..ottt ettt sb e sb e bt e s bt e sbeesbee s bt e bt e bt enbeenbean 411
BB EXEICISES ...ttt ettt ettt ettt h e s bt bt e she e s bt e s bt e bt e s bt e sb e e s bt e bt e bt ebeebean 411
Chapter 9: Secure Digital Card Projects...................ccceeeeeeeevinnnnnnnnnnnnnnnnnneneeneens 413
9.1 Creating an MPLAB C18 Templateccoocteeiiiiniieiieeeieeeiieeiteeee et 417
9.1.1 Setting the Configuration Files..........c.ccocviiriiiiiiiiiiiieniienieecee et 424

9.1.2 The Memory MOElcccuieiiiiiiiieiieeiee ettt s 426

9.2 PROJECT 1 — Writing a Short Text Message to an SD Card...........ccccccveeveeernennee. 427
0.2.1 DESCTIPLION ...ueveeeiieeiiieeiteeiie et e eteeeteeeteeeteeebeeesnteessseesnseesnseesnsaesssessnsennns 427

0.2.2 Attt sttt st st 427

0.2.3 BlOCK DIa@Iammccccuiiiiiieiieeieeciee ettt ettt e st e e nne e 428
0.2.4 Circuit DIaIam.......c.cccciieriieeiieerieeeieeeieeesieeeeteesreesreesseesssaesseessseeessseenns 428
9.2.5 Operation Of the Projectccecueriririieneninieenenereeeee e 429

0.2.6 Program COde.........coereeeeriiniirieieniiniteteie sttt sttt st 429
9.2.7 Description of the Program Code...........cccccverervienininieeneneneneeicneeeeeenn 430

9.2.8 Suggestions for Future Work.........c.ccccceceeverinenieneneneencneneeeeieneeeeeenne 433

9.3 PROJECT 2 — Time Stamping a File........ccccociriiiiiniiiiiiiicncecceeeeeeeee 433
0.3.1 DESCIIPLION ...ttt ettt ettt sttt s e s 433

L T N | 1 1 DU RPTURPTRPRPT 434

0.3.3 BIOCK DHa@ramc.c.coviiiiiiiiiiiieieeeeete ettt 434

Contents xv

9.3.4 Circuit Diagrami.......cccccocieiiiiiriieniirieeeceteete et st 434
9.3.5 Operation of the Projectcoccevviriiriiniiniincnicnceceeeeee e 434
0.3.6 Program Code..........cocuirviiriiiiiiienieitceceteete et 434
9.3.7 Description of the Program Code...........ccceevirriiiiniiiniieniieiieeeee e 434
9.3.8 Suggestions for Future Work..........c..cccoecuirriiiiiiiiniienieecieeciee e 434
9.4 PROJECT 3 — Formatting @ Card...........c.ceeeeeenieeiieenieeeiee e eiee et 436
0.4, 1T DESCTIPLION ...uvveeiiieeiiieeiieeiieesiteeeteeeteesteesteeesbeeessteessseesnseesnsaesnseesseensnsesnns 436
0.4.2 A ..eoiiiiiiiieee ettt sttt s st st 436
0.4.3 BlOCK DIQ@IAIMccceviiiiiieiie ettt ettt e s se e s e nne e 437
0.4.4 Circuit DIaIam.......cceeeuvieriieeiieerieeeteeeteeesieeeteeesereesseesseessseessseessseessseenns 437
9.4.5 Operation of the Projectccocceeviiiiiiiiiiiiiiiicieeee e 437
0.4.6 Program COde.........cocereeeeriininieeeniinitetetente sttt sttt 437
9.4.7 Description of the Program Code...........cccccvererveninineencninenecieneeeeeenn 438
9.4.8 Suggestions for FUture Work.........c..ccceeceeverenirieneneneencneneceeieneeeeeenne 438
9.5 PROJECT 4 — Deleting @ Fileccceviririeniininiiiiieneeeeeneeeieseceteie e 439
0.5.1 DESCIIPLION .ottt ettt ettt st s e s 439
0.5.2 ATttt ettt sttt st 439
9.5.3 BloCk DIagramcoceevuieiiiiiniinieiieetceteete et 439
0.5.4 Circuit DIagram.........ccccueieiiieeiieeeiee ettt ettt ettt e st esbeeesare e 439
9.5.5 Operation of the PrOJECtcocuiiriiiniiiiiiieeiie ettt 439
0.5.6 Program COde..........cceeevuiieriiieiieeiieeeiteeieeesiteeetteeete e et e steesteesbeessreesare e 439
9.5.7 Description of the Program Code...........cceevuireriiinieeniienieeeiee e 439
9.5.8 Suggestions for Future Work..........c.ccceecuirriiiieiiieeiieeieecieeciee et 441
9.6 PROJECT 5 — Renaming a File.........cceecuiieiiiiiiiiieeieecee e 441
0.6.1 DESCTIPLION ...uvveeeiieeiiieeiie et esteesteeereesteeeteeeseeesseessseessseessseessseesssessssenes 441
0.6.2 Aottt sttt st 441
9.6.3 BlOCk DIagramcoeeueeeeniiniiniiieniiniceteienteseceeere ettt 441
9.6.4 Circuit DIagramc..coceeveeviiriirieiieniiniteteeresceee ettt 441
9.6.5 Operation Of the Projectceceeveeriririenenininieenercece et 441
9.6.6 Program COde.........coerueeieriiniireiienierieeteie sttt sttt sttt s 442
9.6.7 Description of the Program Code...........cccccverervieninineencninenieieneseeeene 442
9.6.8 Suggestions for Future Work...........coccceviriiiiiiniiniinicncceececneceeeeeee 443
9.7 PROJECT 6 — Creating @ DIT€CLOIYcccervuirueriieriiriieiieteeteeteee et 443
O.7.1 DESCTIPLION ..uveeeiiieeiiieeiieeite ettt ettt e et te st e et e e bteesateesabeesabeesateesbeesbeeennseenes 443
0.7.2 Attt sttt st st e st 444
0.7.3 BlOCK DiIa@IAIMcooviiiiiiiiiieieecee ettt s 444
0.7.4 Circuit DIagram.........ccccveeriieerieeeieeeiieeieeesieeestteeeteesaeesbeesseeesbeesseeesnseenns 444
9.7.5 Operation Of the PrOJECtccccvieeiiiiciieeiieecie ettt 444
0.7.6 Program COde..........ccceeviieiiieiiieriieeiieeiteeesieeeseteesteesseesseesseesseessseessseens 444
9.7.7 Description of the Program Code...........ccceevuiririririeeniiesiee e eee e 444
9.7.8 Suggestions for Future Work...........ccccoviiiiiiniiniiiiccecee e 444
9.8 PROJECT 7 — Create a Directory and a File.........cccccocevervinininieninincccnceeene, 446
0.8.1 DEESCTIPHON ...ttt ettt et sttt st sbe et bbb nae v eseenee 446
0.8.2 ATttt sttt et bbb st 446
9.8.3 BIOCK DIa@Iamc..couiruirieiiniinieeienienieeteeste sttt 446

xvi Contents
9.8.4 Circuit Diagrami.......cccccocuirviiiiiriiinieeieeeeeteree et 446
9.8.5 Operation of the Projectcoccevvirviiriiiiiiiiniciicncecceecrec e 446
9.8.6 Program COde..........cocuirviiriiriiiiinieitcecete et 446
9.8.7 Description of the Program Code...........ccceevirriiiiniieniieniienieeeee e 446
9.8.8 Suggestions for Future Work..........c..cccoeiiiriiiiiiiiniieeieeeieeciee et 448
9.9 PROJECT 8 — File COPYINE .eevvieirieiiieeiieeiieesiieesiie et esieesteesveeseeeseeessnseesnseesnnes 448
0.9.1T DESCTIPLION ...evveeiiieeiiieeiieeiie ettt e et e eteeeteeeteesbee e steesnseesnseesnseesnseesseensnsennns 448
0.9.2 A ..eoiiiiiieieee ettt st st st 448
0.9.3 BlOCK DIA@IAIMcocuviieiiieiie ettt ettt e s e s e nne e 449
0.9.4 Circuit DIaIam.......c.ceecuiieiiieeiieerieeereeeteeesieeeteeesreesaeesseessseessseesnseeessseenns 449
9.9.5 Operation of the Projectccoceeviiiiiiiiiiiiiiiic e 449
9.9.6 Program Code.........cocereeeeriiniirieieniinitetetente sttt sttt s 449
9.9.7 Description of the Program Code...........cccccverervieninineencnineneeieneeeeeenn 449
9.9.8 Suggestions for Future Work.........c..cocceveeverenirnenenineencneneceeiene e 449
9.10 PROJECT 9 — Displaying File on a PC.........ccccocieviiiininiiiiniiicicncrcccceeeeene 451
0.10.1 DESCIIPLION «..eeveiiieiiieiiieieete ettt ettt st 451
0.10.2 ANttt sttt sttt ebt et bt et 451
9.10.3 BIOCK DIa@Iam ..c...oouiriieiiiiiiieeieetceeceteete ettt e 451
9.10.4 Circuit DIiagram........cccueieiiiiiiiieiiieeiieeiee ettt ettt ettt e 452
9.10.5 Operation Of the Projectcceeceeriiiiriiiiiiieeieeeieeeieesiee sttt 453
9.10.6 The Program CoOdeccceerueerieeriiieniieeiiteecite ettt et eseeesveesreeesare e 453
9.10.7 Description of the Program Code...........ccccevriiieriieniiieniieeiieecee e 453
9.10.8 Suggestions for FUture Work...........cccoecireiiiriiieenieenieeeieeciee e 457
9.11 PROJECT 10 — Reading a Filename from the PC and Displaying the File 458
O.11.1 DESCIIPLON «..eeeeiieeitieeiie et eteeeteeeteeeteeeteeeteeesbeessseessseessseessseesnsseesssennns 458
O.11.2 ATttt sttt st e st 459
9.11.3 Block DIagramcc.coeeeeriiniinieieniiniieieienieneteeere et 459
9.11.4 Circuit DIagram.......cccceceerieriireeiieniiniteteiente sttt st s 459
9.11.5 Operation of the Projectccceviririenenininieeneneece et 459
0.11.6 Program Code..........coceeeeriiririeieniiniinteiesiesitetete ettt 459
9.11.7 Description of the Program Code..........ccccocuervieriiiniiiniiniinicnieneceieeee 459
9.11.8 Suggestions for Future Work.........c.cccoccooviiiiniiniiniiiicececeee 463
9.12 PROJECT 11 — Looking for a Fileccceoviriiiiiiniiiiiiiieceiceceeeeeeeeeeeee 463
0.12.1 DESCIIPLON «..eenitiiiieeiie ettt ettt sttt et e eate e st e st e e sateesbeesbeeennseenes 463
0.12.2 ATttt sttt st e st 463
0.12.3 BIOCK DIQZIAIM ...eeouvieiniiiiiieeiie ettt ettt ettt et e st esbeesneeesnne e 463
0.12.4 Circuit DIia@ramm.........cccveeviiieiiieiieeeiie et eiteeeeteeete et steesteesbeesseeesnre e 463
9.12.5 Operation Of the ProOjectcccecciveiiiieiiieeiie ettt 463
0.12.6 Program COdE..........ceevuiieiiieiieciieeieeeieeeeeeeteesteesaeesseesseesseesnneesnseenns 464
9.12.7 Description of the Program Code...........cceceeeeiirrieeniiiniienieeeciee e 464
9.12.8 Suggestions for Future Work...........cccocoiviiiiiiiiiiiiiiieccee 467
9.13 PROJECT 12 - Looking for a Number of Files with a Given File Extension 467
0.13.1 DESCIIPHON ..ottt ettt sttt e sve et be bbb e eseenee 467
0.13.2 ANttt ettt et st sttt st sttt st e 467

9.13.3 BIOCK DIagramcc.coueeeeniiniirieiiiniinieeteienesiceee ettt 468

Contents xvii

9.14

9.15

9.16

9.17

9.18

9.13.4 Circuit DIagram.......cccoceeviiiiiiriiiniiiiieeceeeeneeee e 468
9.13.5 Operation of the Projectcccceciiiiiriiniiiincicceceeeeeec e 468
9.13.6 Program Code..........cccovuieiiriirieniiiiceiceteete et 468
9.13.7 Description of the Program Code...........ccocceerviirniiiniiiniieiiieeeeeieeieene 468
9.13.8 Suggestions for FUture Work...........cccoecieeiiiiiiiiniieeniiesieeciee e 472
PROJECT 13 — Displaying the Attributes of a File.........ccccoevvviiviiiniiiiiieieee. 472
0.14.1 DESCIIPHON «..eeeiiieeiiieeiieeiie et et e eteeeteeetteeetteeeateesnbeesnbeesnseesnseesseessnseenns 472
O.14.2 ATttt st sttt st st st 473
0.14.3 BIOCK DIQZIAIM ...eeeuvieiiiieiieeieeeieeeteeeteeeieeeiee e e steesnbeessteessseesseneesnneenns 473
0.14.4 Circuit DIa@ramm.........cccveevuiieriieeiieeiieeiieesieeeste e e sreesreesreesseesseeessseenns 473
9.14.5 Operation of the Projectccccevviiiiiiiiiiiiiiineeeceeee e 473
0.14.6 Program Code..........coceevueruiriirieieeniiniieteienie ettt 473
9.14.7 Description of the Program Code..........ccccocerervienenineenieneneneerieneneeeenn 473
9.14.8 Suggestions for Future WOork.......c..ccceceevenininienininccnececicnceeeeene 477
PROJECT 14 — SD Card File Handlingc..ccccecevininiienenineenineneeecncnceeenne. 477
0.15.1 DESCIIPLION ...ttt ettt st s s s 477
0.15.2 ANttt sttt sttt ettt bt 478
9.15.3 BIOCK DIa@Iamcocuiriieiiiiiiienieeiceceteete ettt s 478
0.15.4 Circuit DIiagramm........cccueiiiiiiiiiiieiiieeiieeiee ettt ettt ettt 478
9.15.5 Operation Of the Projectcocceiriiiiiiiiiiiieeieeeieeeieesiee et 478
0.15.6 Program COdE..........ceevuiiiiiiieiieeeiee ettt ettt et ste et esbeesneeesnre e 478
9.15.7 Description of the Program Code...........ccecevrriiiniieniiieniieeiee e 478
9.15.8 Suggestions for FUture Work...........ccoecuireiiiriiiieniieeiee et 488
PROJECT 15 — MENU-Based SD Card File Handlingcccceccveveiveecieeciiennnn. 490
0.16.1 DESCIIPLONeeevieetieeiieeiie et esieeereesteeeeeeeteeessbeessseessseessseessseesnsseesssennes 490
0.160.2 Aottt sttt st st e st 490
9.16.3 BlOock DIagramcc.coueeeeniiniiriiieniiniieieieniesteeere et 490
9.16.4 Circuit DIagram.......cocceceerueriireeiieniinieeteiente ettt st et eseenee 490
9.16.5 Operation of the Projectcccceviririieneninieeneneneeceseeeeene e 490
9.16.6 Program Code..........coceeuerienirieiieniiniieteieniesitetete ettt s 491
9.16.7 Description of the Program Code..........ccccocevervieneneneenenineneeieneeeeeenn 491
9.16.8 Suggestions for Future Work.........c..ccoceoviiiiniiniiniiniccececee 502
PROJECT 16 — Digital Data Logging to SD card.......ccc.cccceeveeniininnceneenecneenen. 502
0.17.1 DESCIIPHON «..eeiieeiiieeiie ettt ettt ettt e bte et e e st e st esateesbeesbeeesaseenas 502
O.17.2 ATttt st sttt st e s 503
0.17.3 BILOCK DIQZIAIM ...eeiuviiiniiieiieeiie ettt ettt ettt steeseeesbeesneeesnne e 503
0.17.4 Circuit DIa@ramm.........cccoeeiiieiiieeiieeiie et esiteeseteeete et esteesteesbeeseeeesase e 503
9.17.5 Operation Of the ProOjectcccccceieiiiiriiiieiie ettt 503
0.17.6 Program COdE..........coevuiieiieeieeeiieeieeeteeeseeete e e steesteesseesseessneesnneenns 503
9.17.7 Description of the Program Code...........cceceveeiierieeniiieniieeiee e 503
9.17.8 Suggestions for Future Work............cocooviiiiniiiiiniiicee 504
PROJECT 17 — Temperature Data LOZZINGcoveeririiriieieieenieeieereeieeieeeen 507
0.18.1 DESCIIPHON ...ttt ettt ettt st st b e b ebe e sae s 507
0.18.2 AIM.iniiiieieiieieetee ettt ettt st b et bbb bt 507

9.18.3 BIlOoCk DIagramcc.eoueeueeniiniirieiiiiinieeteesesi ettt 507

xviii Contents

9.18.4 Circuit DIagram.......cccoceeviiiiiriiiniiiieiiceieceereee et 507
9.18.5 Operation of the Projectcccceveriiiriiiiiiniiiiirceceeeecececeeee e 509
9.18.6 Program Code..........ccovuieiiriiriiniiiiceceteeteeee ettt 509
9.18.7 Description of the Program Code...........ccocceerviiiniiiniiiniiiiieeeeeeieeieee 509
9.18.8 Suggestions for Future Work...........cccoeciveiiiiiiiiniienieesieeciee et 515
9.19 PROJECT 18 — Temperature and Pressure Data Logging with
Real-Time ClOCKcoiririiiiriiiiciciitccet e 515
0.19.1 DESCIIPHONeeevieeiiieeiie ettt eiieeeieeeteeetee et estte e nteeesseesnseessseesnseesseeenssennns 515
0.19.2 ALttt s e e 515
0.19.3 BIOCK DIQZIaIM ...cccuvieiiiieiiieieeeiee et eteeeieeetee e sreesereessseessseesnsneenneenns 515
0.19.4 Circuit DIagram.........coceeiiiiiiiiiiiiiceceeee ettt 516
9.19.5 Operation of the Projectcccccevirirvieneninieienenenecce e 516
9.19.6 Program Code..........coceeueriiniireeiieniinieeieieniesieetete ettt 516
9.19.7 Description of the Program Code..........ccccocerervuenerineenieneneneenieneneeeenn 516
9.19.8 Suggestions for Future WOork.......c..cccceceevenininiinininecneeceecnceeeeenne 529
Appendix A—MC33269 Data SReEetuuuuueeeeeeeeiiiiieieeeennneeneennnnnisiessssseeens 531
Appendix B—MAX232 Data SReetccccceeeeevrnnnnnnnnnnnnnneeeeeeeeeeeeeieensssnns 533
Appendix C—LM35 Data SHEEt..............ceeueeeeeeeereiiiiiiiiieireeeneeeennnnsnsnsssssesecseeens 535
Appendix D—MPX4115A Data Sheet................cuuuuuruuuuuuenueneneeeeeeeeeeeeeereeseenens 537

Preface

A microcontroller is a single-chip microprocessor system that contains data and program
memory, serial and parallel input—output, timers, and external and internal interrupts, all
integrated into a single chip that can be purchased for as little as $2.00. Approximately 40%
of microcontroller applications are in office automation, such as PCs, laser printers, fax
machines, intelligent telephones, and so forth. Approximately one-third of microcontrollers
are found in consumer electronic goods. Products like CD players, hi-fi equipment, video
games, washing machines, cookers, etc., fall into this category. The communications market,
automotive market, and military share the rest of the application areas.

Flash memory cards are high-capacity nonvolatile read-write type semiconductor memo-

ries used in many domestic, commercial, and industrial applications. For example, portable
electronic devices like digital cameras, video recorders, MP3 players, GPS receivers, laptop
computers, and many more domestic and office products use some form of flash memory
cards. Currently, there are many types of flash memory cards. Some of the popular cards are
secure digital (SD) card, compact flash card, memory stick card, smart media card, and so on.

This book is about SD memory cards; it gives the basic working theory of the cards and
describes how they can be used in PIC microcontroller-based electronic projects. Eighteen
fully tested and working projects are given in the book to show how SD cards can be used for
storing large amounts of data.

This book has been written with the assumption that the reader has taken a course on digital
logic design and has been exposed to writing programs using at least one high-level pro-
gramming language. Knowledge of the C programming language will be useful. In addition,
familiarity with at least one member of the PIC16F series of microcontrollers will be an
advantage. Knowledge of assembly language programming is not required because all the
projects in the book are based on C language.

Chapter 1 presents the basic features of microcontroller systems. It also introduces the impor-
tant topic of number systems and describes how to convert a given number from one base into
another base.

Xix

xx Preface

Chapter 2 provides a review of the PIC18F series of microcontrollers. The various features of
these microcontrollers are described in detail.

Chapter 3 provides brief details about commonly used memory cards. SD cards are currently
the most widely used memory cards. The technical details and communication methods of
these cards are described in the chapter.

Chapter 4 begins with a short tutorial on C language and then examines the features of the
MPLAB C18 compiler used in all of the projects in this book. A fully working student version
of the compiler is also given on the Web site that accompanies this book.

Chapter 4 also covers the advanced features of the MPLAB C18 language. Topics like built-in
functions, simulators, and libraries are discussed, along with working examples.

Chapter 5 explores the various software and hardware development tools for the PIC18 series
of microcontrollers and gives examples of various commercially available development

kits. In addition, development tools like simulators, emulators, and in-circuit debuggers are
described, with examples.

Chapter 6 provides some simple projects using the PIC18 series of microcontrollers and the
MPLAB C18 language compiler. All the projects in the chapter are based on the PIC18F
series of microcontrollers, and all the projects have been tested and are working. The chapter
should be useful for those who are new to PIC microcontrollers and for those who want to
extend their knowledge of programming the PIC18F series of microcontrollers using the
MPLAB C18 compiler.

Chapter 7 is about the PIC microcontroller SPI bus interface. SD cards are usually used in
SPI bus mode, and this chapter should provide an invaluable introduction to the SPI bus and
its programming using the MPLAB C18 compiler.

In this book, the Microchip SD card function library, known as the memory disk drive (MDD)
library, is used in all SD card-based projects. Chapter 8 gives the details of the MDD func-
tions and describes how they can be used in projects to create files on the SD card and how to
read and write these files.

Chapter 9 provides 18 working and fully tested SD card—based microcontroller projects.

The block diagram, circuit diagram, full program listing, and description of each program are
given for each project. The projects include simple topics like creating files on an SD card,
formatting a card, and reading and writing to the card. In addition, SD card-based complex
data-logging projects are given, where ambient temperature and pressure are read and stored
on the SD card with real-time stamping. The data can then be exported into a spreadsheet
program, such as Excel, and the change in the temperature or pressure can be analyzed
statistically or plotted against time.

Preface xxi

The Web site accompanying this book contains all the program source files and HEX files of
the projects described in the book. In addition, a copy of the student version of MPLAB C18
compiler is included on the Web site.

Prof. Dr. Dogan Ibrahim
September, 2009

This page intentionally left blank

About the Web Site

The Web site accompanying this book contains the following folders and files:

MPLAB IDE: MPLAB IDE software package

C18: Student version of the MPLAB C18 compiler
MDD: Microchip MDD File I/O System Library
FIGURES: Figures used in this book (.TIFF and .JPG)

FIGURES-BMP: Figures used in this book ((BMP)

TABLES: Tables used in this book

PROGRAMS: A list of programs used in this book (.C and .HEX)
DRAWINGS: Circuit diagrams used in this book (.DSN)

XXIii

This page intentionally left blank

Microcontroller Systems

1.1 Introduction

The term microcontroller or microcomputer is used to describe a system that includes a
minimum of a microprocessor, program memory, data memory, and input—output (I/O).
Some microcontroller systems include additional components, such as timers, counters,
analog-to-digital (A/D) converters, and so on. Thus, a microcontroller system can be
anything from a large computer having hard disks, floppy disks, and printers to a single-chip
embedded controller.

In this book, we are going to consider only the type of microcontrollers that consist of a
single silicon chip. Such microcontroller systems are also known as embedded control-
lers, and they are used in office equipment like PCs, printers, scanners, copy machines,
digital telephones, fax machines, and sound recorders. Microcontrollers are also used

in household goods, such as microwave ovens, TV remote control units, cookers, hi-fi
equipment, CD players, personal computers, and fridges. Many microcontrollers are avail-
able in the market. In this book, we shall look at programming and system design using
the programmable interface controller (PIC) series of microcontrollers manufactured by
Microchip Technology Inc.

1.2 Microcontroller Systems

A microcontroller is a single-chip computer. Micro suggests that the device is small and
controller suggests that the device can be used in control applications. Another term used for
microcontrollers is embedded controller, because most of the microcontrollers are built into
(or embedded in) the devices they control. For example, microcontrollers with dedicated pro-
grams are used in washing machines to control the washing cycles.

A microprocessor differs from a microcontroller in many ways. The main difference is

that a microprocessor requires several other external components for its operation, such as
program memory and data memory, I/O devices, and an external clock circuit. In general, a
microprocessor-based system usually consists of several supporting chips interconnected and
operating together. The power consumption and the cost of a microprocessor-based system
are, thus, usually high. A microcontroller on the other hand has all the support chips incorpor-
ated inside the same chip. All microcontrollers operate on a set of instructions (or the user

© 2010 Elsevier Ltd. All rights reserved. 1
D.O.l.: 10.1016/B978-1-85617-719-1.00005-1

2 Chapter 1

program) stored in their memory. A microcontroller fetches the instructions from its program
memory one by one, decodes these instructions, and then carries out the required operations.

Microcontrollers have traditionally been programmed using the assembly language of the
target device. Although assembly language is fast, it has several disadvantages. An assembly
program consists of mnemonics, and it is difficult to learn and maintain a program written
using assembly language. Also, microcontrollers manufactured by different firms have dif-
ferent assembly languages, and the user is required to learn a new language every time a

new microcontroller is to be used. Microcontrollers can also be programmed using one of

the traditional high-level languages, such as Basic, Pascal, or C. The advantage of high-level
language is that it is much easier to learn than an assembler. Also, very large and complex
programs can easily be developed using a high-level language. For example, it is rather a
complex task to multiply two floating point numbers using assembly language. The similar
operation, however, is much easier and consists of a single statement in a high-level language.
In this book, we shall be learning the programming of PIC microcontrollers using the popular
C18 high-level C programming language developed by Microchip Inc.

In general, a single chip is all that is required to have a running microcontroller system. In prac-
tical applications, additional components may be required to allow a microcomputer to inter-
face to its environment. With the advent of the PIC family of microcontrollers, the development
time of a complex electronic project has been reduced from many days to several hours.

Basically, a microcomputer executes a user program that is loaded in its program memory.
Under the control of this program, data is received from external devices (inputs), manipu-
lated, and then sent to external devices (outputs). For example, in a simple microcontroller-
based temperature data logging system, the temperature is read by the microcomputer using
a temperature sensor. The microcomputer then saves the temperature data on an SD card

at predefined intervals. Figure 1.1 shows the block diagram of our simple temperature data
logging system.

The system shown in Figure 1.1 is a very simplified temperature data logger system. In
a more sophisticated system, we may have a keypad to set the logging interval and an

Microcontroller

'—> Input

Temperature SD
Output >
sensor Card

Figure 1.1: Microcontroller-Based Temperature Data Logger System

Microcontroller Systems 3

Microcontroller LCD

I

Output

v

.—> Input

Temperature

sensor Output SD

Card

v

Input

ooao
ooao
oood
Keypad
Figure 1.2: Temperature Data Logger System with a Keypad and LCD

LCD to display the current temperature. Figure 1.2 shows the block diagram of this more
sophisticated temperature data logger system.

We can make our design even more sophisticated (see Figure 1.3) by adding a real-time clock
chip (RTC) to provide the absolute date and time information so that the data can be saved
with date and time stamping. Also, the temperature readings can be sent to a PC every second
for archiving and further processing. For example, a graph of the temperature change can be

LCD
Temperature
sensor
Microcontroller
SD
RTC [—»{Input Output * card
Input Output
A
3
ooao pC
ooao
0on [
Keypad l |

Figure 1.3: More Sophisticated Temperature Data Logger

4 Chapter 1

plotted on the PC. As you can see, because the microcontrollers are programmable, it is very
easy to make the final system as simple or as complicated as we like.

A microcontroller is a very powerful electronic device that allows a designer to create
sophisticated I/O data manipulation under program control. Microcontrollers are classified
by the number of bits they process. Eight-bit microcontrollers are the most popular ones and
are used in most microcontroller-based monitoring and control applications. Microcontrollers
of 16 and 32 bits are much more powerful but usually more expensive and not required

in many small-to-medium-size, general-purpose applications where microcontrollers are
generally used.

The simplest microcontroller architecture consists of a microprocessor, program and data
memory, and I/O circuitry. The microprocessor itself consists of a central processing unit
(CPU) and the control unit (CU). The CPU is the brain of the microprocessor, where all the
arithmetic and logic operations are performed. The CU controls the internal operations of the
microprocessor and sends out control signals to other parts of the microprocessor to carry out
the required instructions.

Memory is an important part of a microcontroller system. Depending upon the type

used, we can classify memory into two groups: program memory and data memory.
Program memory stores the application program written by the programmer and is usually
nonvolatile; i.e., data is not lost after the removal of power. Data memory is where the
temporary data used in a program is stored and is usually volatile; i.e., data is lost after the
removal of power.

There are basically six types of memory, as summarized below.

1.2.1 Random Access Memory

Random access memory (RAM) is a general-purpose memory that usually stores the

user data in a program. RAM is volatile in the sense that it cannot retain data in the
absence of power; i.e., data is lost after the removal of power. The RAM in a system is
either static RAM (SRAM) or dynamic RAM (DRAM). The SRAMs are fast, with access
time in the range of a few nanoseconds, which makes them ideal memory chips in com-
puter applications. DRAMs are slower and because they are capacitor based they require
refreshing every several milliseconds. DRAMs have the advantage that their power
consumption is less than that of SRAMs. Most microcontrollers have some amount of
internal RAM, commonly 256 bytes, although some microcontrollers have more and some
have less. For example, the PIC18F452 microcontroller has 1536 bytes of RAM, which
should be enough for most microcontroller-based applications. In most microcontroller
systems, it is possible to extend the amount of RAM by adding external memory chips if
desired.

Microcontroller Systems 5

1.2.2 Read Only Memory

Read only memory (ROM) is a type of memory that usually holds the application program
or fixed user data. ROM is nonvolatile. If power is removed from ROM and then reapplied,
the original data will still be there. ROMs are programmed at the factory during the manufac-
turing process and their content cannot be changed by the user. ROMs are only useful if

you have developed a microcontroller-based application and wish to order several thousand
microcontroller chips preprogrammed with this program.

1.2.3 Programmable Read Only Memory

Programmable read only memory (PROM) is a type of ROM that can be programmed in the
field, often by the end user, using a device called a PROM programmer. PROM is used to
store an application program or constant data. Once a PROM has been programmed, its con-
tents cannot be changed again. PROMs are usually used in low production applications where
only several such memories are required.

1.2.4 Erasable Programmable Read Only Memory

Erasable programmable read only memory (EPROM) is similar to ROM, but the EPROM
can be programmed using a suitable programming device. EPROMs have a small clear glass
window on top of the chip where the data can be erased under strong ultraviolet light. Once
the memory is programmed, the window should be covered with dark tape to prevent acci-
dental erasure of the data. An EPROM must be erased before it can be reprogrammed. Many
development versions of microcontrollers are manufactured with EPROMs where the user
program can be stored. These memories are erased and reprogrammed until the user is satis-
fied with the program. Some versions of EPROMs, known as one time programmable (OTP)
EPROMs, can be programmed using a suitable programmer device, but these memories
cannot be erased. OTP memories cost much less than EPROMs. OTP is useful after a project
has been developed completely, and it is required to make many copies of the final program
memory.

1.2.5 Electrically Erasable Programmable Read Only Memory

Electrically erasable programmable read only memory (EEPROM) is a nonvolatile memory.
These memories can be erased and can also be reprogrammed using suitable programming
devices. EEPROMs are used to save constant data, such as configuration information, maxi-
mum and minimum values of a measurement, and identification data. Some microcontrollers
have built-in EEPROMs. For example, PIC18F452 contains a 256-byte EEPROM where each
byte can be programmed and erased directly by applications software. EEPROMs are usually
very slow. The cost of an EEPROM chip is much higher than that of an EPROM chip.

6 Chapter 1

1.2.6 Flash EEPROM

Flash EEPROM is another version of EEPROM type memory. This memory has become
popular in microcontroller applications and is used to store the user program. Flash EEPROM
is nonvolatile and is usually very fast. The data can be erased and then reprogrammed using a
suitable programming device. Some microcontrollers have only 1K of flash EEPROM, while
some others have 32K or more. The PIC18F452 microcontroller has 32 KB of flash memory.

1.3 Microcontroller Features

Microcontrollers from different manufacturers have different architectures and different
capabilities. Some may suit a particular application while others may be totally unsuitable
for the same application. Some of the hardware features of microcontrollers in general are
described in this section.

1.3.1 Buses

The connections between various blocks of a computer system are called buses. A bus is a
common set of wires that carry a specific type of information. In general, every computer
system has three buses: address bus, data bus, and control bus.

An address bus carries the address information in a computer system. It is a unidirectional bus
having 16 bits in small computer systems and 32 or more bits in larger systems. An address
bus usually carries the memory addresses from the CPU to the memory chips. This bus is also
used to carry the I/O addresses in many computer systems.

A data bus carries the data in a computer system. It is a bidirectional bus having 8 bits in
small systems and 14, 16, 32, or even more bits in larger systems. A data bus carries the
memory data from the CPU to the memory chips. In addition, data is carried to other parts of
a computer via the data bus.

The control bus is usually a smaller bus and is used to provide control signals to most parts
of a computer system. For example, memory read and write control signals are carried by the
control bus.

1.3.2 Supply Voltage

Most microcontrollers operate with the standard logic voltage of +5 V. Some
microcontrollers can operate at as low as +2.7 V and some will tolerate +6 V without any
problems. You should check the manufacturers’ data sheets about the allowed limits of
the power supply voltage. For example, PIC18F452 microcontrollers can operate with a
power supply +2 to +5.5 V.

Microcontroller Systems 7

A voltage regulator circuit is usually used to obtain the required power supply voltage when
the device is to be operated from a mains adaptor or batteries. For example, a 5-V regulator is
required if the microcontroller is to be operated using a 9-V battery.

1.3.3 The Clock

All microcontrollers require a clock (or an oscillator) to operate. The clock is usually pro-
vided by connecting external timing devices to the microcontroller. Most microcontrollers
will generate clock signals when a crystal and two small capacitors are connected. Some
will operate with resonators or external resistor-capacitor pair. Some microcontrollers have
built-in timing circuits and they do not require any external timing components. If the appli-
cation is not time sensitive, then external or internal (if available) resistor-capacitor timing
components should be used to lower the costs.

An instruction is executed by fetching it from the memory and then decoding it. This usually
takes several clock cycles and is known as the instruction cycle. In PIC microcontrollers,

an instruction cycle takes four clock periods. Thus, the microcontroller is actually operated

at a clock rate, which is a quarter of the actual oscillator frequency. For example, in a PIC
microcontroller operating at 4-MHz clock, the instruction cycle time is only 1 pus (frequency of
1MHz). The PIC18F series of microcontrollers can operate with clock frequencies up to 40 MHz.

1.3.4 Timers

Timers are important parts of any microcontroller. A timer is basically a counter, which is
driven either by an external clock pulse or by the internal oscillator of the microcontroller.
A timer can be 8 or 16 bits wide. Data can be loaded into a timer under program control
and the timer can be stopped or started by program control. Most timers can be configured
to generate an interrupt when they reach a certain count (usually when they overflow). The
interrupt can be used by the user program to carry out accurate timing-related operations
inside the microcontroller. The PIC18F series of microcontrollers have at least three timers.
For example, the PIC18F452 microcontroller has three built-in timers.

Some microcontrollers offer capture and compare facilities where a timer value can be read
when an external event occurs or the timer value can be compared to a preset value and an
interrupt generated when this value is reached. Most PIC18F microcontrollers have at least
two capture and compare modules.

1.3.5 Watchdog

Most microcontrollers have at least one watchdog facility. The watchdog is basically a timer
that is normally refreshed by the user program, and a reset occurs if the program fails to
refresh the watchdog. The watchdog timer is used to detect serious problems in programes,

8 Chapter 1

such as the program being in an endless loop. A watchdog is a safety feature that prevents
runaway software and stops the microcontroller from executing meaningless and unwanted
code. Watchdog facilities are commonly used in real-time systems where it is required to
regularly check the successful termination of one or more activities.

1.3.6 Reset Input

A reset input is used to reset a microcontroller externally. Resetting puts the microcontroller
into a known state such that the program execution starts usually from address 0 of the pro-
gram memory. An external reset action is usually achieved by connecting a push-button switch
to the reset input such that the microcontroller can be reset when the switch is pressed.

1.3.7 Interrupts

Interrupts are very important concepts in microcontrollers. An interrupt causes the microcon-
troller to respond to external and internal (e.g., a timer) events very quickly. When an inter-
rupt occurs, the microcontroller leaves its normal flow of program execution and jumps to a
special part of the program known as the interrupt service routine (ISR). The program code
inside the ISR is executed and upon return from the ISR the program resumes its normal flow
of execution.

The ISR starts from a fixed address of the program memory. This address is known as the infer-
rupt vector address. Some microcontrollers with multi-interrupt features have just one interrupt
vector address, while some others have unique interrupt vector addresses, one for each interrupt
source. Interrupts can be nested such that a new interrupt can suspend the execution of another
interrupt. Another important feature of a microcontroller with multi-interrupt capability is that
different interrupt sources can be given different levels of priority. For example, the PIC18F
series of microcontrollers have low-priority and high-priority interrupt levels.

1.3.8 Brown-Out Detector

Brown-out detectors are also common in many microcontrollers, and they reset a micro-
controller if the supply voltage falls below a nominal value. Brown-out detectors are safety
features, and they can be employed to prevent unpredictable operation at low voltages,
especially to protect the contents of EEPROM type memories if the supply voltage falls.

1.3.9 A/D Converter

An A/D converter is used to convert an analog signal like voltage to digital form so that
it can be read and processed by a microcontroller. Some microcontrollers have built-in
A/D converters. It is also possible to connect an external A/D converter to any type of

Microcontroller Systems 9

microcontroller. A/D converters are usually 8—10 bits having 256-1024 quantization levels.

Most PIC microcontrollers with A/D features have multiplexed A/D converters where more

than one analog input channel is provided. For example, the PIC18F452 microcontroller has
10-bit, 8-channel A/D converters.

The A/D conversion process must be started by the user program and it may take several
hundreds of microseconds for a conversion to complete. A/D converters usually generate
interrupts when a conversion is complete so that the user program can read the converted
data quickly.

A/D converters are very useful in control and monitoring applications because most sensors
(e.g., temperature sensor, pressure sensor, and force sensor) produce analog output voltages
that cannot be read by a microcontroller without an A/D converter.

1.3.10 Serial I/O

Serial communication (also called RS232 communication) enables a microcontroller

to communicate with other devices using the serial RS232 communication protocol.

For example, a microcontroller can be connected to another microcontroller or to a PC
and exchange data using the serial communication protocol. Some microcontrollers

have built-in hardware called universal synchronous-asynchronous receiver-transmitter
(USART) to implement a serial communication interface. The baud rate and the data
format can usually be selected by the user program. If serial I/O hardware is not provided,
it is easy to develop software to implement the serial data communication using any 1/O
pin of a microcontroller. The PIC18F series of microcontrollers have built-in USART
modules.

Some microcontrollers (e.g., PIC18F series) incorporate a serial peripheral interface (SPI)
or an integrated interconnect (I°C) hardware bus interface. These enable a microcontroller to
interface to other compatible devices easily.

1.3.11 EEPROM Data Memory

EEPROM type data memory is also very common in many microcontrollers. The advantage
of an EEPROM is that the programmer can store nonvolatile data in such a memory and can
also change this data whenever required. For example, in a temperature monitoring appli-
cation, the maximum and the minimum temperature readings can be stored in an EEPROM.
Then, if the power supply is removed for whatever reason, the values of the latest readings
will still be available in the EEPROM. The PIC18F452 microcontroller has 256 bytes of
EEPROM. Some other members of the family have more (e.g., PIC18F6680 has 1024 bytes)
EEPROM:s.

10 Chapter 1

1.3.12 LCD Drivers

LCD drivers enable a microcontroller to be connected to an external LCD display directly. These
drivers are not common because most of the functions they provide can be implemented in the
software. For example, the PIC18F6490 microcontroller has a built-in LCD driver module.

1.3.13 Analog Comparator

Analog comparators are used where it is required to compare two analog voltages. Although
these circuits are implemented in most high-end PIC microcontrollers, they are not common
in other microcontrollers. The PIC18F series of microcontrollers have built-in analog compa-
rator modules.

1.3.14 Real-Time Clock

Real-time clock (RTC) enables a microcontroller to have absolute date and time information
continuously. Built-in real-time clocks are not common in most microcontrollers because
they can easily be implemented by either using a dedicated RTC or by writing a program.

1.3.15 Sleep Mode

Some microcontrollers (e.g., PIC) offer built-in sleep modes where executing this instruction
puts the microcontroller into a mode where the internal oscillator is stopped and the power
consumption is reduced to an extremely low level. The main reason for using the sleep mode
is to conserve the battery power when the microcontroller is not doing anything useful. The
microcontroller usually wakes up from the sleep mode by external reset or by a watchdog
time-out.

1.3.16 Power-on Reset

Some microcontrollers (e.g., PIC) have built-in power-on reset circuits, which keep the micro-
controller in reset state until all the internal circuitry has been initialized. This feature is very
useful as it starts the microcontroller from a known state on power-up. An external reset can
also be provided where the microcontroller can be reset when an external button is pressed.

1.3.17 Low-Power Operation

Low-power operation is especially important in portable applications where the microcontroller-
based equipment is operated from batteries. Some microcontrollers (e.g., PIC) can operate
with less than 2mA at a 5-V supply and approximately 15 uA at a 3-V supply. Some other
microcontrollers, especially microprocessor-based systems where there could be several chips,
may consume several hundred milliamperes or even more.

Microcontroller Systems 11

1.3.18 Current Sink/Source Capability

This is important if the microcontroller is to be connected to an external device that may draw
large current for its operation. PIC microcontrollers can source and sink 25 mA of current
from each output port pin. This current is usually sufficient to drive light-emitting diodes
(LEDs), small lamps, buzzers, small relays, etc. The current capability can be increased by
connecting external transistor switching circuits or relays to the output port pins.

1.3.19 USB Interface

USB is currently a very popular computer interface specification used to connect various
peripheral devices to computers and microcontrollers. Some PIC microcontrollers
provide built-in USB modules. For example, PIC18F2X50 has built-in USB interface
capabilities.

1.3.20 Motor Control Interface

Some PIC microcontrollers (e.g., PIC18F2X31) provide motor control interface.

1.3.21 Controller Area Network Interface

Controller area network (CAN) bus is a very popular bus system used mainly in automation
applications. Some PIC18F series of microcontrollers (e.g., PIC18F4680) provide CAN inter-
face capabilities.

1.3.22 Ethernet Interface

Some PIC microcontrollers (e.g., PIC18F97J60) provide Ethernet interface capabilities. Such
microcontrollers can easily be used in network-based applications.

1.3.23 ZigBee Interface

ZigBee is an interface similar to Bluetooth and is used in low-cost wireless home automation
applications. Some PIC18F series of microcontrollers provide ZigBee interface capabilities,
making the design of such wireless systems very easy.

1.4 Microcontroller Architectures

Usually two types of architecture are used in microcontrollers (see Figure 1.4): Von Neu-
mann architecture and Harvard architecture. Von Neumann architecture is used by a large
percentage of microcontrollers, where all memory space is on the same bus and instruction
and data use the same bus. In the Harvard architecture (used by the PIC microcontrollers),

12 Chapter 1

.| Program

CPU "| memory

A

(a) Von Neumann architecture

Data
memory

CPU

A4
A

(b) Harvard architecture

Figure 1.4: Von Neumann and Harvard Architectures

code and data are on separate buses, and this allows the code and data to be fetched simul-

taneously, resulting in an improved performance.

.| Program
"| memory

1.4.1 Reduced Instruction Set Computer and Complex Instruction Set Computer

Reduced instruction set computer (RISC) and complex instruction set computer (CISC) refer
to the instruction set of a microcontroller. In an 8-bit RISC microcontroller, data is 8 bits
wide but the instruction words are more than 8 bits wide (usually 12, 14, or 16 bits), and the
instructions occupy one word in the program memory. Thus, the instructions are fetched and

executed in one cycle, resulting in an improved performance.

In a CISC microcontroller, both data and instructions are 8 bits wide. CISC microcontrollers
usually have over 200 instructions. Data and code are on the same bus and cannot be fetched

simultaneously.

1.5 Choosing a PIC Microcontroller

Choosing a microcontroller for an application requires taking into account the following

factors:
e Microcontroller speed

* The number of I/O pins required

* The peripheral devices required (e.g., USART and A/D converter)

* The memory size (RAM, flash, EEPROM, etc.)

* Power consumption

* Physical size

Microcontroller Systems 13

1.6 Number Systems

The efficient use of a microprocessor or a microcontroller requires a working knowledge of
binary, decimal, and hexadecimal numbering systems. This section provides a background for
those who are unfamiliar with these numbering systems and who do not know how to convert
from one number system to another one.

Number systems are classified according to their bases. The numbering system used in
everyday life is base 10 or the decimal number system. The most commonly used numbering
system in microprocessor and microcontroller applications is base 16 or hexadecimal. In
addition, base 2 (binary) or base 8 (octal) number systems are also used.

1.6.1 Decimal Number System

As you all know, the numbers in this system are 0, 1, 2, 3,4, 5, 6, 7, 8, and 9. We can use the
subscript 10 to indicate that a number is in decimal format. For example, we can show the
decimal number 235 as 235,

In general, a decimal number is represented as follows:

a,x10"+a, X 107" +a, , X 10" + --- + a5 x 10°

n—1

For example, decimal number 825,, can be shown as follows:

825,,=8x102+2x 10" +5x 10°

Similarly, decimal number 26,, can be shown as follows:

26,,=2x 10" + 6 x 10°

or

3359,,=3x10°+3x10*+5%x 10" +9 x 10°

1.6.2 Binary Number System

In the binary number system, there are two numbers: 0 and 1. We can use the subscript 2 to
indicate that a number is in binary format. For example, we can show binary number 1011
as 1011,.

In general, a binary number is represented as follows:

a,X2"+a, X2 +qa, , X224 - + gy % 2°

n—1
For example, binary number 1110, can be shown as follows:

1110, =1Xx22+1x22+ 1 x2'+0x2°

14 Chapter 1

Similarly, binary number 10001110, can be shown as follows:

10001110, =1%x27+0X26+0X2°4+0x2*+1x 22 +1x22+1x2'+0x2°

1.6.3 Octal Number System

In the octal number system, the valid numbers are 0, 1, 2, 3, 4, 5, 6, and 7. We can use the
subscript 8 to indicate that a number is in octal format. For example, we can show octal
number 23 as 23;.

In general, an octal number is represented as follows:

a, X8 +a, X8 +a, ,x8 2+ - +a,x8°

n—1

For example, octal number 237, can be shown as follows:
237,=2x8+3x8 +7x8"

Similarly, octal number 1777, can be shown as follows:

1777,=1x8+7x8+7x8'+7x8°

1.6.4 Hexadecimal Number System

In the hexadecimal number system, the valid numbers are 0, 1, 2, 3,4,5,6,7, 8,9,
A, B, C, D, E, and F. We can use the subscript 16 or H to indicate that a number is
in hexadecimal format. For example, we can show hexadecimal number 1F as 1F,
or as 1F,,.

In general, a hexadecimal number is represented as follows:
a,x16"+a, | X 16" +qa, , X 16"+ --- + ay x 16°
For example, hexadecimal number 2AC,, can be shown as follows:

2AC,=2x16*+10x 16" + 12 x 16°

Similarly, hexadecimal number 3FFE, can be shown as follows:

3FFE ;=3 x16*+ 15X 16>+ 15 X% 16" + 14 x 16°

1.7 Converting Binary Numbers into Decimal

To convert a binary number into decimal, write the number as the sum of the powers of 2.

Microcontroller Systems 15

m Example 1.1

Convert binary number 1011, into decimal.

Solution

Write the number as the sum of the powers of 2:
1011,=1Xx22+0x22+1x2"+1x2°
=8+0+2+1

=11

or 1011,=11,,. -

m Example 1.2

Convert binary number 11001110, into decimal.

Solution

Write the number as the sum of the powers of 2:
11001110, =1X27+1X2°+0X2°+0x 24+ 1x2%4+1x224+1x2"+0x2°

128 +64+0+0+8+4+2+0

=206
or 11001110,=206,,.

Table 1.1 shows the binary equivalent of decimal numbers from O to 31.

Table 1.1: Binary Equivalent of Decimal Numbers

Decimal Binary Decimal Binary
0 00000000 16 00010000
1 00000001 17 00010001
2 00000010 18 00010010
3 00000011 19 00010011
4 00000100 20 00010100

——cont’d

16 Chapter 1

Table 1.1: Binary Equivalent of Decimal Numbers —cont’d

Decimal Binary Decimal Binary
5 00000101 21 00010101
6 00000110 22 00010110
7 00000111 23 00010111
8 00001000 24 00011000
9 00001001 25 00011001
10 00001010 26 00011010
11 00001011 27 00011011
12 00001100 28 00011100
13 00001101 29 00011101
14 00001110 30 00011110
15 00001111 31 00011111

1.8 Converting Decimal Numbers into Binary

To convert a decimal number into binary, divide the number repeatedly by 2 and take the
remainders. The first remainder is the least significant digit (LSD) and the last remainder is
the most significant digit (MSD).

m Example 1.3

Convert decimal number 28, into binary.

Solution

Divide the number by 2 repeatedly and take the remainders:
28/2 — 14 Remainder 0 (LSD)
14/2 — 7 Remainder 0
7/2 — 3 Remainder 1
3/2 = 1 Remainder 1
1/2 —- 0 Remeinder 1 (MSD)

The required binary number is 11100,.

Microcontroller Systems 17

m Example 1.4

Solution

m Example 1.5

Solution

122/2
61/2
30/2
15/2

7/2
3/2
1/2

N

%

65/2 — 32
32/2 — 16
16/2 — 8
8/2 — 4
4/2 — 2
2/2 > 1
1/2 - 0

61
30
15

Convert decimal number 65,, into binary.

Remainder 1

Remainder
Remainder
Remainder
Remainder
Remainder

Remainder

The required binary number is 1000001,.

Convert decimal number 122,, into binary.

Remainder
Remainder
Remainder
Remainder
Remainder
Remainder

Remainder

The required binary numberis 1111010,.

S © o o o

1

0
1
0
1

1

Divide the number by 2 repeatedly and take the remainders:

(LSD)

(MSD)

Divide the number by 2 repeatedly and take the remainders:

(LSD)

(MSD)

www.newnespress.com

18 Chapter 1

1.9 Converting Binary Numbers into Hexadecimal

To convert a binary number into hexadecimal, arrange the number in groups of four and
find the hexadecimal equivalent of each group. If the number cannot be divided exactly into
groups of four, insert zeroes to the left-hand side of the number.

m Example 1.6

Convert binary number 10011111, into hexadecimal.

Solution

First, divide the number into groups of four and then find the hexadecimal equivalent
of each group:

10011111 =1001 1111

9 F

The required hexadecimal number is 9F. -

m Example 1.7

Convert binary number 1110111100001110, into hexadecimal.

Solution

First, divide the number into groups of four and then find the equivalent of each group:

1110111100001110=1110 1111 0000 1110

E F 0 E

The required hexadecimal number is EFOE,. -

m Example 1.8

Convert binary number 111110, into hexadecimal.

Solution

Because the number cannot be divided exactly into groups of four, we have to insert

zeroes to the left of the number:

111110=0011 1110

3 E

The required hexadecimal number is 3E.

1.10 Converting Hexadecimal Numbers into Binary

To convert a hexadecimal number into binary, write the 4-bit binary equivalent of each

hexadecimal digit.

m Example 1.9

Solution

Convert hexadecimal number A9,4 into binary.

A=1010,

The required binary number is 10101001,.

Writing the binary equivalent of each hexadecimal digit

9=1001,

Microcontroller Systems 19
Table 1.2 shows the hexadecimal equivalent of decimal numbers O to 31.
Table 1.2: Hexadecimal Equivalent of Decimal Numbers
Decimal Hexadecimal Decimal Hexadecimal
0 0 16 10
1 1 17 11
2 2 18 12
3 3 19 13
4 4 20 14
5 5 21 15
6 6 22 16
7 7 23 17
8 8 24 18
9 9 25 19
10 A 26 1A
11 B 27 1B
12 C 28 1C
13 D 29 1D
14 E 30 1E
15 F 31 1F
L |

20 Chapter 1

m Example 1.10

Convert hexadecimal number FE3C,; into binary.

Solution
Writing the binary equivalent of each hexadecimal digit
F=1111, E=1110, 3=0011, C=1100,

The required binary numberis 1111111000111100,.

1.11 Converting Hexadecimal Numbers into Decimal

To convert a hexadecimal number into decimal, we have to calculate the sum of the powers of
16 of the number.

m Example 1.11

Convert hexadecimal number 2AC,; into decimal.

Solution

Calculating the sum of the powers of 16 of the number:
2AC,s=2x16>+10x16"+12x 16°
=512+160+12
=684

The required decimal number is 684,,.

m Example 1.12

Convert hexadecimal number EE,; into decimal.

Solution

Calculating the sum of the powers of 16 of the number
EE,,=14x 16"+ 14X 16°
=224+14
=238

The required decimal number is 238,,.

Microcontroller Systems 21

1.12 Converting Decimal Numbers into Hexadecimal

To convert a decimal number into hexadecimal, divide the number repeatedly by 16 and take
the remainders. The first remainder is the LSD and the last remainder is the MSD.

m Example 1.13

Convert decimal number 238, into hexadecimal.

Solution

Dividing the number repeatedly by 16
238/16 — 14 Remainder 14 (E) (LSD)
14/16 — 0 Remainder 14 (E) (MSD)

The required hexadecimal number is EE,. -

m Example 1.14

Convert decimal number 684, into hexadecimal.

Solution

Dividing the number repeatedly by 16
684/16 — 42 Remainder 12 (C) (LSD)

42/16 — 2 Remainder 10 (A)
2/16 — 0 Remainder 2 (MSD)

The required hexadecimal number is 2AC,;. -

1.13 Converting Octal Numbers into Decimal

To convert an octal number into decimal, calculate the sum of the powers of 8 of the

number.

22 Chapter 1

m Example 1.15

Convert octal number 15; into decimal.

Solution

Calculating the sum of the powers of 8 of the number
15,=1x8 +5x8°
=8+5
=13

The required decimal number is 13,,.

m Example 1.16

Convert octal number 237, into decimal.

Solution
Calculating the sum of the powers of 8 of the number
237,=2x82+3x8" +7x8°
=128+24+7
=159

The required decimal numberis 159,,.

1.14 Converting Decimal Numbers into Octal

To convert a decimal number into octal, divide the number repeatedly by 8 and take the
remainders. The first remainder is the LSD and the last remainder is the MSD.

m Example 1.17

Convert decimal number 159, into octal.

Solution

Dividing the number repeatedly by 8

Microcontroller Systems 23

159/8 — 19 Remainder 7 (LSD)
19/8 — 2 Remainder 3
2/8 — 0 Remainder 2 (MSD)

The required octal number is 237,.

m Example 1.18

Convert decimal number 460, into octal.

Solution

Dividing the number repeatedly by 8
460/8 — 57 Remainder 4 (LSD)
57/8 — 7 Remainder 1
7/8 — 0 Remainder 7 (MSD)

The required octal number is 714,.

Table 1.3 shows the octal equivalent of decimal numbers 0-31.

Table 1.3: Octal Equivalent of Decimal Numbers

Decimal Octal Decimal Octal
0 0 16 20
1 1 17 21
2 2 18 22
3 3 19 23
4 4 20 24
5 5 21 25
6 6 22 26
7 7 23 27
8 10 24 30
9 11 25 31
10 12 26 32
11 13 27 33
12 14 28 34
13 15 29 35
14 16 30 36
15 17 31 37

24 Chapter 1

1.15 Converting Octal Numbers into Binary

To convert an octal number into binary, write the 3-bit binary equivalent of each octal digit.

m Example 1.19

Convert octal number 177, into binary.

Solution
Write the binary equivalent of each octal digit:
1=001, 7=111, 7=111,
The required binary numberis 001111111,
m Example 1.20

Convert octal number 754 into binary.

Solution

Write the binary equivalent of each octal digit:

7=111, 5=101,

The required binary numberis 111101,.

1.16 Converting Binary Numbers into Octal

To convert a binary number into octal, arrange the number in groups of three and write the
octal equivalent of each digit.

m Example 1.21

Convert binary number 110111001, into octal.

Solution

Arranging in groups of three

110111001 =110 111 001
6 7 1

The required octal number is 671,. -

Microcontroller Systems 25

1.17 Negative Numbers

The most significant bit of a binary number is usually used as the sign bit. By convention, for
positive numbers this bit is O and for negative numbers this bit is 1. Table 1.4 shows the 4-bit positive
and negative numbers. The largest positive and negative numbers are +7 and —8, respectively.

To convert a positive number into negative, take the complement of the number and add 1.
This process is also called the 2’s complement of the number.

m Example 1.22

Write decimal number —6 as a 4-bit number.

Solution

First, write the number as a positive number, then find the complement and add 1:
0110 +6
1001 complement

1 add 1

1010 whichis—6

Table 1.4: Four-Bit Positive and Negative Numbers

Binary Numbers Decimal Equivalent
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 0
1111 -1
1110 -2
1101 -3
1100 -4
1011 =5
1010 -6
1001 -7
1000 -8

26 Chapter 1

m Example 1.23

Write decimal number —25 as an 8-bit number.

Solution

First, write the number as a positive number, then find the complement and add 1:
00011001 +25
11100110 complement
1 add1

11100111 which is =25

1.18 Adding Binary Numbers

The addition of binary numbers is similar to the addition of decimal numbers. Numbers in
each column are added together with a possible carry from a previous column. The primitive
addition operations are as follows:

0+0=0
0+1=1
1+0=1
1+1=10 generate a carry bit

1+1+1=11 generate a carry bit

Some examples are given below.

m Example 1.24

Find the sum of binary numbers 011 and 110.

Solution

We can add these numbers as in the addition of decimal humbers:
011 First column: 1+0=1

+ 110 Second column: 1+ 1=0 and a carry bit

1001 Third column: 1+1=10

Microcontroller Systems 27

m Example 1.25

Find the sum of binary numbers 01000011 and 00100010.

Solution

We can add these numbers as in the addition of decimal numbers:
01000011 First column: 1+0=1
+ 00100010 Second column: 1+1=10
01100101 Third column: 0+carry=1
Fourth column: 0+0=0
Fifth column: 0+0=0
Sixth column: 0+1=1

Seventh column: 1+0=1

Eighth column: 0+0=0

1.19 Subtracting Binary Numbers

To subtract two binary numbers, convert the number to be subtracted into negative and then
add the two numbers.

m Example 1.26

Subtract binary number 0010 from 0110.

Solution

First, let’s convert the number to be subtracted into negative:
0010 number to be subtracted
1101 complement

1 add 1

1110

28 Chapter 1

Now, add the two numbers:
0110
+ 1110

0100

Because we are using 4 bits only, we cannot show the carry bit. -

1.20 Multiplication of Binary Numbers
Multiplication of two binary numbers is same as the multiplication of decimal numbers. The
four possibilities are as follows:

0x0=0

0x1=0

Ix0=0

Ixl=1

Some examples are given below.

m Example 1.27

Multiply the two binary numbers 0110 and 0010.

Solution

Multiplying the numbers
0110
0010

0000
0110
0000
0000

001100 or 1100

In this example, 4 bits are needed to show the final result. -

Microcontroller Systems

29

m Example 1.28

Multiply binary numbers 1001 and 1010.

Solution

Multiplying the numbers
1001
1010

0000
1001
0000
1001

1011010

1.21 Division of Binary Numbers

In this example, 7 bits are required to show the final result.

The division of binary numbers is similar to the division of decimal numbers. An example is

given below.

m Example 1.29

Solution

Dividing the numbers

111
10)1110
10

11
10

10
10

00
gives the result 111,.

Divide binary number 1110 by binary number 10.

30 Chapter 1

1.22 Floating Point Numbers

Floating point numbers are used to represent noninteger fractional numbers and are used in

most engineering and technical calculations, for example, 3.256, 2.1, and 0.0036. The most
commonly used floating point standard is the IEEE standard. According to this standard, floating
point numbers are represented with 32 bits (single precision) or 64 bits (double precision).

In this section, we will look at the format of 32-bit floating point numbers only and see how
mathematical operations can be performed with such numbers.

According to the IEEE standard, 32-bit floating point numbers are represented as follows:
31 30 23 22 0
X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
T T T

sign exponent mantissa

The most significant bit indicates sign of the number, where 0 indicates positive and 1
indicates negative.

The 8-bit exponent shows the power of the number. To make the calculations easy, the sign of
the exponent is not shown, but instead excess 128 numbering system is used. Thus, to find the
real exponent, we have to subtract 127 from the given exponent. For example, if the mantissa
is “10000000,” the real value of the mantissa is 128 — 127 = 1.

The mantissa is 23 bits wide and represents the increasing negative powers of 2. For example,
if we assume that the mantissa is “1110000000000000000000,” the value of this mantissa is
calculated as follows: 27! + 272 + 273 =7/8.

The decimal equivalent of a floating point number can be calculated using the following
formula:

Number = (—1)* 271271 - f,

where s = 0 for positive numbers, 1 for negative numbers,
e = exponent (between 0 and 255), and
f= mantissa.

As shown in the above formula, there is a hidden “1” before the mantissa; i.e., mantissa is
shown as “1 - £

The largest and the smallest numbers in 32-bit floating point format are as follows:

Microcontroller Systems 31

The largest number
0 11111110 1111111111111 1111111111

This number is (2 — 27%*) 2'*” or decimal 3.403 x 10*. The numbers keep their precision up to
six digits after the decimal point.

The smallest number

0 00000001 00000000000000000000000

This number is 27?° or decimal 1.175 x 10738,

1.23 Converting a Floating Point Number into Decimal

To convert a given floating point number into decimal, we have to find the mantissa and the
exponent of the number and then convert into decimal as shown above.

Some examples are given here.

m Example 1.30

Find the decimal equivalent of the floating point number given below:

0 10000001 10000000000000000000000

Solution

Here,

sign = positive
exponent =129 — 127 =2

mantissa=2"=0.5

The decimal equivalent of this number is +1.5 X 22 = +6.0. -

32 Chapter 1

m Example 1.31

Find the decimal equivalent of the floating point number given below:
0 10000010 11000000000000000000

Solution
In this example,
sign = positive
exponent=130-127=3
mantissa=2"4+272=0.75

The decimal equivalent of the number is +1.75 x 2° = 14.0. -

1.23.1 Normalizing the Floating Point Numbers

Floating point numbers are usually shown in normalized form. A normalized number has only
one digit before the decimal point (a hidden number 1 is assumed before the decimal point).

To normalize a given floating point number, we have to move the decimal point repetitively
one digit to the left and then increase the exponent after each move.

Some examples are given below.

m Example 1.32
Normalize the floating point number 123.56.

Solution

If we write the number with a single digit before the decimal point, we get

1.2356 x 10?
|

m Example 1.33
Normalize the binary number 1011.1,.
Solution

If we write the number with a single digit before the decimal point, we get

1.0111 x 23
|

Microcontroller Systems 33

1.23.2 Converting a Decimal Number into Floating Point

To convert a given decimal number into floating point, we have to carry out the following steps:
* Write the number in binary

* Normalize the number

* Find the mantissa and the exponent

* Write the number as a floating point number

Some examples are given below.

m Example 1.34
Convert decimal number 2.25,, into floating point.

Solution

Writing the number in binary
2.25,, = 10.01,
Normalizing the number,
10.01,=1.001, X 2'

Here,s=0,e—127 =1 ore=128, and f=00100000000000000000000.

(Remember that a number 1 is assumed on the left-hand side, even though it is not shown
in the calculation.) We can now write the required floating point number as follows:

s e f
0 10000000 (1)001 0000 0000 0000 0000 0000

or the required 32-bit floating point number is
01000000000100000000000000000000

m Example 1.35
Convert the decimal number 134.0625,, into floating point.

Solution

Writing the number in binary

134.0625,,=10000110.0001

34 Chapter 1

Normalizing the number

10000110.0001 = 1.00001100001 X 27
Here,s=0,e—127 =7 ore= 134, and f=00001100001000000000000

We can now write the required floating point number as follows:

s e f
0 10000110 (1)00001100001000000000000

or the required 32-bit floating point number is

01000011000001100001000000000000

1.23.3 Multiplication and Division of Floating Point Numbers

The multiplication and division of floating point numbers is rather easy and the steps are
given below:

* Add (or subtract) the exponents of the numbers

* Multiply (or divide) the mantissa of the numbers

* Correct the exponent

* Normalize the number

The sign of the result is the EXOR of the signs of the two numbers.

Because the exponent is processed twice in the calculations, we have to subtract 127 from the
exponent.

An example is given below to show the multiplication of two floating point numbers.

m Example 1.36

Show the decimal numbers 0.5,, and 0.75,, in floating point and then calculate the
multiplication of these numbers.

Solution

We can convert the numbers into floating point as follows:
0.5,,=1.0000 x 2

Here,s=0,e - 127 =-10ore=126 and f=0000

or

0.5,,=0 01110110 (1)000 0000 0000 0000 0000 0000

Microcontroller Systems 35

Similarly,
0.75,,=1.1000 x 2"
Here,s=0,e=126, and f=1000
or
0.75,,=0 01110110 (1)700 0000 0000 0000 0000 0000
Multiplying the mantissas, we get “(1)100 0000 0000 0000 0000 0000.” The sum
of the exponents is 126 + 126 = 252. Subtracting 127 from the mantissa, we obtain

252 - 127 =125. The EXOR of the signs of the numbers is 0. Thus, the result can be
shown in floating point as follows:

0 01111101 (1)100 0000 0000 0000 0000 0000

The above number is equivalent to decimal 0.375 (0.5 X 0.75 = 0.375), which is the
correct result.

1.23.4 Addition and Subtraction of Floating Point Numbers

The exponents of floating point numbers must be the same before they can be added or
subtracted. The steps to add or subtract floating point numbers is as follows:

* Shift the smaller number to the right until the exponents of both numbers are the same.
Increment the exponent of the smaller number after each shift.

* Add (or subtract) the mantissa of each number as an integer calculation, without
considering the decimal points.

¢ Normalize the obtained result.

An example is given below.

m Example 1.37

Show decimal numbers 0.5,, and 0.75,, in floating point and then calculate the sum of
these numbers.

Solution

As shown in Example 1.36, we can convert the numbers into floating point as follows:

0.5,=0 01110110 (1)000 0000 0000 0000 0000 0000

Similarly,

0.75,,=0 01110110 (1)700 0000 0000 0000 0000 0000

36 Chapter 1

Because the exponents of both numbers are the same, there is no need to shift the
smaller number. If we add the mantissa of the numbers without considering the
decimal points, we get

(1)000 0000 0000 0000 0000 0000

(1)100 0000 0000 0000 0000 0000
+

(10)100 0000 0000 0000 0000 0000
To normalize the number, we can shift it right by one digit and then increment its
exponent. The resulting number is

0 01111111 (1)010 0000 0000 0000 0000 0000

The above floating point number is equal to decimal number 1.25, which is the sum of
decimal numbers 0.5 and 0.75.

To convert floating point numbers into decimal and decimal numbers into floating
point, the freely available program given in the following Web site can be used:

http://www.babbage.cs.qc.edu/IEEE-754/Decimal.html

1.24 Binary-Coded Decimal Numbers

Binary-coded decimal (BCD) numbers are usually used in display systems like LCDs and
seven-segment displays to show numeric values. BCD data is stored in either packed or
unpacked forms. Packed BCD data is stored as two digits per byte and unpacked BCD data
is stored as one digit per byte. Unpacked BCD data is usually returned from a keypad or a
keyboard. The packed BCD is more frequently used, and this is the format described in the
remainder of this section.

In packed BCD, each digit is a 4-bit number from 0O to 9. As an example, Table 1.5 shows the
packed BCD numbers between 0 and 20.

Table 1.5: Packed BCD Numbers Between 0 and 20

Decimal BCD Binary
0 0000 0000
0001 0001

]
2 0010 0010
3 0011 0011
4
5

0100 0100
0101 0101

Microcontroller Systems 37
Table 1.5: Packed BCD Numbers Between 0 and 20 —cont’d
Decimal BCD Binary
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 0001 0000 1010
11 0001 0001 1011
12 0001 0010 100
13 0001 0011 1101
14 0001 0100 1110
15 0001 0101 1111
16 00010110 10000
17 00010111 10001
18 0001 1000 10010
19 0001 1001 10011
20 0010 0000 10100
m Example 1.38

Write the decimal number 295 as a packed BCD number.

Solution

Writing the 4-bit binary equivalent of each digit

9=1001, 5=0101,
The required packed BCD numberis 0010 1001 0101,. -

m Example 1.39

Solution

number 9961.

Write the decimal equivalent of packed BCD number 1001 1001 0110 0001,.

Writing the decimal equivalent of each 4-bit group, we get the decimal

38 Chapter 1

1.25 Summary

This chapter has given an introduction to the microprocessor and microcontroller systems.
The basic building blocks of microcontrollers have been described briefly. The chapter has
also provided an introduction to various number systems, and has described how to convert
a given number from one base into another base. The important topics of floating point
numbers and floating point arithmetic have also been described with examples.

1.26 Exercises

1.

O 00 N N W B~ W

—_—
- O

12.
13.

14.

15.

What is a microcontroller? What is a microprocessor? Explain the main differences
between a microprocessor and a microcontroller.

. Give some example applications of microcontrollers around you.

. Where would you use an EPROM?

. Where would you use a RAM?

. Explain what types of memory are usually used in microcontrollers.

. What is an I/O port?

. What is an A/D converter? Give an example of use of this converter.

. Explain why a watchdog timer could be useful in a real-time system.

. What is serial I/O? Where would you use serial communication?

. Why is the current sinking/sourcing important in the specification of an output port pin?

. What is an interrupt? Explain what happens when an interrupt is recognized by a

microcontroller.
Why is brown-out detection important in real-time systems?

Explain the differences between a RISC-based microcontroller and a CISC-based
microcontroller. What type of microcontroller is PIC?

Convert the following decimal numbers into binary:

a) 23 b) 128 c) 255 d) 1023
e) 120 f) 32000 g) 160 h) 250
Convert the following binary numbers into decimal:

a) 1111 b) 0110 c) 11110000
d) 00001111 e) 10101010 f) 10000000

Microcontroller Systems

39

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Convert the following octal numbers into decimal:

a) 177 b) 762 c) 777

e) 1777 f) 655 g) 177777
Convert the following decimal numbers into octal:

a) 255 b) 1024 c) 129

e) 4096 f) 256 g) 180
Convert the following hexadecimal numbers into decimal:
a) AA b) EF c) 1FF

e) 1AA f) FEF g) FO
Convert the following binary numbers into hexadecimal:
a) 0101 b) 11111111 c) 1111

e) 1110 f) 10011111 g) 1001
Convert the following binary numbers into octal:

a) 111000 b) 000111 c) 1111111
e) 110001 f) 11111111 g) 1000001
Convert the following octal numbers into binary:

a) 177 b) 7777 c) 555

e) 1777771 f) 55571 g) 171
Convert the following hexadecimal numbers into octal:
a) AA b) FF ¢) FFFF

e) CC f) EE g) EEFF
Convert the following octal numbers into hexadecimal:
a) 177 b) 777 c) 123

e) 1111) 17777777 g) 349

Convert the following decimal numbers into floating point:
a) 23.45 b) 1.25 c) 45.86

d) 123
h) 207

d) 2450
h) 4096

d) FFFF
h) CC

d) 1010
h) 1100

d) 010111
h) 110000

d) 111
h) 1777

d) 1AC
h) AB

d) 23
h) 17

d) 0.56

Convert the following decimal numbers into floating point and then calculate their sum:

0.255 and 1.75

Convert the following decimal numbers into floating point and then calculate their

product:
2.125 and 3.75

Convert the following decimal numbers into packed BCD:
a) 128 b) 970 c) 900

d) 125

40 Chapter 1

28. Convert the following decimal numbers into unpacked BCD:
a) 128 b) 970 c) 900 d) 125

29. Convert the following packed BCD numbers into decimal:
a) 01100011 b) 0111 0100 c) 00010111

PIC18F Microcontroller Series

The PIC16 series of microcontrollers have been around for many years. Although they are excellent
general-purpose microcontrollers, they have certain limitations. For example, the program and

data memory capacities are limited, the stack is small, and the interrupt structure is primitive — all
interrupt sources share the same interrupt vector. The PIC16 series of microcontrollers also do not
provide direct support for advanced peripheral interfaces, such as USB and CAN bus, and it is rather
complex to interface to such devices easily. The instruction set of these microcontrollers is also
limited. For example, there are no instructions for multiplication or division and branching is rather
simple and is made out of a combination of skip and gofo instructions. Microchip Inc. has developed
the PIC18 series of microcontrollers for high-pin-count, high-density, and complex applications.

Figure 2.1 shows the current PIC microcontroller family of products. At the lowest end of the
family, we have the PIC10 microcontrollers, operating at approximately 5 MIPS and with small
form factors, less memory, and a low cost. Then we have the PIC12 and PIC16 series of micro-
controllers with midrange architectures, 5—-8 MIPS operating performance, and reasonable size
of memory. The microcontrollers of the PIC18 family are advanced high-performance devices,
with 10-16 MIPS, and offer a large amount of memory with various on-chip peripheral support
modules. As shown in Figure 2.1, the higher end of the family consists of 16-bit devices, such
as the PIC24 and the dsPIC, and 32-bit devices, such as the dsPIC33 and the PIC32 series.

The PIC18 microcontroller family consists of three architectures: the standard PIC18F series,
the PIC18]J series, and the PIC18K series. PIC18J series are 10—12 MIPS, low-voltage, high-
performance microcontrollers with integrated USB, Ethernet, or LCD. PIC18K series are

16 MIPS, high-performance, and low-power devices.

In this book, we shall be using the standard PIC18F series of microcontrollers. The PIC18F
microcontrollers can be used in cost-efficient solutions for general-purpose applications
written in C, using a real-time operating system (RTOS), and require complex communica-
tion protocol stack, such as TCP/IP, CAN, USB, or ZigBee. PIC18F devices provide flash
program memory in sizes from 8 to 128 KB and data memory from 256 to 4 KB, operating at
2.0-5.0V at speeds from DC to 40 MHz.

The basic features of the PIC18F series of microcontrollers are as follows:
e 77 instructions

* PICI16 source code compatible

© 2010 Elsevier Ltd. All rights reserved. 41
D.O.l.: 10.1016/B978-1-85617-719-1.00006-3

Chapter 2

Scaling the PIC® MCU & dsPIC® DSC Families

Mouse over and click on each
product family to learn more —
PIC32

| m—
dsPIC33

.
dsPIC30
e—

'PIC24H
| ...

~ PIC24F

>
i
TU |
c
kel
=
v
=
=2
i

PIC10

Performance

Figure 2.1: PIC Microcontroller Family

Program memory addressing up to 2 MB

Data memory addressing up to 4 KB

DC to 40-MHz operation

8 x 8 hardware multiplier

Interrupt priority levels

16-bit wide instructions, 8-bit wide data path

Up to two 8-bit timer/counters

Up to three 16-bit timer/counters

Up to four external interrupts

High-current (25 mA) sink/source capability

Up to five capture/compare/pulse width modulation (PWM) modules

Master synchronous serial port module (serial peripheral interface [SPI] and I>’C modes)
Up to two universal synchronous-asynchronous receiver-transmitter (USART) modules
Parallel slave port (PSP)

Fast 10-bit analog-to-digital (A/D) converter

PIC18F Microcontroller Series

43

Programmable low-voltage detection (LVD) module

Power-on reset (POR), power-up timer (PWRT), and oscillator start-up timer (OST)

Watchdog timer (WDT) with on-chip RC oscillator

In-circuit programming

In addition, some microcontrollers in the family offer the following special features:

Direct CAN 2.0B bus interface

Direct USB 2.0 bus interface

Direct LCD control interface

TCP/IP interface

ZigBee interface

Direct motor control interface

There are many devices in the PIC18F family, and most of them are source compatible

with each other. Table 2.1 gives the characteristics of some of the popular devices in this
family. In this chapter, the PIC18FXX?2 microcontrollers are chosen for detailed study. Most
of the other microcontrollers in the family have similar architectures.

Table 2.1: The 18FXX2 Microcontroller Family

Feature PIC18F242 PIC18F252 PIC18F442 PIC18F452
Program memory (bytes) 16K 32K 16K 32K
Data memory (bytes) 768 1536 768 1536
EEPROM (bytes) 256 256 256 256
I/O Ports A,B,C A,B,C A,B,C,D,E A,B,C,D,E
Timers 4 4 4 4
Interrupt sources 17 17 18 18
Capture/compare/PWM 2 2 2 2
Serial communication MSSP USART MSSP USART MSSP USART MSSP USART
A/D converter (10 bits) 5 channels 5 channels 8 channels 8 channels
Low-voltage detect Yes Yes Yes Yes
Brown-out reset Yes Yes Yes Yes
Packages 28-pin DIP 28-pin DIP 40-pin DIP 40-pin DIP
28-pin SOIC 28-pin SOIC 44-pin PLCC 44-pin PLCC
44-pin TQFP 44-pin TQFP

44 Chapter 2

Most readers may be familiar with the programming and applications of the PIC16F series.
Before going into detailed information on the PIC18F series, it is worthwhile to look at the
similarities of PIC16F and PIC18F and the new features of the PIC18F series.

Similarities of PIC16F and PIC18F are as follows:
* Similar packages and pinouts

* Similar names and functions of special function registers (SFRs)
* Similar peripheral devices

* Subset of PIC18F instruction set

* Similar development tools

New features of the PIC18F series are as follows:
* Number of instructions doubled

* 16-bit instruction word

* Hardware 8 x 8 multiplier

* More external interrupts

e Priority-based interrupts

* Enhanced status register

* Increased program and data memory size

* Bigger stack

* Phase-locked loop (PLL) clock generator

* Enhanced input—output (I/O) port architecture
* Set of configuration registers

* Higher speed of operation

* Lower-power operation

2.1 PIC18FXX2 Architecture

As shown in Table 2.1, the PIC18FXX2 series consists of four devices. PIC18F2X2 micro-
controllers are 28-pin devices, and PIC18F4X2 microcontrollers are 40-pin devices. The
architectures of both groups are almost identical except that the larger devices have more 1/O
ports and more A/D converter channels. In this section, we shall be looking at the architecture

PIC18F Microcontroller Series 45

of the PIC18F452 microcontrollers in detail. The architectures of other standard PIC18F
series microcontrollers are very similar, and the knowledge gained in this section should be
enough to understand the operation of other PIC18F series microcontrollers.

The pin configuration of the PIC18F452 microcontroller (DIP package) is shown in
Figure 2.2. This is a 40-pin microcontroller housed in a DIL package and has a pin
configuration similar to that of the popular PIC16F877.

Figure 2.3 shows the internal block diagram of the PIC18F452 microcontrollers. The CPU
is at the center of the diagram and consists of an 8-bit ALU, an 8-bit working accumulator
register (WREG), and an 8 x 8 hardware multiplier. The higher byte and the lower byte of a
multiplication are stored in two 8-bit registers called PRODH and PRODL, respectively.

The program counter and the program memory are shown at the top left corner of the dia-
gram. Program memory addresses consist of 21 bits and are capable of accessing 2MB of
program memory locations. PIC18F452 has only 32 KB of program memory, which requires
only 15 bits; thus, the remaining six address bits are redundant and not used. A table pointer
provides access to tables and to the data stored in the program memory. The program memory
contains a 31-level stack, which is normally used to store the interrupt and subroutine return
addresses.

The data memory can be seen at the top central part of the diagram. The data memory address
bus is 12 bits wide and is capable of accessing 4 KB of data memory locations. As we shall
study later, the data memory consists of the SFR and the general-purpose registers (GPR), all
organized in banks.

u 40 1 =— RB7/PGD
39 [1 =— RB6/PGC
38 [] =— RB5/PGM
37] =— RB4
] -—— RB3/CCP2*
35 [] =— RB2/INT2
34 [] =+— RB1/INT1
REO/RD/AN5 <+—=[] 33 [] =—= RBO/INTO
RE2/CS/AN7 «—[]10 PIC18F442 31 [] «——Vss
Vss —= [12 29 [] =— RD6/PSP6

MCLR/VPP ——= []
RAO/ANQ <—=[]

RA1/AN1 <—-[]
RA2/AN2/VREF— =+—= []
RA3/AN3/VREF+ =+—[]
RA4/TOCK| =—[]
RA5/AN4/SS/LVDIN <— []

©CoNoOOGO~WOWN =
w
o

OSC1/CLKI —=[] 13 28 [] =+— RD5/PSP5
OSC2/CLKO/RA6 -——[] 14 27 [=— RD4/PSP4
RCO/T10SO/T1CK| =+—=[] 15 26 [] =—= RC7/RX/DT
RC1/T10SI/CCP2* =—=[] 16 25 [] +— RC6/TX/CK
RC2/CCP1 =—=[] 17 24 [1 =—= RC5/SDO
RC3/SCK/SCL =—[] 18 23 [1 =— RC4/SDI/SDA
RDO/PSPO =—[] 19 22 [] «+— RD3/PSP3
RD1/PSP1 =—[] 20 21 [=— RD2/PSP2

*RB3 is the alternate pin for the CCP2 pin multiplexing.
Figure 2.2: PIC18F452 Microcontroller DIP Pin Configuration

46 Chapter 2

Data Bus<8>

[r— — — — — — — — |
([o 1 PORT A
A = | - RAO/ANO I
21 Table pointer Data latch | RA1/AN1 |
K s |ls Data RAM g RA2/AN2/VRer
inc/dec logic (up to 4K L L - RAZANSNVRer+ |
21 9 address reach), | - RA4/TOCKI [
Jl_ ? ~ddress laton . RAS/AN4/SS/LVDIN
' 7 | a RA6 |
Address latch H’ 12@ | |
Program memory Address<12> \ | |
(up to 2MB) s \ N PORT B
12 4
Data latch H‘ 1[| 1 RBO/INTO |
FSRO || [Banko.H +—X| RB1/INTH
Egg; | 4= RB2/INT2 I
12 A - RB3/CCP2()
e == 5 RB4 I
16 L - | - RB5/PGM I
Inlg/é;lec - RB6/PCG
| +— x| RB7/PGD |
H?‘s | |
> | PORTC |
- RCO/T10SO/T1CKI
| g RC1/T10SI/CCP2) |
Instruction | | - RC2/CCP1 |
register d m RC3/SCK/SCL
o B RC4/SDI/SDA |
Instruction = RC5/SDO
decode and - RC6/TX/CK [
control RC7/RX/DT |
0OSC2/CLKO * J ‘ * ‘
OSC1/CLKI Power-up PORT D I
E"“_’> timer
~— RDO/PSPO |
Timing Oscillator RD1/PSP1
T10SCI — S
T10SCO ~— generation [~ *||start-up timer RD2/PSP2 |
L T Power-on RD3/PSP3 |
/ reset RD4/PSP4
| RD5/PSP5 I
4XPLL |=|| Watchdog | RD6/PSP6 |
timer RD7/PSP7
Precision Brown-out 8 | I
voltage =3 reset | PORT E |
ViR reference Low-voltage - | |
< programming l+—=D<4 REO/ANS/RD
VoD, Vss J"'bc”cui‘ . +—=[<| RE1/AN6/WR I
ebugger .
X - | +— =] RE2/ANT/CS |
| I
L_ 4
e A
| Timer 0 Timer 1 Timer 2 Timer 3 A/D converter |
| |
2 s A
| [I I It |
| I s I I] ! |
| Master Addressable |
CCP1 CCP2 synchronous USART Parallel slave port Data EEPROM
| serial port |
Lo ol

Note (1): Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.

Figure 2.3: Block Diagram of the PIC18F452 Microcontroller

PIC18F Microcontroller Series 47

The bottom part of the diagram shows the timers/counters, capture/compare/PWM registers,
USART, A/D converter, and the EEPROM data memory. PIC18F452 consists of

* Four counters/timers

* Two capture/compare/PWM modules
* Two serial communication modules

* Eight 10-bit A/D converter channels
* 256-byte EEPROM

The oscillator circuit is located at the left-hand side of the diagram. This circuit consists of

* PWRT
« OST

* POR
 WDT

* Brown-out reset (BOR)

* Low-voltage programming
* In-circuit debugger (ICD)
* PLL circuit

* Timing generation circuit

The PLL is new to the PIC18F series, and it provides the option of multiplying the oscillator
frequency to speed up the overall operation. The WDT can be used to force a restart of

the microcontroller in the event of a program crash. The ICD is useful during program
development, and it can be used to return diagnostic data, including the register values, as the
microcontroller is executing a program.

The 1I/O ports are located at the right-hand side of the diagram. PIC18F452 consists of five
parallel ports named PORTA, PORTB, PORTC, PORTD, and PORTE. Most port pins have
multiple functions. For example, PORTA pins can be used as either parallel I/O or analog
inputs. PORTB pins can be used as either parallel I/O or interrupt inputs.

2.1.1 Program Memory Organization

The program memory map is shown in Figure 2.4. Each PIC18F member has a 21-bit
program counter and hence is capable of addressing 2 MB of memory space. User memory
space on the PIC18F452 microcontroller is 00000H to 7FFFH. Accessing a nonexistent

48 Chapter 2

PC<20:0> |

CALL, RCALL, RETURN 21
RETFIE, RETLW

Stack level 1

Stack level 31

Reset vector 0000h

High-priority interrupt vector | 0008h

Low-priority interrupt vector | 0018h

On-chip
program memory

7FFFh
8000h

User memory space

Read ‘0’

1FFFFFh,
200000h

Figure 2.4: Program Memory Map of PIC18F452

memory location (8000H to 1FFFFFH) will cause a read of all Os. The reset vector where the
program starts after a reset is at address 0000H. Addresses 0008H and 0018H are reserved
for the vectors of high-priority and low-priority interrupts, respectively, and interrupt service
routines must be written to start at one of these locations.

The PIC18F microcontroller has a 31-entry stack that is used to hold the return addresses
for subroutine calls and interrupt processing. The stack is not a part of the program or a
data memory space. The stack is controlled by a 5-bit stack pointer, which is initialized
to 00000 after a reset. During a subroutine call (or interrupt), the stack pointer is first
incremented, and the memory location pointed to by the stack pointer is written using
the contents of the program counter. During a return from a subroutine call (or interrupt),
the memory location pointed to by the stack pointer is decremented. The projects in this

PIC18F Microcontroller Series 49

book are based on C language. Subroutine and interrupt call/return operations are handled
automatically by the C language compiler, and thus their operation is not described here in
detail.

Program memory is addressed in bytes and instructions are stored as 2 or 4 bytes in program
memory. The least significant byte of an instruction word is always stored in an even address
of the program memory.

An instruction cycle consists of four cycles: A fetch cycle begins with the program counter
incrementing in Q1. In the execution cycle, the fetched instruction is latched into the instruc-
tion register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3,
and Q4 cycles. A data memory location is read during Q2 and written during Q4.

2.1.2 Data Memory Organization

The data memory map of the 18F452 microcontroller is shown in Figure 2.5. The data
memory address bus is 12 bits, with the capability of addressing up to 4 MB. The memory in
general consists of 16 banks, each of 256 bytes. PIC18F452 has 1536 bytes of data memory
(6 banks x 256 bytes each) occupying the lower end of the data memory. Bank switching is
done automatically when using a high-level language compiler, and thus the user need not
worry about selecting memory banks during programming.

The special function register (SFR) occupies the upper half of the top memory bank. SFR
contains registers that control the operations of the microcontroller, such as the peripheral
devices, timers/counters, A/D converter, interrupts, USART, and so on. Figure 2.6 shows the
SFR registers of the PIC18F452 microcontroller.

2.1.3 The Configuration Registers

The PIC18F452 microcontrollers have a set of configuration registers (PIC16 series had only
one configuration register). Configuration registers are programmed during the programming
of the flash program memory by the programming device. These registers are shown in
Table 2.2. The descriptions of these registers are given in Table 2.3. Some of the important
configuration registers are described in this section in detail.

CONFIGTH

This configuration register is at address 300001H and is used to select the microcontroller
clock sources. The bit patterns are shown in Figure 2.7.

CONFIG2L

This configuration register is at address 300002H and is used to select the brown-out voltage
bits. The bit patterns are shown in Figure 2.8.

50 Chapter 2

BSR<3:0>
Data memory map
000h
— 0000 00h | Access RAM 07Fh
» Bank 0 r— _P_ — 7080h
o %A
= 0001
> Bank 1 GPR
FFh 1FFh
- 0010 _ 00h 200h
» Bank 2 GPR
FFh 2FFh
00h 300h
= 0011
> Bank 3 GPR
FFh 3FFh
400h
= 0100
»
" Bank 4 GPR Access bank
4FFh 00h
= 0101 00h 500h Access RAM low | __
> Banks GPR "Access RAM high | 80h
FFh 5FFh R
600h (SFR’s) FFh
= 0110 Whena:O,
> Bank 6 J~ Unused - the BSR is ignored and the
- 1110 to ™ Read‘00h’ T Access Bank is used.
> Bank 14 The first 128 bytes are
general-purpose RAM
(from Bank 0). The second
128 bytes are special function
EFFh registers (from Bank 15).
Fooh
= 1111 00h Unused ey
> Bank15 | — — — — 4 F80h
FFh SFR FFFh
Whena=1,

the BSR is used to specify the
RAM location that the
instruction uses.

Figure 2.5: The PIC18F452 Data Memory Map

CONFIG2H

This configuration register is at address 300003H and is used to select the watchdog
operations. The bit patterns are shown in Figure 2.9.

2.1.4 The Power Supply

The power supply requirements of the PIC18F452 microcontroller are shown in Figure 2.10.
As shown in Figure 2.11, PIC18F452 can operate with supply voltage of 4.2-5.5V at the
full speed of 40 MHz. The lower-power version of PIC18LF452 can operate at 2.0-5.5V.

PIC18F Microcontroller Series 51

Address

FFFh
FFEh
FFDh
FFCh
FFBh
FFAh
FFoh
FF8h
FF7h
FF6h
FF5h
FF4h
FF3h
FF2h
FFih
FFOh
FEFh
FEEh
FEDh
FECh
FEBh
FEAh
FESh
FE8h
FE7h
FE6h
FESh
FE4h
FE3h
FE2h
FE1h
FEOh

Name

TOSU

TOSH

TOSL

STKPTR

PCLATU

PCLATH

PCL

TBLPTRU

TBLPTRH

TBLPTRL

TABLAT

PRODH

PRODL

INTCON

INTCON2

INTCON3

INDFO®)

POSTINCO®)

POSTDEC0®)

PREINCO®)

PLUSWO®

FSROH

FSROL

WREG

INDF1®)

POSTINC1®)

POSTDEC1®

PREINC1®)

PLUSW1®)

FSR1H

FSR1L

BSR

(1): Unimplemented registers are read as '0'

Address
FDFh

FDEh
FDDh

FDCh |

FDBh
FDAh

FDoh |

FD8h
FD7h
FD6h

FD5h |

FD4h
FD3h

FD2h |

FD1h
FDoOh
FCFh
FCEh

FCDh |

FCCh
FCBh

FCAh |
SSPBUF
SSPADD
SSPSTAT

| SSPCONT1

FC9h
FC8h
FC7h
FCéh
FC5h
FC4h
FC3h
FC2h
FC1h
FCoh

Name

INDF2®)

POSTINC2®)
POSTDEC2®
PREINC2®)
PLUSW2®)

FSR2H
FSR2L

STATUS

TMROH
TMROL
TOCON

OSCCON
LVDCON
WDTCON

RCON
TMR1H
TMR1L
T1CON

TMR2

PR2
T2CON

SSPCON2

ADRESH

ADRESL

ADCONO
ADCONT1

Address

FBFh
FBEh
FBDh
FBCh
FBBh
FBAh
FB9h
FB8h
FB7h
FB6h
FB5h
FB4h
FB3h
FB2h
FB1h
FBOh
FAFh
FAEh
FADh
FACh
FABh
FAAh
FA9h
FA8h
FA7h
FA6h
FA5h
FA4h
FA3h
FA2h
FA1h
FAOh

(2): This register is not available on PIC18F2X2 devices
(3): This is not a physical register

Figure 2.6: The PIC18F452 SFR Registers

Name

CCPR1H

CCPR1L

CCP1CON

CCPR2H

CCPR2L

CCP2CON

TMR3H

TMR3L

T3CON

SPBRG

RCREG

TXREG

TXSTA

RCSTA

EEADR

EEDATA

EECON2

EECONT1

IPR2

PIR2

PIE2

Address

FOFh
FOEh
FoDh

FoCh |

F9Bh
F9Ah

Fooh |

F98h
F97h
Fo6h
F95h
F94h
Fa3h
F92h
F91h
Fooh
F8Fh

F8Eh |

F8Dh
F8Ch
F8Bh

F8Ah |
LATA

F89h
F88h
F87h

F8eh |

F85h

F84h| PORTE®

F83h
F82h
F81h
F80h

Name

IPR1
PIR1
PIE1

| TRISE®
TRISD®

TRISC

TRISB
TRISA

LATE®
LATD®

LATC
LATB

PORTD(®)

PORTC

PORTB

' PORTA

At lower voltages, the maximum clock frequency is 4 MHz and rises to 40 MHz at 4.2'V.
The RAM data retention voltage is specified as 1.5V, and the RAM data will be lost if the
power supply voltage becomes lower than this value. In practice, most microcontroller-
based systems are operated with a single +5V supply, which is derived from a suitable
voltage regulator.

52 Chapter 2

«0,, SB pBaJ ‘panuswa|dwiun aJe s||9d papeys

0010 0000 ¢Aad vA3Q sAad 9A3a | /A3A 8A3A 6A3A 0lA3a zdiAaa Y4d444¢
(1) 0ATY LAY A SA | AT 0A3a LA3a ZA3a LaiAaa Y34444¢
e = = = = = = ay1493 = HZDIANOD | 4Ya0000¢€
LLLL - 0d193 REIEE 2dlg3 | €dlg3 = = = = T1£DIANOD | YD0000E
-l = = = = = DLUM 9I¥M | aLdIM | H9DIANOD | 4d0000€
LLLL === 0LIM LLAM ZLAM 1AM = = = = T9DIANOD | Yv0000€
...... Ll = = = = = = 4dD add HSDIANOD | 460000€
LLLL === 0dD LdD zdD €dD = = = = ISDIANOD | 480000€
L-L- -1 NIUALS = dA1 = = = = SN93d | DIANOD | 490000€
L= - XNZdDD = = = = - = = HEDIANOD | 4YS0000€
LLLL == NILAM 0Sd1AaM | LSd1AM | ZSd1am | - = = = HZDIANOD | Y£0000€
LLLL - NI LAMd NIJ0d | 0AdOd | LAYO4Y = = = = TZDIANOD | Y20000€
LLL--L-- 0DSOA LDSO4 | ZDSOA = - N3SDSO - - HLDIANOD | 4L0000€
anfeA oxg L g cug €39 ¥ 3g S g 93g Lvg awreN 3|14
pawuweiSoadun
/Aneyeq

sio3si8ey uonean3yuo) zs481IId 1T°T 219l

PIC18F Microcontroller Series 53

Table 2.3: PIC18F452 Configuration Register Descriptions

Configuration Bits Description
OSCSEN Clock source switching enable
FOSC2:FOSCO Oscillator modes
BORV1:BORVO Brown-out reset voltage
BOREN Brown-out reset enable
PWRTEN Power-up timer enable
WDTPS2:WDTPS0 Watchdog timer postscale select
WDTEN Watchdog timer enable
CCP2MX CCP2 multiplex
DEBUG Debug enable
LVP Low-voltage program enable
STVREN Stack full/underflow reset enable
CP3:CPO Code protection
CPD EEPROM code protection
CPB Boot block code protection
WRT3:WRTO Program memory write protection
WRTD EPROM write protection
WRTB Boot block write protection
WRTC Configuration register write protection
EBTR3:EBTRO Table read protection
EBTRB Boot block table read protection
DEV2:DEVO Device ID bits (001 = 18F452)
REV4:REVO Revision ID bits
DEV10:DEV3 Device ID bits

2.1.5 The Reset

The reset action puts the microcontroller into a known state. Resetting a PIC18F microcon-
troller starts the execution of the program from address 0000H of the program memory. The
microcontroller can be reset during one of the following operations:

« POR
e MCLR reset

54 Chapter 2

u-0 u-0 R/P-1 U-0 U-0 R/P-1 R/P-1 R/P-1
| = = OSCSEN = = FOSC2 FOSC1 FOSCO
bit 7 bit 0

bit 7-6 Unimplemented: Read as ‘0’
bit 5 OSCSEN: Oscillator system clock switch enable bit

1 = Oscillator system clock switch option is disabled (main oscillator is source)
0 = Oscillator system clock switch option is enabled (oscillator switching is enabled)

bit 4-3 Unimplemented: Read as ‘0’
bit 2-0 FOSC2:FOSCO: Oscillator selection bits

111 = RC oscillator w/OSC2 configured as RA6

110 = HS oscillator with PLL enabled/Clock frequency = (4 x FOSC)
101 = EC oscillator w/OSC2 configured as RA6

100 = EC oscillator w/OSC2 configured as divide-by-4 clock output
011 = RC oscillator

010 = HS oscillator

001 = XT oscillator

000 = LP oscillator

Figure 2.7: CONFIG1H Register Bits

u-0 u-0 uU-0 u-0 R/P-1 R/P-1 R/P-1 R/P-1
— — — — BORV1 BORVO BOREN | PWRTEN
bit 7 bit 0

bit 7-4 Unimplemented: Read as '0'
bit3-2 BORV1:BORVO0: Brown-out reset voltage bits

11 =VBOR setto 2.5V
10=VBOR setto 2.7V
01=VBOR setto 4.2V
00=VBOR setto 4.5V

bit 1 BOREN: Brown-out reset enable bit

1 = Brown-out reset enabled
0 = Brown-out reset disabled

bit 0 PWRTEN: Power-up timer enable bit

1 =PWRT disabled
0 =PWRT enabled

Figure 2.8: CONFIG2L Register Bits

* WDTreset

* BOR

* Reset instruction
e Stack full reset

e Stack underflow reset

PIC18F Microcontroller Series

55

uU-0 uU-0 u-0 u-0 R/P-1 R/P-1 R/P-1 R/P-1
— — — — | woTps2 | wpTPs1 | wDTPSO | WDTEN |
bit 7 bit 0
bit 7-4 Unimplemented: Read as ‘0’
bit 3—1 WDTPS2: WDTPSO0: Watchdog timer postscale select bits
111=1:128
110=1:64
101 =1:32
100=1:16
011=1:8
010=1:4
001 =1:2
000 = 1:1
bit 0 WDTEN: Watchdog timer enable bit
1=WDT enabled
0 =WDT disabled (control is placed on the SWDTEN bit)
Figure 2.9: CONFIG2H Register Bits
PIC18LFXX2 Standard Operating Conditions (unless otherwise stated)
(Industrial) Operating temperature -40°C = TA < +85°C for industrial
PIC18EXX2 Standard Operating Conditions (unless otherwise stated)
i el S) Operating temperature -40°C =Ta < +85°C for industrial
DL S 40°C <TA< +125°C for extended
Pz::m Symbol Characteristic Min | Typ |Max | Units Conditions
Voo Supply Voltage
Doo1 PIC18LFXX2| 2.0 — | 585 V |HS, XT, RC and LP Osc mode
Doo1 PIC18FXX2| 4.2 — | 55 \'
Doo2 |Vor RAM Data Retention 15 — — \
Voltage
D003 (Veror |VDD Start Voltage —_ — (07| V
to ensure internal
Power-on Reset signal
Doo4 [Svopo |Voo Rise Rate 0.05 | — — | Vims
to ensure internal
Power-on Reset signal
Veor |Brown-out Reset Voltage
Doos PIC18LFXX2
BORV1:BORVO=11|198 | — |214| V [85°C=T=z25°C
BORV1:BORVO=10| 267 | — |289| V
BORV1:BORVO=01|4.16 | — |45 V
BORV1:BORVO=o00| 445 | — |4.83| V
Doos PIC18FXX2
BORV1:BORVO=1x| N.AA. | — |[N.A.| V |Notin operating voltage range of device
BORV1:BORVO=01|4.16 | — |45 | V
BORV1:BORVO=o00| 445 | — |483| V

Legend: Shading of rows is to assist in readability of the table.

Figure 2.10: The PIC8F452 Power Supply Parameters

56 Chapter 2

PIC18LFXXX

4.2V

Voltage

|
|
1'
4 MHz 40 MHz
Frequency

Figure 2.11: Operation of PIC18LF452 at Different Voltages

+5V
b

10K
MCLR

PIC18FXXX

L

Figure 2.12: Typical Reset Circuit

Generally, two types of resets are commonly used: POR and external reset using the
MCLR pin.

Power-On Reset

The POR is generated automatically when power supply voltage is applied to the chip. The
MCLR pin should be tied to the supply voltage directly or preferably through a 10-K resistor.
Figure 2.12 shows a typical reset circuit.

For applications where the rise time of the voltage is slow, it is recommended to use a diode,
a capacitor, and a series resistor, as shown in Figure 2.13.

PIC18F Microcontroller Series 57

+5V
A
D 10K
100
MCLR
:|: C
= PIC18FXXX
1

Figure 2.13: Reset Circuit for Slow Increasing Voltages

+5V
A
10K
MCLR
Reset Eﬂ
i PIC18FXXX
L

Figure 2.14: External Reset Circuit

In some applications, it may be required to reset the microcontroller externally by pressing a
button. Figure 2.14 shows the circuit that can be used to reset the microcontroller externally.
Normally, the MCLR input is at logic 1. When the Reset button is pressed, this pin goes to
logic 0 and resets the microcontroller.

2.1.6 The Clock Sources

The PIC18F452 microcontroller can be operated from an external crystal or a ceramic resona-
tor connected to the OSC1 and OSC2 pins of the microcontroller. In addition, an external
resistor and capacitor, external clock source, and in some models, internal oscillators can

58 Chapter 2

be used to provide clock pulses to the microcontroller. There are eight clock sources on the
PIC18F452 microcontroller, selected by the configuration register CONFIG1H. These are

* Low-power crystal (LP)

* Crystal or ceramic resonator (XT)

* High-speed crystal or ceramic resonator (HS)

* High-speed crystal or ceramic resonator with PLL. (HSPLL)

» External resistor/capacitor with Fq, output on OSC2 (RC)

* External resistor/capacitor with I/O on OSC2 (port RA6) (RCIO)
e External clock with Fygc, on OSC2 (EC)

* External clock with I/O on OSC2 (port RA6) (ECIO)

Crystal or Ceramic Resonator Operation

The first mode uses an external crystal or a ceramic resonator, which is connected to the
OSC1 and OSC?2 pins. For applications where the timing accuracy is important, crystal should
be used. If a crystal is used, a parallel resonant crystal must be chosen because series resonant
crystals do not oscillate when the system is first powered.

Figure 2.15 shows how a crystal is connected to the microcontroller. The capacitor values
depend on the mode of the crystal and the selected frequency. Table 2.4 gives the recommended
values. For example, for a 4-MHz crystal frequency, 15-pF capacitors can be used. Higher
capacitance not only increases the oscillator stability but also increases the start-up time.

Resonators should be used in low-cost applications, where high-accuracy timing is not
required. Figure 2.16 shows how a resonator is connected to the microcontroller.

PIC18FXXX

0OSC1 0SCc2

0

Cl1=— XTAL ==C2

Figure 2.15: Using a Crystal as the Clock Input

PIC18F Microcontroller Series 59

Table 2.4 Capacitor Values

Mode Frequency C1,C2 (pF)
LP 32 kHz 33
200 kHz 15
XT 200 kHz 22-68
1.0 MHz 15
4.0 MHz 15
HS 4.0 MHz 15
8.0 MHz 15-33
20.0 MHz 15-33
25.0 MHz 15-33
PIC18FXXX
0OSC1 0SC2
Resonator

Figure 2.16: Using a Resonator as the Clock Input

LP oscillator mode should be selected in applications in which the clock frequency is up to
200kHz. XT mode should be selected for up to 4 MHz, and the high-speed HS mode should
be selected in applications where the clock frequency is between 4 and 25 MHz.

An external clock source may also be connected to the OSC1 pin in the LP, XT, and HS
modes, as shown in Figure 2.17.

External Clock Operation

An external clock source can be connected to the OSC1 input of the microcontroller in EC
and ECIO modes. No oscillator start-up time is required after a POR. Figure 2.18 shows the
operation with external clock in EC mode. Timing pulses with frequency F,, are available
on the OSC?2 pin. These pulses can be used for test purposes or to provide clock to external
sources.

60 Chapter 2

PIC18F452
0OSC1
External clock
— 0SC2

Figure 2.17: Connecting an External Clock in LP, XT, or HS Modes

PIC18F452

External clock >| OSCt

< 0SC2

Fosc/4
Figure 2.18: External Clock in EC Mode

PIC18F452
0OSC1
External clock
RA6 0sc2

Figure 2.19: External Clock in ECIO Mode

The ECIO mode is similar to the EC mode, except that the OSC2 pin can be used as a
general-purpose digital I/O pin. As shown in Figure 2.19, this pin becomes bit 6 of PORTA,
i.e., pin RA6.

Resistor/Capacitor Operation

There are many applications where accurate timing is not required. In such applications, we
can use an external resistor and a capacitor to provide clock pulses. The clock frequency

is a function of the resistor, capacitor, power supply voltage, and temperature. The clock
frequency is not accurate and can vary from unit to unit due to manufacturing and component

PIC18F Microcontroller Series 61

tolerances. Table 2.5 gives the approximate clock frequency with various resistor and
capacitor combinations. A close approximation of the clock frequency is 1/(4.2RC), where R
should be between 3 and 10K and C should be greater than 20 pF.

In RC mode, the oscillator frequency divided by 4 (Fg4) is available on pin OSC2 of the
microcontroller. Figure 2.20 shows the operation at a clock frequency of approximately

2 MHz, where R =3.9K and C =30 pF. In this application, the clock frequency at the output
of OSC2 is 2MHz/4 = 500 KHz.

The RCIO mode is similar to the RC mode, except that the OSC2 pin can be used as a
general-purpose digital I/O pin. As shown in Figure 2.21, this pin becomes bit 6 of PORTA.
i.e., pin RA6.

Crystal or Resonator with PLL

One of the problems when high-frequency crystals or resonators are used is electromagnetic
interference. A PLL circuit that can be enabled to multiply the clock frequency by four is
provided. Thus, for a crystal clock frequency of 10 MHz, the internal operation frequency will

Table 2.5: Clock Frequency with RC

C (pF) R (K) Frequency (MHz)
22 3.3 3.3
4.7 2.3
10 1.08
30 3.3 24
4.7 1.7
10 0.793
VDD
A
3.9K PIC18F452
OSCt
—— 30pF
500kHz <—— 0SC2

Figure 2.20: 2-MHz Clock in RC Mode

62 Chapter 2

VDD

3.9K PIC18F452

OSC1

30pF

Il

RA6 «—>] 0SC2

Figure 2.21: 2-MHz Clock in RCIO Mode

be multiplied to 40 MHz. The PLL mode is enabled when the oscillator configuration bits are
programmed for HS mode.

Internal Clock

Some PIC18F family members have internal clock modes (PIC18F452 has no internal clock
mode). In this mode, OSC1 and OSC2 pins are available for general-purpose I/O (RA6 and
RA7) or as Fyg, and RA7. Internal clock can be from 31 KHz to 8 MHz and is selected by
registers OSCCON and OSCTUNE. Figure 2.22 shows the bits of internal clock control
registers.

Clock Switching

It is possible to switch the clock from the main oscillator to a low-frequency clock source. For
example, the clock can be allowed to run fast for periods of intense activity and slower when
there is less activity. In the PIC18F452 microcontroller, this is controlled by bit SCS of the
OSCCON register. In some of the other family members that also support internal clock, the
clock switching is controlled by bits SCS0O and SCS1 of OSCCON. It is important to ensure
that during clock switching, unwanted glitches do not occur in the clock signal. The 18F family
contains circuitry to ensure error-free switching from one frequency to another frequency.

2.1.7 Watchdog Timer

In PIC18F family members, the WDT is a free-running on-chip RC-based oscillator, and it
does not require any external components. When the WDT times out, a device reset is gener-
ated. If the device is in the SLEEP mode, the WDT time-out will wake up the device and
continue with normal operation.

The watchdog is enabled/disabled by bit SWDTEN of register WDTCON. Setting
SWDTEN = 1 enables the WDT, and clearing this bit turns off the WDT. On the

PIC18F Microcontroller Series

63

OSCCON register

IDLEN IRCF2 IRCF1 IRCFO OSTS IOFS SCSI SCS0
IDLEN 0 Run mode enabled
1 Idle mode enabled
IRCF2:IRCFO 000 31KHz
001 125KHz
010 250KHz
011 500KHz
100 1MHz
101 2MHz
110 4MHz
111 8MHz
OSTS 0 Oscillator start-up timer running
1 Oscillator start-up timer expired
IOFS 0 Internal oscillator unstable
1 Internal oscillator stable
SCSI:SCS0 00 Primary oscillator
01 Timer 1 oscillator
10 Internal oscillator
11 Internal oscillator
OSCTUNE register
X X T5 T4 T3 T2 T1 TO
XX011111 Maximum frequency
XX000001
XX000000 Center frequency
XX111111
XX100000 Minimum frequency

Figure 2.22: Internal Clock Control Registers

PIC18F452 microcontroller, an 8-bit postscaler is used to multiply the basic time-out period
from 1 to 128 in powers of 2. This postscaler is controlled from configuration register

CONFIG2H. The typical basic WDT time-out period is 18 ms for a postscaler value of 1.

2.1.8 Parallel I/0O Ports

The parallel ports of the 18F family are very similar to those of the PIC16 series. The number
of I/O ports and port pins varies depending on the PIC18F family member used, but all
versions have at least PORTA and PORTB. The pins of a port are labeled as RPn, where P is

64 Chapter 2

the port letter and # is the port bit number. For example, PORTA pins are labeled RAO to
RA7, PORTB pins are labeled RBO to RB7, and so on.

When working with a port, we may want to

* Set port direction

* Set an output value

* Read an input value

* Set an output value and then read back the output value

The first three operations are the same between the PIC16 and the PIC18F series. In some
applications, we may want to send a value to the port and then read back the value just sent.
In the PIC16 series, there is a weakness in the port design and the value read from a port may
be different from the value just written to it. This is because the reading is the actual port bit
pin value, and this value could be changed by external devices connected to the port pin. In
the PIC18F series, a latch register (e.g., LATA for PORTA) is introduced to the I/O ports to
hold the actual value sent to a port pin. From the port, the latched value is read, which is not
affected by any external devices.

In this section, we shall be looking at the general structure of I/O ports.

PORTA

In PIC18F452 microcontroller, PORTA is 7 bits wide and port pins are shared with other
functions. Table 2.6 shows the PORTA pin functions.

The architecture of PORTA is shown in Figure 2.23. There are three registers associated with
PORTA:

* Port data register - PORTA
* Port direction register — TRISA
* Port latch register — LATA

PORTA is the name of the port data register. The TRISA register defines the direction of
PORTA pins, where a logic 1 in a bit position defines the pin as an input pin, and a 0 in a
bit position defines it as an output pin. LATA is the output latch register, which shares the
same data latch as PORTA. Writing to one is equivalent to writing to the other one as well.
But reading from LATA activates the buffer at the top of the diagram, and the value held in
PORTA/LATA data latch is transferred to the data bus, independent of the state of the actual
output pin of the microcontroller.

PIC18F Microcontroller Series 65

Table 2.6: PIC18F452 PORTA Pin Functions

Pin Description
RAO/ANO
RAO Digital I/O
ANO Analog input 0
RAT/AN1
RA1 Digital I/O
AN1 Analog input 1
RA2/AN2/VREF—
RA2 Digital I/O
AN2 Analog input 2
VREF— A/D reference voltage (low) input
RA3/AN3/VREF+
RA3 Digital I/O
AN3 Analog input 3
VREF+ A/D reference voltage (high) input
RA4/TOCKI
RA4 Digital 1/O
TOCKI Timer 0 external clock input
RAS5/AN4/SS/LVDIN
RAS Digital I/O
AN4 Analog input 4
SS SPI Slave Select input
RA6 Digital I/O

Bits O through 3 and 5 of PORTA are also used as analog inputs. After a device reset, these
pins are programmed as analog inputs, and RA4 and RA6 are configured as digital inputs.
To program the analog inputs as digital I/O, the ADCONI1 register (A/D register) must be
programmed accordingly. Writing 7 to ADCONT1 configures all PORTA pins as digital 1/O.

The RA4 pin is multiplexed with the Timer O clock input (TOCKI). This is a Schmitt trigger
input and an open drain output.

RAG can be used as a general-purpose 1/O pin, or as the OSC2 clock input, or as a clock
output providing Fqsc, clock pulses.

66 Chapter 2

RD LATA
Data
bus
D Qr—
WR LATA
or ——P CK_LQ
PORTA
Data latch
— D Q 1/0 pin(”
WR TRISA | KW@ Vss
Analog
TRIS latch input
mode
l
RD TRISA TTL
input
| aQ D buffer

EN
RD PORTA >

SS Input (RAS5 only)

To A/D converter and LVD modules

ey
%

Note (1): I/O pins have protection diodes to Vbp and Vss.
Figure 2.23: PIC18F452 PORTA RAO0-RA3 and RAS5 Pins

PORTB

In the PIC18F452 microcontroller, PORTB is an 8-bit bidirectional port shared with interrupt
pins and serial device programming pins. Table 2.7 gives the PORTB bit functions.

PORTRB is controlled by registers, and they are as follows:

* Port data register - PORTB

* Port direction register — TRISB

* Port latch register — LATB

The general operation of PORTB is similar to that of PORTA. Figure 2.24 shows the architecture
of PORTB. Each port pin has a weak internal pull-up, which can be enabled by clearing bit RBPU

PIC18F Microcontroller Series

67

Table 2.7: PIC18F452 PORTB Pin Functions

Pin

Description

RBO/INTO

RBO

Digital 1/O

INTO

External interrupt 0

RBT1/INT1

RB1

Digital 1/O

INT1

External interrupt 1

RB2/INT2

RB2

Digital 1/O

INT2

External interrupt 2

RB3/CCP2

RB3

Digital I/O

CCP2

Capture 2 input, Compare 2 and PWM2 output

RB4

Digital I/O, Interrupt on change pin

RB5/PGM

RBS

Digital I/O, Interrupt on change pin

PGM

Low-voltage ICSP programming pin

RB6/PGC

RB6

Digital I/O, Interrupt on change pin

PGC

In-circuit debugger and ICSP programming pin

RB7/PGD

RB7

Digital I/O, Interrupt on change pin

PGD

In-circuit debugger and ICSP programming pin

of register INTCON2. These pull-ups are disabled on a POR and when the port pin is configured
as an output. On POR, PORTB pins are configured as digital inputs. Internal pull-ups allow input

devices, such as switches, to be connected to PORTB pins without the use of external pull-up

resistors. This saves cost because of the reduced component count and less wiring requirements.

Port pins RB4-RB7 can be used as interrupt on change inputs, whereby a change on any of

pins 4-7 causes an interrupt flag to be set. The interrupt enable and flag bits RBIE and RBIF

are in register INTCON.
PORTC, D, E, and Beyond

In addition to PORTA and PORTB, PIC18F452 has 8-bit bidirectional ports PORTC and
PORTD, and 3-bit PORTE. Each port has its own data register (e.g., PORTC), data direction

register (e.g., TRISC), and data latch register (e.g., LATC). The general operation of these

ports is similar to PORTA.

68 Chapter 2

VbD
RBPU® Weak
—jD)_‘ P pull-up
Data bus Data latch
D Q
1/0 pin(
WR LATB
PORTB TRIS latch
D Q
WR TRISB TTL
CKL input 7 %7
ST
buffer
p b buffer
RD TRISB
‘]
RD LATB Latch
<F} Q D
RD PORTB EN Q1
Set RBIF
1o o
RD PORTB
From other EN @
RB7:RB4 pins Q3
RB7:RB5 in serial programming mode

Note (1): I/O pins have diode protection to Vbp and Vss.
(2): To enable weak pull-ups, set the appropriate TRIS bit(s)
and clear the RBPU bit (INTCON2<7>).

Figure 2.24: PIC18F452 PORTB RB4-RB7 Pins

In the PIC18F452 microcontroller, PORTC is multiplexed with several peripheral functions,
as shown in Table 2.8. On a POR, PORTC pins are configured as digital inputs.

In the PIC18F452 microcontroller, PORTD has Schmitt Trigger input buffers. On a POR,
PORTD is configured as digital inputs. PORTD can be configured as an 8-bit PSP
(i.e., microprocessor port) by setting bit 4 of the TRISE register. Table 2.9 shows functions of

PORTD pins.

In the PIC18F452 microcontroller, PORTE is only 3 bits wide. As shown in Table 2.10, port
pins are shared with analog inputs and parallel slave port read/write control bits. On a POR,

PORTE pins are configured as analog inputs, and register ADCON1 must be programmed to
change these pins to digital /0.

PIC18F Microcontroller Series

69

Table 2.8: PIC18F452 PORTC Pin Functions

Pin Description
RCO/T10SO/T1CKI
RCO Digital 1/O
T10SO Timer 1 oscillator output
T1CKI Timer 1/Timer 3 external clock input
RC1/T10SI/CCP2
RC1 Digital I/O
T10SI Timer 1 oscillator input
CCP2 Capture 2 input, Compare 2 and PWM2 output
RC2/CCP1
RC2 Digital I/O
CCP1 Capture 1 input, Compare 1 and PWMT1 output
RC3/SCK/SCL
RC3 Digital I/O
SCK Synchronous serial clock input/output for SPI
SCL Synchronous serial clock input/output for [2C
RC4/SDI/SDA
RC4 Digital 1/O
SDI SPI data input
SDA I2C data I/O
RC5/SDO
RC5 Digital I/O
SDO SPI data output
RC6/TX/CK
RC6 Digital 1/O
> USART transmit pin
CK USART synchronous clock pin
RC7/RX/DT
RC7 Digital 1/O
RX USART receive pin
DT USART synchronous data pin

2.1.9 Timers

The PIC18F452 microcontroller has four programmable timers, which can be used in many

tasks, such as generating timing signals, causing interrupts to be generated at specific time

intervals, measuring frequency and time intervals, and so on.

70 Chapter 2

Table 2.9: PIC18F452 PORTD Pin Functions

Pin Description
RDO/PSPO

RDO Digital I/O

PSPO Parallel Slave Port bit 0
RD1/PSP1

RD1 Digital /0

PSP1 Parallel Slave Port bit 1
RD2/PSP2

RD2 Digital I/O

PSP2 Parallel Slave Port bit 2
RD3/PSP3

RD3 Digital I/O

PSP3 Parallel Slave Port bit 3
RD4/PSP4

RD4 Digital I/O

PSP4 Parallel Slave Port bit 4
RDS5/PSP5

RDS Digital /0

PSP5 Parallel Slave Port bit 5
RD6/PSP6

RD6 Digital I/O

PSP6 Parallel Slave Port bit 6
RD7/PSP7

RD7 Digital I/O

PSP7 Parallel Slave Port bit 7

Table 2.10: PIC18F452 PORTE Pin Functions

Pin Description
REO/RD/ANS

REO Digital I/O

RD Parallel Slave Port read control pin

AN5 Analog input 5
RE1/WR/AN6

RET Digital 1/O

WR Parallel Slave Port write control pin

AN6 Analog input 6
RE2/CS/AN7

RE2 Digital 1/O

Cs Parallel Slave Port CS

AN7 Analog input 7

PIC18F Microcontroller Series 71

This section introduces the timers available in the PIC18F452 microcontroller.

Timer O

Timer 0 is similar to Timer O of the PIC16 series, except that it can operate either in 8-bit or
in 16-bit mode. Timer O has the following basic features:

* 8-bit or 16-bit operation
* 8-bit programmable prescaler
» External or internal clock source

* Interrupt generation on overflow

Timer O control register is TOCON and is shown in Figure 2.25. The lower 6 bits of this
register have similar functions to the PIC16 series OPTION register. The top 2 bits are used to
select the 8/16-bit mode of operation and to enable/disable the timer.

RW-1__ RW-1_ RMW-1_ RW-1_ RW-1_ RW-1 RW-1 RMW-
|TMRooN| TosBIT | Tocs | TosE | Psa | Tops2 | ToPst | Topso
bit 7 bit 0

bit 7 TMROON: Timer 0 on/off control

1 Enables Timer O
0 = Stops Timer 0

bit 6 TO8BIT: Timer 0 8-bit/16-bit control bit

1 = Timer 0 is configured as an 8-bit timer/counter
0 = Timer 0 is configured as a 16-bit timer/counter

bit 5 TOCS: Timer 0 clock source select bit

1 = Transition on TOCKI pin
0 = Internal instruction cycle clock (CLKO)

bit 4 TOSE: Timer 0 source edge select bit

1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin

bit 3 PSA: Timer O prescaler assignment bit

1 = Timer O prescaler is NOT assigned. Timer 0 clock input bypasses prescaler.
0 = Timer 0 prescaler is assigned. Timer 0 clock input comes from prescaler output.

bit2-0 TOPS2:TOPSO: Timer O prescaler select bits
111

1:256 prescale value

110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 = 1:8 prescale value
001 = 1:4 prescale value
000 = 1:2 prescale value

Figure 2.25: Timer 0 Control Register, TOCON

72 Chapter 2

Timer 0 can be operated either as a timer or as a counter. Timer mode is selected by clear-
ing the TOCS bit, and in this mode, the clock to the timer is derived from Fq,. Counter
mode is selected by setting the TOCS bit, and in this mode, Timer O is incremented on

the rising or falling edge of input RA4/TOCKI. Bit TOSE of TOCON selects the edge
triggering mode.

An 8-bit prescaler can be used to change the rate of the timer clock by a factor of up to 256.
The prescaler is selected by bits PSA and TOPS2:TOPSO of register TOCON.

8-Bit Mode

Figure 2.26 shows Timer O in 8-bit mode. The following operations are normally carried out
in a timer application:

¢ Clear TOCS to select clock Fyscys-

* Use bits TOPS2:TOPSO to select a suitable prescaler value.
* Clear PSA to select the prescaler.

* Load timer register TMROL.

* Optionally enable Timer O interrupts.

e The timer will count up, and an interrupt will be generated when the timer value
overflows from FFH to O0H in an 8-bit mode (or from FFFFH to O000H in 16-bit mode).

By loading a value into the TMRO register, we can control the count until an overflow occurs.
The formula given below can be used to calculate the time it will take for the timer to over-
flow (or to generate an interrupt) given the oscillator period, the value loaded into the timer,
and the prescaler value:

Overflow time = 4 X Tqq X Prescaler x (256 — TMRO) 2.1

where Overflow time is in Us, Tog is the oscillator period in Us, Prescaler is the prescaler
value, and TMRO is the value loaded into TMRO register.

Data bus

Fosc/4 0 3 8
*? 1 Sync with
1 internal — TMROL
RA4/TOCKI pin Programmable| | g clocks
TOSE pfeSCa|el’ (2 Tey delay)
3
PSA
S Set interrupt

TOPS2, TOPS1, TOPSO flag bit TMROIF
on overflow

TOCS
Figure 2.26: Timer 0 in an 8-bit Mode

PIC18F Microcontroller Series 73

For example, assume that we are using a 4-MHz crystal and the prescaler is chosen as 1:8 by
setting bits PS2:PS0 to “010.” In addition, assume that the value loaded into the timer register
TMRO is decimal 100. The overflow time is then given by

4-MHz clock has a period, T = 1/f = 0.25 us.

Using the above formula,

Overflowtime =4 x 0.25 X 8 X (256 — 100) = 1248 us.

Thus, the timer will overflow after 1.248 ms, and a timer interrupt will be generated if the
timer interrupt and global interrupts are enabled.

What we normally want is to know what value to load into the TMRO register for a required
overflow time. This can be calculated by modifying equation (2.1) as follows:

TMRO = 256 — (Overflow time)/(4 X Tgc X Prescaler). 2.2)

For example, assume that we want an interrupt to be generated after 500 s and the clock
and the prescaler values are same as mentioned above. The value to be loaded into the TMRO
register can be calculated using (2.2) as

TMRO =256 — 500/(4 x 0.25 x 8) = 193.5.

The nearest number we can load into TMRO register is 193.

16-Bit Mode

Timer O in 16-bit mode is shown in Figure 2.27. Here, two timer registers named TMROL
and TMRO are used to store the 16-bit timer value. The low-byte TMROL is directly load-
able from the data bus. The high-byte TMRO can be loaded through a buffer called TMROH.
During a read of TMROL, the high byte of the timer (TMRO) is also loaded into TMROH, and
thus, all 16 bits of the timer value can be read. Thus, to read the 16-bit timer value, we have
to first read TMROL and then read TMROH in a later instruction. Similarly, during a write to
TMROL, the high byte of the timer is also updated with the contents of TMROH, allowing all
16 bits to be written to the timer. Thus, to write to the timer, the program should first write
the required higher byte to TMROH. When the lower byte is written to TMROL, the value
stored in TMROH is automatically transferred to TMRO, thus causing all 16 bits to be written
to the timer.

Timer 1

Timer 1of the PIC18F452 is a 16-bit timer controlled by register TICON, as shown in Figure
2.28. Figure 2.29 shows the internal structure of Timer 1.

Timer 1 can be operated either as a timer or as a counter. When bit TMR1CS of register
T1CON is low, clock Fqsq, is selected for the timer. When TMRI1CS is high, module

74 Chapter 2

Fosc/4
Siﬁ?:mwaﬁh Set interrupt
*>| TMROL ngh byte flag bit TMROIF
TOCKI pin Programmable
TOSE prescaler

TOPS2, TOPS1, TOPSO

5 :;oc::la) N Js on overflow
Yy y
Kv Read TMROL
Write TMROL

TOCS PSA
.8
TMROH
N
8
AV 4 Data bus<7:0>
Figure 2.27: Timer 0 in a 16-bit Mode
RW-0__ U0 RW-0 _RW-O _RWO _RW-O _ RW-0 _ RW-0
| RDt6 | — [T1CKPS1|T1CKPSO |T1IOSCEN| TISYNC | TMRICS | TMR1ON
bit 7 bit 0

bit 7 RD16: 16-bit read/write mode enable bit

1 = Enables register read/write of Timer 1 in one 16-bit operation
0 = Enables register read/write of Timer 1 in two 8-bit operations

bit 6 Unimplemented: Read as '0'
bit 5-4 T1CKPS1:T1CKPSO: Timer 1 input clock prescale select bits
11

1:8 prescale value

10 = 1:4 prescale value
01 = 1:2 prescale value
00 = 1:8 prescale value

bit 3 T10SCEN: Timer 1 oscillator enable bit

1 = Timer 1 oscillator is enabled
0 = Timer 1 oscillator is enabled
The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 2 T1SYNC: Timer 1 external clock input synchronization select bit

when TMR1CS =
1 = Do not synchronize external clock input
0 = Synchronize external clock input

when TMR1CS = 0:
This bit is ignored. Timer 1 uses the internal clock when TMR1CS =

bit 1 TMR1CS: Timer 1 clock source select bit

1 = External clock from pin RC0O/T10SO/T13CKI (on the rising edge)
0 = Internal clock (Fosc/4)

bit 0 TMR10ON: Timer 1 on bit

1
0

Enables Timer 1
Stops Timer 1

Figure 2.28: Timer 1 Control Register, TICON

PIC18F Microcontroller Series

75

TMR1IF CCP special event trigger
overflow

interrupt MR ‘ 0 =
flag bit CLR

TMR1H TMR1L

Synchronized

T1SYNC

Prescaler
1,2,4,8

clock input

Synchronize

TMR1ON
on/off

Ao~ 1

T10SC

T1CKIT1080 [X— §T1OSCEN
3 Enable Fosc/4
T103||E—F< | oscillator internal

L——4 clock

TMR1CS

}o

T1CKPS1:T1CKPSO

Figure 2.29: Internal Structure of Timer 1

_fdet

I
SLEEP input

operates as a counter clocked from input T1OSI. A crystal oscillator circuit, enabled from
bit TIOSCEN of T1CON, is built between pins T1OSI and T10SO, where a crystal up to
200KHz can be connected between these pins. This oscillator is primarily intended for a
32-KHz crystal operation in real-time clock applications. A prescaler is used in Timer 1,

which can change the timing rate as a factor of 1, 2, 4, or 8.

Timer 1 can be configured so that the read/write can be performed either in a 16-bit mode

or in two 8-bit modes. Bit RD16 of register TICON controls the mode. When RD16 is low,

timer's read and write are performed as two 8-bit operations. When RD16 is high, the timer's
read and write operations are as in Timer 0 16-bit mode. That is, a buffer is used between the

timer register and the data bus (see Figure 2.30).

If the Timer 1 interrupts are enabled, an interrupt will be generated when the timer value rolls

over from FFFFH to 0000H.

Timer 2

Timer 2 is an 8-bit timer with the following features:
e &-bit timer (TMR?2)

» 8-bit period register (PR2)

* Programmable prescaler

* Programmable postscaler

* Interrupt when TM2 matches PR2

76 Chapter 2

Data bus<7:0> 7~
8
TMR1H
ﬁ 8] 8 N
Write TMR1L , ,
‘_L, CCP special event trigger
Read TMR1L M
TMR1IF Synchronized
overflow 8 AVALLLILINS v/ 0 clock input
interrupt Timer 1 CLR P
flag bit high byte TMR1L ;
-------- TME‘;?N TISYNC
. T10SC | N oo
T13CKIT10S0 E s o 1 .
> Prescaler Synchronize
T10SCEN Fosc/4 1,2,4,8 _f det [
enable internal 0
T108I oscillator clock 2 ‘
-------- TMR1CS SLEEP Input
T1CKPS1:T1CKPSO0
Figure 2.30: Timer 1 in a 16-bit Mode
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
| — | TOUTPSS3 | TOUTPS2 | TOUTPS1 | TOUTPSO0 | TMR20ON | T2CKPS1 | T2CKPSO
bit 7 bit 0
bit 7 Unimplemented: Read as '0'

bit 6-3 TOUTPS3:TOUTPSO: Timer 2 output postscale select bits

0000 = 1:1 postscale
0001 = 1:2 postscale

1111 = 1:16 postscale
bit 2 TMR20ON: Timer 2 on bit

1 =Timer 2 is on
0 =Timer 2 is off

bit 1-0 T2CKPS1:T2CKPSO0: Timer 2 clock prescale select bits

00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

Figure 2.31: Timer 2 Control Register, T2CON

Timer 2 is controlled from register T2CON, as shown in Figure 2.31. Bits T2CKPS1:
T2CKPSO set the prescaler for a scaling of 1, 4, and 16. Bits TOUTPS3:TOUTPSO set the
postscaler for a scaling of 1:1 to 1:16. The timer can be turned on or off by setting or clearing
bit TMR2ON.

PIC18F Microcontroller Series 77

TMR2 Sets flag
output bit TMR2IF
Prescaler RESET
Fosc/4 1:1, 1:4, 1:16
J, 2 Postscaler

EQ 1:1to 1:16

J(4
TOUTPS3:TOUTPSO
Figure 2.32: Timer 2 Block Diagram

T2CKPS1:T2CKPS0O

The block diagram of Timer 2 is shown in Figure 2.32. Timer 2 can be used for the PWM
mode of the CCP module. The output of Timer 2 can be selected by the SSP module as a
baud clock using software. Timer 2 increases from O0H until it matches PR2 and sets the
interrupt flag. It then resets to 00OH on the next cycle.

Timer 3

The structure and operation of Timer 3 are the same as for Timer 1, having registers TMR3H
and TMR3L. This timer is controlled from register T3CON, as shown in Figure 2.33.

The block diagram of Timer 3 is shown in Figure 2.34.

2.1.10 Capture/Compare/PWM Modules

In the PIC18F452 microcontroller, there are two Capture/Compare/PWM (CCP)
modules, and they work with Timers 1, 2, and 3 to capture and compare and for PWM
operations. Each module has two 8-bit registers. Module 1 registers are CCPR1L and
CCPR1H, and module 2 registers are CCPR2L and CCPR2H. Together, each register
pair form a 16-bit register and can be used to capture, compare, or generate waveforms
with a specified duty cycle. Module 1 is controlled by register CCP1CON, and module
2 is controlled by CCP2CON. Figure 2.35 shows the bit allocations of the CCP control
registers.

Capture Mode

In capture mode, the registers operate like a stopwatch, and when an event occurs, the time of
the event is recorded, and the clock continues running (in a stopwatch, the watch stops when
the event time is recorded).

78 Chapter 2

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
| RD 16 | T3CCP2 | T3CKPS1 | TBCKPSO | T3CCP1 | T3SYNC | TMR3CS | TMR3ON

bit 7 bit 0

bit 7 RD16: 16-bit read/write mode enable bit
1 = Enables register read/write of Timer 3 in one 16-bit operation
1 = Enables register read/write of Timer 3 in two 8-bit operations
bit 6 and 3 T3CCP2:T3CCP1: Timer 3 and Timer 1 to CCPx enable bits
1x = Timer 3 is the clock source for compare/capture CCP modules
01 =Timer 3 is the clock source for compare/capture of CCP2,
Timer 1 is the clock source for compare/capture of CCP1
00 =Timer 1 is the clock source for compare/capture CCP modules
bit 5-4 T3CKPS1:T3CKPSO0: Timer 3 input clock prescale select bits
11 =1:8 prescale value
10 = 1:4 prescale value
01 =1:2 prescale value
00 = 1:1 prescale value

bit 2 T3SYNC: Timer 3 external clock input synchronization control bit
(Not usable if the system clock comes from Timer 1/Timer 3)
When TMR3CS = {1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR3CS = 0:
This bit is ignored. Timer 3 uses the internal clock when TMR3CS = 0.

bit 1 TMR3CS: Timer 3 clock source select bit
1 = External clock input from Timer 1 oscillator or T1CK1
(on the rising edge after the first falling edge)
0 = Internal clock (Fosc,,)

bit 0 TMR3ON: Timer 3 on bit
1 =Enables Timer 3
0 = Stops Timer 3

Figure 2.33: Timer 3 Control Register, T3CON

Figure 2.36 shows the capture mode of operation. Here, CCP1 will be considered, but the
operation of CCP2 is identical, with the register and port names change accordingly. In this
mode, CCPR1H:CCPRIL captures the 16-bit value of the TMR1 or TMR3 registers when
an event occurs on pin RC2/CCP1 (pin RC2/CCP1 must be configured as an input pin using
TRISC). An external signal can be prescaled by 4 or 16. The event is selected by control bits
CCPIM3:CCP1MO, and an event can be selected to be one of the following:

* Every falling edge
* Every rising edge
* Every fourth rising edge

* Every sixteenth rising edge

PIC18F Microcontroller Series 79

— CCP special trigger

TMR3IF T3CCP
overflow — X
interrupt I 0|« Synchronized
flag bit CLR h clock input
TMR3H TMR3L 4{7]
TMR3ON
on/off T3SYNC
3
T10S0/ [Q)
T13CKI =~ Prescaler Synchronize
T10SCEN Fosc/a 1,2,4,8 _f det
enable internal — 0
T108I oscillator ¢lock 2 |
TMR3CS SLEEP input

T3CKPS1:T3CKPSO0
Figure 2.34: Block Diagram of Timer 3

If the capture interrupt is enabled, the occurrence of an event causes an interrupt to be gener-
ated in software. If another capture occurs before the value in register CCPR1 is read, the old
captured value is overwritten by the new captured value.

Either of Timers 1 or 3 can be used in capture mode, and these timers must be running in
timer mode or in Synchronized Counter mode selected by register T3CON.

Compare Mode

In compare mode, a digital comparator is used to compare the value of Timer 1 or Timer 3
with the value in a 16-bit register pair, and when a match occurs, the output state of a pin is
changed. Figure 2.37 shows the block diagram of compare mode of operation.

Here, only module CCP1 is considered, but the operation of module CCP2 is identical.

The value of 16-bit register pair CCPR1H:CCPR1L is continuously compared against the
Timer 1 or Timer 3 value. When a match occurs, the state of the RC2/CCP1 pin is changed
depending on the programming of bits CCP1M2:CCP1MO of register CCP1CON. The
following changes can be programmed:

* Force RC2/CCP1 high

* Force RC2/CCP1 low

* Toggle RC2/CCP1 pin (low-to-high or high-to-low)
* Generate interrupt when a match occurs

* No change

80 Chapter 2

u-0 u-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
| = = DCxB1 DCxBO | CCPxM3 | CCPxM2 | CCPxM1 | CCPxMO
bit 7 bit 0

bit7-6 Unimplemented: Read as ‘0’
bit5-4 DCxB1:DCxB0: PWM duty cycle bit 1 and bit 0

Capture mode:
Unused

Compare mode:
Unused

PWM mode:

These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The upper eight bits
(DCx9:DCx2) of the duty cycle are found in CCPRXxL.

bit 3-0 CCPxM3: CCPxMO0: CCPx mode select bits

0000 = Capture/compare/PWM disabled (resets CCPx module)
0001 = Reserved
0010 = Compare mode, toggle output on match (CCPxIF bit is set)
0011 = Reserved
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode,
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)
1001 = Compare mode,
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
1010 = Compare mode,
Generate software interrupt on compare match (CCPIF bit is set, CCP pin is
unaffected)
1011 = Compare mode,
Trigger special event (CCPIF bit is set)
11xx = PWM mode

Figure 2.35: CCPxCON Register Bit Allocations

Timer 1 or Timer 3 must be running in Timer mode or in Synchronized Counter mode
selected by register T3CON.

2.1.11 Pulse Width Modulation Module

The Pulse Width Modulation (PWM) mode produces a PWM output at 10-bit resolution.
A PWM output is basically a square waveform with a specified period and duty cycle.
Figure 2.38 shows a typical PWM waveform.

Figure 2.39 shows the PWM module block diagram. The module is controlled by Timer 2.

The PWM period is given by

PWM period = (PR2 + 1) X TMR2PS X 4 X Tqc

(2.3)

PIC18F Microcontroller Series 81
| TMR3H | TMRsL |
Set flag bit CCP1IF
T3CCP2 TMR3
Prescaler Enable
E z +1,4,16
CCP1 pin | CCPR1H | CCPRIL |
TMR1
{ and —+. TSCCP2
Edge Detect Enable
% } | TMRTH | TMRiIL |
CCP1CON<3:0>
Q’'s
Set flag b|t CCP2IF
T3CCP1 TMR3H | TMR3L |
T3CCP2
= I TMR3
rescaler
Xl_ 21416 Enable
CCP2 pin | ccPR2H | coPRaL |
TMR1
+_ and _+— Enable
Edge Detect T3CCP2
,‘f T3C0P1 | TMR1H | TMRIL |
CCP2CON<3:0>
Q’s
Figure 2.36: Capture Mode of Operation
Special event trigger
Set flag bit CCP1IF
I
1 Q S v
g OUtPUt . Comparator
RC2/CCP1 pin R logic Match
TRISC<2> j(
Output enable CCP1CON<3:0> T3CCP2
Mode select
| TMR1H | TMR1L | | TMR3H | TMR3L \
Special event trigger
Set flag bit CCP2IF T3CCP1
T3CCP2
PR [
XI Q OUtPUt - " Comparator
RC1/CCP2 pin logic Match A
Output enable CCP2CON<3:0>
Mode select

Figure 2.37: Compare Mode of Operation

82 Chapter 2

Period

Duty cycle
Figure 2.38: Typical PWM Waveform

Duty cycle registers CCP1CON<5:4>
coPRiL | |
‘CCPFHH (Stave). ‘
[Comparator i R Q
z= RC2/CCP1
[TMR2 ‘ ‘
S
Comparator } TRISC<2>
Clear timer,
CCP1 pin and
PR2 latch DC

Figure 2.39: PWM Module Block Diagram

or

PWM period
TMR2PS X 4 X Togc

PR2 = 1, (2.4)

where PR2 is the value loaded into Timer 2 register, TMR2PS is the Timer 2 prescaler value,
Tosc 1s the clock oscillator period (seconds).

The PWM frequency is defined as 1/(PWM period).

The resolution of the PWM duty cycle is 10 bits. The PWM duty cycle is selected by writing
the eight most significant bits into the CCPR1L register and the two least significant bits into
bits 4 and 5 of CCP1CON register. The duty cycle (in seconds) is given by

PWM duty cycle = (CCPRIL:CCP1CON < 5: 4 >) x TMR2PS X Tsc 2.5)

or

PWM duty cycle

2.6)

PIC18F Microcontroller Series

83

The steps to configure the PWM are as follows:

Specify the required period and duty cycle.
Choose a value for Timer 2 prescaler (TMR2PS).

Calculate the value to be written into PR2 register using equation (2.2).

Calculate the value to be loaded into CCPR1L and CCP1CON registers using

equation (2.6).
Clear the bit 2 of TRISC to make CCP1 pin an output pin.

Configure the CCP1 module for PWM operation using register CCP1CON.

An example is given below to show how the PWM can be set up.

m Example 2.1

It is required to generate PWM pulses from pin CCP1 of a PIC18F452 microcontroller.

The required pulse period is 44 s, and the required duty cycle is 50%. Assuming that

the microcontroller operates with a 4-MHz crystal, calculate the values to be loaded

into various registers.

Solution

Using a 4-MHz crystal, calculate Tosc = 1/4=0.25x 107

The required PWM duty cycle is 44/2 = 22 us.

From equation (2.4), assuming a timer prescaler factor of 4, we have

PWM period

PR2 = TMR2PS X 4 X Toge

1

or

44 x10°¢

PRZ = 4% 0.25%10°

-1=10, i.e.,0AH

and from equation (2.6)

_ PWMdutycycle
CCPR1L:CCP1CON< 5:4 > = m
or
22x10°
CCPRTL:CCP1CON<54>= ————— =22,
4x%x0.25x107°

But the equivalent of number 22 in 10-bit binary is 00 00010110.

84 Chapter 2

Therefore, the value to be loaded into bits 4 and 5 of CCP1CON is 00. Bits 2 and 3 of
CCP1CON must be set to high for PWM operation. Therefore, CCP1CON must be set
to bit pattern (“X” is don’t care): XX001100

Considering the don’t care entries as 0, we can set CCP1CON to hexadecimal 0CH.
The value to be loaded into CCPR1L is 00010110, i.e., hexadecimal number 16H.
The required steps are summarized below.

* Load Timer 2 with prescaler of 4, i.e., load T2CON with 00000101, which is 05H.
* Load OAH into PR2.

* Load 16H into CCPR1L.

* Load 0 into TRISC (make CCP1 pin output).

* Load OCH into CCP1CON.

One period of the generated PWM waveform is shown in Figure 2.40. -

2.1.12 Analog-to-Digital Converter Module

An A/D converter is another important peripheral component of a microcontroller. The A/D con-
verts an analog input voltage into a digital number so that it can be processed by a microcontroller
or any other digital system. There are many A/D chips available in the market, and an embedded
designer should understand the characteristics of such chips so that the chips can be used efficiently.

A/D converters can be classified into two types as far as the input and output voltage are
concerned. These are unipolar and bipolar. Unipolar A/D converters accept unipolar input
voltages in the range 0 to +V, and bipolar A/D converters accept bipolar input voltages in the
range V. Bipolar converters are frequently used in signal processing applications, where the
signals by nature are bipolar. Unipolar converters are usually cheaper, and they are used in
many control and instrumentation applications.

Figure 2.41 shows the typical steps involved in reading and converting an analog signal into
digital form. This is also known as the process of signal conditioning. Signals received from
sensors usually need to be processed before being fed to an A/D converter. The processing

Figure 2.40: Generated PWM Waveform

PIC18F Microcontroller Series

Sample AD

‘ Filter | & —» Mux. _’converter=’
hold

Analog

signal

Figure 2.41: Signal Conditioning and A/D Conversion Process

usually consists of scaling the signal to the correct value. Unwanted signal components are
then removed by filtering the signal using classical filters (e.g., low-pass filter). The final

processing stage before feeding the signal to an A/D converter is to pass the signal through a
sample-and-hold device. This is particularly important for fast real-time signals whose value
may be changing between the sampling instants. A sample-and-hold device ensures that the

signal stays at a constant value during the actual conversion process. In many applications, it
is usually required to have more than one A/D, and this is normally done by using an analog

multiplexer at the input of the A/D. The multiplexer selects only one signal at any time and

presents this signal to the actual A/D converter. An A/D converter usually has a single analog

input and a digital parallel output. The conversion process is as follows:
* Apply the processed signal to the A/D input.

» Start the conversion.

e Wait until conversion is complete.

* Read the converted digital data.

The A/D conversion starts by triggering the converter. Depending on the speed of the
converter, the actual conversion process can take several microseconds. At the end of the
conversion, the converter either raises a flag or generates an interrupt to indicate that the
conversion is complete. The converted parallel output data can then be read by the digital
device connected to the A/D converter.

Most PIC18F family members contain a 10-bit A/D converter. If the voltage reference is
chosen to be +5V, the voltage step value is

5V)
(m)—0.00489V or 4.89mV.

Therefore, for example, if the input voltage is 1.0V, the converter will generate a digital

output of 1.0/0.00489 = 205 decimal. Similarly, if the input voltage is 3.0V, the converter will

generate 3.0/0.00489 = 613.

86 Chapter 2

The A/D converter used by the PIC18F452 microcontroller has eight channels, called
ANO-AN7, and these channels are shared by the PORTA and PORTE pins. Figure 2.42 shows
the block diagram of the A/D converter.

The A/D converter has four registers. Registers ADRESH and ADRESL store the higher
and lower results of the conversion, respectively. Register ADCONO, shown in Figure 2.43,
controls the operation of the A/D module, such as selecting the conversion clock (together
with register ADCONI), selecting an input channel, starting a conversion, and powering-up
and shutting-down the A/D converter.

The ADCONI register (see Figure 2.44) is used for selecting the conversion format, configur-
ing the A/D channels for analog input, selecting the reference voltage, and selecting the
conversion clock (together with ADCONO).

The A/D conversion starts by setting the GO/DONE bit of ADCONO. When the conversion
is complete, the 2 bits of the converted data are written into register ADRESH, and the
remaining 8 bits are written into register ADRESL. At the same time, the GO/DONE bit

is cleared to indicate the end of conversion. If required, interrupts can be enabled so that a
software interrupt is generated when the conversion is complete.

CHS<2:0>

..... L.,

VAIN !
(Input voltage) E 0l : b—|g AN3
E \ 010 . AN2
10-bit : 001 ! &
converter X \c ; & AN1
AD PCFG<3:0> : :
. 000
Al oo o \ D Ano
= — =7 VREF+ o/o"_—r
| | ToT O
| Reference | .)
voltage : o
| I VREF- 1~
b——— R B

Figure 2.42 Block Diagram of the PIC18F452 A/D Converter

PIC18F Microcontroller Series

87

The steps in carrying out an A/D conversion are listed below.

Use ADCONI to configure required channels as analog and configure the reference

voltage.

Set the TRISA or TRISE bits so that the required channel is an input port.

Use ADCONO to select the required analog input channel.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0
ADCS1 ADCS0 CHS2 CHSH1 CHSO |GO/DONE = ADON
bit 7 bit 0

bit7-6 ADCS1:ADCSO0: A/D conversion clock select bits

ADCON1

ADCONO

<ADCS2> | <ADCS1:ADCS0>

Clock Conversion

0 00 Fosc/2

0 01 Fosc/8

0 10 Fosc/32

0 11 Frc (clock derived from the internal A/D RC oscillator)
1 00 Fosc/4

1 01 Fosc/16

1 10 Fosc/64

1

11

Frc (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHSO0: Analog channel select bits
000 = channel 0, (ANO)
001 =channel 1, (AN1)
010 = channel 2, (AN2)
011 = channel 3, (AN3)
100 = channel 4, (AN4)
101 = channel 5, (AN5)
110 = channel 6, (AN6)
111 = channel 7, (AN7)

Note: The PIC18F2x2 devices do not implement the full eight A/D channels; the
unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D conversion status bit
bit 1 Unimplemented: Read as '0'

When ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion, which is
automatically cleared by hardware when the A/D conversion is complete)

0 = A/D conversion not in progress

bit 0 ADON: A/D on bit

1 = A/D converter module is powered up
0 = A/D converter module is shut off and consumes no operating current

Figure 2.43: ADCONO Register

88 Chapter 2

R/W-0 R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
| ADFM | ADCs2 | — — | PCFG3 | PCFG2 | PCFG1 | PCFGO
bit 7 bit 0
bit 7 ADFM: A/D result format select bit
1 = Right justified. Six (6) most significant bits of ADRESH are read as '0'".
0 = Left justified. Six (6) least significant bits of ADRESL are read as '0'.
bit 6 ADCS2: A/D conversion clock select bit
ADCON1 ADCONO Clock Conversion
<ADCS2> <ADCS1:ADCS0>
0 00 Fosc/2
0 01 Fosc/8
0 10 Fosc/32
0 11 Frc (clock derived from the internal A/D RC oscillator)
1 00 Fosc/4
1 01 Fosc/16
1 10 Fosc/64
1 11 Frc (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFGO: A/D port configuration control bits

zng AN7 | AN6 | AN5 | AN4 | AN3 AN2 | AN1 | ANO | VREeF+ Vrer- | C/R
0000 | A A A A A A A A VDD Vss 8/0
0001 A A A A | VREF+ A A A AN3 Vss 7"
0010 | D D D A A A A A VDD Vss 5/0
0011 D D D A | VREF+ A A A AN3 Vss 41
0100 | D D D D A D A A VDD Vss 3/0
0101 D D D D | VREF+ D A A AN3 Vss 21
011x | D D D D D D D D — — 0/0
1000 | A A A A | VREF+ | VREF-| A A AN3 AN2 6/2
1001 D D A A A A A A VDD Vss 6/0
1010 | D D A A | VREF+ A A A AN3 Vss 51
1011 D D A A | VREF+ | VREF-| A A AN3 AN2 4/2
1100 | D D D A | VREF+ | VREF-| A A AN3 AN2 3/2
1101 D D D D |VREF+ |VREF-| A A AN3 AN2 2/2
1110 | D D D D D D D A VDD Vss 1/0
1111 D D D D |VREF+|VREF-| D A AN3 AN2 1/2

A = Analog input D = Digital I/O

Figure 2.44: ADCONT1 Register

PIC18F Microcontroller Series 89

e Use ADCONO and ADCONT to select the conversion clock.

* Use ADCONO to turn on the A/D module.

* Configure the A/D interrupt (if desired).

* Set GO/DONE bit to start conversion.

* Wait until GO/DONE bit is cleared or until a conversion complete interrupt is generated.
* Read the converted data from ADRESH and ADRESL.

* Repeat above steps as required.

For correct A/D conversion, the A/D conversion clock must be selected to ensure a minimum
bit conversion time of 1.6 ps. Table 2.11 gives the recommended A/D clock sources for the
chosen microcontroller operating frequency. For example, if the microcontroller is operated at
a 10-MHz clock, the A/D clock source should be selected as Fqgc6 Or higher (e.g., Fogcsso)-

Bit ADFM of register ADCON1 controls format of a conversion. When ADFM is cleared,
the 10-bit result is left justified (see Figure 2.45) and lower 6 bits of ADRESL are cleared to
zero. When ADFM is set to 1, the result is right justified and the upper 6 bits of ADRESH are
cleared to zero. This is the commonly used mode, and, here, ADRESL contains the low-order
8 bits, and bits 0 and 1 of ADRESH contain the upper 2 bits of the 10-bit result.

Analog Input Model and the Acquisition Time

An understanding of the A/D analog input model is necessary to interface the A/D to external
devices. Figure 2.46 shows the analog input model of the A/D. On the left-hand side of the
diagram, we see the analog input voltage V, and the source resistance R. It is recommended
that the source resistance not be greater than 2.5 K. The analog signal is applied to the pin
labeled ANx. There is a small capacitance (5 pF) and a leakage current to the ground of

Table 2.11: A/D Conversion Clock Selection

A/D Clock Source
Maximum Microcontroller

Operation ADCS2:ADCS0O Frequency

2 Tosc 000 1.25MHz

4 Toec 100 2.50 MHz

8 Tosc 001 5.0MHz

16 Tosc 101 10.0 MHz

32 Too 010 20.0 MHz

64 Tosc 110 40.0 MHz

RC 011 -

90 Chapter 2

10-bit result

ADFM = 1 ADFM =0
, AL - p AL —
7 2107 0 7 0765 0
0000 00 : ' 000000
. g . P p N P g ,
ADRESH ADRESL ADRESH ADRESL
10-bit result 10-bit result

Right justified Left justified
Figure 2.45: Formatting the A/D Conversion Result

Vop Sampling

switch

VT=0.6V
Ric=1K

l B | LEAKAGE 1
T VT=06V + 500 nA T

Legend: CPIN =input capacitance

VT = threshold voltage g¥
| LEAKAGE = leakage current at the pin due to VDD 4V
various junctions 3V

CHoOLD = 120 pF

l Vss

Ric = interconnect resistance 2V
SS = sampling switch
CHOLD = sample/hold capacitance (from DAC) -

T T
567891011
Sampling switch (KQ)

Figure 2.46: Analog Input Model of the A/D Converter

approximately 500 nA. Ry is the interconnect resistance, which has a value of less than 1 K.
The sampling process is shown with switch SS, having a resistance Rg whose value depends
on the voltage as shown in the small graph in the bottom of Figure 2.46. The value of R is
approximately 7K at 5V of supply voltage.

PIC18F Microcontroller Series 91

The A/D converter is based on a switched capacitor principle, and capacitor Cyo, , shown in
Figure 2.46 must be charged fully before the start of a conversion. This is a 120-pF capacitor,
which is disconnected from the input pin once the conversion is started.

The acquisition time can be calculated by using equation (2.7) from Microchip Inc.:

Tyco = Amplifiersettling time + Holding capacitor charging time + temperature coefficient. 2.7

The amplifier settling time is specified as a fixed 2 us. The temperature coefficient is only
applicable if the temperature is above 25°C, and it is specified as

Temperature coefficient = (Temperature — 25°C)(0.05 us/°C). 2.8)

Equation (2.8) shows that the effect of the temperature is very small, creating an approximately
0.5-us delay for every 10°C above 25°C. Thus, assuming a working environment between

25 and 35°C, the maximum delay due to temperature will be 0.5 s, which can be neglected
for most practical applications.

The holding capacitor charging time is specified by Microchip Inc. as
Holding capacitor charging time = —(120 pF)(1 K + Rgs + R)Ln(1/2048). 2.9)

Assuming that R = 7K and Rg = 2.5 K, equation (2.9) gives the holding capacitor charging
time as 9.6 us.

The acquisition time is then calculated as

Tao=2+9.6+0.5=12.1ps.

A full 10-bit conversion takes 12 A/D cycles, and each A/D cycle is specified to be a minimum
of 1.6 us. Thus, the fastest conversion time is 19.2 ps. Addition of this to the best possible
acquisition time gives the total time to complete a conversion to be 19.2 + 12.1 =31.3 us.

When a conversion is complete, it is specified that the converter should wait for two conversion
periods before starting a new conversion. This corresponds to 2 X 1.6 = 3.2 ps. Addition of

this to the best possible conversion time of 31.3 s gives the complete conversion time to be
34.5 ps. Assuming that the A/D converter is to be used successively and ignoring the software
overheads, this implies a maximum sampling frequency of approximately 29 KHz.

2.1.13 Interrupts

An interrupt is an external or internal event that requires the CPU to stop normal program
execution and then execute a program code related to the event causing the interrupt.
Interrupts can be generated internally (by some event inside the chip) or externally (by some
external event). An example of an internal interrupt is a timer overflowing or the A/D com-
pleting a conversion. An example of an external interrupt is an I/O pin changing state.

92 Chapter 2

Interrupts can be useful in many applications and some are as follows:

Time critical applications: Applications that require immediate attention of the CPU can use
interrupts. For example, emergency events, such as power failure or fire in a plant, may require
the CPU to shut down the system immediately in an orderly manner. Using an external interrupt
in such applications will force the CPU to stop whatever it is doing and take immediate action.

Performing routine tasks: There are many applications that require the CPU to perform
routine work. For example, it may be required to check the state of a peripheral device
exactly at every millisecond. By creating a timer interrupt with the required scheduling
time, the CPU can be diverted from normal program execution, and the state of the
peripheral can be checked exactly at required times.

Task switching in multitasking applications: In multitasking applications, each task may
be given a finite time to execute its code. Interrupt mechanisms can be used to stop a task
if more time is consumed than allocated for it.

To service peripheral devices quickly: In some applications, we may have to wait for the
completion of a task, such as the completion of the A/D conversion. This can be done by
continuously checking the completion flag of the A/D converter. A more elegant solution
would be to enable the A/D completion interrupt so that the CPU is forced to read the
converted data as soon as it becomes available.

The PIC18F452 microcontroller has core and peripheral interrupt sources. The core interrupt
sources are as follows:

External edge-triggered interrupt on INTO, INT1, and INT2 pins
PORTB pins change interrupts (any one of RB4-RB7 pins changing state)

Timer 0 overflow interrupt

The PIC18F452 peripheral interrupt sources are as follows:

PSP read/write interrupt

A/D conversion complete interrupt
USART receive interrupt

USART transmit interrupt
Synchronous serial port interrupt
CCPI interrupt

TMRI1 overflow interrupt

PIC18F Microcontroller Series 93

TMR2 overflow interrupt
Comparator interrupt
EEPROM/FLASH write interrupt
Bus collision interrupt
Low-voltage detect interrupt
Timer 3 overflow interrupt

CCP2 interrupt

Interrupts in the PIC18F family can be divided into two groups: a high-priority group
and a low-priority group. Applications that require more attention can be placed in the
high-priority group. A high-priority interrupt can stop a low-priority interrupt in progress
and gain access to the CPU. High-priority interrupts cannot be stopped by low-priority
interrupts. If the application does not need to set priorities for interrupts, the user can
choose to disable the priority scheme so that all interrupts are at the same priority level.
High-priority interrupts are vectored to address 00008H and low-priority ones to address
000018H of the program memory. Normally, a user program code (interrupt service
routine [ISR]) should be at the interrupt vector address to service the interrupting device.

In the PIC18F452 microcontroller, there are 10 registers that control interrupt operations.
These registers are as follows:

RCON
INTCON
INTCON2
INTCON3
PIR1, PIR2
PIE1, PIE2
IPR1, IPR2

Each interrupt source (except INTO) has 3 bits to control its operation. These bits are

A flag bit to indicate whether an interrupt has occurred. This bit has a name ending in IF.

An interrupt enable bit to enable or disable the interrupt source. This bit has a name
ending in IE.

A priority bit to select high or low priority. This bit has a name ending in IP.

94 Chapter 2

R/W-0 U-0 u-0 R/W-1 R-1 R-1 R/W-0 R/W-0
| IPEN — — RI TO PD POR BOR
bit 7 bit 0
bit 7 IPEN: Interrupt priority enable bit

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (16CXXX compatibility mode)

bit6-5 Unimplemented: Read as '0'

bit 4 RI: Reset instruction flag bit

bit 3 TO: Watchdog time-out flag bit

bit 2 PD: Power-down detection flag bit
bit 1 POR: Power-on reset status bit
bit 0 BOR: Brown-out reset operation

Figure 2.47: RCON Register Bits

RCON Register

The top bit of the RCON register, called IPEN, is used to enable the interrupt priority scheme.
When IPEN = 0, interrupt priority levels are disabled, and the microcontroller interrupt
structure is similar to the PIC16 series. When IPEN = 1, interrupt priority levels are enabled.
Figure 2.47 shows the bits of register RCON.

Enabling/Disabling Interrupts — No Priority Structure

When the IPEN bit is cleared, the priority feature is disabled. All interrupts branch to address
00008H of the program memory. In this mode, bit PEIE of register INTCON enables/disables
all peripheral interrupt sources. Similarly, bit GIE of INTCON enables/disables all interrupt
sources. Figure 2.48 shows the bits of register INTCON.

For an interrupt to be accepted by the CPU, the following conditions must be satisfied:

* Interrupt enable bit of the interrupt source must be enabled. For example, if the interrupt
source is an external interrupt pin INTO, then bit INTOIE of register INTCON must
be set to 1.

* The interrupt flag of the interrupt source must be cleared. For example, if the interrupt
source is an external interrupt pin INTO, then bit INTOIF of register INTCON must be
cleared to 0.

* Peripheral interrupt enable/disable bit PEIE of INTCON must be set to 1 if the interrupt
source is a peripheral.

* Global interrupt enable/disable bit GIE of INTCON must be set to 1.

PIC18F Microcontroller Series 95

RW-0 RMW-0 RWO _RWO RW-0 _RW-0 _RWO _ RMWx
|GIE/GIEH| PEIE/GIEL | TMROIE | INTOIE | RBIE | TMROIF | INTOF | RBIF |
bit 7 bit 0

bit 7 GIE/GIEH: Global interrupt enable bit
When IPEN = 0:
1 = Enables all unmasked interrupts
0 = Disables all interrupts
When IPEN = 1:
1 = Enables all high-priority interrupts
0 = Disables all interrupts
bit 6 PEIE/GIEL: Peripheral interrupt enable bit
When IPEN = 0:
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts
When IPEN = 1:
1 = Enables all low-priority peripheral interrupts
0 = Disables all low-priority peripheral interrupts
bit 5 TMROIE: TMRO overflow interrupt enable bit
1 = Enables the TMRO overflow interrupt
0 = Disables the TMRO overflow interrupt
bit 4 INTOIE: INTO external interrupt enable bit
1 = Enables the INTO external interrupt
1 = Disables the INTO external interrupt
bit 3 RBIE: RB port change interrupt enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt
bit 2 TMROIF: TMRO overflow interrupt flag bit
1 =TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
bit 1 INTOIF: INTO external interrupt flag bit
1 =The INTO external interrupt occurred (must be cleared in software)
0 =The INTO external interrupt did not occur
bit 0 RBIF: RB port change interrupt flag bit
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins has changed state

Note: A mismatch condition will continue to set this bit. Reading PORTB will end the
mismatch condition and allow the bit to be cleared.

Figure 2.48: INTCON Register Bits

For an external interrupt source, we normally have to define whether the interrupt
should occur on the low-to-high or high-to-low transition of the interrupt source. For
example, for INTO interrupts, this is done by setting/clearing bit INTEDGO of register
INTCON?2.

When an interrupt occurs, the CPU stops its normal flow of execution, pushes the
return address onto the stack, and jumps to address 00008H in the program memory,

96 Chapter 2

where the user interrupt service routine program resides. Once in the interrupt service
routine, the global interrupt enable bit (GIE) is cleared to disable further interrupts.
When multiple interrupt sources are enabled, the source of the interrupt can be
determined by polling the interrupt flag bits. The interrupt flag bits must be cleared
in software before re-enabling interrupts to avoid recursive interrupts. On return from
the interrupt service routine, the global interrupt bit GIE is set automatically by the
software.

Enabling/Disabling Interrupts — Priority Structure

When the IPEN bit is set to 1, the priority feature is enabled and interrupts are grouped
into low-priority interrupts and high-priority interrupts. Low-priority interrupts branch
to address 00008H, and high-priority interrupts branch to address 000018H of the
program memory. Setting the priority bit makes the interrupt source a high-priority
interrupt, and clearing this bit makes the interrupt source a low-priority interrupt.
Setting the GIEH bit of INTCON enables all high-priority interrupts that have the
priority bit set. Similarly, setting GIEL of INTCON enables all low-priority interrupts
(priority bit cleared).

For a high-priority interrupt to be accepted by the CPU, the following conditions must be
satisfied:

* Interrupt enable bit of the interrupt source must be enabled. For example, if the interrupt
source is an external interrupt pin INT1, then bit INT1IE of register INTCON3 must be
setto 1.

* The interrupt flag of the interrupt source must be cleared. For example, if the interrupt
source is an external interrupt pin INT1, then bit INT1IF of register INTCON3 must be
cleared to 0.

* The priority bit must be set to 1. For example, if the interrupt source is an external
interrupt INT1, then bit INT1P of register INTCON3 must be set to 1.

* Global interrupt enable/disable bit GIEH of INTCON must be set to 1.

For a low-priority interrupt to be accepted by the CPU, the following conditions must be
satisfied:

* Interrupt enable bit of the interrupt source must be enabled. For example, if the interrupt
source is an external interrupt pin INT1, then bit INT1IE of register INTCON3 must be
setto 1.

PIC18F Microcontroller Series

97

Table 2.12: PIC18F452 Interrupt Bits and Registers

Interrupt Source Flag Bit Enable Bit Priority Bit
INTO external INTOIF INTOIE -
INT1 external INTTIF INTTIE INTITP
INT2 external INT2IF INT2IE INT2IP

RB port change RBIF RBIE RBIP

TMRO overflow TMROIF TMROIE TMROIP

TMR1 overflow TMRI1IF TMRI1IE TMRT1IP

TMR2 match PR2 TMR2IF TMR2IE TMR2IP
TMR3 overflow TMR3IF TMR3IE TMR3IP
A/D complete ADIF ADIE ADIP
CCP1 CCP1IF CCP1IE CCP1IP
CCP2 CCP2IF CCP2IE CCP2IP
USART RCV RCIF RCIE RCIP
USART TX TXIF TXIE TXIP
Parallel slave port PSPIF PSPIE PSPIP
Sync serial port SSPIF SSPIE SSPIP
Low-voltage detect LVDIF LVDIE LVDIP
Bus collision BCLIF BCLIE BCLIP
EEPROM/FLASH write EEIF EEIE EEIP

The interrupt flag of the interrupt source must be cleared. For example, if the interrupt
source is an external interrupt pin INT1, then bit INT1IF of register INTCON3 must be

cleared to O.

The priority bit must be cleared to 0. For example, if the interrupt source is an external
interrupt INT1, then bit INT1P of register INTCON3 must be cleared to 0.

Low-priority interrupts must be enabled by setting bit GIEL of INTCON to 1.

Global interrupt enable/disable bit GIEH of INTCON must be set to 1.

Table 2.12 gives a listing of PIC18F452 microcontroller interrupt bit names and register
names for every interrupt source.

Figures 2.49 to 2.56 show the bit definitions of interrupt registers INTCON2, INTCON3,

PIR1, PIR2, PIE1, PIE2, IPR1, and IPR2.

Some examples are given in this section to illustrate how the CPU can be programmed for an
interrupt.

98 Chapter 2

bit 7

bit 6

bit 5

bit 4

bit 3
bit 2

bit 1
bit 0

bit 7

bit 6

bit 5
bit 4

bit 3

bit 2
bit 1

bit 0

R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1

u-0

R/W-1

| mBPU | INTEDGO | INTEDGT | INTEDG2 | — | TMROIP |

| RBIP |

bit 7

RBPU: PORTB Pull-up enable bit

1 = All PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values

INTEDGO: External interruptO edge select bit

1 = Interrupt on the rising edge
0 = Interrupt on the falling edge

INTEDG1: External interrupt1 edge select bit

1 = Interrupt on the rising edge
0 = Interrupt on the falling edge

INTEDG2: External interrupt2 edge select bit

1 = Interrupt on the rising edge
0 = Interrupt on the falling edge

Unimplemented: Read as '0'
TMROIP: TMRO overflow interrupt priority bit
1 = High priority
0 = Low priority
Unimplemented: Read as '0'
RBIP: RB port change interrupt priority bit
1 = High priority
0 = Low priority
Figure 2.49: INTCON2 Bit Definitions

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0

bit 0

R/W-0

INT2IP INT1IP = INT2IE INTHIE = INT2IF

INT1IF

bit 7

INT2IP: INT2 external interrupt priority bit

1 = High priority

0 = Low priority

INT1IP: INT1 external interrupt priority bit

1 = High priority

0 = Low priority

Unimplemented: Read as '0'

INT2IE: INT2 external interrupt enable bit

1 = Enables the INT2 external interrupt

0 = Disables the INT2 external interrupt

INT1IE: INT1 external interrupt enable bit

1 = Enables the INT1 external interrupt

0 = Disables the INT1 external interrupt

Unimplemented: Read as '0'

INT2IF: INT2 external interrupt flag bit

1 =The INT2 external interrupt occurred (must be cleared in software)
0 = The INT2 external interrupt did not occur

INT1IF: INT1 external interrupt flag bit

1 =The INT1 external interrupt occurred (must be cleared in software)
0 =The INT1 external interrupt did not occur

Figure 2.50: INTCONZ3 Bit Definitions

bit 0

PIC18F Microcontroller Series 99

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
PSPIF() ADIF RCIF | TXIF | ssPIF | CCPIF | TMR2IF | TMR1F |
bit 7 bit 0

PSPIF™: Parallel slave port read/write interrupt flag bit

1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

ADIF: A/D converter interrupt flag bit

1 = An A/D conversion completed (must be cleared in software)

0 =The A/D conversion is not complete

RCIF: USART receive interrupt flag bit

1 =The USART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The USART receive buffer is empty

TXIF: USART transmit interrupt flag bit

1 =The USART transmit buffer, TXREG is empty (cleared when TXREG is written)
0 = The USART transmit buffer is full

SSPIF: Master synchronous serial port interrupt flag bit

1 = The transmission/reception is complete (must be cleared in software)

0 = Waiting to transmit/receive

CCP1IF: CCP1 interrupt flag bit

Capture mode:

1 = ATMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred

Compare mode:

1 = ATMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

TMR2IF: TMR2 to PR2 match interrupt flag bit

1 =TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred

TMR1IF: TMR1 overflow interrupt flag bit

1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

Note (1): Bit reserved on the PIC18F2x2 devices.
Figure 2.51: PIR1 Bit Definitions

m Example 2.2

Set up INT1 as a falling-edge triggered interrupt input having low priority.

Solution

The following bits should be set up before the INT1 falling-edge triggered interrupts
can be accepted by the CPU in low-priority mode:

* Enable priority structure. Set IPEN = 1

100 Chapter 2

* Make INTT an input pin. Set TRISB = 1

* Set INTT1 interrupts for falling edge. SET INTEDG1 =0

* Enable INT1 interrupts. Set INTTIE =1

* Enable low priority. Set INT1IP =0

* Clear INT1 flag. Set INT1IF=0

* Enable low-priority interrupts. Set GIEL = 1

* Enable all interrupts. Set GIEH = 1

When an interrupt occurs, the CPU jumps to address 00008H in the program memory

to execute the user program at the interrupt service routine. -

u-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
= = = EEIF BCLIF LVDIF TMRS3IF CCP2IF
bit 7 bit 0

bit 7-5 Unimplemented: Read as '0'
bit 4 EEIF: Data EEPROM/FLASH write operation interrupt flag bit
1 = The write operation is complete (must be cleared in software)
0 = The write operation is not complete, or has not been started
bit 3 BCLIF: Bus collision interrupt flag bit
1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred
bit 2 LVDIF: Low-voltage detect interrupt flag bit
1 = A low-voltage condition occurred (must be cleared in software)
0 = The device voltage is above the low-voltage detect trip point
bit 1 TMR3IF: TMR3 overflow interrupt flag bit
1 =TMRS register overflowed (must be cleared in software)
0 = TMRB3 register did not overflow
bit 0 CCP2IF: CCP2 interrupt flag bit
Capture mode:
1 = ATMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare mode:
1 = ATMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM mode:
Unused in this mode

Figure 2.52: PIR2 Bit Definitions

PIC18F Microcontroller Series 101

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PSPIE™ ADIE RCIE TXIE SSPIE CCP1IE TMR2IE | TMR1IE
bit 7 bit 0
bit 7 PSPIE®: Parallel slave port read/write interrupt enable bit

1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D converter interrupt enable bit

1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit 5 RCIE: USART receive interrupt enable bit

1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt

bit 4 TXIE: USART transmit interrupt enable bit

1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt

bit 3 SSPIE: Master synchronous serial port interrupt enable bit

1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt

bit 2 CCP1IE: CCP1 interrupt enable bit

1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2 to PR2 match interrupt enable bit

1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit 0 TMR1IE: TMR1 overflow interrupt enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
Note (1): Bit reserved on the PIC18F2x2 devices.
Figure 2.53: PIE1 Bit Definitions

u-0 uU-0 u-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
= = - EEIE BCLIE LVDIE TMRSIE CCP2IE
bit 7 bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 EEIE: Data EEPROM/FLASH write operation interrupt enable bit
1 = Enabled
0 = Disabled

bit 3 BCLIE: Bus collision interrupt enable bit

1 = Enabled
0 = Disabled

bit 2 LVDIE: Low-voltage detect interrupt enable bit
1 = Enabled
0 = Disabled
bit 1 TMRS3IE: TMR3 overflow interrupt enable bit
1 = Enables the TMRS3 overflow interrupt
0 = Disables the TMR3 overflow interrupt
bit 0 CCP2IE: CCP2 interrupt enable bit
1 = Enables the CCP2 interrupt
0 = Disables the CCP2 interrupt

Figure 2.54: PIE2 Bit Definitions

102 Chapter 2

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

bit 7-5
bit 4

bit 3

bit 2

bit 1

bit 0

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

R/W-1

R/W-1

R/W-1

| pspip | ADIP RCIP TXIP SSPIP

CCP1IP

TMR2IP

TMR1IP

bit 7

PSPIP™: Parallel slave port read/write interrupt priority bit
1 = High priority

0 = Low priority

ADIP: A/D converter interrupt priority bit

1 = High priority

0 = Low priority

RCIP: USART receive interrupt priority bit

1 = High priority

0 = Low priority

TXIP: USART transmit interrupt priority bit

1 = High priority

0 = Low priority

SSPIP: Master synchronous serial port interrupt priority bit
1 = High priority

0 = Low priority

CCP1IP: CCP1 interrupt priority bit

1 = High priority

0 = Low priority

TMR2IP: TMR2 to PR2 match interrupt priority bit
1 = High priority

0 = Low priority

TMR1IP: TMR1 overflow interrupt priority bit

1 = High priority

0 = Low priority

Note (1): Bit reserved on the PIC18F2x2 devices.

Figure 2.55: IPR1 Bit Definitions

u-0 uU-0 u-0 R/W-1 R/W-1

R/W-1

R/W-1

bit 0

R/W-1

= = = EEIP BCLIP

LVDIP

TMR3IP

CCP2IP

bit 7

Unimplemented: Read as '0'

EEIP: Data EEPROM/FLASH write operation interrupt priority bit

1 = High priority

0 = Low priority

BCLIP: Bus collision interrupt priority bit

1 = High priority

0 = Low priority

LVDIP: Low-voltage detect interrupt priority bit
1 = High priority

0 = Low priority

TMR3IP: TMR3 overflow interrupt priority bit
1 = High priority

0 = Low priority

CCP2IP: CCP2 interrupt priority bit

1 = High priority

0 = Low priority

Figure 2.56: IPR2 Bit Definitions

bit 0

PIC18F Microcontroller Series 103

m Example 2.3

Set up INTT1 as a rising-edge triggered interrupt input having high priority.

Solution

The following bits should be set up before the INT1 rising-edge triggered interrupts can
be accepted by the CPU in the high-priority mode:

e Enable priority structure. Set IPEN = 1

* Make INT1 an input pin. Set TRISB =1

* Set INTT1 interrupts for rising edge. SET INTEDG1 =1
* Enable INT1 interrupts. Set INTTIE =1

* Enable high priority. Set INT1IP =1

* Clear INT1 flag. Set INT1IF=0

e Enable all interrupts. Set GIEH = 1

When an interrupt occurs, the CPU jumps to address 000018H of the program
memory to execute the user program at the interrupt service routine.

2.2 Summary

This chapter has described the architecture of the PIC18F family of microcontrollers.
PIC18F452 was considered as a typical example microcontroller in the family. Some other
members of the family, such as the PIC18F242, have smaller pin counts and less functional-
ity. In addition, some other members of the family, such as the PIC18F6680, have larger pin
counts and more functionality.

Various important parts and peripheral circuits of the PIC18F series have been described,
including the data memory, program memory, clock circuits, reset circuits, WDT, general-purpose
timers, capture and compare module, PWM module, A/D converter, and the interrupt structure.

2.3 Exercises

1. Describe the data memory structure of the PIC18F452 microcontroller. What is a bank?
How many banks are there?

2. Explain the differences between a general-purpose register (GPR) and a special function
register (SFR).

104 Chapter 2

3.

10.

11.

12.

13.
14.

15.

Explain the various ways that the PIC18F microcontroller can be reset. Draw a circuit
diagram to show how an external push-button switch can be used to reset the microcontroller.

. Describe the various clock sources that can be used to provide clock to a PIC18F452

microcontroller. Draw a circuit diagram to show how a 10-MHz crystal can be connected
to the microcontroller.

. Draw a circuit diagram to show how a resonator can be connected to a PIC18F

microcontroller.

. In a nontime-critical application, it is required to provide clock to a PIC18F452

microcontroller using an external resistor and a capacitor. Draw a circuit diagram to show how
this can be done and find the component values if the required clock frequency is 5 MHz.

. Explain how an external clock can be used to provide clock pulses to a PIC18F

microcontroller.

. What are the registers of PORTA? Explain the operation of the port by drawing the port

block diagram.

. It is required to set the WDT to provide automatic reset every 0.5 s. Describe how this

can be done and list the appropriate register bits.

It is required to generate PWM pulses from pin CCP1 of a PIC18F452 microcontroller.
The required pulse period is 100 s, and the required duty cycle is 50%. Assuming that
the microcontroller operates with a 4-MHz crystal, calculate the values to be loaded into
various registers.

It is required to generate PWM pulses from pin CCP1 of a PIC18F452 microcontroller.
The required pulse frequency is 40 KHz, and the required duty cycle is 50%. Assuming
that the microcontroller operates with a 4-MHz crystal, calculate the values to be loaded
into various registers.

An LM35DZ type analog temperature sensor is connected to analog port ANO of a
PIC18F452 microcontroller. The sensor provides an analog output voltage proportional to
the temperature, i.e., Vo = 10mV/°C. Show the steps required to read the temperature.

Explain the differences between a priority interrupt and a nonpriority interrupt.

Show the steps required to set up INT2 as a falling-edge triggered interrupt input having
low priority. What is the interrupt vector address?

Show the steps required to set up both INT1 and INT?2 as falling-edge triggered interrupt
inputs having low priorities.

PIC18F Microcontroller Series 105

16.

17.

18.

Show the steps required to set up INT1 as falling-edge triggered and INT2 as rising-edge
triggered interrupt inputs having high priorities. Explain how you can find the source of
the interrupt when an interrupt occurs.

Show the steps required to set up Timer O to generate high-priority interrupts every
millisecond. What is the interrupt vector address?

In an application, the CPU registers have been configured to accept interrupts from
external sources INTO, INT1, and INT2. An interrupt has been detected. Explain how you
can find the source of the interrupt.

This page intentionally left blank

Memory Cards

3.1 Memory Card Types

A memory card (also called a flash memory card) is a solid-state electronic data storage
device. First invented by Toshiba in the 1980s, memory cards save the stored data even after
the memory device is disconnected from its power source. This ability to retain data is the key
for flash memory card applications, for example, in digital cameras, where the saved pictures
are not lost after the memory card is removed from the camera.

Nowadays, memory cards are used in consumer electronics and industrial applications.
In consumer devices, we see the use of memory cards in applications like

* Personal computers

* Digital cameras

* Mobile phones

* Video cameras

* Notebook computers

* Global positioning systems
* MP3 players

* Personal digital assistants
In industrial applications, we see the use of memory cards in
* Embedded computers

* Networking products

* Military systems

* Communication devices

* Medical products

© 2010 Elsevier Ltd. All rights reserved. 107
D.O.l.: 10.1016/B978-1-85617-719-1.00007-5

108 Chapter 3

* Security systems
* Handheld scanners

Memory cards are based on two technologies: NOR technology and NAND technology.
NOR technology provides high-speed random access capabilities, where data as

small as a single byte can be retrieved. NOR technology-based memory cards are

often found in mobile phones, personal digital assistants, and computers. NAND
technology was invented after the NOR technology, and it allows sequential access to
the data in single pages but cannot retrieve single bytes of data like NOR flash. NAND
technology-based memory cards are commonly found in digital cameras, mobile
phones, audio and video devices, and other devices where the data is written and read
sequentially.

There are many different types of memory cards available in the market. Some of the most
commonly known memory cards are

* Smart media (SM) card
e Multimedia card (MMC)
e Compact flash (CF) card
¢ Memory stick (MS) card
* Microdrive

* xDcard

e Secure digital (SD) card

The specifications and details of each card are summarized in the following sections.

3.2 Smart Media Card

The SM card was first developed in 1995 by Toshiba and was also called the Solid State
Floppy Disc Card (SSFDC). The SM card consists of a single NAND flash chip embedded in
a thin plastic card, and it is the thinnest card of all. Figure 3.1 shows a typical SM card. The
dimensions of the card are 45.0 X 37.0 x 0.76 mm, and it weighs only 1.8 g. The card consists
of a flat electrode terminal with 22 pins.

The SM card was mainly used in Fuji and Olympus cameras, where it had approximately
50% of the memory card share in 2001. The capacities of these cards ranged from 0.5 to
128 MB, and the data transfer rate was approximately 2 MB/s. SM cards started having
problems as camera resolution increased considerably and cards greater than 128 MB were

Memory Card 109

Figure 3.2: Multimedia Card

not available. SM cards were designed to operate at either 3.3 or 5 V, and a small notched
corner was used to protect 3.3-V cards from being inserted into 5-V readers.

SM cards incorporated a copy protection mechanism known as the “ID,” which gave every
card a unique identification number for use with copy protection systems.

SM cards are no longer manufactured, and Fujifilm and Olympus both switched to xD cards.
Now, no devices are designed to use SM cards, but 128-MB cards for old devices can still be
obtained from memory card suppliers.

3.3 Multimedia Card

MMCs were first developed in the late 1970s by Intgenix and SanDisk. These cards were
initially used in mobile phone and pager devices, but today they are commonly used in many
other electronic devices. MMCs are backward compatible with SD cards, and they can be
plugged into SD card slots. The reverse is not possible because SD cards are thicker

(2.1 mm) and will not fit into MMC slots. Figure 3.2 is a picture of a typical MMC. The card
dimensions are 24.0 X 32.0 X 1.4 mm and it has 8 pins.

The MMC operating voltage is 3.3 V, and the data transfer rate is approximately 2.5 MB/s.
MMCs are available with capacities up to 4 GB. The older MMCs have been replaced by
new multimedia mobile cards. These cards offer higher performance than older MMCs, and
they offer lower working voltages (1.8-3.3 V) to reduce power consumption in portable
devices.

110 Chapter 3

3.4 Compact Flash Card

CF cards were first developed in 1994 by SanDisk. These are the cards offering the highest
capacities, from 2 MB to 100 GB. Today, CF cards are used in expensive professional digital
cameras and other professional mass storage devices. Low-capacity cards (up to 2 GB) use
the FAT16 filing system, and cards with capacities higher than 2 GB use the FAT32 filing
system.

There are two versions of CF cards: Type I and Type II. The only physical difference between
the two types is that Type II cards are thicker than Type I cards. Type I card dimensions are
43.0 X 36.0 X 3.3 mm and Type II cards are 43.0 X 36.0 x 5.0 mm. Both cards have 50 pins.
The Type I interface can supply up to 70 mA to the card, and the Type II interface can supply
up to 500 mA. The card operating voltage is 3.3 or 5 V. Figure 3.3 shows a typical CF card.

There are four speeds of CF cards: a Standard CF, a CF High Speed (CF 2.0 with a data
transfer rate of 16 MB/s), a faster CF 3.0 with a data transfer rate of 66 MB/s, and the fastest
CF 4.0 standard with a data transfer rate of 133 MB/s. A future version of the CF cards,
known as CFast, will be based on the Serial ATA bus with an expected speed of 300 MB/s.

The memory card speed is usually specified using the “x” rating. This is the speed of the first
audio CD-ROM, which was 150 KB/s. For example, a card with a speed of 10x corresponds
to a data transfer rate of 10 x 150 KB/s = 1.5 MB/s. Table 3.1 lists some of the commonly
used speed ratings in memory cards.

The advantages of CF cards are as follows:

* CF cards are rugged and more durable than other types of cards, and they can withstand
more physical damage than other cards.

* CF cards are available at very high storage capacities.
* CF cards operate at high speeds.

* CF cards are compatible with the IDE/ATA hard-disk standards, and thus they can be
used in many embedded systems to replace hard disks.

Besides the advantages, the CF cards have some disadvantages, such as lack of a mechanical
write protection switch or notch, and its large dimensions in comparison with other cards
limit its use in slim devices.

Transcend A

Figure 3.3: Compact Flash Card

Memory Card 111

Table 3.1: Memory Card Speed Ratings

Speed Rating Speed (MB/s)
6x 0.9
32x 4.8
40x 6.0
66x 10.0
100x 15.0
133x 20.0
150x 22.5

200x 30.0
266x 40.0
300x 45.0

SONY = A A=

Memory Stick PRO Duo

MAGICGATE

42[38 m

Figure 3.4: Memory Stick Card

3.5 Memory Stick Card

The MS cards were first developed by Sony in 1998. Although the original MS was only
128 MB, the largest capacity currently available is 16 GB. Figure 3.4 shows a typical
MS card.

The original MS, although it is not manufactured any more, is approximately the size and
thickness of a stick of chewing gum. MS has now been replaced with Memory Stick PRO,
Memory Stick Duo, and Memory Stick PRO-HG.

Memory Stick PRO was introduced in 2003 as a joint effort between Sony and SanDisk, and
it allows a greater storage capacity and faster file transfer rate than the original MS.

Memory Stick Duo was developed as a result of the need for smaller and faster memory
cards. It is smaller than the standard MS card, but an adapter allows it to be used in original
MS applications.

Memory Stick PRO-HG was developed by Sony and SanDisk together in 2006. The data
transfer speed of this card is 60 MB/s, which exceeds the speeds of all previous memory cards
and is approximately three times faster than the Memory Stick PRO cards.

112 Chapter 3

3.6 Microdrive

Microdrive is basically a hard disk designed to fit into a Type II CF card size enclosure.
Although the size of a microdrive is same as that of a CF card, its power consumption is
much higher than flash memories and therefore cannot be used in low-power applications.
The capacity of microdrives is 8§ GB or more. Figure 3.5 shows a typical microdrive.

The physical dimensions of microdrives are 42.8 x 36.4 X 5.0 mm, and they weigh
approximately 16 g. The first microdrive was developed by IBM in 1999 with a capacity of
170 and 340 MB. Soon after, the capacity was increased to greater than 2 GB in the year 2003
by Hitachi. Microdrives with a capacity of 8 GB were introduced in 2008 by Hitachi and
Seagate.

The advantage of microdrives is that they allow more write cycles than the memory cards.

In addition, microdrives are better at handling power loss in the middle of writing. One of the
disadvantages of microdrives is that they do not survive if dropped from a height of 1.2 m.

In addition, their transfer speeds are around 5 MB/s, which is lower than most of the present
day high-end memory cards. In addition, they are not designed to operate at high altitudes,
and their power consumption is high compared with memory cards.

3.7 xD Card

xD stands for extreme Digital, and these cards are mainly used in digital cameras, digital
voice recorders, and MP3 players. xD cards were developed by Olympus and Fujifilm in
2002 and then manufactured by Toshiba Corporation and Samsung Electronics. Figure 3.6
is a picture of a typical xD card. xD cards are available in three types: Type M, Type H, and
Type M+.

/r:l‘mcnl A

| Microdrive:

Figure 3.5: Microdrive

) FUJIFILM

xD-Picture Card

M2 GB N

Figure 3.6: xD Card

Memory Card 113

Type M cards were developed in 2005 and are available in capacities up to 2 GB. The read
and write speeds of these cards are 4 and 2.5 MB/s, respectively.

Type H xD cards were first released in 2005 have the advantage of a higher data transfer
speed. These cards are also available in capacities up to 2 GB with read and write speeds
of 5 and 4 MB/s, respectively. Unfortunately, the production of Type H cards has now been
discontinued due to their high production costs.

Type M+ xD cards were first released in 2008, and their capacities are up to 2 GB. These
cards are the fastest xD cards, with read and write speeds of 6 and 3/75 MB/s, respectively.

The advantage of xD cards is that they are faster than SM cards, MMCs, and MS cards. In
addition, their small size makes them attractive in portable low-power applications. Some

of the disadvantages of xD cards are their higher cost, bigger size than some other memory
cards (such as microSD), and the fact that they are proprietary to Fujifilm and Olympus. This
means that there is no publicly available documentation on their design and implementation.

3.8 Secure Digital Card

SD cards are probably the most widely used memory cards today. The SD card was originally
developed by Matsushita, SanDisk, and Toshiba in 2000. SD cards nowadays a used in many
portable devices, such as digital cameras, mobile phones, PDAs, handheld computers, video
recorders, GPS receivers, video game consoles, and so on.

Standard SD cards are available with capacities from 4 MB to 4 GB. Recently, a new type
of SD card called the high-capacity SD card (SDHC) has been developed with capacities
ranging from 4 to 32 GB. It has been announced that a new specification called eXtended
Capacity (SDXC) will allow capacities to reach 2 TB.

SD cards are based on MMC, but they have a number of differences: SD cards are physically
thicker than MMCs and would not fit into MMC slots. The MMC, on the other hand, can be
easily inserted into SD card slots. In addition, SD cards are shaped asymmetrically to prevent
them being inserted upside down, whereas an MMC would go in either direction, although it
will not make contact if inserted upside down. In addition, the internal register structures of
the two types of cards are not the same.

3.8.1 Standard SD Cards

SD cards are available in three different sizes: normal SD, miniSD, and microSD. Figure 3.7
shows the three types of SD cards.

Normal SD cards have the dimensions 24.0 X 32.0 X 2.1 mm and a weight of 2 g.
A write-protect switch is provided on the card to stop accidental deletion of the contents of

114 Chapter 3

Secure Digtal

YLOCK

2cs

24.0mm

32.0mm

ini

21.5mm

200mm
e
1 E
o

L _

I 150mm

Figure 3.7: SD Cards

the card. The data transfer speed is approximately 1520 MB/s. Normal SD cards operate at
2.7-3.6 V and have 9 pins.

miniSD cards were first released in 2003. They have the dimensions 20.0 X 21.5 X 1.4 mm
and a weight of 1 g. A write-protect switch is not provided on the card. The data transfer
speed is approximately 15 MB/s. miniSD cards operate at 2.7-3.6 V and have 11 pins.
miniSD cards are available in capacities ranging from 16 MB to 8 GB.

microSD cards were released in 2008, and they have the dimensions 11.0 x 15.0 %

1.0 mm and a weight of 0.5 g. As in the miniSD cards, no write-protect switch is provided
on the card. The data transfer rate and the card operating voltages are same as in miniSD
cards, and they have 8 pins. microSD cards are available in capacities ranging from 64 MB

to 4 GB.

Standard SD cards are available up to a capacity of 2 GB. Table 3.2 shows a comparison of all
three standard SD cards. miniSD and microSD cards can be used with adapters in normal SD
card applications. Figure 3.8 shows a typical miniSD card adapter.

Memory Card

115

Table 3.2: Comparison of Standard SD Cards

Property SD miniSD microSD
Width 24 mm 20 mm 11 mm
Length 32 mm 21.5 mm 15 mm

Thickness 2.1 mm 1.4 mm 1T mm
Weight 2g 1g 05g

Operating voltage 2.7-3.6V 2.7-3.6V 2.7-3.6V
No. of pins 9 11 8

SD

ADAPTER

Figure 3.8: miniSD Card Adapter

Standard SD cards (up to 2 GB) are usually shipped with the FAT16 file system preloaded
on the card.

3.8.2 High-Capacity SD Cards

Secure Digital SDHC was released in 2006 and is an extension of the standard SD card
format. SDHC cards provide capacities f 2 GB up to 32 GB. It is important to realize that
although the SDHC cards have the same physical dimensions as the standard SD cards, they
use different protocols and as such will only work in SDHC-compatible devices and not in
standard SD card applications. SDHC cards should not be used in standard SD compatible
devices. Standard SD cards are, however, forward compatible with SDHC host devices,
making standard SD cards compatible with both SD and SDHC host devices.

SDHC cards offer

* Larger data capacities

* Larger number of files

* FAT32 filing system (instead of the FAT16)

* Higher data transfer rates

* Content protection for recordable media (CPRM) copyright protection

» Standard SD card physical size compatibility

116 Chapter 3

||
Transcend A

* LOCK

S

cLass@

Figure 3.9: Class 6 SDHC Card

Figure 3.10: A Typical Memory Card Reader

SDHC cards have Speed Class Ratings defined by the SD Association. The defined classes are
* (lass 2: data transfer rate 2 MB/s
* Class 4: data transfer rate 4 MB/s
* (lass 6: data transfer rate 6 MB/s

The Speed Class Rating of a card is labeled on the card. Figure 3.9 shows a typical Class 6
SDHC card. SDHC cards are identified with the letters “HC” labeled on the card as a logo.

SDHC cards are normally shipped with the FAT32 filing system preloaded on the card. These

cards are used in applications requiring high capacities, such as video recorders, MP3 players,
and general large-volume data storage, and by users in general who want higher performance

from their high-end digital devices.

Like standard SD cards, SDHC cards come in three types: normal SDHC, miniSDHC, and
microSDHC.

3.9 Memory Card Readers

Memory card readers are usually in the form of small devices with many different types of sockets
compatible with various memory cards. Figure 3.10 shows a typical memory card reader. The card
reader is normally connected to the USB port of the PC, and most card readers accept most of the
popular cards available on the market. Old card readers are based on the USB 1.1 specification
with 12 Mb/s, whereas new card readers are based on the USB 2.0 specification, with a maximum
data transfer rate of 480 Mb/s. When a memory card is inserted into it, the device automatically
detects the card and assigns a drive letter to the slot where the card is inserted. Data on the card can
be read as files or files can be copied to the card using the standard Windows Explorer functions.

Memory Card 117
3.10 Memory Card Physical Properties
Table 3.3 gives a comparison of the physical properties of commonly used memory cards.
As can be seen from the table, the microSD card has the smallest form factor.
3.11 Memory Card Technical Properties
Table 3.4 gives a comparison of the technical properties of commonly used memory cards.
Table 3.3: Physical Properties of Memory Cards
Card Width (mm) Length (mm) | Thickness (mm) Weight (g)
CF - Type | 43.0 36.0 3.3 3.3
CF - Type ll 43.0 36.0 5.0 5.0
SM 37.0 45.0 0.76 2.0
MMC 24.0 32.0 1.4 1.3
RS-MMC 24.0 16.0 1.4 1.3
MMC-micro 14.0 12.0 1.1 1.0
MS 21.5 50.0 2.8 4.0
MS PRO Duo 20.0 31.0 1.6 2.0
SD 24.0 32.0 2.1 2.0
miniSD 20.0 21.5 1.4 0.5
microSD 15.0 11.0 1.0 0.27
xD 25.0 20.0 1.78 2.8
Table 3.4: Technical Properties of Memory Cards
Max Capacity Max Write Max Read Operating
Card (2009) Speed (MB/s) | Speed (MB/s) Voltage (V) Pin Count
CF -Type | 32GB 133 133 3.5and 5.0 50
CF - Type Il 32GB 133 133 3.3and 5.0 50
SM 128 MB 20 20 3.3and 5.0 22
MMC 4GB 52 52 3.3 7
RS-MMC 2GB 52 52 3.3 7
MMC micro 2GB 40 40 3.3 13
MS 128 MB 160 160 33 10
MS PRO Duo 16 GB 160 160 3.3 10
SD 4 GB 150 150 3.3 9
miniSD 4GB 100 100 3.3 11
microSD 4GB 100 100 3.3 8
SDHC 64 GB 48 48 3.3

118 Chapter 3

3.12 Detailed SD Card Structure

As the topic of this book is SD cards, the internal structure and the use of these cards in PIC
microcontroller-based systems will be described in this section.

3.12.1 SD Card Pin Configuration

Figure 3.11 shows the pin configuration of a standard SD card. The card has nine pins, as
shown in the figure, and a write-protect switch to enable/disable writing onto the card.

A standard SD card can be operated in two modes: the SD Bus mode and the SPI Bus mode.
SD Bus mode is the native operating mode of the card, and all the pins are used in this mode.
Data is transferred using four pins (D0-D3), a clock (CLK) pin, and a command line (CMD).
Data can be transferred from the card to the host or vice versa over the four data lines.

Figure 3.12 shows the SD card connection in SD Bus mode.

SPI Bus mode is the more commonly used mode, and it allows data to be transferred

on two lines (DO and DI) in serial format using a chip select (CS) and a CLK line. The
SPI mode is easier to use, but it has the disadvantage of reduced performance compared
with the SD mode of operation. Figure 3.13 shows the SD card connections in SPI mode.

SD card pins have different meanings depending upon the mode of operation. Table 3.5 shows
the pin assignments when the card is operated in SD Bus and SPI Bus modes.

The projects in this book are based on the operations in the SPI Bus mode. The following pins
are used in SPI Bus mode:

e Chipselect — Pin 1
e Datain — Pin2
* Clock — Pin5
* Data out — Pin7

|:12345678

Figure 3.11: Standard SD Card Pin Configuration

Memory Card 119

Vdd

CLK

DO0-D3

SD card

CMD

DO0-D3

SD card &

Microcontroller

CMD

DO0-D3

SD card .]

CMD

Vss

Figure 3.12: SD Card in SD Bus Mode

In addition, pin 4 must be connected to the supply voltage, and pins 3 and 6 must be
connected to the supply ground.

3.12.2 SD Card Interface

Before we can use an SD card in an electronic circuit, we have to know the interface signal
levels. Table 3.6 shows the input—output voltage levels of the standard SD cards.

According to Table 3.6,
Minimum logic 1 output voltage, VOH =2.475 V

120 Chapter 3

Vg
DO, D1, CLK
SD card
—
CS
DO, D1, CLK
. SD card !
Microcontroller
—
CS
DO, D1, CLK
SD card -
cs -
Vss
Figure 3.13: SD Card in SPI Bus Mode
Table 3.5: SD Card Pin Assignments
Pin No Name SD Mode SPI Mode
1 CD/DAT3 Card detect/Data line Chip select
2 CMD Command response Data in
3 Vss Ground Ground
4 vdd Supply voltage Supply voltage
5 CLK Clock Clock
6 Vss Ground Ground
7 DATO Data line Data out
8 DAT1 Data line Reserved
9 DAT2 Data line Reserved

Memory Card 121

Table 3.6: SD Card Input-Output Voltage Levels

Symbol Minimum Maximum

Logic 1 output voltage VOH 0.75 X vdd

Logic 0 output voltage VOL 0.125 X vdd
Logic 1 input voltage VIH 0.625XVdd | Vvdd+0.3
Logic 0 input voltage VIL Vss —0.3 0.25 X vdd

Maximum logic 0 output voltage, VOL =0.4125 V
Minimum required logic 1 input voltage, VIH =2.0625 V
Maximum logic 1 input voltage = 3.6 V

Maximum required logic O input voltage, VIL =0.825 V

When connected to a PIC microcontroller, the output voltage (2.475 V) of the

SD card is enough to drive the input circuit of the microcontroller. The typical logic
1 output voltage of a PIC microcontroller pin is 4.3 V, and this is too high when
applied as an input to a microcontroller pin, where the maximum voltage should not
exceed 3.6 V. As a result of this, it is required to use resistors at the inputs of the
SD card to lower the input voltage. Figure 3.14 shows a typical SD card interface

to a PIC microcontroller. In this figure, 2.2- and 3.3-K resistors are used as a
potential divider circuit to lower the SD card input voltage to approximately 2.48 V,
as shown below.

SDcardinputvoltage = 4.3V X 3.3K/(22K + 3.3K) =248 V.

In Figure 3.14, the SD card is connected to PORTC pins of the microcontroller as
follows:

SD Card Pin Microcontroller Pin
CS RC2
CLK RC3
DO RC4
D) RCS5

This is the recommended connection because it uses the SPI Bus port pins of the
microcontroller (RC3, RC4, and RC5).

122 Chapter 3

- PIC
@), 36V 22K 248V
cs — RC2
SDcard| CLKI> —" RC3
Do}~ RC4
22K
Vs Dit2 —1 RC5
I
"3.3K 3.3K

Figure 3.14: PIC Microcontroller SD Card Interface

SD cards support “hot” insertion of the card, i.e., the card can be inserted into the circuit
without powering down the host. This is usually achieved through the card connector.
Connector manufacturers usually provide sockets that have power pins long enough to power
the card before any contact is made with the other pins.

A feature of most SD cards is the automatic entry and exit from sleep mode. After an
operation, cards usually enter a sleep mode to conserve power-in, if no more commands are
received within 5 ms. Although the host does not need to do anything for this to happen, it
is recommended that the host shut the clock generation. Any command sent to the card will
force it to exit from the sleep mode.

SD cards can consume up to 100-200 mA while reading or writing onto the card. This

is usually a high current, and an appropriate voltage regulator capable of supplying the
required current must be used in the design. The card consumes approximately 150 HA in
sleep mode.

3.13 SD Card Internal Registers

The operations of SD cards are controlled by a number of internal registers. Some registers
are 16 bits wide, some are 32 bits wide, and some are 128 bits wide. Table 3.7 gives a list of
all the registers.

Detailed information on the functions and bit definitions of all the registers can be found

in the product manuals of card manufacturers (e.g., SanDisk Secure Digital Card, Product
Manual, Document no: 80-13-00169, 2003). The details of the important registers and their
bit definitions are given in this section.

Memory Card

123

Table 3.7: SD Card Registers

Register Width (Bits) Description
OCR 32 Operation condition
CID 128 Card information
CsD 128 Card specific information
RCA 16 Relative card address
DSR 16 Driver stage register
SCR 64 Special features

Status 512 Status bits

3.13.1 OCR Register

The OCR register is 32 bits wide, and it describes the operating voltage range and status bits

in the power supply. Table 3.8 shows the bit definitions of the OCR register. In summary,

Bits 0-3 are reserved

Bits 4-23 describe the SD card voltage

Bits 24-30 are reserved

Bit 31 is the power-up busy status bit. This bit is set to “1” after the power-up

initialization of the card has been completed.

The initial value of the OCR register is usually set to binary value:

“*000 0000 1111 1111 1000 0000 0000 0000,” which corresponds to 2.7-3.6 V operation (OCR
bits 15-23 are all logic 1). Bit “*” indicates the busy status of the card at power-up.

3.13.2 CID Register

This is a 128-bit register that contains the card identification information specific to card

manufacturers. Table 3.9 shows the bit definitions of the CID register. In summary,

Bit 0 is reserved and is always “1.”

CRC: Bits 1-7 are CRC bits.

MDT: Bits 819 are the manufacturing date.

* Bits 8-11 are the Month field (01h = January).

e Bits 12-19 are the Year field (O0h = 2000).

e Bits 20-23 are reserved (all “0”’s).

PSN: Bits 24-55 are the serial number (unsigned integer).

124 Chapter 3

Table 3.8: OCR Register Bit Definitions

OCR Bit Card Voltage Initial Value
31 Card busy bit “0” = busy, “1” = ready
30-24 Reserved All “0”s

23 3.6-3.5 1

22 3.5-3.4 1

21 3.4-33 1

20 3.3-3.2 1

19 3.2-3.1 1

18 3.1-3.0 1

17 3.0-2.9 1

16 2.9-2.8 1

15 2.8-2.7 1

14 2.7-2.6 0

13 2.6-2.5 0

12 2.5-2.4 0

11 24-23 0

10 2.3-2.2 0

9 2.2-21 0

8 2.1-2.2 0

7 2.0-1.9 0

6 1.9-1.8 0

5 1.8-1.7 0

4 1.7-1.6 0
3-0 Reserved All “0”s

Table 3.9: CID Register Bit Definitions

Field Width Bit Position Description
MID 8 127-120 Manufacturer’s ID
OID 16 119-104 Card OEM
PNM 40 103-64 Product code
PRV 8 63-56 Product revision
PSN 32 55-24 Serial number

— 4 23-20 0
MDT 12 19-8 Manufacturing date
CRC 7 7-1 Checksum

- 1 0 1

Memory Card 125

PRYV: Bits 56-63 are the Product Revision of the card.

PNM: Bits 64-103 are the 5-ASClII-character Product Code, for example,
* SD064 is 64 MB card.

* SDI28is 128 MB card.

* SD256is 256 MB card.

OID: Bits 104-119 are the card OEM, allocated by the SD Card Association, for example,
e TM indicates Toshiba.

* SD indicates SanDisk.

MID: Bits 120127 are the Manufacturer’s 1D, for example,

* 02h indicates Toshiba.

* 03hindicates SanDisk.

As an example, the Toshiba 64-MB card has the following initial values in its 128-bit CID
register (in hexadecimal, “*” depends on the card, and “#” depends on values on the card):

MID: 02

OID: 544D

PNM: 5344303634
PRV: **

PSN: ks s sk sk sk sk

0

MDT: * * *

CRC: ##

3.13.3 CSD Register

CSD is the 128-bit Card Specific Data register that contains information required to access
the data on the card. Some fields of the CSD register are read only, whereas some other fields
are writeable. Table 3.10 shows bit definitions of the CSD register. In summary,

CSD_STRUCTURE: Bits 126-127 are the CSD structure version number.
Bits 120-125 are reserved (all “0”).

126 Chapter 3

Table 3.10: CSD Register Bit Definitions

Field Description Width Bits *Value Code
CSD_STRUCTURE CSD structure 2 127-126 1.0 00b
- 6 125-120 — 000000b
TAAC Data read access time 8 119-112 10 ms 00001111b
NSAC Data read access time 8 111-104 0 00000000b
TRAN_SPEED Max data transfer rate 8 103-96 25 MHz | 00110010b
CCccC Command classes 12 95-84 All 1F5h
READ_BL_LEN Max read block length 4 83-80 512 bytes 1001h
READ_BL_PARTIAL Partial read blocks allowed 1 79-79 Yes 1b
WRITE_BLK_MISALIGN Write block misalignment 1 78-78 No 0b
READ_BLK_MISALIGN Read block misalignment 1 77-77 No 0b
DSR_IMP DSR implemented 1 76-76 No 0b
— Reserved 2 75-74 — 00b
C_SIZE Device size 12 73-62 899 383h
VDD_R_CURR_MIN Max. Read current at Vdd min 3 61-59 100 mA 111b
VDD_R_CURR_MAX Max. Read current at Vdd max 3 58-56 80 mA 110b
VDD_W_CURR_MIN Max. Write current at Vdd min 3 55-53 100 mA 111b
VDD_W_CURR_MAX Max. Write current at 3 52-50 80 mA 110b
Vdd max
C_SIZE_MULT Device size multiplier 3 49-47 32 011b
ERASE_BLK_EN Erase single block enable 1 46-46 Yes 1b
SECTOR_SIZE Erase sector size 7 45-39 32 blocks | 0011111b
WP_GRP_SIZE Write protect group size 7 38-32 128 1111111b
sectors
WP_GRP_ENABLE Write protect group enable 1 31-31 Yes 1b
— Reserved 2 30-29 — 00b
R2W_FACTOR Write speed factor 3 28-26 X16 100b
3 28-26 X4 010b
WRITE_BL_LEN Max write block length 4 25-22 512 bytes 1001b
WRITE_BL_PARTIAL Partial write allowed 1 21-21 No 0b
— Reserved 5 20-16 — 00000b
FILE_FORMAT_GRP File format group 1 15-15 0 0b
Ccopy Copy flag 1 14-14 Not 0b
original
PERM_WRITE_PROTECT Permanent write protection 1 13-13 Not 0b
protected
TMP_WRITE_PROTECT Temporary write protection 1 12-12 Not 0Ob
protected
FILE_FORMAT File format 2 11-10 HD w/ 00b
partition
— Reserved 2 9-8 — 00b

Memory Card 127

Table 3.10: CSD Register Bit Definitions —cont’d

Field Description Width Bits *Value Code
CRC CRC 7 7-1 —
- Always 1 1 0-0 — 1b

*values are based on a 16 MB SanDisk card.

TAAC: Bits 112-119 define the asynchronous part of the read access time of the card.
The bits are decoded as follows:

TAAC bit Code
20 Time unit.

O0=1ns,1=10ns,2=100ns,3 =1 us,4 =10 us, 5=100 us
6-3 Time value.

O=Reserved, 1=1.0,2=1.2,3=1.3,4=1.5,5=2.0,6=2.5,
7=3.0,8=35,9=40,A=45,B=5.0,C=5.5,D=6.0,
E=70,F=8.0

7 Reserved

NSAC: Bits 104-111 define the worst case for the clock-dependent factor of the data
access time. The unit is 100 clock cycles. The total access time is equal to TAAC plus
NSAC.

TRAN_SPEED: Bits 96-103 define the maximum data transfer rate. The bits are
decoded as follows:

TRAN_SPEED bit Code

20 Transfer Rate Unit.
0=100kb/s, 1 =1 Mb/s, 2 =10 Mb/s, 3 = 100 Mb/s,
4-7 = Reserved

6-3 Time Value.
O0=Reserved, 1=1.0,2=1.2,3=13,4=1.5,5=2.0,6=2.5,
7=3.0,8=35,9=40,A=45,B=5.0,C=5.5,D=6.0,
E=7.0,F=8.0

7 Reserved

CCC: Bits 84-95 define the command classes that are supported by the card. The bit
definitions are as follows:

CCC bit Supported card command class
0 Class 0
1 Classl

128 Chapter 3

11 Class 11
* READ_BL_LEN: Bits 80-83 define the maximum read data block length, which is
equal to 2READ-BLLEN The data block length is specified as follows:

READ BL_LEN Block Length
0-8 Reserved

9 2° =512 bytes
10 211 =2048 bytes
12-15 Reserved

* Bit79is always “1.”

* WRITE_BLK_MISALIGN: Bit 78 defines whether the data block to be written by one
command can be spread over more than one physical block:

WRITE_BLK_MISALIGN Access Block boundary write
0 Not allowed
1 Allowed

* READ_BLK_MISALIGN: Bit 77 defines whether the data block to be read by one
command can be spread over more than one physical block:

READ_BLK_MISALIGN Access Block boundary read
0 Not allowed
1 Allowed

* DSR_IMP: Bit 76, if set, a driver stage register (DSR) is implemented.
* Bits 74-75 are reserved.

* C_SIZE: Bits 62—73 define the user’s data card capacity as follows:

Memory capacity = BLOCKNR * BLOCK_LEN,

where

BLOCKNR = (C_SIZE + 1) * MULT

MULT = 2¢SZMUuLT+2 if C_SIZE_MULT < 8

and

BLOCK_LEN = 2READ_BL_LEN if READ_BL_LEN < 12.

¢ Bits 50-61 define the maximum and minimum values for read/write currents

Memory Card 129

C_SIZE_MULT: Bits 47-49 are used to compute the user’s data card capacity multiply
factor:

C_SIZE_MULT MULT
0 22=4

1 2°=8

2 2¢=16
3 2°=32
4 2°=64
5 2"=128
6 28=1256
7 22=512

ERASE_BLK_EN: Bit 46 defines if host can erase by WRITE_BL_LEN:

ERASE_BLK_EN Description
0 Host cannot erase by WRITE_BL_LEN
1 Host can erase by WRITE_BL_LEN

SECTOR_SIZE: Bits 39-45 define the minimum erasable size as the number of write
blocks.

WP_GRP_SIZE: Bits 32—38 define the minimum number of sectors that can be set for
the write protect group.

WP_GRP_ENABLE: Bit 31 defines the write protect group functions:

WP_GRP_ENABLE Description
0 Not implemented
1 Implemented

Bits 29-30 are reserved.

R2W_FACTOR: Bits 26-28 define a multiple number for a typical write time as a
multiple of the read access time.

WRITE_BL_LEN: Bits 22-25 define the maximum write block length, which is
calculated as 2WRITEBLLEN The data block length is specified as follows:

WRITE_BL_LEN Block Length

0-9 Reserved
11 2° =512 bytes
12 211'=2048 bytes

12-16 Reserved

130 Chapter 3

WRITE_BL_PARTIAL: Bit 21 defines whether partial block write is available:

WRITE_BL _PARTIAL Write data size
0 Only WRITE_BL_LEN size of 512 bytes is available
1 Partial size write available

Bits 1620 are reserved.

FILE_FORMAT_GRP: Bit 15 indicates the selected group of file format group and file
format:

FILE_FORMAT_GRP FILE_FORMAT Kinds

0 0 Hard disk-like file system with partition
table

0 1 DOS FAT with boot sector only (no
partition table)

0 2 Universal File Format

0 3 Others

1 0,1,2,3 Reserved

COPY: Bit 14 defines the contents of the card as original or duplicated. The bit definition is:
COPY Description

0 Original

1 Copy

PERM_WRITE_PROTECT: Bit 13, if set, permanently write protects the card.
TMP_WRITE_PROTECT: Bit 12, if set, temporarily write protects the card.

FILE _FORMAT: Bits 10—11 define the file format on the card. This field is used
together with field FILE_ FORMAT_GRP as in the above table.

Bits 89 are reserved.
CRC: Bits 1-7 are the CRC error checking bits.

Bit 0 is not used and is always “1.”

3.13.4 RCA Register

This 16-bit register carries the card addresses in SD card mode.

3.13.5 DSR Register

This register is not implemented in many cards.

Memory Card 131

3.13.6 SCR Register

This 64-bit register provides information on the SD card’s special features, such as the structure
version number, the physical layer specification, the security algorithm used, and the bus width.

3.13.7 SD Status Register

This 512-bit register defines the card status bits and card features.

3.14 Calculating the SD Card Capacity
An example is given in this section to show how the capacity of an SD card can be calculated.
m Example 3.1

The following CSD register fields are given by a card manufacturer:

C_SIZE =E27h (or decimal 3623)
C_SIZE_MULT =3
READ_BL_LEN=9

Calculate the capacity of this card.

Solution

The card capacity is defined by two fields within the CSD register: C_SIZE and C_SIZE_
MULT. C_SIZE is a 12-bit value with an offset of 1 (1-4096), and C_SIZE_MULT is a
3-bit value with an offset of 2 (2-9).

The number of blocks on the card is given by
BLOCKNR = (C_SIZE + 1) x 2(c-S1ZEMULT+2),
where

C_SIZE_MULT < 8.

The default block length is 512 bytes (but it can also be specified as 1024 or 2048
bytes). The block length is calculated from

BLOCK_LEN = 2READ_BLLEN

where

READ_BL_LEN =9, 10, or 11.

Combining the two equations, we get the card capacity as

Card Capacity (in bytes) = BLOCKNR x BLOCK_LEN

132 Chapter 3

or

Card Capacity (in bytes) = (C_SIZE + 1) x 2 (C-S1ZEMULT+2) 5 QREAD BLLEN

The capacity is usually shown in MB and
Card Capacity (Megabyte) = (C_SIZE + 1) X 2(C-SIZEMULT+2) 5 9 READ_BLLEN /(1024 x 1024)

Using the CSD parameters given in this example, we get

Card Capacity (Megabyte) = 3624 x 32 x 512/(1024 x 1024) = 56.525 Megabytes

It is interesting to note that when a block length of 1024 bytes is used (READ_BL_
LEN = 10), cards up to 2 GB can be specified, and with a block length of 2048 bytes
(READ_BL_LEN =11), cards up to 4 GB can be specified.

3.15 SD Card SPI Bus Protocol

All communications between the host and the card are controlled by the host. Messages
in the SPI bus protocol consist of commands, responses, and tokens. The card returns

a response to every command received and also a data response token for every write
command.

The SD card wakes up in SD card mode, and it will enter the SPI mode if its CS line is held
low when a reset command is sent to the card. The card can only be returned to the SD mode
after a power-down and power-up sequence.

When the SPI mode is entered, the card is in the nonprotected mode, where CRC checking is
not used (CRC checking can be turned on and off by sending command CRC_ON_OFFE, com-
mand name CMD359, to the card).

3.15.1 Data Read

Data can be read in either single or multiple blocks. The basic unit of data size is blocks,
defined by field READ_BL_LEN of the CSD register. In this book, we shall be using only
single-block reads. Single-block reads are initiated by issuing the command READ_SINGLE_
BLOCK (CMD17) to the card. Any valid address can be used as the starting address.

3.15.2 Data Write

Data can be written in either single or multiple blocks. After receiving a valid write command,
the card sends a response token and then waits for the data block to be sent from the host. The
starting address can be any valid address. After receiving a data block from the host, the card
returns a data response token and writes the data on the card if the data contains no errors.

Memory Card 133

Table 3.11: Some Important SD Card Commands

Command Abbreviation Argument Response Description
CMDO GO_IDLE_STATE None R1 Reset the SD card
CMD1 SEND_OP_COND None R1 Initialize card
CMD9 SEND_CSD None R1 Get CSD register data

CMD10 SEND_CID None R1 Get CID register data
CMD17 READ_SINGLE_BLOCK Data address (0:31) R1 Read a block of data
CMD24 WRITE_BLOCK Data address (0:31) R1 Write a block of data

Table 3.12: Command Format

Byte 1 Bytes 2-5 Byte 6
7 6 543210 BT e 0 7654321 0
0 1 Command Command Argument CRC 1

There are a large number of commands available in SPI mode for reading the card regis-
ters, reading and writing single and multiple blocks of data, erasing blocks, etc. Table 3.11
gives a list of the important SD card commands. All SPI mode commands are 6 bytes long
(48 bits). As shown in Table 3.12, the commands start with the most significant bit (MSB)
as logic 0, a transmission bit as logic 1, 6 bits of command index, 32 bits of argument (not
all commands need arguments), 7 bits of CRC, and an end-bit (logic 1). The commands are
divided into classes. If no argument is required in a command, the value of the argument
filed should be all “0”’s. The command index contains the actual command number. For
example, the command index value for command CMDS is binary number 8 in 6 bits,

i.e., “001000.”

3.15.3 Response Tokens

There are several types of response tokens that can be sent by the card. A token is transmitted
with the MSB bit sent first. The response tokens are as follows:

R1 Format: This response token is 1 byte long and is sent by the card after every
command (except the SEND_STATUS command). The MSB bit is “0,” and other bits
indicate an error (“1” bit). For example, if bit “0” is set, it indicates that the card is in
Idle State and running initialization sequence. Table 3.13 shows bit definitions of the
R1 Format.

R1b Format: This format is similar to R1 Format with the addition of the busy signal.

134 Chapter 3

Table 3.13: R1 Format bits

I N N R N O

l In idle state

Erase reset

v lllegal command

\/ CRC error

v Erase_seq_error

I Address error

\ 4
Parameter error

R2 Format: This response token is 2 bytes long and is sent as a response to command
SEND_STATUS.

R3 Format: This response token is 5 bytes long and is sent in response to command READ_
OCR. The first byte is identical to R1 format, whereas the other bytes contain the OCR
register data.

Data Response Token: Whenever a data block is written to the card, the card acknowledges
with a data response. This token is 1 byte long and has the following bit definitions:

Bit 0 Always 1
Bits 1-2 Status

Bit 3 Always 0
Bit 4 Reserved

The Status bits are defined as follows:

010 Data accepted
101 CRC error, data rejected
110 Write error, data rejected

3.16 Data Tokens

Data is received or transmitted via data tokens with all data bytes transmitted with the MSB first.
Data tokens are 4-515 bytes long and have the following format (for single-block operations):

* First Byte: START BLOCK

Memory Card 135

This block is identified by data “11111110,” i.e., FEh.
* Bytes 2-513: USER DATA
* Last 2 bytes (byte 514 and byte 515): CRC

3.17 Card Reset State

After power-up, the SD card is in the Idle State. Sending command CMDO also puts the card
in the Idle State. At least 74 clock cycles should be sent to the card with the Data Out and CS
lines set to logic “1” before starting to communicate with the card.

The SD card is initially in the SD Bus mode. It will enter the SPI mode if the CS line is held
low while sending the CMDO command. When the card switches to the SPI mode, it will
respond with the SPI mode R1 response format. In SPI mode, CRC checking is disabled by
default. However, because the card powers-up in the SD Bus mode, CMDO command must
be sent with a valid CRC byte before the card is put into SPI mode. When sending the CMDO
command, the CRC byte is fixed and is equal to 95h. The following hexadecimal 6-byte
command sequence can then be used to send the CMDO command after a power-up (see
Table 3.12 with the command field set to “000000” for CMDO0):

40 00 00 00 00 95
The steps to switch the SD card into SPI mode should therefore be as follows:
* Power-up.
* Send at least 74 clock pulses to the card with CS and Data Out lines set to logic “1.”
e Set CD line low.
* Send 6-byte CMDO command “40 00 00 00 00 95” to put the card in SPI mode.
* Check R1 response to make sure there are no error bits set.

* Send command CMD1 repeatedly until the “in-idle-state” bit in R1 response is set to “0,”
and there are no error bits set.

* The card is now ready for read/write operations.
During the reset state, the card clock frequency should be between 10-400 KHz. After the reset
state, the maximum clock frequency can be increased to 25 MHz (20 MHz for the MMC).

3.18 Summary

The brief details of commonly used memory cards are given in this chapter. SD cards are
currently the most widely used memory cards. The technical details and communication
methods of these cards have been described in detail in the chapter.

136 Chapter 3

3.19 Exercises

1. Explain the main differences between the standard SD cards and the new SDHC cards.
Which card would you choose in a long video recording application?

. How many types of standard SD cards are there? Explain their main differences.

. Which memory card would you choose in very high-speed data transfer applications?
. Explain how you could read the data stored on a memory card using your PC.

. What are the names of the internal registers of a standard SD card?

. Explain functions of the CID register of an SD card.

. Explain functions of the CSD register of an SD card.

0 N N L AW

. The TAAC field of the CSD register of an SD card is binary “00101101.” Explain what
this means.

9. The TRAN_SPEED field of the CSD register of an SD card is binary “00110010.”
Explain what this means.

10. Explain the two operating modes of SD cards. Which mode is commonly used?

11. What is the operating voltage range of an SD card? Explain how this voltage can be
obtained from a standard +5 V regulated supply.

12. Draw a circuit diagram to show how an SD card can be connected to a PIC
microcontroller in SPI mode.

13. Explain how an SD card can be put into the SPI mode after power-up.
14. Explain how an SD card can be put into SD card mode after operating in the SPI mode.

15. How many types of response tokens are there? Explain where each token is used and also
give their differences.

Programming with the MPLAB
C18 Compiler

4.1 C Programming Languages for PIC18 Microcontrollers

There are several C compilers on the market for the PIC18 series of microcontrollers. Most of
the features of these compilers are similar, and they can all be used to develop C-based high-
level programs for the PIC18 series of microcontrollers.

Some of the popular C compilers used in the development of commercial, industrial, and edu-
cational PIC18 microcontroller applications are as follows:

* mikroC C compiler

* PICCI18 C compiler

* CCS C compiler

» MPLAB C18 C compiler

mikroC C compiler has been developed by MikroElektronika (Web site: http://www.mikroe.
com) and is one of the easy-to-learn compilers with rich resources, such as a large number
of library functions and an integrated development environment with built-in simulator and
an in-circuit-debugger (e.g., mikroICD). A demo version of the compiler with a 2K-program
limit is available from MikroElektronika.

PICC18 C compiler is another popular C compiler developed by Hi-Tech Software (Web

site: http://www.htsoft.com). This compiler has two versions: the standard compiler and the
professional version. A powerful simulator and an integrated development environment
(Hi-Tide) are provided by the company. PICC18 is supported by the Proteus simulator
(http://www.labcenter.co.uk), which can be used to simulate PIC microcontroller-based systems.
A limited-period demo version of this compiler is available from the developer’s Web site.

CCS C compiler has been developed by Custom Computer Systems Inc. (Web site:
http://www.ccsinfo.com). The company provides a limited-period demo version of their
compiler. CCS compiler provides a large number of built-in functions and supports an
in-circuit-debugger (e.g., ICD-U40), which aids greatly in the development of PIC18
microcontroller-based systems.

© 2010 Elsevier Ltd. All rights reserved. 137
D.O.l.: 10.1016/B978-1-85617-719-1.00008-7

138 Chapter 4

MPLAB C18 C compiler is a product of Microchip Inc. (Web site: http://www.microchip.
com). An evaluation version with limited functionality is available from the Microchip Web
site. MPLAB C18 includes a simulator and supports hardware and software development
tools such as in-circuit-emulators (e.g., ICE2000) and in-circuit-debuggers (e.g., ICD2 and
ICD3). In this book, we will be using the MPLAB C18 compiler for all the projects.

4.2 MPLAB C18 Compiler

MPLAB C18 compiler (or the C18 compiler) is one of the most popular C compilers
available for the PIC18 series of microcontrollers. This compiler has been developed by
Microchip Inc. An evaluation version (student version) of the compiler is available from the
Microchip Web site free of charge. This evaluation version includes all functionality of the
full version of the compiler for the first 60 days. However, some optimization routines are
disabled after 60 days, and PIC18 extended mode (extended instruction set and indexed with
literal offset addressing) is not supported after 60 days.

MPLAB C18 is a cross compiler, where programs are developed on a PC and are then loaded
to the memory of the target microcontroller using a suitable programming device.

The installation and use of the MPLAB C18 compiler and details of programming using the

compiler are given in this chapter.

4.2.1 Installing the MPLAB C18 Compiler

Before installing the MPLAB C18 compiler, it is necessary to install the MPLAB IDE
integrated development environment software. MPLAB IDE supports many development
tools, such as assemblers, linkers, C18 and third-party compilers; built-in device program-
ming software; and many more tools.

Installing the MPLAB IDE
The steps for installing the MPLAB IDE are given below:

* Copy MPLAB IDE zip file from the Microchip Web site. At the time of writing, the IDE
had the filename mplab__v820.zip

* Create a subdirectory called MPLAB under your main C: drive

* Unzip MPLAB IDE into directory MPLAB

» Start the installation program by double-clicking on icon Install MPLAB_V820.exe
* Accept Complete installation

* Restart the computer after installation

* When the system comes up, you can choose to view an MPLAB document

Programming with the MPLAB C18 Compiler 139

The installation program creates a shortcut icon in the desktop with the name MPLAB
IDE v8.20.

Installing the C18 Compiler

The steps for installing the MPLAB C18 compiler are given below:

Copy MPLAB C18 compiler installation file from the Microchip Web site. At the time
of writing, the compiler had the filename MPLAB-C18-Evaluation-v3_30.exe.

Double-click to start the installation.

You can see the welcome page that displays the version number of the compiler. Click
Next to see the license agreement.

The next display, as shown in Figure 4.1, is the folder name where the compiler will be
installed. Accept the default as C:\MCC18 and click Next.

The products that will be installed are displayed next, as in Figure 4.2. Accept the default
and click Next.

Figure 4.3 shows the next display, which is about the environment variables to be added
to the system path. Tick all the boxes and click Next.

Tick the MPLAB IDE options shown in Figure 4.4 so that the compiler becomes
integrated into the MPLAB IDE. Click Next.

The final form just before the installation is displayed as shown in Figure 4.5. Click Next
to start the installation.

2 Select Installation Directory

MPLAB C18 +3.30 Evaluation will be installed in the following
folder.

WARNING: Ary file in this directory or one of its subdirectories
might be overwritten or removed by the setup program. If you
wish to keep any of these files, press 'Cancel now and save
these files to another directory. To choose a different
installation directory, press 'Browse'.

Installation Directory

C:AMCC18 Browse... I

Figure 4.1: Compiler Directory

140 Chapter 4

= Select Components E

In the list below, select the checkboxes for the components
that you would like to have installed. The disk space fields
reflect the requirements of the components you have selected.

[V Program files 13644 k
[Assembler files 20013k
¥ Linker script files 1066 k
[V Standard headers 9773k
[V Standard libraries 275544 k
[v Documentation 6369k
[V Examples 10099 k
[v Library source code 18407 k
[Preprocessor source code 1494 k

Disk Space Required: 325596 k

Disk Space Remaining: 30354944 k

< Back Cancel |

In the list below, select the checkboxes for the desired
environment variable configuration options.

v Add MPLAB C18 to PATH environment variable
v Add MPASH to PATH environment variable
v &dd header file path to MCC_INCLUDE environment variable

v Modify PATH and MCC_INCLUDE variables for all users

< Back I Mext > | Cancel

Figure 4.3: Environment Variables

Programming with the MPLAB C18 Compiler 141

2 Configuration Options

In the list below, select the checkboxes for the desired MPLAB
IDE configuration options.

v Update MPLAB IDE to use this MPLAB C18

v Update MPLAB IDE to use this MPLINK Linker,
MPLIB Librarian, and MPASM Assembler

Iv Place link to documentation for this compiler in
MPLAE IDE Help Topics

Iv iPerform MPLAB |IDE updates for all users

< Back I Next > | Cancel

Figure 4.4: MPLAB IDE Options

<2 Start Installation @

You are now ready to install MPLAB C18 +3.30 Evaluation.

Press 'Next' to begin the installation or '‘Back' to change the
installation information.

WARNING: Once the installation begins, any file in the
installation directory or one of its subdirectories might be
ovenwritten or removed. To exit the setup program now without
overwriting or removing these files, press 'Cancel’

Cancel |

Figure 4.5: Final Form Before the Installation

142 Chapter 4

SR IMCC13
I3 bin
I3 doc
+ |[[) example
) h
I lib
=) kr
IC) mpasm
& I src

Figure 4.6: MPLAB IDE C18 Directory Structure

MPLAB Directory Structure

The installation of the MPLAB IDE C18 compiler creates the top directory C:\MCC18,
and the directory structure is shown in Figure 4.6.

The descriptions of the subdirectories are as follows:

bin: It contains the compiler executable files and the linker script file subdirectory.
doc: It contains the compiler documentation and help files.

example: It contains sample C programs and documents.

h: It contains compiler include files.

lib: It contains processor-specific library files.

Ikr: It contains processor-specific linker script files.

mpasm: [t contains the MPASM assembler and processor-specific assembly files.

sre: It contains the assembly and C source files for the standard and extended C library.
Compiler Files

The compiler is organized in the form of projects, where all the required files for a project are
stored in a project folder. A Project file consists of files with extensions .mcp (project infor-
mation file) and .mcw (project workspace). The input files of a project consist of one or more
C source files with extensions .c. In addition, assembler files with extensions .asm can be
included as input files. The compilation process combines all the input files and generates an
object file with extension .0. The linker then uses the device-specific libraries and the object
file to generate an output file with extension .hex that can be loaded into the target microcon-
troller’s program memory. In addition, a number of other files, such as .map file and .cof file,
are also generated by the compiler.

Programming with the MPLAB C18 Compiler 143

4.3 An Example Program

An example program and its simulation are given in this section to demonstrate how a

C program can be created and then simulated. This program displays the message PIC
MICROCONTROLLERS. Do not worry if you do not understand the program, because
the C18 programming details will be given in the next chapter.

4.3.1 Building the Project

The step-by-step solution of the example is given below:

* Create a folder to store the project files. In this example, the project folder is given the
name MYC and is under the top directory, i.e., C:\MYC

» Start MPLAB IDE as in Figure 4.7.

* Select File->New and write the following C program (see Figure 4.8):

#include <stdio.h>
#pragma config WDT = OFF

void main (void)

{
printf ("PIC MICROCONTROLLERS\n");
while (1);

s MPLAE IDE v8. 20
Ele Edt Jew Projct Debugger Progammer Tooks Comdgure indow Hep
Dok ‘m@ SN EAR T @R %o | Checksum: Ox3bi

w0 rdec bank 0

Figure 4.7: Starting MPLAB IDE

www.newnespress.com

144 Chapter 4

M Untitled®

¢include <stdio.h> -~

$pragma config WDT = OFF
void main (void)

r

1

printf ("PIC MICROCONTROLLERS\n"};

while {1};

|

i~

Figure 4.8: Example C Program

Project Wizard @

Step One: i
e%ebdadeﬂce E%{E}

Device:

[Ficierasz v

[<Back || Net> | [cCancel | [Hep |

Figure 4.9: Select Device PIC18F452

* Save the program in folder MYC with the name FIRST.C.
* Select Project -> Project Wizard and select device type PIC18F452 as in Figure 4.9.

* As shown in Figure 4.10, select Active Toolsuite to be Microchip C18 Toolsuite. Make
sure that the Toolsuite Contents point to the correct Location:

MPASM assembler - C:\MCC18\mpasm\mpasmwin.exe
MPLINK object - C:\MCC18\bin\mplink.exe

Programming with the MPLAB C18 Compiler 145

Project Wizard [g|
Step Two: %
Select a language toolsuite /{'@'
Active Toolsuite: Microchip C18 Toalsuite

Toolsuite Contents

S
MPLAE C18 C Compiler [mocl 8. exe)
e bl .t

Lamin .

1€ 103

Location

|E:\MEE‘I Smpasmimpazmmisin, exe | [Browse...

[Stare tool locations in project

[Help! My Suite lzn't Listed!] D Shaow all installed toolsuites

[<Back [Nei> | [Cancel | [Heb

Figure 4.10: Select a Language Toolsuite

Project Wizard

Step Three: E
Create a new project. or reconfigure the active project? /{é

(%) Create New Project File

|E:\MYC\FIHST-PF|DG | | Browss.. |

[< Back][Mext =][Cancel][Help

Figure 4.11: Select a Project Folder Name

MLAB C18 C compiler - C:\MCC18\bin\mcc18.exe
MPLIB librarian - C:\MCC18\bin\mplib.exe

Select a folder, as shown in Figure 4.11, to store the project files. In this example, the
folder is given the name MYC and is under the top directory, i.e., C:\MYC. Also choose
a name for the project. In this example, the name FIRST-PROG is chosen.

Select file C:\AMYC\FIRST.C and click Add to add to the project folder.

146 Chapter 4

Project Wizard E3

Step Four:
Add exsting files to your project

(B 15441201 _e IS CAMCCT B\ 1BI42 ke
1814510 ke ﬁc;\wc\rmsr.c
18(4510_e ke
18645101 ke
18/4510L_e ki
1864515 ki
18/4515_e kr
B 18645150k
18(4515_e ki
180452 ke
B 184520k
B 1864520 elks ¥
< > < 3|
[<Back |[Med> | [Cancel | [Hep |

Figure 4.12: Adding Files to the Project

* Select linker script file C:\MCC18\Ikr\18f452.1kr and click Add to add to the project
folder (see Figure 4.12).

* Click Finish to complete the project creation.

* Before compiling the project, the project settings should be verified. Select Project ->
Build Options -> Project

* Select Include Search Path in Show directories for and click New. Enter c:\mcc18\h and
click Apply (see Figure 4.13).

* Select Library Search Path in Show directories for and click New. Enter c:\mcc18\lib
and click Apply and then OK (see Figure 4.14).

* We are now ready to build the project. Select Project -> Build All If there are no errors,
you should see the form displayed in Figure 4.15.

After a successful build, the following files are created for this project (see also Figure 4.16)
in project folder C:\MYC:

First.c Source C program

First.o Object program created
FIRST-PROG.cof Object cof file
FIRST-PROG.hex Program HEX file
FIRST-PROG.map Program map file
FIRST-PROG.mcp Project definition file
FIRST-PROG.mcw Project work file

Programming with the MPLAB C18 Compiler 147

Build Options For Project "FIRST-PROG.mcp”

MPASM Assembler MPLINK Linker MPLAE C18
Directories | CustomBuld | Trace || MPASM/C17/C18Sute |

Directories and Search Paths

Show directaries for;

[Emeciah. =l
' |
' |

Suite Defaults

Build Directory Palicy
() Aszemble/Compile in source-file directory, link in output directany
(&) Assemble/Compile/Link in the project directory

[0K H Cancsl]

Figure 4.13: The Include Search Path

Program HEX file (FIRST-PROG.hex) is the file loaded into the program memory of the
target microcontroller.

4.3.2 Simulating the Project

The C program we have written can be tested using the MPLAB simulator. The steps are
given below:

Select the debugger (as shown in Figure 4.17) by clicking Debugger -> Select Tool ->
MPLAB SIM

Select Debugger -> Settings and click on Uart IO tab and Enable Uart 10. Set the
Output to Window and click OK as shown in Figure 4.18.

You can see the debug toolbar in Figure 4.19.

Start the simulator by clicking the Run icon in the debug toolbar. The program will run
and you can see the output in Figure 4.20.

Stop the program by clicking the Halt button in the debugger menu.

148 Chapter 4

Build Options For Project "FIRST-PROG.mcp”

__MPASM Assembler | MPLINK Linker MPLABC12.

Directories | Custom Build Trace | MPASM/C17/C18 Sute |

Directories and Search Paths

Suite Defaults

Build Directory Policy
() Aszemble/Compile in source-file directory, link in output directary
(&) Assemble/Compile/Link in the project directory

[ok][cancel |

Figure 4.14: The Library Search Path

Build | ersion Control || Find i Files |

Clean: Deleting intermediary and outputfiles. ~
Clean: Dane.

Executing: "CAMCCT 8Yhinymcc] 8.exe" -p=18F452 /i"chiymec] B\h" "FIRST.C" 4o="FIRST.0"-D_
HPLAE C18 +3.30 {evaluation)

Copyright 2000-2009 Hicrochip Technology Inc.

Day= remaining until evaluation becomes feature limited: 58
CosHYCSFIRST.C: 7 :Warning [2066] type qualifier mismatch in assignmnen
Executing: "CAMCCT 84hinymplink.exe" [I"chmocl 8ilib" " AMCCT 84k 18452 1kr" "FIRST.0" fu_C
MPLINE 4.30.01, Linker

Copyright (=) 2009 Microchip Technology Inc.

Errors 0

HFZHEX 4.30.01, COFF to HEX File Converter

Copyright (=) 2009 Microchip Technology Inc.
Errors 0

Loaded CAMYC\FIRST-PROG cof.

Debug build of project " CAMYC\FIRST-PROG.mcp' succeeded.
Preprocessor symbol "__DEBUG! is defined.
Thu tdar 19 07:42:55 2004

BUILD SUCCEEDED

[

|A
|w

Figure 4.15: Project Built Successfully

Programming with the MPLAB C18 Compiler 149
olders x Name = Size Type
@ [mcc1s ~ | EdFIRST.C 1KB mikroC dsPIC sourc...
) mes ~ [FFrsT.o 3KB OFie
) mdb [E)FiRST-PROG. cof 71KE COFF File
£ MIcrRO [= FRST-PROG hex 12KB HEX File
[C2) MikroBasic || FIRST-PROG.map 65KB MAP File
@ [3) MOTOR_CDROM FIRSTPROkaqJ 2KB Microchip MPLAB.Pr...
) MPLAB M FIRST-PROG.mcw 32KB Microchip MPLAB.W...
& () MsOCache
[mYBASIC
o

Figure 4.16: Files Created in Project Folder

s FIRST-PROG - MPLAB IDE v8.20
Eile Edit View Project Ea=eilsls

Programmer Tools Configure Window Help

I
Lt h! Clear Memory » 1ProteusVSM = &
2 MPLAB ICD 2
2 FIRST-RROG.... o e 3PICKt 3
M Output Animate 4MPLAB ICE 4000
Version Con| Step Into F7 & MPLAB ICE 2000
:z gf S ZREAL ICE
e 8 PICKit 2
Reset 9 MPLAB ICD 3
Breakpoints... F2 | 10PIC32Starter Kit
Starmiliatrh

Figure 4.17: Select the Debugger

Simulator Settings

 CodeCoverage | Animation / Reatime Updates | Limitations |
Osc/Trace | Break Options Stimulus | Uart1 10 [
Debug Options
[¥]Enable Uart1 10
Input File: | (Browse....)
=l
Output
&) Window
(O File [| (Browse....|
Lok J[Cncel J[ooty |

Figure 4.18: Set the Simulator

150 Chapter 4

Checksum: 0x44eb | [Y S S {fil_

Figure 4.19: Debug Toolbar

B Output [;]rz]

Build | Wersion Control | Find in Files | MPLAE SIM: SIM Uart1 |
PIC MICROCONTROLLERS

Figure 4.20: Program Output

4.4 Flashing LED Example

Another example is given in this section to show some other aspects of the MPLAB
simulator. In this example, it is assumed that eight LEDs are connected to PORTB of the
microcontroller and these LEDs flash as the program runs. Do not worry if you do not
understand the program, as the C18 programming details will be given in the next section.

4.4.1 Building and Simulating the Project

Build the project as described in Section 4.3. Your C program for this example will be as
shown in Figure 4.21.

* Select the debugger as in Section 4.3.

* Click View -> Watch and find PORTB in the first list-box, as shown in Figure 4.22. Click
Add SFR to add PORTB to the watch window. We can now see the output of PORTB as
the program is running.

» Step through the program by pressing F7 key repeatedly; after the initial start-up code,
you can see the cursor stepping through the program. At the same time, you can see the
value of PORTB changing from 00 to OxFF and so on, as shown in Figure 4.23.

Programming with the MPLAB C18 Compiler 151

M C:\MYC\FIRST.C

#include <plBE45Z.h> 7
§pragma config WDI = OFF .

]

void main (wvoid

IRISE = 0Q;
while (1)

BORTE OxFE;
PORTE

([
(=]

|i£

| &

Figure 4.21: The C Program of the Example

(AddSER| (PORTE v | [Add S_umbol”_config_l] v‘

Update’ Address I Symbol Name l Value I
F8l1 PCRTIE 0x00

Watch 1 | watch 2| Watch 3| Watch 4|

Figure 4.22: Set the Watch Window

B Watch

(Add SFR] PORTE v | [Add Symbol |_config_0 v

Update' Lddress | Symbol Name | Value I
F81 PORTB OxFF

| Watch1 | Watch 2| Watch 3| Watch 4]
Figure 4.23: PORTB Changes in the Watch Window

152 Chapter 4

4.5 Structure of the MPLAB C18 Compiler

The basic structure of a MPLAB C18 program is shown in Figure 4.24. At the beginning of
the program, we usually have comments that describe what the program is all about, the name
of the program file, program version number, the author of the program, the date the program
was created, and a list of modifications with dates.

Then we have the device-specific header files declared using statements like #include
<p18xxxx.h>. The header file includes the names of various special function registers used in
the program. We can then optionally declare the other source files to be included in our main
program, using the #include statement, followed by the filenames.

The symbols used in the program can then be declared using the #define statements. The next
statement is usually a compiler directive called #pragma config, which is used to select the
clock source, enable/disable the watchdog timer, and set other configuration bits.

We can then define any global variable used in the program. These global variables can be
accessed from any part of the main program or its functions or procedures.

The functions and procedures used in the program are then declared one after the other.

We finally have the code of the main program, starting with the statement void main (void)
and then the body of the program is contained within a pair of curly brackets:

void main (void)

.............. Body of the main program

The program always starts to execute from the main program.

The following sections give details of the C18 language topics.

4.5.1 Comments

Comments are used by programmers to clarify the operation of the program or a
programming statement. Comment lines are ignored and are not compiled by the compiler.
Two types of comments can be used in C18 programs: long comments, extending several
lines, and short comments occupying only a single line. Comment lines are usually used at
the beginning of a program to describe briefly the operation of the program, the name of the
author, the program filename, the date the program was written, and a list of version numbers
with the modifications in each version. As shown in Figure 4.24, comments can also be used
after statements to describe the operations performed by the statements. A well-commented
program is important for the maintenance and, thus, for the future lifetime of a program.

Programming with the MPLAB C18 Compiler

153

/* This is a comment line which describes the program

File: Example.c
Version: 1.0

Author: Dogan Ibrahim
Date: March, 2009

List of Modifications:
*/

/* Include Files */
#include <p18xoxx.h>
#include ...

/* Symbol Definitions */
#define MAX 100
#define ...

#pragma config WDTEN = OFF

/* Global Variables */
int X,y,z,.....
char a, b, c,......

/* Function Declarations */
int Func(char r)

return ...

/* Start of MAIN Program */
void main(void)

Figure 4.24: Structure of a C18 Program

154 Chapter 4

In general, any programmer will find it easier to modify and/or update a well-commented
program.

As shown in Figure 4.24, long comments start with characters “/*” and terminate with
characters “*/”. Similarly, short comments start with characters “//”’; they can only occupy
one line and there is no need to terminate short comments.

4.5.2 Terminating Program Statements

1732

In C language, all program statements must be terminated with the semicolon (*“;”’) character,
otherwise a compiler error will be generated:

j=5; // correct
j=5 // error

4.5.3 White Spaces

White spaces are spaces, blanks, tabs, and new-line characters. All white spaces are ignored
by the C compiler. Thus, the following three sequences are all identical:

int i; char j;
or

int i;
char j;

or

int i;
char j;

Similarly, the following sequences are identical:
i=j+2;

or

4.5.4 Case Sensitivity

The C language is case sensitive and variables with lowercase names are different from those
with uppercase names. Thus, the following variables are all different and they represent
different locations in memory:

total TOTAL Total ToTal total total

Programming with the MPLAB C18 Compiler 155

4.5.5 Variable Names

In C language, variable names can begin with an alphabetical character or with an underscore.

In essence, variable names can be any of the characters a—z and A-Z, the digits 0-9, and the
underscore character “_". Each variable name should be unique within the first 31 characters of
its name. Variable names can contain uppercase and lowercase characters, and numeric characters
can be used inside a variable name. Examples of valid variable names are as follows:

Sum count sumlO0 counter il UserName _myName

Some names are reserved for the compiler itself, and they cannot be used as variable names in
our programs. Some reserved names are as follows:

int char float static for while switch

long do if else struct union break

4.5.6 Variable Types

C18 language supports the variable types shown in Table 4.1. Examples of variables are given
in this section.

unsigned char: These are 8-bit unsigned variables with a range 0-255. In the following
example, two 8-bit variables named total and sum are created and sum is assigned a
decimal value 150:

unsigned char total, sum;
sum = 150;

Table 4.1: C18 Variable Types

Types Size (bits) Range
char 8 —128 to +127
signed char 8 -128 to +127
unsigned char 8 0to 255
int 16 —-32 768 to +32 767
unsigned int 16 0to 65535
short 16 -32768 to +32 767
unsigned short 16 0to 65535
short long 24 -8 388 608 to +8 388 607
unsigned short long 24 0to 16777 215
long 32 —2 147 483 648 to +2 147 483 647
unsigned long 32 0to 4294967 295
float 32 +1.17549E-38 to 6.80565E38
double 32 +1.17549E-38 to 6.80565E38

156 Chapter 4

Variables can be assigned values during their declaration. Thus, the above statements can also
be written as:

unsigned char total, sum = 150;
char or signed char: These are 8-bit signed character variables ranging from —128 to +127. In
the following example, a signed 8-bit variable named counter is created with a value of —50:

signed char counter = -50;

or,

char counter = -50;

or,

unsigned char counter;
counter = -50;

int or short: These are 16-bit signed variables ranging from —32 768 to +32 767. In the
following example, a signed integer named Big is created and assigned the value 32 000:
int Big = 32000;
or

short Big;
Big = 32000;

unsigned int or unsigned short: These are 16-bit unsigned variables with a range 0-65 535.
In the following example, an unsigned 16-bit variable named count is created and is
assigned value 12 000:

unsigned int count = 12000;

or

unsigned short count = 12000;

short long: These variables are signed and 24 bits long ranging from —8 388 608 to
+8 388 607. An example is given below:

short long LargeNumber;
short long Big = —50000;

or

short long BigNo;
BigNo = -25000;

unsigned short long: These are 24-bit unsigned variables having the range 0—16 777 215. An
example is given below:

unsigned short long VerylLargeNumber;

Programming with the MPLAB C18 Compiler 157

long: These are 32-bit signed numbers used in arithmetic operations where large integer
numbers are required. The range of long numbers is —2 147 483 648 to +2 147 483 647.
In the following example, variable Count is assigned the value 2 000 250 500

long Count = 2000250500

unsigned long: These integer numbers are 32 bits wide and unsigned. The range is 0 to
+4 294 967 295. In the following example, variable Total is assigned a value
3250 900 290.

unsigned long Total = 3250900290;

float or double: These are floating point variables implemented using Microchip AN575
32-bit format, which is IEEE 754 compliant. Floating point numbers range from
+1.17549E-38 to £6.80565E38. In the following example, a floating point variable
named area is created and is assigned a value 12.235

float areg;
area = 12.235;

4.5.7 Constants

Constants represent fixed values (numeric or character) in programs that cannot be changed. Con-
stants are stored in the flash program memory of the PIC microcontroller; thus, the valuable and
limited RAM is not wasted. In C18, constants can be integer, floating point, character, string, or
enumerated types. It is important that values must be assigned to constants when they are declared.

Integer Constants

Integer constants can be decimal, hexadecimal, octal, or binary. The data type of a constant is
derived by the compiler from its value. However, suffixes can be used to change the type of a
constant.

From Table 4.1, we can see that integer variables can be 8, 16, 24, or 32 bit wide. In

C18 language, Constants are declared using the key word const rom, and they are stored in
the flash program memory of the PIC microcontroller, thus not wasting any valuable RAM
space (it is important to note that in most C languages constants are declared using the key
word const only). In the following example, constant integer MAX is declared as 100 and is
stored in the flash program memory of the PIC microcontroller:

const rom int MAX = 100;

Hexadecimal constants start with the characters Ox and may contain numeric data 0-9
and hexadecimal characters A-F. In the following example, constant TOTAL is given the
hexadecimal value FF:

const rom int TOTAL = OxFF;

158 Chapter 4

Octal constants have a zero at the beginning of the number and may contain numeric data
0-7. In the following example, constant CNT is given an octal value 17:

const rom int CNT = 017;
Binary constant numbers start with Ob and may contain only 0 or 1. In the following example,
a constant named Min is declared having the binary value “11110000:

const rom int Min = 0b11110000

Floating Point Constants

Floating point constant numbers have integer parts, a dot, fractional part, and an optional e or
E followed by a signed integer exponent. In the following example, a constant named TEMP
is declared having the fractional value 37.50:

const rom TEMP = 37.50

or

const rom TEMP = 3.750E1

Character Constants
A character constant is a character enclosed in a single quote. In the following example, a
constant named First_Alpha is declared having the character value “A”:

const rom char First_Alpha = 'A’;
Character Array Constants

A character array consists of a number of characters stored sequentially in a variable. In
the following example, a character array named Product is declared storing the characters
COMPUTER:

const rom char Product[] = {'C', 'O', 'M", 'P", 'U", 'T', 'E', 'R'};
Note that it is not necessary to declare the size of the array as this is automatically calculated

by the compiler. The above statement could also be written as follows to show that the char-
acter array consists of eight characters:

const rom char Product[8] = {'C', 'O', 'M', 'P", 'U", T, 'E', 'R'};
String Constants

String constants are fixed sequences of characters stored in the flash memory of the micro-
controller. The string must begin with a double quote character (*) and also terminate with a
double quote character. The compiler automatically inserts a null character as a terminator.
An example string constant is

const rom char x = "This is an example string constant”;

Programming with the MPLAB C18 Compiler 159

A string constant can be extended across a line boundary using a backslash
character (“\”):

const rom char x = "This is first part \
and this is second part"

The above string constant declaration is same as
const rom char x = "This is first part and this is second part"

Enumerated Constants

Enumeration constants are integer type, and they are used to make a program easier to follow.
In the following example, the colors constant stores the names of colors. The first element is
given the value 0 by default but it can be changed if desired:

const rom enum colors {black, brown, red, orange, yellow, green, blue, gray, white};
where black is assigned 0, brown is assigned 1, red is assigned 2, and so on.
or

const rom enum days {Monday = 1, Tuesday, Wednesday, Thursday, Friday, Saturday};

where Monday is assigned 1, Tuesday is assigned 2, Wednesday is assigned 3,
and so on.

4.5.8 Escape Sequences

Escapes sequences are used to represent nonprintable ASCII characters. Table 4.2 shows
some of the commonly used escape sequences and their representation in C language.

For example, the character combination ‘“\n” represents the new-line character. An ASCII
character can also be represented by specifying its hexadecimal code after a backslash. For
example, the new-line character can also be represented as “\x0A.”

Table 4.2: Some of the Commonly Used Escape Sequences

Escape Sequences Hex Values Characters

\a 0x07 BEL (bell)

\b 0x08 BS (backspace)
\t 0x09 HT (horizontal tab)
\n O0x0A LF (line feed)

\v 0x0B VT (vertical feed)
\f 0x0C FF (form feed)

\r 0x0D CR (carriage return)
\xH String of hex digits

160 Chapter 4

4.5.9 Static Variables

Static variables are local variables usually used in functions when it is required to preserve
the last value of a variable between successive calls to the function. As shown below, static
variables are declared using the key word static:

static unsigned char count;

4.5.10 External Variables

Using the key word extern before a variable name declares that variable as external. This key word
indicates to the compiler that the variable is declared elsewhere in a separate source code module.
In the following example, variables sum1 and sum?2 are declared as external unsigned integer:

extern int sum1, sum2;

4.5.11 Volatile Variables

Volatile variables are important, especially in interrupt-based programs and in input—output
(I/0) routines. Using the key word volatile indicates that the value of a variable may change
during the lifetime of the program, independent from the normal flow of the program. Variables
declared as volatile are not optimized by the compiler since their values can change at any
unexpected time. In the following example, variable Led is declared as volatile unsigned char:

volatile unsigned char Led;

4.5.12 Enumerated Variables

Enumerated variables are used to make a program more readable. In an enumerated vari-
able, a list of items is specified and the value of the first item is set to 0, the next item is set
to 1, and so on. In the following example, type Week is declared as an enumerated list and
MON =0, TUE =1, WED =2, and so on:

enum Week {MON, TUE, WED, THU, FRI, SAT, SUN};

It is possible to change the values of the elements in an enumerated list. In the following
example, black = 2, blue = 3, red = 4, and so on.

enum colors {black = 2, blue, red, white, gray};
Similarly, in the following example, black = 2, blue = 3, red = 8, and gray =9:

enum colors {black = 2, blue, red = 8, gray};

Variables of type enumeration can be declared by specifying them after the list of items. For
example, to declare variable My_Week of enumerated type Week, use the following statement:

enum Week {MON, TUE, WED, THU, FRI, SAT, SUN} My_Week;

Programming with the MPLAB C18 Compiler 161

Now, we can use variable My_Week in our programs:

My_Week = WED // assign 2 to My_Week

or
My_Week = 2 // same as above
After defining the enumeration type Week, we can declare variables This_Week and
Next_Week of type Week as
enum Week This_Week, Next_Week;

4.5.13 Arrays

Arrays are used to store related items together and sequentially in the same block of memory
and under a specified name. An array is declared by specifying its type, name, and the
number of elements it will store. For example,

unsigned int Total[5];

creates an array of type unsigned int, with name Total and has five elements. The first element
of an array is indexed with 0. Thus, in the above example, Total[0] refers to the first element
of this array and Total[4] refers to the last element. The array total is stored in memory in five
consecutive locations as follows:

Total[0]
Total[1]
Total[2]
(3]
(4]

Total[3
Total[4

Data can be stored in the array by specifying the array name and index. For example, to store
25 in the second element of the array, we have to write

Total[1] = 25;
Similarly, the contents of an array can be read by specifying the array name and its

index. For example, to copy the third array element to a variable called temp, we have to
write

Temp = Total[2];
The contents of an array can be initialized during the declaration of the array by assigning

a sequence of comma delimited values to the array. An example is given below where array
months has 12 elements and months[0] = 31, months[1] = 28, and so on.:

unsigned char months[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

162 Chapter 4

The above array can also be declared without specifying the size of the array:

unsigned char months[] = {31,28,31,30,31,30,31,31,30,31,30,31};

Character arrays can be declared similarly. In the following example, a character array named
Hex_Letters is declared with six elements:

unsigned char Hex_Letters[] = {'A", 'B', 'C', 'D', 'E', 'F'};

Strings are character arrays with a null terminator. Strings can either be declared by enclosing
the string in double quotes or by specifying each character of the array within single quotes
and can then be terminated with a null character. In the following example, the two string
declarations are identical and both occupy five locations in memory:

unsigned char Mystring[] = "COMP";

and
unsigned char Mystring[] = {'C', 'O, 'M', 'P*, "\0'};

In C programming language, we can also declare arrays with multiple dimensions. One-
dimensional arrays are usually called vectors and two-dimensional arrays are called matrices.
A two-dimensional array is declared by specifying the data type of the array, array name,

and the size of each dimension. In the following example, a two-dimensional array named P
having three rows and four columns is created. Altogether the array has 12 elements. The first
element of the array is P[0][0] and the last element is P[2][3]. The structure of this array is
shown below:

PlOJ[0] |P[o][7] |P[O][2] |P[O][3]

Pl1J[o] | PLTI[M] | PITI[2] | P[TI(3]
P[2][0] [P2][1] |P[2][2] |P[2][3]

Elements of a multidimensional array can be specified during the declaration of the array.
In the following example, two-dimensional array Q has two rows and two columns and its
diagonal elements are set to one and nondiagonal elements are cleared to zero:

unsigned char Q2][2] = { {1,0}, {0,1} };

4.5.14 Pointers

Pointers are an important part of the C language and they hold the memory addresses of
variables. Pointers are declared same as any other variables but with the character (“*”)
before the variable name. In general, pointers can be created to point to (or hold the addresses
of) character variables, integer variables, long variables, floating point variables, or they can
point to functions.

Programming with the MPLAB C18 Compiler 163

In the following example, an unsigned character pointer named pnt is declared:
unsigned char “pnt;
When a new pointer is created, its content is initially unspecified and it does not hold the

address of any variable. We can assign the address of a variable to a pointer using the (“&”)
character:

pnt = &Count;

Now pnt holds the address of variable Count. Variable Count can be set to a value using the
character (“*””) before its pointer. For example, Count can be set to 10 using its pointer:

*pnt = 10; // Count = 10

which is same as

Count = 10; // Gount = 10

or the value of Count can be copied to variable Cnt using its pointer:

Cnt = *pnt; // Cnt = Count
Array Pointers

In C language, the name of an array is also a pointer to the array. Thus, for the array

unsigned int Total[10];

The name Total is also a pointer to this array and it holds the address of the first element of
the array. Thus, the following two statements are equal:

Total[2] = 0;
and
*(Total + 2) = 0;

Also, the following statement is true:

&Total[j] = Total +j
In C language, we can perform pointer arithmetic that may involve the following:
* Comparing two pointers
* Adding or subtracting a pointer and an integer value
* Subtracting two pointers
* Assigning one pointer to another one

* Comparing a pointer to null

164 Chapter 4

For example, let us assume that pointer P is set to hold the address of array element Z[2]
P =8&Z[2];
We can now clear elements 2 and 3 of array Z as in the following two examples. The two

examples are identical except that in the first example pointer P holds the address of Z[3] at the
end of the statements and it holds the address of Z[2] at the end of the second set of statements:

*P=0; //Z[2]=0
P=P+1; // P now points to element 3 of Z
P =0; //Z[3]=0
or
P =0; //Z[2]=0
*P+1)=0; //Z[38]=0

A pointer can be assigned to another pointer. An example is given below where both variables
Cnt and Tot are set to 10 using two different pointers:

unsigned int *i, ¥j; // declare 2 pointers
unsigned int Cnt, Tot; // declare two variables

i =&Cnt; // i points to Cnt

=10; // Cnt=10

i=i // copy pointer i to pointer j
Tot =7, // Tot =10

Incrementing Pointers

It is important to realize that when a pointer is incremented, it is scaled by the size of the
object it points to. For example, if the pointer is of type long, then incrementing the pointer
will increment its value by 4 since a long is 4 bytes long. An example is given below where

a long array called w is declared with three elements and then each element is cleared to zero
using pointers. Notice that the statement p = p + 1 increments the value of p by 4 and not by 1:

long w[b] = {1, 2, 3}; // Declare array w

long p; // Declare a long pointer
=W, // Point to array w

=0 // Clear first element to 0
=p+1; // Point to next element

o =0; // Clear second element to O

p=p+1; // Point to next element

0=0; // Clear third element to zero

4.5.15 Structures

Structures can be used to collect related items as single objects. Unlike arrays, the members
of structures can be a mixture of any data type. For example, a structure can be created to
store the personal details (name, surname, age, date of birth, etc.) of a student.

Programming with the MPLAB C18 Compiler 165

A structure is created using the key word struct, followed by a structure name, and a list of
member declarations. Optionally, variables of the same type as the structure can be declared
at the end of the structure.

The following example declares a structure named Person:

struct Person

{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

}

Declaring a structure does not occupy any space in memory, but the compiler creates a
template describing the names and types of the data objects or member elements that will
eventually be stored within such a structure variable. It is only when variables of the same
type as the structure are created, then these variables occupy space in memory. We can declare
variables of the same type as the structure by giving the name of the structure and the name

of the variable. For example, two variables Me and You of type Person can be created by the
statement:

struct Person Me, You;
Variables of type Person can also be created during the declaration of the structure as shown below:

struct Person

{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

} Me, You;

We can assign values to members of a structure by specifying the name of the structure, fol-
lowed by a dot (“.”), and the name of the member. In the following example, the age of structure
variable Me is set to 25 and variable M is assigned to the value of age in structure variable You.

Me.age = 25;
M = You.age;

Structure members can be initialized during the declaration of the structure. In the following
example, the radius and height of structure Cylinder are initialized to 1.2 and 2.5, respectively.

struct Cylinder
{
float radius;
float height;
} MyCylinder = {1.2, 2.5};

166 Chapter 4

Values can also be set to members of a structure using pointers by defining the variable types
as pointers. For example, if TheCylinder is defined as a pointer to structure Cylinder, then
we can write

struct Cylinder

{

float radius;
float height;
} *TheCylinder;

TheCylinder -> radius = 1.2;
TheCylinder -> height = 2.5;

The size of a structure is the number of bytes contained within the structure. We can use the
sizeof operator to get the size of a structure. Considering the above example,

sizeof(MyCylinder)
returns 8, since each float variable occupies 4 bytes in memory.

Bit fields can be defined using structures. With bit fields, we can assign identifiers to bits
of a variable. For example, to identify bits 0, 1, 2, and 3 of a variable as LowNibble and to
identify the remaining 4 bits as HighNibble, we can write

struct

{
LowNibble: 4;

HighNibble: 4;
} MyVariable;

We can then access the nibbles of variable My Variable as

MyVariable.LowNibble = 12;
MyVariable.HighNibble = 8;

In C language, we can use the typedef statements to create new types of variables. For
example, a new structure data type named Reg can be created as follows:

typedef struct
{

unsigned char name[20];
unsigned char surname[20];
unsigned age;

} Reg;

Variables of type Reg can then be created in exactly the same way as creating any other types
of variables. In the following example, variables MyReg, Regl, and Reg2 are created from
data type Reg:

Reg MyReg, Reg1, Reg2;

Programming with the MPLAB C18 Compiler 167

The contents of one structure can be copied to another structure provided that both structures
have been derived from the same template. In the following example, two structure variables
P1 and P2 of same type have been created and P2 is copied to P1:

struct Person

{

unsigned char name[20];
unsigned char surname[20];
unsigned int age;

unsigned int height;
unsigned weight;

}

struct Person P1, P2;

4.5.16 Unions

Unions are used to overlay variables. A union is similar to a structure, and it is even defined
in a similar manner; both are based on templates and their members are accessed using the “.”
or “->” operators. The difference of a union is that all variables in a union occupy the same
memory area. In other words, all member elements of a union share the same common stor-

age. An example for union declaration is given below:

union flags

{

unsigned char x;
unsigned int y;
1P

In this example, variables x and y occupy the same memory area, and the size of this union
is 2 bytes long, which is the size of the biggest member of the union. When variable y is
loaded with a 2-byte value, variable x will have the same value as the low byte of y. In the
following example, y is loaded with 16-bit hexadecimal value 0OXAEFA and x is loaded
with OxFA:

Py = OXAEFA;

The size of a union is the size (number of bytes) of its largest member. Thus,
the statement

sizeof(P)

returns 2.

168 Chapter 4

The above union could also have been declared as
union flags

{

unsigned char x;
unsigned int y;

}

union flags P;

4.5.17 Operators in C

Operators are applied to variables and other objects in expressions, and they cause some con-
ditions or some computations to occur.

C18 language supports the following operators:
* Arithmetic operators

* Logical operators

* Bitwise operators

* Conditional operators

* Assignment operators

* Relational operators

* Preprocessor operators

Arithmetic Operators

Arithmetic operators are used in arithmetic computations. Arithmetic operators associate
from left to right, and they return numerical results. A list of the C18 arithmetic operators is
given in Table 4.3.

Table 4.3: C18 Arithmetic Operators

Operators Operations
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder (integer division)
++ Autoincrement

—— Autodecrement

Programming with the MPLAB C18 Compiler

169

Example for use of arithmetic operators is given below:

/* Adding two integers */
5+12

/* Subtracting two integers */
120-5
10-15

/* Dividing two integers */
5/3
12/3

/* Multiplying two integers */
3*12

/* Adding two floating point numbers */

31+24

/* Multiplying two floating point numbers */

25750

/* Dividing two floating point numbers */

25.0/4.0

/* Remainder (not for float) */
7%3

/* Post-increment operator */
j=4
K= j++;

/* Pre-increment operator */
j=4
K= ++j;

/* Post-decrement operator */
=12
k=j—;

/* Pre-decrement operator */

=12
k=—j

Relational Operators

// equals 17

// equals 115
// equals -5

// equals 1
// equals 4

// equals 36

// equals 5.5

// equals 12.5

// equals 6.25
// equals 1

//k=4,j=5
//k=5,j=5
[k=12, j=11
Tk=11,j=11

Relational operators are used in comparisons. If the expression evaluates to TRUE, 1 is

returned otherwise O is returned.

170 Chapter 4

All relational operators associate from left to right, and a list of mikroC relational operators is
given in Table 4.4.

Example for use of relational operators is given below:

x=10

x>8 // returns 1
x==10 // returns 1
x <100 // returns 1
x> 20 // returns O
x!=10 // returns O
x>=10 // returns 1
x<=10 // returns 1

Logical Operators

Logical operators are used in logical and arithmetic comparisons, and they return TRUE (i.e.,
logical 1) if the expression evaluates to nonzero or FALSE (i.e., logical 0) if the expression
evaluates to zero. If more than one logical operator is used in a statement and if the first con-
dition evaluates to false, the second expression is not evaluated.

A list of the C18 logical operators is given in Table 4.5.

Example for use of logical operators is given below:

X=7;
x>08&x< 10 // returns 1
x>0|x<10 // returns 1

Table 4.4: C18 Relational Operators

Operators Operations
== Equal to
1= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Table 4.5: C18 Logical Operators

Operators Operations
&& AND
I OR
! NOT

Programming with the MPLAB C18 Compiler

171

x >=0 && x <=10
x>=0&& x <5

a=10; b =20; c=30; d=40;
a>b&&c>d

b>a&&kd>c
a>b||d>c

Bitwise Operators

// return 1
// returns O

// returns O
// returns 1
// returns 1

Bitwise operators are used to modify the bits of a variable. A list of the C18 bitwise operators

is given in Table 4.6.

Bitwise AND returns 1 if both bits are 1, else it returns 0.

Bitwise OR returns O if both bits are 0, otherwise it returns 1.

Bitwise XOR returns 1 if both bits are complementary, otherwise it returns 0.

Bitwise complement inverts each bit.

Bitwise shift left and shift right move the bits to the left or right, respectively.

Example for use of bitwise operators is given below:

OxFA & OxEE returns OxEA

OxFA: 1111 1010
OxEE: 1110 1110

OxEA: 1110 1010
i. OxO1 | OxFE returns OxFF

0x08: 0000 0001
OxFE: 1111 1110

OxFE: 1111 1111

Table 4.6: C18 bitwise operators

Operators

Operations

&

Bitwise AND

Bitwise OR

n

Bitwise EXOR

Bitwise complement

<<

Shift left

>>

Shift right

172 Chapter 4

Vi.

vii.

viii.

OxAA N Ox1F returns OxB5

OxAA: 1010 1010
Ox1F: 0001 1111

0xB5: 1011 0101
~0xAA returns 0x55

OxAA: 1010 1010
~ 101010101

0x55: 0101 0101
0x14 >> 1 returns 0x08 (shift Ox14 right by 1 digit)

Ox14: 0001 0100
>>1:0000 1010

0x0A: 0000 1010
0x14 >> 2 returns 0x05 (shift 0x14 right by 2 digits)

0x14: 0001 0100
>> 2: 0000 0101

0x05: 0000 0101
0x235A << 1 returns 0x46B4 (shift left Ox235A left by 1 digit)

0x235A: 0010 0011 0101 1010
<<1 :01000110 1011 0100

0x46B4 : 0100 0110 1011 0100

Ox1A << 3 returns OxDO (shift left Ox1A by 3 digits)

Ox1A: 0001 1010
<<3 : 1101 0000

0xDO0: 1101 0000

Assignment Operators

In C language, there are two types of assignments: simple assignments and compound assign-
ments. In simple assignments, an expression is simply assigned to another expression or an
operation is performed using an expression and the result is assigned to another expression:

Expression1 = Expression2

or

Result = Expression1 operation Expression2

Programming with the MPLAB C18 Compiler 173

Examples of simple assignments are

Temp = 10;
Cnt = Cnt + Temp;

Compound assignments have the general format:
Result operation = Expression?

Here, the specified operation is performed on Expressionl and the result is stored in Result.
For example,

j+=k; issameas j=j+k;
also,

p*=m; 1issameas p=p*m;
The following compound operators can be used in C18 programs:

&= |= = >>= <<=

Condlitional Operator
The syntax of the conditional operator is
Result = Expressionl ? Expression2: Expression3

Expressionl is evaluated first and if its value is true, Expression2 is assigned to Result, other-
wise Expression3 is assigned to Result. In the following example, maximum of x and y is
found, where x is compared with y, and if x > y, then max = x, otherwise max =y

max=(x>y)?x:y;

In the following example, lowercase characters are converted to uppercase. If the character

[Pl

is lowercase (between “a” and “z”), then by subtracting 32 from the character, we obtain the
equivalent uppercase character:

c=(c>=‘a’&&c<=2")?(c-32):c;

Preprocessor Operators

The preprocessor allows a programmer to

* Compile a program conditionally such that parts of the code are not compiled
* Replace symbols with other symbols or values

* Insert text files into a program

174 Chapter 4

The preprocessor operator is the (“#7) character, and any line of code with a leading (“#7) is

assumed to be a preprocessor command. Semicolon character (*;”) is not needed to terminate
a preprocessor command.

C compiler supports the following preprocessor commands:

#define #undef

#if #elif #endif
#ifdef #ifndef

#error

#line

#pragma

#define, #undef, #ifdef, #ifndef

#define preprocessor command provides Macro expansion where every occurrence of an
identifier in the program is replaced with the value of the identifier. For example, to replace
every occurrence of MAX with value 100, we can write

#define MAX 100

An identifier that has already been defined cannot be defined again unless both defi-
nitions have the same values. One way to get round this problem is to remove the Macro
definition:

#undef MAX

or the existence of a Macro definition can be checked. In the following example, if MAX
has not already been defined, then it is given value 100, otherwise the #define line is
skipped:

#ifndef MAX
#define MAX 100
#endif

Note that the #define preprocessor command does not occupy any space in memory.

We can pass parameters to a Macro definition by specifying the parameters in parenthesis
after the Macro name. For example, consider the Macro definition

#define ADD(a, b) (a + b)

When this Macro is used in a program, (a,b) will be replaced with (a + b) as shown below:
p=ADD(x,y) wil be transformed intop = (X +Y)

Similarly, we can define a Macro to calculate the square of two numbers:

#define SQUARE(a) (a * a)

Programming with the MPLAB C18 Compiler 175

When we now use this Macro in a program,
p = SQUARE(x) will be transformed into p = (x * X)
#include

The preprocessor directive #include is used to include a source file in our program. Usually,
header files with extension “.h” are used with #include. There are two formats for using the
#include:

#include <file>

and
#include "file"

In the first option, the file is searched in the C18 installation directory first and then in the
user search paths. In the second option, the specified file is searched in the C18 project folder,
then in the C18 installation folder, and then in the user search paths. It is also possible to
specify a complete directory path as

#include "C:\temp\last.h"
The file is then searched only in the specified directory path.
#if, #elif, #else, #endif

The above preprocessor commands are used for conditional compilation where parts of the
source code can be compiled only if certain conditions are met. In the following example,
the code section where variables A and B are cleared to zero is compiled if M has a nonzero
value, otherwise the code section where A and B are both set to 1 is compiled. Notice that the
#if must be terminated with #endif:

#if M
A=0;
B=0;

#else
A=1,;
B=1,

#endif

We can also use the #elif condition that tests for a new condition if the earlier condition was
false:

#if M
A=0;
B=0;

#elif N
A=1,

B=1,;

176 Chapter 4

#else
A=2;
B=2;

#endif

In the above example, if M has a nonzero value code section, then A = 0; B = 0; is com-
piled. If N has a nonzero value, then code section A = 1; B = 1; is compiled. Finally, if both
M and N are zero, then code section A = 2; B = 2; is compiled. Notice that only one code
section is compiled between #if and #endif and a code section can contain any number of
statements.

#pragma

The #pragma directive is used to define device-specific constructs. This directive is used with
the key words as shown below:

* #pragma code

* #pragma romdata

* #pragma idata

* f#fpragma config

* #pragma interrupt

* #pragma interruptflow

e #pragma varlocate

#pragma code is used to instruct the compiler to compile all subsequent instructions into the
program memory section of the target processor.

#pragma romdata is used to instruct the compiler to compile the subsequent static data into
the program memory of the target processor.

#pragma udata is used to locate the uninitialized user variables in data memory.
#pragma idata is used to locate the initialized user variables in data memory.

#pragma interrupt is used to instruct the compiler to compile the code from the named C
function as a high-priority interrupt service routine.

#pragma interruptflow is used to instruct the compiler to compile the named C function as a
low-priority interrupt service routine.

#pragma varlocate is used to specify where the variables will be located so that the compiler
will not generate extraneous instructions to set the bank when accessing the variables.

Programming with the MPLAB C18 Compiler 177

#pragma config is used to define the processor Configuration bits. Document “PICI8
Configuration Settings Addendum” of Microchip Inc. gives tables of all the configuration
bits available for any member of the PIC18 family. Some of the widely used configuration
bit definitions for the popular PIC18F452 microcontroller are shown in Table 4.7. As an
example, to disable the watchdog and set the oscillator to XT type crystal operation, we
can use the following statement:

#pragma config WDT = OFF
#pragma config OSC = XT

It is permissible to combine the various settings on a single line, i.e.,

#pragma config WDT = OFF, OSC = XT

Table 4.7: Widely Used PIC18F452 Microcontroller Configuration Bits

Oscillator Selection
OSC=LP LP
OSC=XT XT
OSC=HS HS
OSC=RC RC
OSC=EC EC and OSC2 as clock out
OSC =ECIO EC and OSC2 as port RA6
OSC =HSPLL HS-PLL enabled
OSC=RCIO RC and OSC2 as port RA6
Power-up Timer
PWRT = ON Timer enabled
PWRT = OFF Timer disabled
Watchdog Timer
WDT = OFF Watchdog disabled
WDT = ON Watchdog enabled
Watchdog Postscaler
WDTPS =1 1:1
WDTPS =2 1:2
WDTPS =4 1:4
WDTPS =8 1:8
WDTPS =16 1:16
WDTPS =32 1:32
WDTPS = 64 1:64
WDTPS =128 1:128

178 Chapter 4

4.5.18 Modifying the Flow of Control

Statements are normally executed sequentially from the beginning to the end of a program.
We can use control statements to modify the normal sequential flow of control in a C pro-
gram. The following control statements are available in C18 programs:

¢ Selection statements
¢ Unconditional modification of flow

e Jteration statements

Selection Statements
There are two selection statements: If and switch.
If Statement

The general format of the if statement is

if(expression)
Statement1;
else
Statement?2;

or,

if(expression)Statement1; else Statement2;

If the expression evaluates to TRUE, Statement] is executed, otherwise Statement?2 is executed. The
else key word is optional and may be omitted if not required. In the following example, if the value
of x is greater than MAX, then variable P is incremented by 1, otherwise it is decremented by 1:
if(x > MAX)
P++;
else
P—
We can have more than one statement by enclosing the statements within curly brackets.
For example,

if(x > MAX)
{
P++;
Cnt=P;
Sum = Sum + Cnt;

}

else
P—;

In the above example, if x is greater than MAX, then the three statements within the curly
brackets are executed, otherwise the statement P—— is executed.

Programming with the MPLAB C18 Compiler 179

Another example using the if statement is given below:

if(x > 0 && x < 10)
{

Total += Sum;

Sum++;
}
else
{
Total = 0;
Sum =0;

switch Statement

The switch statement is used when there are a number of conditions, and different operations
are performed when a condition is true. The syntax of the switch statement is

switch (condition)

{

case conditiont:
Statements;
break;

case condition2;
Statements;
break;

case conditionn:
Statements;
break;

default:
Statements;

}

The switch statement functions as follows: First, the condition is evaluated. The condition

is then compared to conditionl, and if a match is found, statements in that case block are
evaluated and control jumps outside the switch statement when the break key word is
encountered. If a match is not found, condition is compared to condition2, and if a match is
found, statements in that case block are evaluated and control jumps outside the switch state-
ments and so on. The default is optional and statements following default are evaluated if the
condition does not match to any of the conditions specified after the case key words.

In the following example, the value of variable Cnt is evaluated. If Cnt = 1, A is set to 1, if
Cnt =10, Bis set to 1, and if Cnt = 100, C is set to 1. If Cnt is not equal to 1, 10, or 100,
then D is set to 1:

switch (Cnt)
{

180 Chapter 4

case 1:
A=1,;
break;

case 10:
B=1;
break;

case 100:
C=1,
break;

default:
D=1;

1

Because white spaces are ignored in C language, we could also write the above code as

switch (Cnt)
{

case 1: A = 1; break;
case 10: B = 1; break;
case 100: C =1, break;
default: D=1;

m Example 4.1

In an experiment, the relationship between X and Y values are found to be

X Y
1 3.2
2 2.5
3 8.9
4 1.2
5 12.9

Write a switch statement that will return the Y value, given the X value.

Solution

The required switch statement is

switch (X)
{
case 1:
Y =3.2;
break;
case 2:
Y =25;

Programming with the MPLAB C18 Compiler 181

break;
case 3:

Y =8.9;

break;
case 4:

Y=1.2;

break;
case 5:

Y =12.9;

4.5.19 lteration Statements

Iteration statements enable us to perform loops in our programs, where part of a code is
repeated required number of times. In C18 language, there are four ways that iteration can be
performed, and we will look at each one with examples:

* Using for statement

* Using while statement
* Using do statement

» Using goto statement

for Statement
The syntax of the for statement is

for(initial expression; condition expression; increment expression)

{
}

The initial expression sets the starting variable of the loop, and this variable is compared
against the condition expression before an entry to the loop. Statements inside the loop are
executed repeatedly, and after each iteration, the value of increment expression is incre-
mented. The iteration continues until the condition expression becomes false. An endless
loop is formed if the condition expression is always true.

Statements;

The following example shows how a loop can be set up to execute 10 times. In this example, vari-
able i starts from O and increments by 1 at the end of each iteration. The loop terminates when i =
10 in which case the condition i < 10 becomes false. On exit from the loop, the value of i is 10:
for(i=0;i<10;i ++)
{

}

statements;

182 Chapter 4

The above loop could also be formed by starting the initial expression with a nonzero value.
Here, i starts with 1 and the loop terminates when i = 11. Thus, on exit from the loop, the
value of i is 11:

for(i=1;i<=10; i++)

{
}

The parameters of a for loop are all optional and can be omitted. If the condition expression
is left out, it is assumed to be true. In the following example, an endless loop is formed where
the condition expression is always true and the value of i starts with 0 and is incremented
after each iteration:

Statements;

/* Endless loop with incrementing i */
for(i=0; ; i++)

{
}

Another example of an endless loop is given below where all the parameters are omitted:

Statements;

/* Example of endless loop */
for(;)
{

}

In the following endless loop, i starts with 1 and is not incremented inside the loop:

Statements;

/* Endless loop withi=1"*/
for(i=1;;)
{

}

If there is only one statement inside the for loop, we can omit the curly brackets as shown in
the following example:

Statements;

for(k = 0; k < 10; k++)Total = Total + Sum;

Nested for loops can be used in programs. In a nested for loop, the inner loop is
executed for each iteration of the outer loop. An example is given below where the inner
loop is executed five times and the outer loop is executed 10 times. The total iteration
count is 50:

/* Example of nested for loops */
for(i=0; i< 10; i++)
{

for(j=0; | < 5; j++)

{

Programming with the MPLAB C18 Compiler 183

Statements;

}

In the following example, the sum of all the elements of a 3 x 4 matrix M is calculated and
stored in a variable called Sum:

/* Add all elements of a 3x4 matrix */
Sum =0;
for(i=0;i<3;i++)
{
for(j=0;j<4;j++)
{

}

Sum = Sum + M[i][]];

}

Because there is only one statement to be executed, the above example could also be
written as

/* Add all elements of a 3x4 matrix */
Sum =0;
for(i=0;i<3;i++)

{
}

for(j = O; j < 4; j++) Sum = Sum + M[i][]];

while Statement

This is another statement that can be used to create iteration in programs. The syntax of the
while statement is

while (condition)

{
}

Statements;

Here, the statements are executed repeatedly until the condition becomes false or the
statements are executed repeatedly as long as the condition is true. If the condition is false
on entry into the loop, then the loop will not be executed and the program will continue
from the end of the while loop. It is important that the condition is changed inside the loop;
otherwise an endless loop will be formed.

The following code shows how to set up a loop to execute 10 times using the while
Statement:

/* A 'loop that executes 10 times */
k=0;
while (k < 10)

184 Chapter 4

{
Statements;
K++;

}

At the beginning of the code, variable k is 0. Because & is less than 10, the while loop starts.
Inside the loop, the value of k is incremented by 1 after each iteration. The loop repeats as
long as k < 10 and is terminated when k = 10. At the end of the loop, the value of & is 10.

Notice that an endless loop will be formed if k is not incremented inside the loop:

/* An endless loop */

k=0;
while (k < 10)
{
Statements;

}

An endless loop can also be formed by setting the condition to be always true:

/* An endless loop */
while (k = k)
{

Statements;

}

Here is an example of calculating the sum of numbers from 1 to 10 and storing the result in
variable called sum:

/* Calculate the sum of numbers from 1 to 10 */
unsigned int k, sum;
k=1,
sum = 0;
while(k <= 10)
{
sum = sum + k;
K++;

}

It is possible to have a while statement with no body. Such a statement is useful, for example,
if we are waiting for an input port to change its value. An example is given below where the
program will wait as long as bit 0 of PORTB (RBO) is at logic 0. The program will continue
when the port pin changes to logic 1:

while(PORTBbits.RBO == 0); // Wait until RBO becomes 1
or

while(PORTBbits.RBO);

It is possible to have nested while statements.

Programming with the MPLAB C18 Compiler 185

As we shall see later, the bits of a port can be accessed using the key word bits after the port
name, followed by the port bit name to be accessed.

do Statement

The do statement is similar to the while statement, but here, the loop executes until the
condition becomes false or the loop executes as long as the condition is true. The condition
is tested at the end of the loop. The syntax of the do statement is

do
{

Statements;
} while (condition);

The first iteration is always performed whether the condition is true or false, and this is the
main difference between the while statement and the do statement.

The following code shows how to setup a loop to execute 10 times using the do statement:

/* Execute 10 times */
k=0;

do

{

Statements;
K++;
} while (k < 10);

The loop starts with k£ = 0, and the value of k is incremented inside the loop after each iter-
ation. k is tested at the end of the loop, and if k is not less than 10, the loop terminates. In this
example, because k = 0 at the beginning of the loop, the value of k is 10 at the end of the loop.

An endless loop will be formed if the condition is not modified inside the loop as shown in
the following example. Here, k is always less than 10:

/* An endless loop */
k=0;
do

{
Statements;
} while (k < 10);

An endless loop can also be created if the condition is set to be true all the time:

/* An endless loop */
do

{

Statements;
} while (k = k);

It is possible to have nested do statements.

186 Chapter 4

goto Statement

The goto statement can be used to alter the normal flow of control in a program. This state-
ment causes the program to jump to a specified label. A label can be any alphanumeric
character set starting with a letter and terminating with the colon (*:”") character.

Although not recommended, the goto statement can be used together with the if statement to
create iterations in a program. The following example shows how to setup a loop to execute
10 times using the goto and if statements:

/* Execute 10 times */
/k=0;
Loop:
/Statements;
/K++;
/if(k < 10)goto Loop;

The loop starts with label Loop and variable k = 0 at the beginning of the loop. Inside

the loop, the statements are executed and k is incremented by 1. The value of & is then
compared with 10 and the program jumps back to label Loop if k£ < 10. Thus, the loop is
executed 10 times until the condition at the end becomes false. At the end of the loop, the
value of k is 10.

continue and break Statements

The continue and break statements can be used inside iterations to modify the flow of con-
trol. The continue statement is usually used with if statement and causes the loop to skip
an iteration. An example is given below, which calculates the sum of numbers from 1 to 10
except number 5:

/* Calculate sum of numbers 1,2,3,4,6,7,8,9,10 */
Sum = 0;
i=1;
for(i=1;i<=10; i++)
{
if(i == 5) continue; // Skip number 5
Sum = Sum + i;

}

Similarly, the break statement can be used to terminate a loop from inside the loop. In the
following example, the sum of numbers from 1 to 5 are calculated even though the loop
parameters are set to iterate 10 times:

/* Calculate sum of numbers 1,2,3,4,5 */
Sum =0;

i=1;

for(i=1;i<=10; i++)

{

Programming with the MPLAB C18 Compiler 187

if(i > 5) break; // Stop loop ifi > 5
Sum = Sum + i;

}

4.5.20 Mixing C18 with Assembly Language Statements

It sometimes becomes necessary to mix PIC microcontroller assembly language statements
with the C18 language statements in a program. For example, very accurate program delays
can be generated using assembly language statements. Use of the assembly language

is beyond the scope of this book, but the techniques for including assembly language
instructions in C18 programs will be discussed in this section for those readers who are
familiar with using the PIC microcontroller assembly languages.

Assembly language instructions can be included in a C18 program by starting the code, using
the key word _asm and terminating with _endasm. This process is known as inline assembly
and it differs from full assembly (e.g., using MPASM assembler) as follows:

e Comments must be in C18 format

* Directives are not allowed

* All operands must be specified (no defaults allowed)

» Literals are specified using C radix notation (e.g., 0x12 and not H12)
* Default radix is decimal

* Indexed addressing (e.g., []) is not supported

* Labels must end with a colon

An example inline assembly program is given below:

_asm
/* This assembly code introduces delay to the program*/
MOVLW 6 // Load W with 6

GOTO done
_endasm

User declared C variables can be used in assembly language routines. For example, C variable
Temp can be initialized and then loaded to the W register as

unsigned char Temp = 10;
_asm

188 Chapter 4

MOVLW Temp // W =Temp =10

Global symbols, such as the predefined port names and register names, can be used in
assembly language routines without having to initialize them:

_asm
MOVWEF PORTB, 1

4.6 PIC Microcontroller 1/O Port Programming

Depending on the type of microcontroller used, PIC microcontroller I/O ports are named as
PORTA, PORTB, PORTC, and so on. Port pins can be in analog or digital mode. In analog
mode, ports are input only and a built-in analog to digital converter and multiplexer circuits
are used. In digital mode, a port pin can be configured as either input or output. The TRIS
registers control the port directions and there are TRIS registers for each port, namely TRISA,
TRISB, TRISC, and so on. Clearing a TRIS register bit to O sets the corresponding port bit

to output mode. Similarly, setting a TRIS register bit to 1 sets the corresponding port bit to
input mode.

Ports can be accessed either as a single 8-bit register or as individual bits. In the following
example, PORTB is configured as an output port and all its bits are set to 1:

TRISB = 0; // Set PORT B as output
PORTB = OxFF; // Set PORTB bits to 1

Similarly, the following example shows how four upper bits of PORTC can be set as input
and how upper 4 bits of PORTC can be set as output:

TRISC = OxFO;

Bits of an I/O port can be accessed using the key word bits and then specifying the
required port bit name. In the following example, variable P2 is loaded with bit 2 of
PORTB:

P2 = PORTBbits.RB2;
All the bits of a port can be complemented by the statement:

PORTB = ~PORTB;

Programming with the MPLAB C18 Compiler 189

4.7 Programming Examples

In this section, some simple programming examples are given to make the reader familiar
with programming in C18 language. In all the following examples, the processor header file
must be included at the beginning of the program (e.g., #include <p18f452.h>)

m Example 4.2

Write a program to set all eight port pins of PORTB to logic 1.

Solution

The required program is given below. PORTB is configured as an output port and then
all port pins are set to logic 1 by sending hexadecimal number OxFF:

void main(void)

{
TRISB = 0; // Configure PORT B as output
PORTB = OxFF; // Set all port pins to logic 1

m Example 4.3

Write a program to set the odd numbered (bits 1, 3, 5, and 7) PORTB pins to logic 1.

Solution

Odd numbered port pins can be set to logic 1 by sending the bit pattern “10101010”
to the port. This bit pattern is the hexadecimal number 0xAA and the required
program is

void main(void)

TRISB = 0; // Configure PORTB as output
PORTB = OxAA; // Turn on odd numbered port pins

Example 4.4

It is required to write a program to continuously count up in binary and send this data
to PORTB. Thus, PORTB is required to have the binary data:

190 Chapter 4

00000000
00000001
00000010
00000011

11111110
11111111
00000000

Solution

A for loop can be used to create an endless loop, and inside this loop, the value of a
variable can be incremented and then sent to PORTB. The required program is:

void main(void)

{

unsigned char Cnt = 0;

for(;;) //Endless loop

{
PORTB = Cnt; // Send Cnt to PORT B
Cnt++; // Increment Cnt

}

m Example 4.5

Write a program to set all bits of PORTB to logic 1 and then to logic 0. Repeat this
process 10 times.

Solution

The for statement can be used to create a loop and repeat the required operation 10 times:

void main(void)

{

unsigned char j;

for(j=0;j < 10; j++) // Repeat 10 times

{
PORTB = OxFF; // Set PORT B pins to 1
PORTB = 0; // Clear PORT B pins

Programming with the MPLAB C18 Compiler 191

m Example 4.6

The radius and height of a cylinder are 2.5 and 10 cm, respectively. Write a program to
calculate the volume of this cylinder.

Solution

The required program is

void main(void)

{
float Radius = 2.5, Height = 10;

float Volume;

Volume = Pl *Radius*Radius*Height;
}

m Example 4.7

Write a program to find the largest element of an integer array having 10 elements.

Solution

The program is given below. At the beginning, variable m is set to the first element of
the array. A loop is then formed and the largest element of the array is found:

void main (void)

{

unsigned char j;
int m, A[10];

m = A[O]; //First element of array
for(j=1;j<10; j++)
{

}
}

if(Aj] > m)m = A[]];

m Example 4.8

Write a program using the while statement to clear all 10 elements of an integer
array M.

192 Chapter 4

Solution

As shown in the program listing below, NUM is defined to be 10 and variable j is used
as the loop counter:

#define NUM 10

void main(void)

{
int MINUM];
unsigned charj = 0;

while (j < NUM)
{
M(j] =
e+

}
}

m Example 4.9

Write a program to convert the temperature from °C to °F starting from 0°C,

in steps of 1°C up to and including 100°C, and store the results in an array
called F.

Solution

Given the temperature in °C, the equivalent in °F is calculated using the formula:

F=(C-32.0)/1.8

The required program listing is given below. A for loop is used to calculate the tempera-
ture in °F and store in array F:

void main(void)
{
float F[100];

unsigned char C;

for (C =0; C <= 100; C++)
{

}
}

FIC]=(C-32.0)/1.8;

Programming with the MPLAB C18 Compiler 193

4.8 Functions

A function is a self-contained section of code written to perform a well-defined action. Func-
tions are usually created when it is required to perform an operation at several different parts
of a main program. In addition, it is a good programming practice to divide a large program
into a number of smaller independent functions. The statements within a function may be
executed by calling (or invoking) the function.

The syntax of a general function definition is as shown in Figure 4.25. The data type indicates
the type of data returned by the function. This is followed by the name of the function, and
then a set of brackets are used where any comma separated arguments can be declared inside
the brackets. Then the body of the function that includes the operational code of the function
is written inside a set of opening and closing curly brackets.

An example of function definition is shown below. This function, named Mult, receives two
integer arguments a and b and returns their product. Note that the use of brackets in a return
statement is optional:

int Mult(int a, int b)
{

}

When a function is called, it generally expects to be given the number of arguments expressed
in the function’s argument list. For example, the above function can be called as

return (@*b);

z = Mult(x,y);

where variable z has the data type int. Note that the arguments declared in the function header
and the arguments passed when the function is called are independent of each other, even if
they may have the same name. In the above example, when the function is called, variable x is
copied to a and variable y is copied to b on entry to function Mult.

Some functions do not return any data and the data type of such functions must be declared as
void. An example is given below:

void LED(unsigned char D)
{

}

PORTB = D;

Figure 4.25: General Syntax of a Function Definition

194 Chapter 4

void functions can be called without any assignment statements, but the brackets must be
used to tell the compiler that a function call is made:

LED();

Also, some functions do not have any arguments. In the following example, the function,
named Compl, complements PORTC of the microcontroller and it returns no data and has no
arguments:

void Compl()
{

}

PORTC = ~PORTGC;

The above function can be called as
Compl();
Functions are normally defined before the start of the main program.

Some example function definitions and their usage in main programs are illustrated in the
following examples.

m Example 4.10

Write a function called Circle_Area to calculate the area of a circle where the radius is
to be used as an argument. Use this function in a main program to calculate the area of
a circle whose radius is 2.5 cm. Store the area in a variable called Cirec.

Solution
The required function definition is given below. The data type of the function is
declared as float. The area is calculated by the formula:

Area = Trr?,

where ris the radius of the circle. The area is calculated and stored in a local variable
called s, which is then returned from the function:

float Circle_Area(float radius)

{

float s;

s = Pl * radius * radius;
return s;

Programming with the MPLAB C18 Compiler 195

Figure 4.26 shows how function Circle_Area can be used in a main program to calculate
the area of a circle whose radius is 2.5 cm. The function is defined before the main program.
Inside the main program, the function is called to calculate and store the area in variable
Cirec.

m Example 4.11

Write a function called Area and a function called Volume to calculate the area and
volume of a cylinder, respectively. Then, write a main program to calculate the area and
the volume of cylinder whose radius is 2.0 cm and height is 5.0 cm. Store the area in
variable cyl_area and the volume in variable cyl_volume.

Solution

The area of a cylinder is calculated by the formula:

Area=2mrh,
where r and h are the radius and the height of the cylinder, respectively. Similarly, the
volume of a cylinder is given by the formula:
Volume = mr*h

Figure 4.27 gives the listing of the functions that calculate the area and volume of a
cylinder.
The main program that calculates the area and volume of a cylinder whose radius =

2.0 cm and height = 5.0 cm is shown in Figure 4.28.
L |

m Example 4.12

Write a function called LowerToUpper to convert a lowercase character to
uppercase.

Solution

The ASCII value of the first uppercase character (“A”) is 0x41. Similarly, the ASCII value
of the first lowercase character (“a”) is 0x61. An uppercase character can be converted
into its equivalent lowercase by subtracting 0x20 from the character. The required
function listing is shown in Figure 4.29.

L |

196 Chapter 4

AREA OF A CIRCLE

This program calls to function Circle_Area to calculate the area of a circle.

Programmer: Dogan Ibrahim

File: CIRCLE.C
Version: 1.0
Date: March, 2009

/* This function calculates the area of a circle given the radius */
float Circle_Area(float radius)

{

float s;

s = 3.14 * radius * radius;
return s;

}

/* Start of main program. Calculate the area of a circle where radius = 2.5 */
void main(void)

{

float r, Circ;

r=2.5;
Circ = Circle_Area(r);

Figure 4.26: Program to Calculate the Area of a Circle

float Area(float radius, float height)
{

float s;

s = 2.0"3.14 * radius*height;
return s;

float Volume(float radius, float height)

{

float s;

s = 3.14 *radius*radius*height;
return s;

}

Figure 4.27: Functions to Calculate Cylinder Area and Volume

Programming with the MPLAB C18 Compiler 197

AREA AND VOLUME OF A CYLINDER

This program calculates the area and volume of a cylinder whose
radius is 2.0 cm And height is 5.0 cm.

Programmer: Dogan Ibrahim

File: CYLINDER.C
Version: 1.0
Date: March, 2009

/* Function to calculate the area of a cylinder */
float Area(float radius, float height)
{

float s;

s = 2.0"3.14 * radius*height;
return's;

/* Function to calculate the volume of a cylinder */
float Volume(float radius, float height)

{

float s;

s = 3.14 *radius*radius*height;
returns;

}

/* Start of the main program */
void main(void)
{
floatr=2.0, h=5.0;
float cyl_area, cyl_volume;

cyl_area = Area(r, h);
cyl_volume(r, h);

}
Figure 4.28: Program That Calculates the Area and Volume of a Cylinder

unsigned char LowerToUpper(unsigned char c)
{
ifc >="'a' && c <= '7Z')
return (c — 0x20);
else
return c;

}

Figure 4.29: Function to Convert Lowercase to Uppercase

198 Chapter 4

LOWER CASE TO UPPER CASE

This program converts the lower case character in variable Lc to upper case
and stores in variable Uc.

Programmer: Dogan Ibrahim

File: LTOUPPER.C
Version: 1.0
Date: March, 2009

/* Function to convert a lower case character to upper case */
unsigned char LowerToUpper(unsigned char c)
{
ifc >="'a' && c <= 'Z')
return (c — 0x20);
else
return c;

/* Start of main program */
void main(void)
{

unsigned char Lc, Uc;

Lc="r
Uc = LowerToUpper(Lc);

Figure 4.30: Program Calling Function LowerToUpper
m Example 4.13

Use the function you have created in Example 4.12 in a main program to convert letter

€« »

r’ to uppercase.
Solution

The required program is shown in Figure 4.30. Function LowerToUpper is called to
convert the lowercase character in variable Lc to uppercase and store in Uc.

4.8.1 Function Prototypes

If a function is not defined before it is called, then the compiler will generate an error message.
One way to round this problem is to create a function prototype. A function prototype is easily
constructed by making a copy of the function’s header and appending a semicolon to it. If the

Programming with the MPLAB C18 Compiler 199

function has parameters, it is not compulsory to give names to these parameters but the data
type of the parameters must be defined. An example is given below, which declares a function
prototype called Area and the function is expected to have a floating point type parameter:

float Area(float radius);
This function prototype could also be declared as
float Area(float);

Function prototypes should be declared at the beginning of a program. Function definitions
and function calls can then be made at any point in the program.

m Example 4.14

Repeat Example 4.13 but declare LowerToUpper as a function prototype.

Solution

Figure 4.31 shows the program where function LowerToUpper is declared as a function
prototype at the beginning of the program. In this example, the actual function
definition is written after the main program.

4.8.2 Passing Arrays to Functions

There are many applications where we may want to pass arrays to functions. Passing a single
array element is straightforward as we simply specify the index of the array element to be
passed as in the following function call that passes the second element (index = 1) of array A
to function Calec. It is important to realize that an individual array element is passed by value;
i.e., a copy of the array element is passed to the function:

x = Calc(A[1]);

In some applications, we may want to pass complete arrays to functions. An array name

can be used as an argument to a function, thus permitting the entire array to be passed to a
function. To pass a complete array to a function, the array name must appear by itself with
brackets. The size of the array is not specified within the formal argument declaration. In the
function header, the array name must be specified with a pair of empty brackets. It is impor-
tant to realize that when a complete array is passed to a function, what is actually passed is
not a copy of the array but the address of the first element of the array; i.e., the array elements
are passed by reference, which means that the original array elements can be modified inside
the function.

200 Chapter 4

Some examples are given below to illustrate the passing of a complete array to a function.

Solution

LOWER CASE TO UPPER CASE

This program converts the lower case character in variable Lc to
upper case and stores in variable Uc.

Programmer: Dogan Ibrahim

File: LTOUPPER2.C
Version: 1.0
Date: March, 2009

unsigned char LowerToUpper(unsigned char);

/* Start of main program */
void main(void)
{

unsigned char Lc, Uc;

Lle="r
Uc = LowerToUpper(Lc);

/* Function to convert a lower case character to upper case */
unsigned char LowerToUpper(unsigned char ¢)
{
iflc >='a' & c <=7
return (c — 0x20);
else
return c;

Figure 4.31: Program Using Function Prototype

m Example 4.15

function named Average to calculate the average of these numbers.

The required program listing is shown in Figure 4.32. Function Average receives the
elements of array Numbers and calculates the average of the array elements.

Write a program to store the numbers 1-10 in an array called Numbers. Then, call a

Programming with the MPLAB C18 Compiler 201

PASSING AN ARRAY TO A FUNCTION

This program stores numbers 1 to 10 in an array called Numbers. Function
Average is then called to calculate the average of these numbers.

Programmer: Dogan Ibrahim

File: AVERAGE.C
Version: 1.0
Date: March, 2009

/* Function to calculate the average */
float Average(int A[])

{
float Sum = 0.0, k;
unsigned char j;

for (j=0; j<10; j++)
{

}
k =Sum/ 10.0;

return k;

Sum = Sum + A[j];

/* Start of the main program */

void main(void)

{
unsigned char j;
float Avrg;
int Numbers[10];

for(j=0; j<10; j++)Numbers[j] = j+1;
Avrg = Average(Numbers);

Figure 4.32: Program Passing an Array to a Function

m Example 4.16

Repeat Example 4.15, but this time define the array size at the beginning of the
program and then pass the array size to the function.

Solution

The required program listing is shown in Figure 4.33.

202 Chapter 4

PASSING AN ARRAY TO A FUNCTION

This program stores numbers 1 to N in an array called Numbers
where N is defined at the beginning of the program. Function Average
is then called to calculate the average of these numbers.

Programmer: Dogan lbrahim

File: AVERAGE2.C
Version: 1.0
Date: March, 2009

#define Array_Size 20

/* Function to calculate the average */
float Average(int A], int N)

{
float Sum = 0.0, k;
unsigned char j;

for(j=0; j<N; j++)
{

1
k=Sum/N;
return k;

Sum = Sum + A[j];

/* Start of the main program */
void main(void)
{
unsigned char j;
float Avrg;
int Numbers[Array_Size];

for(j=0; j<Array_Size; j++)Numbers[j] = j+1;
Avrg = Average(Numbers, Array_Size);

Figure 4.33: Program Passing an Array to a Function

It is also possible to pass a complete array to a function using pointers. Here, the
address of the first element of the array is passed to the function and the function can
then manipulate the array as required using pointer operations. An example is given
below.

|

Programming with the MPLAB C18 Compiler 203

function.

Solution

PASSING AN ARRAY TO A FUNCTION

This program stores numbers 1 to 10 in an array called Numbers. Function

Average is then called to calculate the average of these numbers.

Programmer: Dogan Ibrahim

File: AVERAGES.C
Version: 1.0
Date: March, 2009

/* Function to calculate the average */

float Average(int *A)

{
float Sum = 0.0, k;
unsigned char j;

for(j=0; j<10; j++)
{
Sum = Sum + *(A +j);
}
k =Sum/10.0;
return k;

/* Start of the main program */
void main(void)
{

unsigned char j;

float Avrg;

int Numbers[10];

for(j=0; j<10; j++)Numbers][j] = j+1;
Avrg = Average(&Numbers|0]);

Figure 4.34: Program Passing an Array Using Pointers

m Example 4.17

Repeat Example 4.15, but this time, use a pointer to pass the array elements to the

The required program listing is given in Figure 4.34. Here, an integer pointer is used
to pass the array elements to the function and the function elements are manipulated

204 Chapter 4

using pointer operations. Notice that the address of the first element of the array is
passed as an integer with the statement: &Numbers[0]
|

4.8.3 Passing Variables by Reference to Functions

By default, arguments to functions are passed by value. Although this method has many
distinct advantages, there are occasions when it is more appropriate and also more efficient

to pass the address of the arguments instead, that is, pass the argument by reference. When
the address of an argument is passed, the original value of that argument can be modified by
the function, and thus, the function does not have to return any variables. An example is given
below, which illustrates how the address of arguments can be passed to a function and how
the values of these arguments can be modified inside the function.

m Example 4.18

Write a function named Swap to accept two integer arguments and then to swap the
values of these arguments. Use this function in a main program to swap the values of
two variables.

Solution

The required program listing is shown in Figure 4.35. Function Swap is defined as void
since it does not return any value and it has two arguments a and b, and in the function
header, two integer pointers are used to pass the addresses of these variables. Inside
the function body, the value of an argument is accessed by inserting “*” character
before the argument. Inside the main program, the address of the variables are passed
to the function using the “&” characters before the variable names. At the end of the
program, variables p and g are set to 20 and 10, respectively.

4.8.4 Static Function Variables

Normally, variables declared at the beginning of a program, before the main program, are
global, and their values can be accessed and modified by all parts of the program. Declaring

a variable used in a global function will ensure that its value is retained from one call of the
function to another, but this would undermine the variable’s privacy and reduce the portability
of the function to other applications. A better approach is to declare such variables as static.
Static variables are mainly used in function definitions. When a variable is declared as static,

Programming with the MPLAB C18 Compiler 205

PASSING VARIABLES BY REFERENCE

This program shows how the address of variables can be passed to functions.
The function in this program swaps the values of two integer variables.

Programmer: Dogan Ibrahim

File: SWAP.C
Version: 1.0
Date: March, 2009

/* Function to swap two integers */
void Swap(int *a, int *b)

{

int temp;

temp = *a; // Store a in temp
*a="b; // Copy btoa

*b = temp; // Copy temp to b

/* Start of the main program */
void main(void)

{

intp, g;

p=10; // Setp =10

q=20; // Set q =20

swap(&p, &q); // Swap p and q (p=20, g=10)

Figure 4.35: Passing Variables by Reference to a Function

its value is retained from one call of the function to another. In the example code given below,
variable k is declared as static and is initialized to zero. This variable is then incremented
before exiting from the function, and the value of k remains in existence and holds its last
value on the next call to the function; i.e., on the second call to the function, the value of k
will be 1 and not O:

void Cnt(void)
{

static int k = 0; // Declare k as static

K++; // increment k

206 Chapter 4

4.9 MPLAB C18 Library Functions

C18 compiler provides a large set of library functions that can be used in our programs.
These library functions can be called from anywhere in a program, and they require the
correct header files to be included at the beginning of the program. C18 manual MPLAB
C18 C Compiler Libraries by Microchip Inc. gives detailed description of each library
function.

C18 library functions are given as in the following headings:
* Hardware Peripheral Functions Library

» Software Peripheral Functions Library

* General Software Library

* Math Library

Hardware Peripheral Functions Library consists of functions for the following
peripherals:

* Analog-to-Digital (A/D)

e Input capture

* Integrated Interconnect (I*C) bus

e I/O port

* Microwire bus

e Pulse width modulation (PWM)

* Serial peripheral interface (SPI) bus

* Timer

* Universal synchronous-asynchronous receiver-transmitter (USART)

Software Peripheral Functions Library consists of functions for the following peripherals:

« LCD

* CAN bus
e I2)Chbus

e SPI bus

» UART

Programming with the MPLAB C18 Compiler 207

General Software Library consists of functions for the following general-purpose operations:
* Character classification

* Data conversion

* Memory and string manipulation

* Delay

* Reset

* Character output

Math Library consists of functions for the following:

* A 32-bit floating point math library

* C Standard library math functions

In this section, the description of some commonly used library functions are given with examples.

4.9.1 Delay Functions

These functions are used to create delays in programs. Table 4.8 gives a list of the available
C18 delay functions. The header file “delays.h” must be included at the beginning of the pro-
gram when any of these functions are used. The arguments of the functions must be an 8-bit
unsigned character, i.e., the maximum allowed number in an argument is 255.

The delays are specified in terms of instruction cycle times. For example, when using a
4-MHz clock, the instruction cycle time is 1 ps. Thus, calling function

Delay100TCYx(5)
will cause 100 X 1 X 5 = 500 us of delay in the program.

Similarly, to generate a 1-s delay when using a 4-MHz clock, we can call the function

Delay10KTCYx(100)
Table 4.8: C18 Delay Functions

Functions Descriptions

Delay1TCY Delay in one instruction cycle
Delay10TCYx Delay in multiples of 10 instruction cycles
Delay100TCYx Delay in multiples of 100 instruction cycles
Delay1KTCYx Delay in multiples of 1000 instruction cycles
Delay10KTCYx Delay in multiples of 10 000 instruction cycles

208 Chapter 4

With an 8-MHz clock, the required function to generate a 1-s delay is
Delay10KTCYx(200)

Some examples given below show the use of delay functions in programs.

m Example 4.19

An LED is connected to bit 0 of PORTB (pin RBO) of a PIC18F452 microcontroller
through a current limiting resistor as shown in Figure 4.36. Choose a suitable value for
the resistor and write a program that will flash the LED ON and OFF continuously with
1-s intervals.

Solution

LEDs can be connected to a microcontroller in two modes: current sinking mode and
current sourcing mode. In current sinking mode (see Figure 4.37), one leg of the LED
is connected to +5 V and the other leg is connected to the microcontroller output port
pin through a current limiting resistor R.

+5V
Voo LED
A R
RBO M
290
PIC18F452
o™
0SCH 0sC2
4MHz
— resonator

Figure 4.36: LED Connected to Port RBO of a PIC Microcontroller

Programming with the MPLAB C18 Compiler 209

Under normal working conditions, the voltage across an LED is approximately 2V, and
the current through the LED is approximately 10 mA (some low-power LEDs can oper-
ate at as low as 1 mA current). The maximum current that can be sourced or sinked at
the output port of a PIC microcontroller is 25 mA.

The value of the current limiting resistor R can be calculated as follows. In current sink-
ing mode, the LED will be turned ON when the output port of the microcontroller is at
logic 0, i.e., at approximately O V. The required resistor is then

5SV-2V
R = 10mA =0.3K

The nearest resistor to choose is 290 ()(a slightly higher resistor can be chosen for a
lower current and less brightness).

In current sourcing mode (see Figure 4.38), one leg of the LED is connected to the
output port of the microcontroller and the other leg is connected to ground through
a current limiting resistor. The LED will be turned ON when the output port of the

+5V

PIC LED

Figure 4.37: Connecting the LED in Current Sinking Mode

PIC LED

Figure 4.38: Connecting the LED in Current Sourcing Mode

210 Chapter 4

FLASHING AN LED

This program flashes an LED connected to port RBO of a microcontroller with one
second intervals. C18 library function Delay10KTCYx is used to create a 1 second
delay between the flashes.

A 4MHz clock is used in the project.

Programmer: Dogan Ibrahim

File: FLASH.C
Version: 1.0
Date: March, 2009
/
#include <p18f452.h>
#include <delays.h>
void main(void)
{
TRISB = 0; // Configure PORTB as output
for(; ;) // Endless loop
{
PORTB = 1; // Turn ON LED
Delay10KTCYx(100); // 1 second delay
PORTB = 0; // Turn OFF LED
Delay10KTCYx(100); // 1 second delay

Figure 4.39: Program to Flash an LED

microcontroller is at logic 1, i.e., at approximately 5 V. Both in current sinking and in
current sourcing modes, we can use the same value resistor.

The required program listing is given in Figure 4.39 (program FLASH.C). At the
beginning of the program, device-specific header file “p18f452.h” and delay header file
“delays.h” are included. Then, PORTB is configured as output using the TRISB = 0
statement. An endless loop is then formed with the for statement, and inside this
loop, the LED is turned ON and OFF with 1-s delay between each output. The
microcontroller is operated with a 4-MHz clock and thus the instruction cycle time is

1 ps. Function Delay10KTCYx is called as described earlier with an argument of 100 to
generate a 1-s delay.

The program given in Figure 4.39 can be made more user friendly and easier to follow
using defined statements as shown in Figure 4.40 (program FLASH2.C).
L |

Programming with the MPLAB C18 Compiler 211

FLASHING AN LED

This program flashes an LED connected to port RBO of a microcontroller
with one second intervals. C18 library function Delay10KTCYx is used to
create a 1 second delay between the flashes.

Programmer: Dogan Ibrahim

File: FLASH2.C
Version: 1.0
Date: March, 2009
/
#include <p18f452.h>
#include <delays.h>
#define LED PORTBbits.RBO
#define ON 1
#define OFF O
#define One_Second_Delay Delay10KTCYx(100)
void main(void)
{
TRISB = 0; // Configure PORT B as output
for(; ;) // Endless loop
{
LED = ON; // Turn ON LED
One_Second_Delay; // 1 second delay
LED = OFF; // Turn OFF LED
One_Second_Delay; // 1 second delay

Figure 4.40: Another Program to Flash an LED

Table 4.9: Some Character Classification Functions

Functions Descriptions
isalnum Determines if a character is alphanumeric
isalpha Determines if a character is alphabetic
isdigit Determines if a character is a decimal digit
islower Determines if a character is lowercase
isupper Determines if a character is uppercase

4.9.2 Character Classification Functions

These functions can be used to test the nature of characters. Table 4.9 shows some of the
functions in this library. The header file “ctype.h” must be included at the beginning of the
program whenever one of these functions is used.

212 Chapter 4

An example is given below showing the use of character classification functions in programs.

m Example 4.20

An LED is connected to bit 0 of PORTB (pin RB0O) of a PIC18F452 microcontroller through
a current limiting resistor as shown in Figure 4.36. Write a program that will turn the LED
ON if variable called mode contains an uppercase character, otherwise turn the LED OFF.

Solution

The program listing is shown in Figure 4.41. In this example, variable mode is set to

a lowercase character and therefore the LED will be in OFF state when the program

is run. The program uses library function isupper to determine whether or not the
character in variable mode is uppercase.

L |

LED CONTROL

This program turns the LED ON if the character in variable mode is an upper case
character, otherwise the LED is turned OFF.

The LED is assumed to be connected to port RBO of the microcontroller and A
4MHz clock is used in the project.

fC18 library function isupper is used to determine whether or not the character is
upper case.

Programmer: Dogan Ibrahim

File: LED.C
Version: 1.0
Date: March, 2009

#include <p18f452.h>
#include <ctype.h>

void main(void)

{

unsigned char mode = 'a’; // mode lower case
TRISB = 0; // Configure PORT B as output
ifisupper(mode))
PORTB = 1; // Turn ON LED
else
PORTB = 0; // Turn OFF LED
while(1); // wait here forever

Figure 4.41: Program for the Example 4.20

Programming with the MPLAB C18 Compiler 213

Table 4.10: Some Data Conversion Functions

Functions Descriptions
atoi Converts a string into a 16-bit signed integer
atol Converts a string into a long integer
itoa Converts a 16-bit signed integer into a string
tolower Converts a character to lowercase
toupper Converts a character to uppercase

4.9.3 Data Conversion Functions

These functions can be used to convert one type of data into another type. Table 4.10 shows
some of the functions in this library. The header file “stdlib.h” or “ctype.h” must be included
at the beginning of the program whenever one of these functions is used.

An example is given below showing the use of data conversion functions in programs.

m Example 4.21

A character array named my_str contains five lowercase ASCII characters. Write a
program that will convert all the characters in this array into uppercase.

Solution

The program listing is shown in Figure 4.42. In this example, data conversion function
toupper is used to convert the characters to uppercase. Notice that the header file
“ctype.h” is included at the beginning of the program.

4.9.4 Memory and String Manipulation Functions

These functions can be used to search for a given value in the memory, to compare two
arrays, to compare two strings, initialize an array, determine the length of a string, and
so on. Table 4.11 shows some of the functions in this library. The header file “string.h”
must be included at the beginning of the program whenever one of these functions is
used.

An example is given below showing the use of memory and string manipulation functions in
programs.

214 Chapter 4

UPPER CASE

This program converts the 5 characters in array my_str into upper case.
C18 library function toupper is used in the program.

Programmer: Dogan Ibrahim
File: UPPER.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <ctype.h>

void main(void)

{

unsigned char my_str5] = {'a','s','e",'r",'w'};
unsigned char k;

for(k = 0; k < 5; k++)my_str[k] = toupper(my_strik]);

while(1); // wait here forever

Figure 4.42: Program for Example 4.21

Table 4.11: Some Data Conversion Functions

Functions Descriptions

memcmp Compares the contents of two arrays

memset Initializes an array with a repeated value

strchr Locates the first occurrence of a value in a string

strlen Determines the length of a string

strstr Locates the first occurrence of a string inside another string

strupr Coverts all characters in a string to uppercase

m Example 4.22

A string named my_str contains various lowercase and uppercase ASCII characters.
Write a program that will convert all the characters in this array into uppercase.

Solution

The program listing is shown in Figure 4.43. In this example, string manipulation func-
tion strupr is used to convert the characters to uppercase. Notice that the header file
“string.h” is included at the beginning of the program.

L |

Programming with the MPLAB C18 Compiler 215

UPPER CASE

This program converts the characters in string my_str into upper case.

C18 library function strupr is used in the program.

Programmer: Dogan Ibrahim
File: UPPER.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <string.h>

void main(void)

{
char my_str[] = "MyString"; // Declare string my_str
strupr(my_str); // my_str = "MYSTRING"

while(1); // Wait here forever

Figure 4.43: Program for the Example 4.22

m Example 4.23

Write a program to find the length of a string called my_str and store it in a character
variable called slen.

Solution

The program listing is shown in Figure 4.44. In this example, function strlen is used
to find the length of the string. The string is “MyString” and thus slen is assigned
number 8.

m Example 4.24

Assume that a string called First contains data “PIC” and another string called
Second contains data “Microcontroller.” Write a program to append string Second
to string First. Thus, at the end of the operation, string First will have data “PIC
Microcontroller” and string Second will not change, i.e., it will have the data
“Microcontroller.”

216 Chapter 4

STRING LENGTH

This program finds the length of string my_str and stores in variable slen.
String my_str is loaded with "MyString", having 8 characters and thus
Variable slen will be set to 8.

C18 library function strlen is used in the program.

Programmer: Dogan Ibrahim
File: LEN.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <string.h>

void main(void)

{
char my_str[] = "MyString"; // Declare string my_str

unsigned char slen;
slen = strlen(my_str); // Length of the string

while(1); // Wait here forever

Figure 4.44: Program for the Example 4.23

Solution

The program listing is shown in Figure 4.45. In this example, function strcat is used to
append one string to another string. You should make sure that the destination string
(First) is large enough to hold the source string (Second).

4.9.5 Reset Functions

These functions are used to determine the cause of reset or wake up in a program. Table 4.12
shows some of the functions in this library. The header file “reset.h” must be included at the
beginning of the program whenever one of these functions is used.

An example is given below showing the use of reset functions in programs.

Programming with the MPLAB C18 Compiler 217

STRING APPEND

String First is loaded with "PIC" and string Second is loaded with
"Microcontroller". The program appends string Second to string First so that First
contains the characters "PIC Microcontroller". String Second does not change.

C18 library function strcat is used in the program.

Programmer: Dogan Ibrahim

File: StrLen.C
Version: 1.0
Date: March, 2009
/
#include <p18f452.h>
#include <string.h>
void main(void)
{
char First[20] = "PIC *; // String First
char Second[] = "Microcontroller"; // String Second
strcat(First, Second); // Append strings
while(1); // Wait here forever

Figure 4.45: Program for the Example 4.24

Table 4.12: Some Reset Functions

Functions Descriptions
isMCLR If the cause of reset was MCLR
isPOR If the cause of reset was power-on reset
isWDTTO | Ifthe cause of reset was the watchdog timeout

m Example 4.25

Write a program to determine the cause of reset in a program. If the cause of reset is
Master Clear (MCLR) input or power-on reset, then load variable Rst with 1, otherwise
load Rst with 0.

Solution

The program listing is shown in Figure 4.46.
L [|

218 Chapter 4

This program determines the cause of reset in a program.

If the cause of Reset is MCLR or Power-on-reset then load variable Rst with 1,
otherwise load Rst with O.

C18 library functions is MCLR and isPOR are used in the program.

Programmer: Dogan lbrahim

File: Reset.C
Version: 1.0
Date: March, 2009
/
#include <p18f452.h>
#include <reset.h>
void main(void)
{
unsigned char Rst;
ifisMCLR || isPOR) // Cause MCLR or Power-on-reset ?
Rst = 1; // Load Rst with 1
else
Rst = 0; // Load Rst with 0
while(1); // Wait here forever

Figure 4.46: Program for the Example 4.25

Table 4.13: Some Character Output Functions

Functions Descriptions
printf Formatted output to stdout
putc Character output to a string
puts String output to stdout
sprintf Formatted string output to a data memory buffer
_usart_putc Single character output to USART

4.9.6 Character Output Functions

These functions are used to process the output to various peripheral devices. Table 4.13 shows
some of the functions in this library. The header file “stdio.h” must be included at the begin-
ning of the program whenever one of these functions is used. Note that the data is sent to the

Programming with the MPLAB C18 Compiler 219

device defined by the standard output stdout. The stdout is defined, by default, as the device
_H_USART, which is the USART.

Some examples are given below to show the use of character output functions.

m Example 4.26

Write a program to send the message “My Microcontroller” to the USART device of a
PIC18F452 microcontroller.

Solution

The program listing is shown in Figure 4.47. Function printf is used to send the string
to USART. This function can have a large number of arguments to format the data.
Some of the commonly used formatting arguments are as follows:

%c character

%d integer number

%0 octal number

%u unsigned integer number
%b binary number

%x hexadecimal number
%s string

%f floating point number

m Example 4.27

Write a program to count up in decimal from 0 to 10 and send the output to the
USART in the following format:

Number = nn,

where nn is the number 0-10

Solution

The program listing is shown in Figure 4.48. Function printf is used to send the string
to USART with the argument “%d.” Note that a new-line character “\n” is used at the
end of each output.

220 Chapter 4

Character Output

This program sends the message "My Microcontroller" to the standard
output device of the microcontroller, which is the USART.

C18 library function printf is used in the program.

Programmer: Dogan lbrahim
File: Cout.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <stdio.h>

void main(void)
{

printf("My Microcontroller");

while(1); // Wait here forever

Figure 4.47: Program for Example 4.26

Character Output

This program counts up from 00 to 10 and sends the result to
USART in the Following format:

Number = nn
C18 library function printf is used in the program.

Programmer: Dogan Ibrahim

File: Count.C
Version: 1.0
Date: March, 2009

#include <p18f452.h>
#include <stdio.h>

void main(void)
{
unsigned char cnt;

for(cnt=0; cnt <= 10; cnt++) printf("Number = %d\n", cnt);

while(1); // Wait here forever

Figure 4.48: Program for the Example 4.27

Programming with the MPLAB C18 Compiler 221

If the debugger UART window is enabled (Debugger -> Settings -> Uart 10 -> Enable
Uart 10 -> Window), then the following text will be displayed in the I/O panel:

Number = 0
Number = 1
Number = 2
Number = 3
Number = 4
Number =5
Number = 6
Number = 7
Number = 8
Number =9
Number = 10

m Example 4.28

Write a program to count up in decimal from 0 to 20 and send the output to USART in
the following hexadecimal format:

Number = nn,

where nn is the number 0-0x14

Solution

The program listing is shown in Figure 4.49. Function printf is used to send the string
to USART with the argument “%d.” Note that a new-line character “\n” is used at the
end of each output.

If the debugger UART window is enabled then the following text will be displayed in the
I/O panel:

Number = 0
Number = 1
Number = 2
Number = 3
Number = 4
Number = 5
Number = 6
Number =7

222 Chapter 4

Number = 8
Number = 9
Number = a
Number = b
Number = ¢
Number =d
Number = e
Number = f

4.9.7 Math Library Functions

These are trigonometric, logarithmic, and power functions. Table 4.14 shows some of the
functions in this library. The header file “math.h” must be included at the beginning of every
program using these functions.

Character Output

This program counts up from 0 to 120 and sends the result to
USART in the following hexadecimal format:

Number = nn
Where nn is O to 0x14.

C18 library function printf is used in the program.

Programmer: Dogan Ibrahim

File: HexCount.C
Version: 1.0
Date: March, 2009

#include <p18f452.h>
#include <stdio.h>

void main(void)
{
unsigned char cnt;

for(cnt=0; cnt <= 20; cnt++) printf("Number = %x\n", cnt);

while(1); // Wait here forever

Figure 4.49: Program for Example 4.28

Programming with the MPLAB C18 Compiler 223

Table 4.14: Some Math Library Functions

Functions Descriptions

sin Trigonometric sine

cos Trigonometric cosine

tan Trigonometric tangent
asin Trigonometric inverse of sine
acos Trigonometric inverse of cosine
cosh Hyperbolic cosh

log Natural logarithm

exp Exponential factor

Some examples are given below to show how these functions can be used in programs.

m Example 4.29

Write a program to calculate the trigonometric sine of 30° and store the result in a
variable called angle.

Solution

The program listing is shown in Figure 4.50. It is important to note that the angles
must be represented in radians and not in degrees. To convert degrees into radians, we
can multiply the angle with T (3.14159) and divide by 180. The answer 0.5 is stored in

variable angle.
|

m Example 4.30

Write a program to calculate the squares of numbers from 0 to 10 and send the result
to USART as a table in the following format:

224 Chapter 4

Trigonometric Sine

This program calculates the trigonometric sine of 30 degrees and stores
the Result in variable called angle.

C18 library function sin is used in the program.

Programmer: Dogan Ibrahim
File: Sine.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <math.h>

void main(void)
{
float angle;
float Pi = 3.14159; // Pi
float Conv = 3.14159 / 180.0; // Conversion factor

angle = sin(30.0 * Conv); // angle 0.5

while(1); // Wait here forever

Figure 4.50: Program for the Example 4.29

Solution

The program listing is shown in Figure 4.51. Function pow is used in a for loop with
arguments (k, 2.0) so that the squares of numbers k are calculated. The numbers are
sent to USART in a table format using the printf function. Notice that both “stdio.h”
and “math.h” header files are included at the beginning of the program.

The USART data can be displayed by enabling the USART in the debugger. The data
will be displayed as shown below:

0 0
1 1

2 4
3 9

4 16
§) 25
6 36

Programming with the MPLAB C18 Compiler 225

49
8 64
9 81
10 100

4.9.8 LCD Functions

All microcontrollers lack some kind of video display. A video display would make a microcon-
troller much more user friendly as it will enable text messages, graphics, and numeric values to be
output in a more versatile manner than the seven-segment displays, LEDs, or alphanumeric dis-
plays. Standard video displays require complex interfaces and their cost is relatively high. LCDs
are alphanumeric (or graphical) displays, which are frequently used in microcontroller-based

Squares of Numbers

This program calculates the squares of integer numbers from 0 to 10
and sends the results to USART in a table form.

C18 library function pow and printf are used in the program.

Programmer: Dogan Ibrahim
File: Powers.C
Version: 1.0

Date: March, 2009

#include <p18f452.h>
#include <math.h>
#include <stdio.h>

void main(void)

{

unsigned char k;
unsigned int Number;

for(k = 0; k<= 10; k++)
{

Number = pow(k , 2.0);

printf("%d %d\n", k, Number);
}

while(1); // Wait here forever

Figure 4.51: Program for the Example 4.30

226 Chapter 4

applications. These display devices come in different shapes and sizes. Some LCDs have 40 or
more character lengths with the capability to display several lines. Some other LCD displays can
be programmed to display graphic images. Some modules offer color displays, while some others
incorporate back lighting so that they can be viewed in dimly lit conditions.

There are basically two types of LCDs as far as the interfacing technique is concerned:
parallel LCDs and serial LCDs. Parallel LCDs (e.g., Hitachi HD44780 series) are connected
to the microcontroller circuitry such that data is transferred to the LCD using more than one
line, and usually, four or eight data lines are used. Serial LCD is connected to a microcon-
troller using one data line only and data is transferred using the RS232 asynchronous data
communications protocol. Serial LCDs are generally much easier to use, but they are more
costly than the parallel ones. In this book, only the parallel LCDs will be considered, as they
are cheaper and are used more commonly in microcontroller-based projects.

Low-level programming of a parallel LCD is usually a complex task and requires a good
understanding of the internal operation of the LCD, including an understanding of the timing
diagrams. Fortunately, C18 language provides library functions for text-based LCDs, which
simplify the use of external LCDs in PIC microcontroller-based projects.

HD44780 controller is commonly used in parallel LCD-based microcontroller applications.
A brief description of this controller and information on some commercially available LCD
modules is given below.

HD44780 LCD Controller

HD44780 is one of the most popular LCD controllers used in many LCD modules in indus-
trial and commercial applications and also by hobbyists. The module is monochrome and
comes in different shapes and sizes. Modules with character lengths of 8, 16, 20, 24, 32, and
40 can be selected. Depending on the model chosen, the display provides a 14-pin or a 16-pin
connector to interface to the external world. Table 4.15 shows the pin configuration and pin
functions of a typical 14-pin LCD.

Vs is the OV supply or ground. V,;, pin should be connected to the positive supply. Although
the manufacturers specify a 5-V DC supply, the modules will usually work with as low as 3V
or as high as 6'V.

Pin 3 is named as Vg, and this is the contrast control pin. This pin is used to adjust the con-
trast of the display and it should be connected to a DC supply. A potentiometer is usually
connected to the power supply with its wiper arm connected to this pin and the other leg of
the potentiometer connected to the ground. This way, the voltage at the Vi pin and hence the
contrast of the display can be adjusted as desired.

Pin 4 is the Register Select (RS), and when this pin is LOW, data transferred to the LCD is treated
as commands. When RS is HIGH, character data can be transferred to and from the module.

Programming with the MPLAB C18 Compiler 227

Table 4.15: Pin Configuration of the HD44780 LCD Module

Pin Nos Names Functions
1 Vs Ground
2 Voo +ve supply
3 Vee Contrast
4 RS Register select
5 R/W Read/write
6 EN Enable
7 DO Data bit 0
8 D1 Data bit 1
9 D2 Data bit 2
10 D3 Data bit 3
11 D4 Data bit 4
12 D5 Data bit 5
13 D6 Data bit 6
14 D7 Data bit 7

Pin 5 is the Read/Write (R/W) pin. This pin is pulled LOW to write commands or character
data to the LCD module. When this pin is HIGH, character data or status information can be
read from the module.

Pin 6 is the Enable (EN) pin that is used to initiate the transfer of commands or data between
the module and the microcontroller. When writing to the display, data is transferred only on
the HIGH to LOW transition of this pin. When reading from the display, data becomes avail-
able after the LOW to HIGH transition of the enable pin, and this data remains valid as long
as the enable pin is at logic HIGH.

Pins 7-14 are the eight data bus lines (D0O-D7). Data can be transferred between the micro-
controller and the LCD module either using a single, 8-bit byte or as two, 4-bit nibbles. In the
latter case, only the upper four data lines (D4-D7) are used. The 4-bit mode has the advan-
tage that fewer I/O lines are required to communicate with the LCD.

C18 LCD library provides large number of functions to control text-based LCDs with 4-bit
and 8-bit data interface. Four-bit interface-based text LCDs are the most commonly used
LCDs, and this section describes the important C18 functions to control and send data to
these LCDs. Further information on other LCD functions can be obtained from the manual
MPLAB C18 C Compiler Libraries.

Table 4.16 gives a list of the commonly used LCD functions available for 4-bit interface
text-based LCDs. Note that the header file “xlcd.h” must be included at the beginning of a
program when any of these functions are used.

228 Chapter 4

Table 4.16: Commonly Used LCD Functions

Functions Descriptions

BusyXLCD Checks if the LCD controller is busy

OpenXLCD Configures 1/O port lines for the LCD and initializes

putcXLCD Writes a byte of data to the LCD

putsXLCD Writes a string from data memory to the LCD

putrsXLCD Writes a string from program memory to the LCD
WriteCmdXLCD Writes a command to the LCD

The LCD library requires that the following delay functions be defined by the user before
using the LCD functions:

DelayFor18TCY Delay for 18 cycles
DelayPORXLCD Delay for 15ms
DelayXLCD Delay for 5ms

Assuming a microcontroller clock frequency of 4 MHz, the instruction cycle time is 1 s.
With a clock frequency of 8 MHz, the instruction cycle time is 0.5 ys. Figure 4.52 shows
how the above delay functions could approximately be obtained for both 4 and 8-MHz clock
frequencies. The 18-cycle delay is obtained using no operation (NOP) statements, where
each NOP operation takes one cycle to execute. The end of a function with no “return”
statement takes two cycles. When a “return” statement is used, a BRA statement branches

to the end of the function where a RETURN O is executed to return from the function, thus
adding two more cycles. For example, the following function takes four cycles to execute:

void test(void)

{

nop(); :1 cycle
nop(); :1 cycle
} ; RETURN 0, takes 2 cycles

and the following function takes six cycles to execute:

void test(void)

{

nop(); ; 1 cycle
nop(); ; 1 cycle
return; ; BRAX, 2 cycles
} ; Xi RETURN O, 2 cycles

A brief description of the C18 LCD functions is given below.
BusyXLCD

This function checks to determine whether or not the LCD controller is busy, and data or
commands should not be sent to the LCD if the controller is busy. The function returns 1 if

Programming with the MPLAB C18 Compiler

229

4MHz Clock
#include<delays.h>

void DelayFor18TCY(void)
{

return;

void DelayPORXLCD(void)
{

}

Delay1KTCYx(15);

void DelayXLCD(void)
{

}

Delay1KTCYx(5);

8MHz Clock
#include <delays.h>

void Delayfor18TCY/(void)
{

return;

void DelayPORXLCD(void)
{

}

Delay1KTCYx(30);

void DelayXLCD(void)
{

}

Delay1KTCYx(10);

// 18 cycle delay

// 15ms delay

// 5ms delay

// 18 cycle delay

// 15ms delay

// 5ms delay

Figure 4.52: LCD Delay Functions for 4-MHz and 8-MHz Clock

230 Chapter 4

the controller is busy or 0 if it is otherwise. The program can be forced to wait until the LCD
controller is ready using the following statement:

while(BusyXLCD());

OpenXLCD

This function is used to configure the interface between the microcontroller I/O ports and the
LCD pins. The function requires an argument to specify the interface mode (4 or 8 bit), the
LCD character mode, and the number of lines used. A value should be selected and logically
AND ed from the following two groups:

FOUR_BIT
EIGHT_BIT

LINE_5 x7
LINE_5x 10
LINES_5 x 7

For example, if we are using a four-wire connection with an LCD having a single row with
5 x 7 characters, then the function should be initialized as follows:

OpenXLCD(FOUR_BIT & LINE_5 x 7);

The actual physical connection between the LCD and microcontroller I/O ports is defined
in file “xled.h,” and the default settings use PORTB pins in 4-bit mode where the low

4 bits of the port (RB0O-RB3) are connected to the upper data lines (D4-D7) of the LCD
(see the manual MPLAB C18 C Compiler Libraries for more information on the default
connection):

LCD Pins | Microcontroller Pins

E RB4
RS RBS
RW RB6
D4 RBO
DS RB1
D6 RB2
D7 RB3

Figure 4.53 shows the default connection between a PIC18F452 microcontroller and
an LCD.

Programming with the MPLAB C18 Compiler 231

putcXLCD

This function is used to write a byte to the LCD. The byte is passed as an argument to the
function. In the following example, character “A” is displayed on the LCD:

unsigned char x = 'A%
putcXLCD(x);

putsXLCD

This function writes a string of characters from the data memory to the LCD. The writing
stops when a NULL character is detected. An example use of this function is given
below:

putsXLCD("My Computer");
putrsXLCD

This function writes a string of characters from the program memory to the LCD. The writing
stops when a NULL character is detected. An example use of this function is given
below:

char txt[] = "My text";
putrsXLCD(txt);

+5V

11132

10K 1 Vdd
Reset [:[I MCLR 2| 3 -
VDD VEE
39 5

= RB6 R/W
RB5 [28__4Rs

RrB4 PLSlE
LCD

33 11
RBO D4
PIC g+ 34 12 D5

18F452 RB2 35 13 D6

RrB3 [28 14 p7 vss

il

12
31| Vss
osci 0SC2
— 13 ol 14
)

22nFT 4 MHz I 22nF

Figure 4.53: Default Connections of an LCD to the Microcontroller

232 Chapter 4

WriteCmdXLCD

This function sends a command to the LCD. The following commands can be specified in the

command argument:
DOFF
CURSOR_OFF
BLINK_ON
BLINK_OFF
SHIFT_CUR_LEFT
SHIFT_CUR_RIGHT
SHIFT_DISP_LEFT
SHIFT_DISP_RIGHT

In addition, the LCD control functions given in Table 4.17 can be specified in the argument to

control the LCD.

This command can also be used to set the LCD display characteristics using the following

arguments as bitwise AND:

FOUR_BIT -
EIGHT_BIT -

Turns display off

Enables display, hide cursor
Enables cursor blinking
Disables cursor blinking
Shifts cursor left

Shifts cursor right

Shifts display to the left
Shifts display to the right

4-bit data interface
8-bit data interface

Table 4.17: LCD Functions

Commands

Operations

0x1

Clears display

0x2

Moves cursor home

0x0C

Turns the cursor off

0x0E

Underlines the cursor on

0xOF

Blinking cursor on

0x10

Moves the cursor left one position

0x14

Moves the cursor right one position

0x80

Moves the cursor to the beginning of first row

0xCO0

Moves the cursor to the beginning of second row

0x94

Moves the cursor to the beginning of third row

0xD4

Moves the cursor to the beginning of fourth row

Programming with the MPLAB C18 Compiler 233

LINE_5 x7 - 5 x 7 character mode
LINE_5 x 10 - 5 x 10 character mode
LINES_5x7 - 5 x 7 multiple line display

It is important that the LCD controller should not be busy (check with function BusyXLCD)
when commands are sent to it. Some example commands are given below:

WriteCmdXL CD(EIGHT_BIT & LINE_5X7); // 8 bit, 5 x 7 character
WriteCmdXLCD(BLINK_ON); // Blink ON
WriteCmdXLCD(1); // Clear LCD

A complete example is given below, which illustrates how the LCD can be initialized and used.

m Example 4.31

A text-based LCD is connected to a PIC18F452 microcontroller in the default mode as
shown in Figure 4.53. Write a program to clear the LCD and then send the text “My
Computer” to the LCD.

Solution

The required program listing is given in Figure 4.54. The message to be displayed is
stored in the character array msg. At the beginning of the program, PORTB is con-
figured as output with the TRISB = 0 statement. The LCD is then initialized, display
cleared, and the text message “My Computer” is displayed on the LCD. Notice that the
LCD is cleared by sending command 1 to the LCD controller.

L |

Modifying the Default Configuration

It may sometimes be required to use different ports for the LCD. In this section, an example
is given to show how the default port configuration can be modified.

m Example 4.32

A text-based LCD is connected to a PIC18F452 microcontroller as shown in

Figure 4.55. Show how the default configuration can be modified and write a program
to count on the LCD from 0 to 99 with a delay of 1s between each count. The display
should be as follows:

NO = nn,

where nn is from 0 to 99.

234 Chapter 4

Assume that a PIC18F452 microcontroller is used in the design with a 4-MHz clock.

Solution

The required pin configuration is as follows:

Microcontroller Port LCD Pin
RCO D4
RC1 D5
RC2 D6
RC3 D7
RC4 E
RCS5 RS
RC6 RW
LCD MESSAGE

This program displays the message "My Computer" on the LCD. A PIC18F452 microcontroller is used in
the design and the LCD is connected in the default mode. i.e. the connections between the LCD and the
microcontroller are as follows:

RBO - D4
RB1 - D56
RB2 - D6
RB3 - D7
RB4 -E

RB5 - RS
RB6 - RW

The LCD is operated in 4-bit mode with 5x7 character font.

A 4MHz crystal is used in the design.

File: LCD1.C
Version: V1.0

Author: Dogan Ibrahim
Date: April, 2009

Figure 4.54: LCD Program Listing

Programming with the MPLAB C18 Compiler 235

#include <p18f452.h>
#include <xlcd.h>
#include <delays.h>

#pragma config WDT = OFF
#pragma config OSC = XT

/!

// Defines

/]

#define CLR_LCD 1
#define HOME_LCD 2

//

// LCD Delays

/!

void DelayFor18TCY(void)
{

Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop()
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();

void DelayPORXLCD(void)
{

}

Delay1KTCYx(15);

void DelayXLCD(void)
{

}

Delay1KTCYx(5);

/* Start of MAIN program

void main(void)

{

char msg[] = "My Computer";

OpenXLCD(FOUR_BIT & LINE_5X7);
WriteCmdXLCD(CLR_LCD);
while(BusyXLCD());
WriteCmdXLCD(HOME_LCD);
while(BusyXLCD());

putsXLCD(msg);

while(1);

// 18 cycle delay

// 15ms delay

// 5ms delay

*/

// 8 bit,5x7 character
// Clear LCD

// Home cursor

// Write data

Figure 4.54: Cont’d

236 Chapter 4

+5V

11132

10K 1 Vdd T
Reset [:]] MCLR 2| 3 i
O VDD VEE
25 5

= RC6 R/W
RCS5 gg g RS
E
PIC iod [RE LCD
RCO D4
18F452 Rcq 16 12/ pg

RC2 1;]2 D6
RC3 D7 VSS

il

12
31| Vss
0OSC1 0SC2
13 Tl 14
1

22nFji 4 MHz I 22nF

Figure 4.55: Circuit Diagram for the Example 4.32

The first step is to modify the LCD configuration file xlcd.h. The steps are given below:

* Copy file xlcd.h to xlcd_default.h in directory C:\MCC18\h. The default LCD library
is named as xlcd_default and is available if required.

* Modify the following lines in file xlcd.h to reflect the required interface between the
microcontroller and the LCD:

#define DATA_PORT PORTC
#define TRIS_DATA_PORT TRISC

#define RW_PIN LATCbits.LATC6 /* PORT for RW */
#define TRIS_RW TRISCbits. TRISC6 /* TRIS for RW */
#define RS_PIN LATCbits.LATC5 /* PORT for RS */
#define TRIS_RS TRISCbits. TRISC5 /* TRIS for RS */
#define E_PIN LATCbits.LATC4 /* PORT for D */
#define TRIS_E TRISCbits. TRISC4 /*TRIS for E*/

¢ Start a command session. Start -> Run -> Cmd

* Go to directory C:\MCC18\src\

Programming with the MPLAB C18 Compiler 237

* Enter the command make_one_subsystem_t 18f452 XLCD to rebuild the LCD
library for the PIC18F452 microcontroller

* Wait until the new device library is built incorporating the modifications

The required program listing is shown in Figure 4.56. In addition to the standard LCD delay
functions, a delay function called wait_a_sec is created to delay for 1s. Inside the main pro-
gram, the LCD is initialized and then a for loop is entered with variable cnt to count from

0 to 99. Inside this for loop, the LCD is cleared, cursor is set to home position, and the
value of variable cnt is converted into a string using function itoa and then displayed on the
LCD using function putsXLCD. The for loop is executed 100 times with a 1-s delay between
each iteration. Thus, the display counts up from 0 to 99 as shown below:

NO =0
NO =1
NO =2
NO =99

LCD COUNTER

This program counts up from 0 to 99 and displays on the LCD as:
NO =nn
Where nn is 0 to 99.

A PIC18F452 microcontroller is used in the design and the LCD is
connected to PORTC of the microcontroller as follows:

RCO - D4
RC1 -D5
RC2 - D6
RC3 - D7
RC4 -E

RC5 -RS
RC6 - RW

File XLCD.h is modified to reflect the new connection and then the
PIC18F452 library file is rebuilt for the new changes to take effect.

The LCD is operated in 4-bit mode with 5x7 character font.

A 4MHz crystal is used in the design.

Figure 4.56: Program Listing for the Example 4.32

238 Chapter 4

File: LCD2.C
Version: V1.0

Author: Dogan Ibrahim
Date: April, 2009

#include <p18f4520.h>
#include <xlcd.h>
#include <delays.h>
#include <stdlib.h>

#pragma config WDT = OFF
#pragma config OSC = XT

//

// Defines

//

#define CLR_LCD 1
#define HOME_LCD 2

//
// LCD Delays

//
void DelayFor18TCY/(void)

void DelayPORXLCD(void)

Delay1KTCYx(15);
}

void DelayXLCD(void)

Delay1KTCYx(5);
}

void wait_a_sec(void)

{
}

Delay10KTCYx(100);

//

// Start of MAIN program
//

void main(void)

{

Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();

return;

// 18 cycle delay

// 15ms delay

// 5ms delay

// 1 sec delay

Figure 4.56:

Cont’d

Programming with the MPLAB C18 Compiler 239

charmsg[]="No= "

int cnt;

TRISC = 0;

OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit,5x7 character

for(cnt = 0; cnt < 100; cnt++) // Do 100 times

{
WriteCmdXLCD(CLR_LCD); // Clear LCD
while(BusyXLCD());
WriteCmdXLCD(HOME_LCD); // Home cursor
while(BusyXLCD());
itoa(cnt, msg+5); // Convert to string
putsXLCD(msg); // Display data
wait_a_sec(); // Wait 1 second

}

while(1);

}

Figure 4.56: Cont’d

4.9.9 Software CAN2510 Functions

These functions implement the CAN bus functions for the MCP2510. This is a specialized field
and more information can be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.10 Software I’C Bus Functions

These functions are used to implement the I*’C bus functions. More information can be
obtained from the document MPLAB C18 C Compiler Libraries.

4.9.11 Software SPI Bus Functions

These functions are used to implement the SPI bus functions. More information can be
obtained from the document MPLAB C18 C Compiler Libraries.

4.9.12 Software UART Functions

These functions implement RS232-based serial communication using software functions.
Because the serial communication is an important topic in the microcontroller field,
more details will be given about the serial communication in general and the use of this
library.

240 Chapter 4

UART functions are used for RS232-based serial communication between two electronic
devices. In serial communication, only two cables (plus a ground cable) are required to
transfer data in either direction. Data is sent in serial format over the cable bit by bit. Nor-
mally, the receiving device is in idle mode with its transmit (TX) pin at logic 1, also known
as MARK. Data transmission starts when this pin goes to logic 0, also known as SPACE. The
first bit sent is the start bit at logic 0. Following this bit, 7 or 8 data bits are sent followed by
an optional parity bit. The last bit sent is the stop bit at logic 1. Serial data is usually sent as
a 10-bit frame consisting of a start bit, 8 data bits, a stop bit, and no parity bits. Figure 4.57
shows how character “A” can be sent using serial communication. Character “A” has the
ASCII bit pattern “01000001.” As shown in the figure, first the start bit is sent, followed by

8 data bits “01000001,” and finally the stop bit is sent.

The bit timing is very important in serial communication, and both the transmitting (TX) and
receiving (RX) devices must have the same bit timings. The bit timing is measured by the
baud rate, which specifies the number of bits transmitted or received each second. Typical
baud rates are 4800, 9600, 19 200, 38 400, and so on. For example, when operating at a baud
rate of 9600 with a frame size of 10 bits, 960 characters are transmitted or received each
second. The timing between each bit is then approximately 104 ms.

In RS232-based serial communication, the two devices are connected to each other (see
Figure 4.58) using either a 25-way connector or a 9-way connector. Normally, only the TX,
RX, and GND pins are required for communication. The required pins for both types of
connectors are given in Table 4.18.

The voltage levels specified by the RS232 protocol are £12 V. A logic HIGH signal is at
—12V and a logic LOW signal is at +12 V. On the other hand, PIC microcontrollers normally
operate at 0—5-V voltage levels, and it is required to convert the RS232 signals to 0-5 V when
input to a microcontroller. Similarly, the output of the microcontroller must be converted to
+12-V voltage level before sending to the receiving RS232 device. The voltage conversion

Idle 1 1 Stop

A

A 4

Start
Figure 4.57: Sending Character “A” in Serial Communication

bl 4 SV I 2 o2 o =2 el

Figure 4.58: 25-way and 9-way RS232 Connectors

Programming with the MPLAB C18 Compiler 241

Table 4.18: Pins Required for Serial Communication

Pins 9-Way Connectors 25-Way Connectors
D¢ 2 2
RX 3 3

GND 5 7

Table 4.19: C18 Software UART Functions

Functions Descriptions
OpenUART Configures the UART 1/O pins
ReadUART Reads a byte from software UART
WriteUART Writes a byte to software UART
putsUART Writes a string to software UART

is usually carried out using RS232 converter chips, such as the MAX232, manufactured by
Maxim Inc.

Serial communication is either implemented in the hardware using a specific pin of a micro-
controller or the required signals can be generated in the software from any required pin of
a microcontroller. Hardware implementation requires either an on-chip UART (or USART)
circuit or an external UART chip to be connected to the microcontroller. On the other hand,
software-based UART is more commonly used and it does not require any special circuits.
Serial data is generated by delay loops in the software-based UART applications. In this
section, only the software-based UART functions will be described.

C18 compiler supports the software UART functions shown in Table 4.19. The header file “sw_
uart.h” must be included at the beginning of a program using the software UART functions.

A brief description of the C18 software UART functions is given below.
OpenUART

This function configures the I/O pins for the software UART. The default pin configuration is
as follows:

* TX pin — port pin RB4
* RX pin - port pin RB5
The above UART pin configurations can be modified by redefining the “equ” statements in

files “writuart.asm?2,” “readuart.asm,” and “openuart.asm” found in directory “c:\MCC18\src\
traditional\pmc_common\sw_uart.”

242 Chapter 4

It is required that the following functions be defined by the user to provide the appropriate
delay functions for the software UART library:

DelayTXBitUART — delayfor[(2 * f)/(4 * baud) + 1]/2 — 12cycles
DelayRXHalfBitUART — delayfor[(2 * f)/(8 * baud) + 1]/2 — 9cycles
DelayRXBitUART — delayfor[(2 * f)/(4 * baud) + 1]/2 — 14cycles

As an example, using a clock frequency of 4 MHz and assuming the required baud rate to be
2400, the needed delays are as follows:

DelayTXBitUART = [(2 # 4 x 10°)/(4 * 2400) + 11/2 — 12 = 405cycles
DelayRXHalfBitUART = [(2 * 4 x 10°/(8 * 2400) + 1]/2 — 9 = 199 cycles
DelayRXBitUART = [(2 * 4 x 109/(4 * 2400) + 1]/2 — 14 = 403 cycles
Figure 4.59 shows how the required delays can be obtained for the above example.
ReadUART

This function reads a byte from the software UART. An example is given below:

char z;
z = ReadUART(); // Read a byte from UART

WriteUART

This function sends a byte to the software UART. An example is given below:

char z == "A";
WriteUART(2); // Send a byte to UART

void DelayTXBitUART(void)

Delay10TCYx(40); // 405 cycle delay
Nop(); Nop(); Nop();

void delayRXHalfBitUART (void)

{
Delay10TCYx(19); // 199 cycles

Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop();

void DelayRXBitUART (void)

Delay10TCYx(40); // 403 cycles
Nop();
}

Figure 4.59: Delay Functions for 2400 baud with a 4-MHz Clock

Programming with the MPLAB C18 Compiler 243

putsUART

This function sends a string of characters to software UART. An example is given below:

char buff[| = "Hello World";
putsUART (buff); // Send a string to UART

m Example 4.33

A PIC18F452 microcontroller is connected to a PC using a MAX232 type level converter
chip using the default connections as shown in Figure 4.60. Write a program to receive
a character from the PC, then increment this character, and send it back to the PC.
Assume that the required baud rate is 2400 and a PIC18F452 microcontroller is used
with a 4-MHz crystal.

Solution

The program listing is shown in Figure 4.61. The delay functions are used at the begin-
ning of the program. Then, an indefinite loop is formed and a character is received
from the serial line. The character is incremented by one and then sent back to the

serial line.
L |
+5V
A
10K 11|32
1 V
Reset[u MCLR dd +5V
1 16
25 10 1uF
RC6 T2IN R [
RCc78 12 R10 T

T20UT |
R1IE

3

gkl
31| Vss
F PIC | e 5| MAx232 (8
L 18F452 4

OSC1 0OSC2
13 = 14
1
22pF == 4MHz L 55 hp

Figure 4.60: Circuit Diagram for the Example 4.33

244 Chapter 4

READING AND WRITING TO SERIAL PORT

In this program PORTC pins RC6 and RC7 are configured as serial RX and TX pins respectively. The
communication baud rate is set to 2400 Baud, 8 bits, no parity and with 1 stop bit.

The default UART pins are TX = RB4 and RX = RB5. It is therefore necessary to modify the equ
statements in the following files (found in src/traditional/pmc/sw_uart or src/extended/pmc/sw_uart) so
that pins RC6 and RC7 can be used by the UART routines:

writuart.asm
readuart.asm
openuart.asm

The UART library should then be re-compiled using the provided batch files and then the library included
in the project.

A PIC18F452 type microcontroller, operated with 4MHz is used in the design. The program receives a
character from the serial port of a PC, increments this character by one, and then sends it back to the
PC. Thus, for example, if character "A" is entered on the PC keyboard, character "B" will be sent back
and displayed on the PC screen.

File: SERIAL.C
Version: V1.0

Author: Dogan Ibrahim
Date: May, 2009

#include <p18f452.h>
#include <sw_uart.h>
#include <delays.h>

#pragma config WDT = OFF
#pragma config OSC = XT

void Delay TXBitUART (void)
Delay10TCYx(40); // 405 cycle delay
Nop(); Nop(); Nop();

1

void DelayRXHalfBitUART (void)

{
Delay10TCYx(19); // 199 cycles
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop();

}

void DelayRXBitUART(void)
{

Figure 4.61: Program Listing for Example 4.33

Programming with the MPLAB C18 Compiler 245

Delay10TCYx(40); // 403 cycles
Nop();

}

//

// Start of MAIN program

//

void main(void)

{

unsigned char z;

OpenUART(); // Initialize UART

for(;;) // Endless loop

{
7z = ReadUART(); // Read a character
Z++; // Increment character
WriteUART(2); // Write a character

}

Figure 4.61: Cont’d

Table 4.20: C18 A/D Functions

A/D Functions Descriptions
BusyADC Is A/D converter busy?
CloseADC Disables the A/D converter
ConvertADC Starts an A/D conversion
OpenADC Configures the A/D converter
ReadADC Reads the conversion result
SetChanADC Selects A/D channel to be used

4.9.13 Hardware Analog-to-Digital (A/D) Converter Functions

C18 compiler provides the A/D functions shown in Table 4.20. The header file “adc.h” must
be included at the beginning of a program using the A/D functions. These functions are
described in this section.

BusyADC: This function checks if the A/D converter is currently performing a conversion.
A logic “1” is returned when the A/D converter is ready and a logic “0” is returned if the
A/D converter is not performing a conversion.

CloseADC: This function disables the A/D converter module.

ConvertADC: This function starts an A/D conversion. The function BusyADC() should be
used to find out when the conversion is complete.

246 Chapter 4

OpenADC: This function is used to configure the A/D converter module. The function takes two
arguments: config and config2. The values defined can be bitwise AND ed. The type and
number of available definitions for config and config2 depend on the type of microcontroller
used. For example, for PIC18F452 microcontrollers, the important definitions are given below:

Config

A/D Clock source definitions:
ADC_FOSC_2 FOSC /2
ADC_FOSC_4 FOSC /4
ADC_FOSC_8 FOSC /8
ADC_FOSC_16 FOSC/ 16
ADC_FOSC_32 FOSC /32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC Internal RC oscillator

A/D Result justification:
ADC_RIGHT_JUST Right justify the result
ADC_LEFT_JUST Left justify the result

A/D Voltage reference source:

ADC_8ANA_OREF Vref+ = VDD and Vref- = VSS
All analog channels

Config2

Channel:
ADC_CHO Channel O
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CHS3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH®6 Channel 6
ADC_CH7 Channel 7

A/D Interrupt
ADC_INT_ON Interrupts enabled
ADC_INT_OFF Interrupts disabled

An example for the use of OpenADC function is given below:
OpenADC(ADC_FOSC_64 &
ADC_RIGHT_JUST &

Programming with the MPLAB C18 Compiler 247

ADC_8ANA_OREF &
ADC_CHO &
ADC_INT_OFF);

ReadADC: This function reads the 16-bit result of the A/D conversion. An example is given
below to show how A/D result can be read:

int result;

OpenADC(ADC_FOSC_64 &
ADC_RIGHT_JUST &
ADC_8ANA_OREF &

ADC_CHO &
ADC_INT_OFF);

ConvertADC();

while(BusyADC()); // Wait until conversion is complete

Result = ReadADC(); // Read the A/D result

CloseADC();

4.9.14 Hardware Input Capture Functions

These functions are used to implement the input capture functions in hardware. More
information can be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.15 Hardware I°C Functions

These functions are used to implement the I*C bus functions in hardware. More information
can be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.16 Hardware I/O Port Functions

These functions are used to implement I/O port functions in hardware. More information can
be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.17 Hardware Microwire Functions

These functions are used to implement the microwire bus functions in hardware. More infor-
mation can be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.18 Hardware Pulse Width Modulation Functions

These functions are used to implement pulse width modulation functions in hard-
ware. More information can be obtained from the document MPLAB C18 C Compiler
Libraries.

248 Chapter 4

4.9.19 Hardware SPI Functions

These functions are used to implement the SPI bus functions in hardware. More information
can be obtained from the document MPLAB C18 C Compiler Libraries.

4.9.20 Hardware Timer Functions

These functions are used to configure the microcontroller timers. The header file “timers.h”
must be included at the beginning of a program using the timer functions. Table 4.21 gives a
list of the available functions.

Only Timer O functions are described in this section. Further information on the functions
available for other timers can be obtained from the MPLAB C18 C Compiler libraries.

CloseTimer 0: This function disables the interrupt and the specified timer.

OpenTimer 0: This function is used to enable a timer. The argument consists of a parameter
called config that can be made up of a number of bitwise AND ed definitions. The

following definitions are available:

Config

Enable Timer 0 interrupt:

TIMER_INT_ON
TIMER_INT_OFF

Timer width:
TO_8BIT
TO_16BIT

Clock source:
TO_SOURCE_EXT
TO_SOURCE_INT

External clock trigger
TO_EDGE_FALL
TO_EDGE_RISE

Interrupt enabled
Interrupt disabled

8-bit mode
16-bit mode

External clock source
Internal clock source

External clock on falling edge
External clock on rising edge

Table 4.21: C18 Timer Functions

Functions

Descriptions

CloseTimerx

Disables timer x

OpenTimerx

Configures and enables timer x

ReadTimerx

Reads the value of timer x

WriteTimerx

Writes a value into timer x

xcanbe0, 1, 2, 3, or 4 depending on device type.

Programming with the MPLAB C18 Compiler

249

Prescale value:
TO_PS_1_1
TO_PS_1_2
TO_PS_1_4
TO_PS_1.8
TO_PS_1_16
TO_PS_1_32
TO_PS_1_64
TO_PS_1_128
TO_PS_1_256

1:1 prescale
1:2 prescale
1:4 prescale
1:8 prescale
1:16 prescale
1:32 prescale
1:64 prescale
1:128 prescale
1:256 prescale

An example for the use of OpenTimerO function I given below:

OpenTimerO(TIMER_INT_OFF
TO_8BIT
TO_SOURCEL_INT
TO_PS_1_64);

&
&
&

4.9.21 Hardware USART Functions

Hardware USART functions enable RS232 type serial communication to be implemented
using the hardware USART module of the microcontroller. In general, hardware-based

USART can give faster and more reliable communication. In addition, the processor can carry
out other tasks while the USART is handling the serial communication.

C18 compiler provides the USART functions given in Table 4.22 (in microcontrollers

with more than one USART a number is added to the end of these functions to identify the

USARTS). The header file “usart.h” must be defined at the beginning of a program using

these functions.

The definition of these functions is given in this section.

Table 4.22: C18 Hardware USART Functions

Functions Descriptions

BusyUSART Checks if the USART is transmitting data

CloseUSART Disables the USART
DataRdyUSART Makes data available in USART read buffer

OpenUSART Configures USART

getcUSART Reads a byte from the USART

getsUSART Reads a string from the USART

putcUSART Writes a byte to USART

putsUSART Writes a string from data memory to the USART

putrsUSART Writes a string from program memory to the USART

baudUSART Sets the baud rate configuration bits for the USART

250 Chapter 4

BusyUSART: This function returns a “1” if the USART transmitter is busy transmitting a
character. This function should be checked before sending a new byte to the USART. The
function returns a “0” if the USART transmitter is idle.

CloseUSART: This function disables the USART.

DataRdyUSART: This function returns a “1” if data is available in the USART read buffer.
A “0” indicates that data is not available in the read buffer.

getcUSART: This function reads a byte from the USART buffer. An example is given
below:

int result;
result = getcUSART();

getsUSART: This function reads a string of characters from the USART. This function waits
and reads a specified number of characters. There is no timeout and the program will wait
forever if the specified number of characters are not received. An example is given below
to show how this function can be used:

char buff[20];
getsUSART (buff, 6); // Wait to receive 6 characters

OpenUSART: This function configures the USART. Two arguments are required: a
configuration argument called config and an integer called spbrg, which specifies the
value to be written to the baud rate generator register to determine the baud rate.

config

Interrupt on transmission:
USART_TX_INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF

Interrupt on reception:

USART_RX_INT_ON Receive interrupt ON

USART_RX_INT_OFF Receive interrupt OFF
USART mode:

USART_ASYNCH_MODE Asynchronous mode

USART_SYNCH_MODE Synchronous mode

Transmission width:
USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

Programming with the MPLAB C18 Compiler 251

Slave/Master select
USART_SYNC_SLAVE Synchronous slave
USART_SYNCH+MASTER Synchronous master

Reception mode:

USART_SINGLE_RX Single reception

USART_CONT_RX Continuous reception
Baud rate:

USART_BRGH_HIGH High baud rate

USART_BRGH_LOW Low baud rate
spbrg

This is the value written onto the baud rate generator register to define the baud rate to be
used. The formula for the baud rate is as follows:

For High Speed (USART_BRGH_HIGH),
Baud = FOSC/[16 * (spbrg + 1)]
or
spbrg = FOSC/(16 * baud) — 1
and
For Low Speed (USART_BRGH_LOW),
Baud = FOSC/[16 * (spbrg + 1)]
or
spbrg = FOSC/(64 * baud) —1,
where FOSC is the microcontroller clock frequency.

For example, assuming that the clock frequency is 4 MHz and the required baud rate is 960,
using high-speed setting, the value to be specified as spbrg can be calculated as

spbrg = FOSC/(16 * baud) — 1 =4 x 10%(16 x 9600) — 1=25

Then, the OpenUSART function can be declared as follows (in this example, it is assumed
that asynchronous mode is used with 9600 baud and 8 data bits):

OpenUSART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &

252 Chapter 4

USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_HIGH,

25);

putcUSART: This function sends a byte to USART.

putsUSART: This function sends a string of characters to USART from the data memory.
An example is given below:

putrsUSART("My Computer");

putrsUSART: This function sends a string of characters to USART from the program
memory.

baudUSART: This function sets the baud rate configuration bits for enhanced USART
operation. The valid arguments can be formed from bitwise AND of the following
definitions:

Clock idle state:
BAUD_IDLE_CLK_HIGH Clock idle state is high level
BAUD_IDLE_CLK_LOW Clock idle state is low level

Baud rate generation:
BAUD_16_BIT_RATE 16-bit baud rate generation
BAUD_8_BIT_RATE 8-bit baud rate generation

RX pin monitoring:
BAUD_WAKEUP_ON RX pin monitored
BAUD_WAKEUP_OFF RX pin not monitored

Baud rate measurement:
BAUD_AUTO_ON Autobaud rate measurement enabled
BAUD_AUTO_OFF Autobaud rate measurement disabled

4.10 Summary

There are many commercially available C compilers. MPLAB C18 is one of the most popular
C compiler used by students and by professional programmers. Student’s version of the
MPLAB C18 compiler is available free of charge and can be downloaded from the Microchip
Web site. The MPLAB C18 compiler has been described in detail in this chapter including the
use of built-in library functions with simple examples.

Programming with the MPLAB C18 Compiler 253

4.11 Exercises

R S B]

10.

11.

. Write a C program to set bits 0 and 7 of PORTC to logic 1.
. Write a C program to count down continuously and send the count to PORTB.
. Write a C program to multiply each element of a 10-element array with number 2.

. It is required to write a C program to add two matrices P and Q. Assume that the

dimension of each matrix is 3 X 3 and store the result in another matrix called W.

. Repeat Exercise 4, but this time multiply matrices P and Q and store the product in

matrix R.

. What is meant by the terms “variable” and “constant”?

. What is meant by program repetition? Describe the operation of while, do-while, and for

loops in C.

. What is an array? Write example statements to define the following arrays:

a) An array of 10 integers
b) An array of 30 float
¢) A two-dimensional array having 6 rows and 10 columns

. Trace the operation of the following loops. What will be the value of variable z at the end

of the loops?
a) unsigned charj=0,z=0;
while(j < 10)
{
Z++;
++;
!
b) unsigned char z = 10;
for(j=0;j<10; j++)z—;

Given the following variable definitions, list the outcome of the following conditional
tests in terms of “true” or “false”:

unsigned inta =10, b = 2;
if@a > 10)

if(b >=2)

if@a == 10)

if@ > 0)

Write a program to calculate whether a number is odd or even.

254 Chapter 4

12.

13.

14.
15.

16.

17.

18.

Determine the value of the following bitwise operations using AND, OR, and EXOR
operations:

Operand 1: 00010001
Operand 2: 11110001

How many times does each of the following loops iterate and what is the final value of
the variable j in each case?

a) for(j = 5; j++)

b) for(j = 1 J< 10; j+4)

c) for(j=0;j<=10; j++)

d) for(j = O j<=10;j+=2)

e)for(j=10;j>0;j—=2)

Write a program to calculate the sum of all positive integer numbers from 1 to 100.

Write a program to calculate the average value of the numbers stored in an array. Assume
that the array is called M and it has 20 elements.

Modify the program in Exercise 15 to find the smallest and the largest values of the array.
Store the smallest value in variable called Sml and the largest value in variable
called Lrg.

Given that f1 and f2 are both floating point variables, explain why the following test
expression controlling the while loop may not be safe:

do

} while(f1 1= f2);

Why would the problem not occur if both f1 and f2 were integers? How would you
correct the above while loop?

What can you say about the following while loop?

k=0;
Total = 0;
while (k < 10)
{
Sum++;
Total += Sum;

Programming with the MPLAB C18 Compiler 255

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

What can you say about the following for loop:

Write a function to calculate the circumference of a rectangle. The function should
receive the two sides of the rectangle as floating point numbers and then return the
circumference as a floating point number.

Write a main program to use the function you developed in Exercise 20. Find the
circumference of a rectangle whose sides are 2.3 and 5.6 cm. Store the result in a floating
point number called MyResult.

Write a function to convert inches to centimeters. The function should receive inches as a
floating point number and then calculate the equivalent centimeters.

Write a main program to use the function you developed in Exercise 22. Convert
12.5 inches into centimeters and store the result in a floating point number.

An LED is connected to port pin RBO of a PIC18F452-type microcontroller through a
current limiting resistor in current sinking mode. Write a program to flash the LED with
5-s intervals.

Eight LEDs are connected to PORTB of a PIC18F452-type microcontroller. Write a
program so that the LEDs count up in binary sequence with 1-s delay between each
output.

An LED is connected to port pin RB7 of a PIC18F452 microcontroller. Write a program
to flash the LED such that the ON time is 5s and the OFF time is 3s.

A text-based LCD is connected to a PIC18F452 type microcontroller in 4-bit data mode.
Write a program that will display a count from O to 255 on the LCD with 1-s interval
between each count.

Write a program to configure port pin RB2 of a PIC18F452 microcontroller as the RS232
serial output port. Send character “X” to this port at 4800 baud.

Port RBO of a PIC18F452 microcontroller is configured as the RS232 serial output port.
Write a program to send out string “SERIAL” at 9600 baud using software USART
functions.

Repeat Exercise 29 but use the hardware USART available on the microcontroller chip.

This page intentionally left blank

PIC18 Microcontroller
Development Tools

The development of a microcontroller-based system is a complex process. Development tools
are hardware and software tools, which help the programmers to develop and test systems in a
relatively short time.

Developing software and hardware for microcontroller-based systems involves the use of
editors, assemblers, compilers, debuggers, simulators, emulators, and device programmers.
A typical development cycle starts with writing the application program using a text editor.
The program is then translated into the executable code using an assembler or a compiler. If
the program consists of several modules, then these are combined together into a single appli-
cation program using a linker. At this stage, any syntax errors are detected by the assembler
or the compiler and have to be corrected before an executable code can be generated. In the
next stage of the development cycle, a simulator can be used to test the application program
without the actual hardware. Simulators can be useful to test the correctness of an algorithm
or a program with limited or no input—outputs. Most of the programming and algorithmic
errors can be detected and removed during the simulation. If the programmer is happy and
the program seems to be working, the next stage of the development cycle is to load the
executable code to the target microcontroller chip using a device programmer and then to test
the overall hardware and software system. During this cycle, software and hardware tools,
such as in-circuit debuggers (ICDs) or in-circuit emulators (ICEs), can be used to analyze the
operation of the program and to display the variables and registers in real time with the help
of breakpoints set in the program.

5.1 Software Development Tools

Software development tools are computer programs, and they usually run on personal
computers, helping the programmer (or system developer) to create and/or modify or test
application programs. Some common software development tools are

* Text editors
* Assemblers/compilers

e Simulators

© 2010 Elsevier Ltd. All rights reserved. 257
D.O.l.: 10.1016/B978-1-85617-719-1.00009-9

258 Chapter 5

* High-level language simulators

* Integrated development environments (IDEs)

5.1.1 Text Editors

A text editor is a program that allows us to create or edit programs and text files. Windows
operating system has a text editor program called Notepad. Using Notepad, we can create a new
program file, modify an existing file, or display or print the contents of a file. It is important to
realize that programs used for word processing, such as the Microsoft Word, cannot be used as

a text editor. This is because word processing programs are not true text editors, because they
embed word formatting characters, such as bold, italic, underline, and so on, inside the text.

Most assemblers and compilers come with built-in text editors. Using these editors, we can
create a program and then assemble or compile it without having to exit from the editor. These
editors also provide additional features, such as automatic key word highlighting, syntax check-
ing, parenthesis matching, comment-line identification, and so on. Different parts of a program
can be shown in different colors to make the program more readable. For example, comments
can be shown in one color, key words in another color, etc. Such features help to eliminate
syntax errors during the programming stage, thus speeding up the overall development process.

5.1.2 Assemblers and Compilers

Assemblers generate executable code from assembly language programs, and that generated
code can then be loaded into the flash program memory of a PIC18-based microcontroller.
Similarly, compilers generate executable code from high-level language programs. Some of
the commonly used compilers for the PIC18 microcontrollers are BASIC, C, and Pascal.

Assembly language is used in applications where the processing speed is very critical and the
microcontroller is required to respond to external and internal events in the shortest possible
time. The main disadvantage of assembly language is that it is difficult to develop complex
programs using it. In addition, assembly language programs cannot be maintained easily.
High-level languages, on the other hand, are easier to learn, and complex programs can be
developed and tested in a much shorter time. High-level programs are also maintained more
easily than assembly language programs.

Discussions of programming in this book are limited to the C language. Many different
C language compilers are available for developing the PIC18 microcontroller-based
programs. Some of the popular ones are

* CCS C (http://www.ccsinfo.com)
* Hi-Tech C (http://www.htsoft.com)

PIC18 Microcontroller Development Tools 259

» MPLAB C18 C (http://www.microchip.com)
* mikroC C (http://www.mikroe.com)

* Wiz-C C (http://www.fored.co.uk)

Although most C compilers are essentially the same, each one has its own additions or
modifications to the standard language. The C compiler used in this book is the MPLAB C18,
developed by Microchip Inc.

5.1.3 Simulators

A simulator is a computer program that runs on a PC without any microcontroller hardware,
and it simulates the behavior of the target microcontroller by interpreting the user program
instructions using the target microcontroller instruction set. Simulators can display the
contents of registers, memory, and the status of input—output ports of the target microcontroller
as the user program is interpreted. The user can set breakpoints to stop the execution of

the program at desired locations and then examine the contents of various registers at the
breakpoint. In addition, the user program can be executed in a single-step mode so that the
memory and registers can be examined as the program executes one instruction at a time each
time a key is pressed.

Some assembler programs also contain built-in simulators to enable programmers to develop
and simulate their programs before loading onto a physical microcontroller chip. Some of the
popular PIC18 microcontroller tools with built-in simulators are

*» MPLAB IDE (http://www.microchip.com)
e Oshon Software PIC18 simulator (http://www.oshonsoft.com)

* Forest Electronics PIC18 assembler (http://www.fored.co.uk)

5.1.4 High-Level Language Simulators

High-level language simulators are also known as source-level debuggers, and like
simulators, they are programs that run on a PC and locate errors in high-level programs.
We can set breakpoints in high-level statements, execute the program up to the
breakpoint, and then display the values of program variables, the contents of registers,
and memory locations at that breakpoint.

A source-level debugger can also invoke hardware-based debugging activity using a hardware
debugger device. For example, the user program on the target microcontroller can be stopped,
and the values of various variables and registers can be examined.

260 Chapter 5

Some high-level language compilers, including the following three, have built-in source-level
debuggers:

e MPLABCI8C
e Hi-Tech PIC18 C
e MikroC C

5.1.5 Integrated Development Environments

IDEs are powerful PC-based programs that have everything; hence, it is possible to edit,
assemble, compile, link, simulate, source-level debug, and download the generated executable
code to the physical microcontroller chip (using a programmer device). These programs

are in the form of graphical user interface (GUI), where the user can select various options
from the program without having to exit the program. IDEs can be extremely useful during
the development phases of microcontroller-based systems. Most PIC18 high-level language
compilers are in the form of an IDE, thus enabling the programmer to do most tasks within a
single software development tool.

5.2 Hardware Development Tools

Numerous hardware development tools are available for the PIC18 microcontrollers. Some of
these products are manufactured by Microchip Inc. and some by third-party companies. The
popular hardware development tools are

* Development boards
* Device programmers
« ICDs

« ICE

* Breadboards

5.2.1 Development Boards

Development boards are invaluable microcontroller development tools. Simple development
boards contain just a microcontroller and the necessary clock circuitry. Some sophisticated
development boards contain LEDs, LCD, push buttons, serial ports, USB port, power supply
circuit, device programming hardware, and so on.

This section is a survey of various commercially available PIC18 microcontroller
development boards and their specifications.

PIC18 Microcontroller Development Tools 261

LAB-XUSB Experimenter Board

The LAB-XUSB Experimenter board (see Figure 5.1) is manufactured by microEngineering
Labs Inc. and can be used in 40-pin PIC18-based project development. The board is available
either as an assembled or as a bare board.

The board contains

* 40-pin ZIF socket for PIC microcontroller
* 5-V regulator

* 20-MHz oscillator

* Reset button

* 16-switch keypad

* Two potentiometers

* Four LEDs

* Two-line by 20-character LCD module

* Speaker

° RC servo connector

7=

t

3=

~-h -at-ml L
—w 1 l—J r:ul’-) =0
¥ o

oo a
000000

00000000000000000 *™
OOON000NDN0000000
PODO0OODODOD0ODIDO

Q0000000000000Q00
000000000000000000

00
oo
00
000
ooo
oo
00
o0
o

-
[
e
a
e
-4
o
L
a
o
L
e
L]
o
e
o
L
L]
-]
f‘

o00QODODOCO

Figure 5.1: LAB-XUSB Experimenter Board

262 Chapter 5

* RS232 interface

* USB connector

* Socket for digital-to-analog converter (device not included)

¢ Socket for I2C serial EEPROM (device not included)

e Socket for Dallas DS1307 real-time clock (device not included)

* Pads for Dallas DS18S20 temperature sensors (device not included)
* In-circuit programming connector

* Prototyping area for additional circuits

PICDEM 2 Plus

The PICDEM 2 Plus kit (see Figure 5.2) is manufactured by Microchip Inc. and can be used
in the development of PIC18 microcontroller-based projects.

The board contains

* 2x16 LCD display

* Piezo sounder driven by PWM signal
* Active RS 232 port

* On-board temperature sensor

e Four LEDs

Figure 5.2: PICDEM 2 Plus Development Board

PIC18 Microcontroller Development Tools 263

Two push-button switches and master reset

Sample PIC18F4520 and PIC16F877A flash microcontrollers

MPLAB REAL ICE/MPLAB ICD 2 connector

Source code for all programs

Demonstration program displaying a real-time clock and ambient temperature

Generous prototyping area

The board works without a 9-V battery or DC power pack.

PICDEM 4

The PICDEM 4 kit (see Figure 5.3) is manufactured by Microchip Inc. and can be used in the
development of PIC18 microcontroller-based projects.

The board contains

Three different sockets supporting 8-, 14-, and 18-pin DIP devices

On-board +5-V regulator for direct input from 9-V, 100-mA AC/DC wall adapter
Active RS-232 port

Eight LEDs

2 x 16 LCD display

Three push-button switches and master reset

Generous prototyping area

Figure 5.3: PICDEM 4 Development Board

264 Chapter 5

* I/O expander

* Supercapacitor circuitry

e Area for a LIN transceiver
* Area for a motor driver

e MPLAB ICD 2 connector

PICDEM HPC Explorer Board

The PICDEM HPC Explorer development board (see Figure 5.4) is manufactured by
Microchip Inc. and can be used in the development of high-pin-count PIC18 series of
microcontroller-based projects.

The main features of this board are

* PIC18F8722, 128 K Flash, 80-pin TQFP microcontroller

* Supports PIC18 J-series devices with Plug-in Modules (PIMs)

* 10-MHz crystal oscillator (to be used with internal PLL to provide 40-MHz operation)

* Power supply connector and programmable voltage regulator, capable of operation from
20to5.5V

* Potentiometer (connected to 10-bit A/D, analog input channel)
* Temperature sensor demo included

* Eight LEDs (connected to PORTD with jumper disable)

* RS-232 port (9-pin D-type connector, UART1)

* Reset button

* 32-kHz crystal for real-time clock demonstration

HICOEN B EGREXplorer Board

Figure 5.4: PICDEM HPC Explorer Board

PIC18 Microcontroller Development Tools 265

MK-1 Universal PIC Development Board

The MK-1 Universal PIC development board (see Figure 5.5) is manufactured by Baji Labs
and can be used for the development of the PIC microcontroller-based project with up to

40 pins. The board has a key mechanism that allows any peripheral device to be mapped to
any pin of the processor, making the board very flexible. In addition, a small breadboard area
is provided on the board, enabling users to design and test their own circuits.

The board has the following features

* On-board selectable 3.3 or 5V

* 16 x2 LCD character display (8- or 4-bit mode supported)
* Four-digit multiplexed 7-segment display

* 10-LED bar graph (can be used as individual LEDs)

* Eight-position DIP switch

* Socketed oscillator for easy change of oscillators

* Stepper motor driver with integrated driver

* I°C real-time clock with crystal and battery backup support

* I’C temperature sensor with 0.5°C precision

it

Figure 5.5: MK-1 Universal PIC Development Board

266 Chapter 5

* Three potentiometers for direct A/D development
* 16-button telephone keypad wired as 4 X 4 matrix
* RS232 driver with standard DB9 connector

* Socketed SPI and I°C EEPROM

* RF Xmit and receive sockets

* IR Xmit and receive

* External drive buzzer

* Easy access to pull-up resistors

* AC adapter

SSE452 Development Board

The SSE452 development board (see Figure 5.6), manufactured by Shuan Shizu Electronic
Laboratory, can be used for developing the PIC18-based microcontroller projects, especially
the PIC18FXX2 series of microcontrollers, and also for programming the microcontrollers.

The main features of this board are as follows:

* One printed circuit board (PCB) suitable for any 28/40-pin PIC18 devices
* Three external interrupt pins

* Two input capture/output compare/pulse width modulation modules (CCP)

* Support for SPI, I>C functions

Figure 5.6: SSE452 Development Board

PIC18 Microcontroller Development Tools 267

* 10-bit analog-to-digital (A/D) converter

* One RS-232 connector

* Two debounced push-button switches

* An 8-bit DIP switch for digital input

* A4 x4keypad connector

* A rotary encoder with push button

» TC77 SPI temperature sensor

* An EEPROM (24LC04B)

* A 2x20 bus expansion port

* ICD2 connector

* On-board multiple digital signals from 1 Hz to § MHz
* Optional devices are 2 X 20 character LCD, 48/28-pin ZIF socket.

SSE8720 Development Board

The SSE8720 development board (see Figure 5.7), manufactured by Shuan Shizu Electronic
Laboratory, can be used for the development of PIC18-based microcontroller projects. A large
amount of memory and I/O interface are provided, and the board can also be used to program
microcontrollers.

268 Chapter 5

The main features of this board are as follows:

20-MHz oscillator with socket

One DB9 connector, which provides an EIA232 interface
ICD connector

Four debounced switches and one Reset switch

A 4 X 4 keypad connector

One potentiometer for experiencing A/D conversion
Eight red LEDs

One 8-bit DIP switch for digital inputs

One 2 x 20 character LCD module

24 different digital signals from 1 Hz to 16 MHz
On-board 5-V regulator

One I’C EEPROM with socket

An SPI-compatible digital temperature sensor

An SPI-compatible real-time clock

One CCP1 output via a NPN-transistor

SSE8680 Development Board

The SSE8680 development board (see Figure 5.8), manufactured by Shuan Shizu Electronic
Laboratory, can be used for the development of PIC18-based microcontroller projects.

The board supports CAN network and a large amount of memory and an I/O interface are
provided, and the board can also be used to program the microcontrollers.

The main features of this board are as follows:

20-MHz oscillator with socket

One DB9 connector, which provides the EIA232 interface
ICD connector

Four debounced switches and one Reset switch

A 4 x 4 keypad connector

One potentiometer for experiencing A/D conversion

PIC18 Microcontroller Development Tools

269

Figure 5.8: SSE8680 Development Board

* Eight red LEDs

* One 8-bit DIP switch for digital inputs

* One 2 x 20 character LCD module

* 24 different digital signals from 1 Hz to 16 MHz
* On-board 5-V regulator

* One I°C EPROM with socket

* An SPI-compatible digital temperature sensor

* An SPI-compatible real-time clock

e One CCP1 output via an NPN transistor

* A rotary encoder

¢ CAN transceiver

PIC18F4520 Development Kit

The PIC18F4520 development kit (see Figure 5.9), manufactured by Custom Computer
Services Inc., includes a C compiler (PCWH), a prototyping board with the PIC18F4520
microcontroller, an ICD, and a programmer.

The main features of this development kit are
* PCWH compiler
* PIC18F4520 prototyping board

270 Chapter 5

e o
Embedded C Language

DEVELOPMENT KIT

For the PIC* MCU

Figure 5.9: PIC18F4520 Development Kit

* Breadboard area

* 93LC56 serial EEPROM chip

* DSI1631 digital thermometer chip

* NJU6355 real-time clock IC with attached 32.768-kHz crystal
* Two-digit 7-segment LED module

* ICD/programmer

* DC adapter and cables

Custom Computer Services manufacture a number of other PIC18 microcontroller-based
development kits and prototyping boards, such as development kits for CAN, Ethernet,
Internet, USB, and serial buses. More information is available at the company's Web site.

BIGPIC4 Development Kit

The BIGPIC4 is a sophisticated development kit (Figure 5.10) that supports the latest 80-pin PIC18
family of microcontrollers. The kit is delivered already assembled, with a PIC18F8520 micro-
controller installed and working at 10 MHz. The development kit includes an on-board USB port,
an on-board programmer, and an ICD. The microcontroller on the board can be replaced easily.

The main features of this development kit are
* 46 buttons

* 46 LEDs

PIC18 Microcontroller Development Tools

271

Figure 5.10: BIGPIC4 Development Kit

USB connector

External or USB power supply
Two potentiometers

Graphics LCD

2 x 16 Text LCD

MMC/SD memory card slot
Two serial RS232 ports

ICD

Programmer

PS2 connector

Digital thermometer chip (DS1820)
Analog inputs

Reset button

A new development board with the name BIGPICS is now available from mikroElektronika,

offering most functions of the BIGPIC4 at a reduced cost and using 40-pin devices. The
BIGPICS development board is used in some of the projects in this book.

272 Chapter 5

FUTURLEC PIC18F458 Training Board

The FUTURLEC PIC18F458 training board is a very powerful development kit (see
Figure 5.11) based on the PIC18F458 microcontroller and developed by Futurlec

(www.futurlec.com). The kit comes already assembled and tested. One of the biggest
advantages is its low cost, which is below $45.

The main features are as follows:

PIC18F458 microcontroller with 10-MHz crystal
* RS232 communication

e Test LED

Optional real-time clock chip with battery backup
* LCD connection

* Optional RS485/RS422 with optional chip

* CAN and SPI controller

* I’C expansion

In-circuit programming

* Reset button

* Speaker

* Relay socket

All port pins available at connectors

-
Y-
E
-
-
-
s
A
-
o
-1
=
v
2
m
-
pa |

@0

Figure 5.11: FUTURLEC PIC18F458 Training Board

PIC18 Microcontroller Development Tools 273

PICDEM PIC18 EXPLORER Demonstration Board

The PICDEM PIC18 EXPLORER Demonstration board (Figure 5.12), manufactured by
Microchip Inc., is a sophisticated development board that can be used for developing PIC18
microcontroller-based projects. The board comes with a PIC18F8722 microcontroller chip.

The main features of this board are
* PIM for connecting alternate PIC18 microcontroller chips
* 10-MHz crystal

* RS232 communication

* LEDs

* Analog temperature sensor chip
* ICD interface

* Push-button switches

* Analog inputs

* LCD display

* SPII/O expander

* Prototype area for user circuit

* USB connector

* SPI EEPROM

Figure 5.12: PICDEM PIC18 Explorer Demonstration Board

274 Chapter 5

* On-board voltage selection
* PICtail daughter board connector socket

The PICDEM PIC18 Explorer Demonstration board is used in some of the projects in this book.

5.2.2 Device Programmers

After the program has been written and translated into executable code, the resulting HEX
file is loaded onto the target microcontroller's program memory with the help of a device
programmer. The type of device programmer depends on the type of microcontroller to be
programmed. For example, some device programmers can only program PIC16 series, some
can program both PIC16 and PIC18 series, and some are designed to program other models
of microcontrollers (e.g., Intel 8051 series).

Some microcontroller development kits include on-board device programmers. Hence, the
microcontroller chip does not need to be removed and inserted into a separate programming
device. This section describes some of the popular device programmers used to program the
PIC18 series of microcontrollers.

Forest Electronics USB Programmer

The USB programmer (see Figure 5.13), manufactured by Forest Electronics, can be used
to program most PIC microcontrollers with up to 40 pins, including the PIC18 series. The
device is connected to the USB port of a PC and receives its power from this port.

Mach X Programmer

The Mach X programmer (Figure 5.14), manufactured by Custom Computer Services Inc.,
can program microcontrollers of the PIC12, PIC14, PIC16, and PIC18 series ranging from

Figure 5.13: Forest Electronics USB Programmer

PIC18 Microcontroller Development Tools 275

MACH X

A PROERAMMER

Figure 5.14: Mach X Programmer

8 to 40 pins. This programmer can also read the program inside a microcontroller and then
generate a HEX file. In addition, in-circuit debugging is also supported by this programmer.

Melabs U2 Programmer

The Melabs U2 device programmer (see Figure 5.15), manufactured by microEngineering
Labs Inc., can be used to program most PIC microcontroller chips from 8 to 40 pins. The
device is USB based and receives its power from the USB port of the connected PC.

EasyProg PIC Programmer

The EasyProg PIC is a low-cost programmer (Figure 5.16) that can be used to program PIC16
and PIC18 series of microcontrollers up to 40 pins. The connection to the PC is via a 9-pin
serial cable.

PIC Prog Plus Programmer

The PIC Prog Plus (Kanda systems) is another low-cost programmer (Figure 5.17) that can be
used to program most PIC microcontrollers. The device is powered from an external 12-V DC

supply.
PIC Programmer Module
The PIC Programmer module from Brunning Software (Figure 5.18) can be used to program

PIC12, PIC16, and PIC18 series microcontrollers. The module can also be used as a test bed
for software and hardware system development.

276 Chapter 5

5.2.3 In-Circuit Debuggers

An ICD is hardware that is connected between a PC and the target microcontroller test system
and is used to debug real-time applications quickly and easily. With in-circuit debugging, a
monitor program runs in the PIC microcontroller in the test circuit. The programmer can set

SalhcEes

CEalu = :
AN
.]
' (4
b 1 . 5 DI$
o 0%
R .
W J S
t‘ - .
- L
o o
. 2 = s
- . -
1100 U
L 13 DO Q <
L)
-

=
&

¥ 3:ﬂﬁn
T2 CamirE

i),
B

Figure 5.16: EasyProg PIC Programmer

PIC18 Microcontroller Development Tools 277

breakpoints on the PIC, run code, single-step the program, examine variables and registers on
the real device, and change their values if required. An ICD uses some memory and I/O pins
of the target PIC microcontroller during the debugging operations. With some ICDs, only

the assembly language programs can be debugged. Some more powerful debuggers enable
high-level language programs to be debugged.

This section discusses some of the popular ICDs used in PIC18 microcontroller-based system
applications.

Figure 5.17: PIC Prog Plus Programmer

Figure 5.18: PIC Programmer Module

278 Chapter 5

MPLAB ICD2

The MPLAB ICD2 is a low-cost ICD (see Figure 5.19) manufactured by Microchip Inc.

The device can be used for debugging most PIC microcontroller-based systems. With the
MPLAB, ICD2 programs are downloaded to a PIC microcontroller chip and executed in real
time. This debugger supports both assembly language and C language programs. Breakpoints
can be set, the microcontroller can be single-stepped, and registers and variables can be
examined or changed if desired.

The MPLAB ICD 2 is connected to the PC using either a serial RS232 interface or via USB.
The device acts like an intelligent interface between the PC and the test system, allowing
the programmer to set breakpoints, look into the test system, view registers at breakpoints,
and single-step through the user program. It can also be used to program the target PIC
microcontroller.

ICD-U40

The ICD-U40 is an ICD (see Figure 5.20) manufactured by Custom Computer Services Inc.
to debug programs developed with their CCS C compiler. The device operates with a 40-MHz
clock frequency and is connected to the PC via the USB interface. The ICD-U40 is powered
from the USB port. The company also manufactures a serial port version of this debugger
called ICD-S40, which is powered from the target test system.

PICFlash 2

The PICFlash-2 ICD (see Figure 5.21) is manufactured by mikroElektronika and can be used
to debug programs developed in mikroBasic, mikroC, or mikroPascal languages. The device
is connected to a PC through its USB interface. Power is drawn from the USB port, so the

Figure 5.19: MPLAB ICD2 In-Circuit Debugger

PIC18 Microcontroller Development Tools 279

SOLID: Ready
BLINK: FC not detected

=

Hnoen /]

UNIVERSAL SERIAL BUS

Ay
H.'tf

Figure 5.21: PICFlash 2 In-Circuit Debugger

debugger requires no external power supply. The PICFlash 2 ICD is included in the BIGPIC4
development kit.

MPLAB ICD3

The MPLAB ICD3 is the new ICD device from Microchip Inc. (see Figure 5.22). This is an
improved version of MPLAB ICD2, supporting most microcontroller PIC series and dsPIC
devices.

The MPLAB ICD3 has the following features:
* Real-time debugging of almost all PIC microcontrollers

* High-speed programming interface

280 Chapter 5

Figure 5.22: MPLAB ICD3 In-Circuit Debugger

* Complex breakpoints and stopwatch

» Simple target microcontroller interface
e Portable, USB interface to a PC

* Standard RJ-11 interface

* Low-voltage emulation

* Low cost

The interface and use of the ICD3 debugger device is described later in this chapter with a
detailed example.

5.2.4 In-Circuit Emulators

The ICE is one of the oldest and the most powerful devices for debugging a microcontroller
system. It is also the only tool that substitutes its own internal processor for the one in the
target system. Like all ICDs, the emulator's primary function is target access — the ability

to examine and change the contents of registers, memory, and I/O. As the ICE replaces

the CPU, it generally does not require working a CPU on the target system to provide this
capability. This makes the ICE by far the best tool for troubleshooting new or defective
systems.

In general, each microcontroller family has its own set of ICE. For example, an ICE for
the PIC16 microcontrollers cannot be used for the PIC18 microcontrollers. Because of
this, to lower the costs, emulator manufacturers provide a multiboard solution to ICE.
Usually, a baseboard is provided, which is common to most microcontrollers in the family.
For example, the same baseboard can be used by all PIC microcontrollers. Then, probe
cards are available for individual microcontrollers. When it is required to emulate a new
microcontroller in the same family, it is sufficient to purchase just the probe card for the
required microcontroller.

PIC18 Microcontroller Development Tools 281

Although ICEs are very powerful debugging tools, their cost is usually very high. Several
models of ICEs are available on the market. The following four are some of the more
popular ones.

MPLAB ICE 4000

The MPLAB ICE 4000 (Figure 5.23), manufactured by Microchip Inc., can be used to
emulate microcontrollers in the PIC18 series. It consists of an emulator pod and the device
adapters for the required microcontroller, which are connected using a flex cable. The pod is
connected to the PC via its parallel port or using the USB port. Users can insert an unlimited
number of breakpoints and examine the register values.

RICE3000

RICE3000 is a powerful ICE (Figure 5.24), manufactured by Smart Communications Ltd,
for the PIC16 and PIC18 series of microcontrollers. The device consists of a base unit with
different probe cards for the various members of the PIC microcontroller family. The device
provides full-speed, real-time emulation up to 40 MHz, supports watching floating-point
variables and complex variables, such as arrays and structures, and provides source-level and
symbolic debugging in assembly and high-level languages.

ICEPIC 3

The ICEPIC 3 is a modular ICE (see Figure 5.25), manufactured by RF Solutions, for the
PIC12/16 and PIC18 series of microcontrollers. The emulator is connected to the PC via
its USB port. The device consists of a mother board with additional daughter boards for
each microcontroller type. A daughter board is connected to the target system using device
adaptors. Additionally, a trace board can be added to the device to capture and analyze
execution addresses, opcodes, and external memory read/writes.

Figure 5.23: MPLAB ICE 4000

282 Chapter 5

Figure 5.25: ICEPIC 3 In-Circuit Emulator

PICE-MC

This is a highly sophisticated emulator (see Figure 5.26), manufactured by Phyton Inc., and
supports most PIC microcontrollers. The device consists of a main board, pod, and adapters.
The main board contains the emulator logic, and memory, and interface to the PC. The pod
contains a slave processor, which emulates the target microcontroller. The adapters are the
mechanical parts, which are physically connected to the microcontroller socket of the target

PIC18 Microcontroller Development Tools 283

Figure 5.26: PICE-MC In-Circuit Emulator

system. PICE-MC provides source-level debugging of programs written in assembly and
high-level languages. A large memory is provided on the system to capture target system
data. The user can set up a large number of breakpoints and can access the program and data
memories to display or change their contents.

5.2.5 Breadboards

Building an electronic circuit requires connecting the components as shown in the relevant
circuit diagram, usually by soldering the components together on a strip board or a PCB. This
PCB approach is appropriate for circuits that have been tested and are functioning as desired
and also when the circuit is being made permanent. However, making a PCB design for just a
few applications — for instance, while still developing the circuit — is not economical.

Instead, while the circuit is still under development, the components are usually assembled

on a solderless breadboard. A typical breadboard is shown in Figure 5.27. The board consists
of rows and columns of spaced holes so that integrated circuits and other components can

be fitted inside them. The holes have spring actions so that the component leads can be held
tightly inside the holes. There are various types and sizes of breadboards depending on the
complexity of the circuit to be built. The boards can be stacked together to make larger boards
for very complex circuits. Figure 5.28 shows the internal connection layout of the breadboard
given in Figure 5.27.

The top and bottom half parts of the breadboard are entirely separate with no connection
between them. Columns 1-20 in rows A—F are connected to each other on a column basis.
Similarly, rows G-L in columns 1-20 are connected to each other on a column basis.
Integrated circuits are placed so that the legs on one side are on the top half of the breadboard

284 Chapter 5

-0
x[]
-0

g
o

oooooo
ooooono
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo

w
W
oO
oQ
o]
<O

Ooooooag
oogoood
2000000
soooOoooo
4Aa00000O0
5000000
e O OO0O0O
000000
sOoooonoOono
sOooooOono
nogooooo
NMOooooOooo
RODODOO0OO
BOODOOODO
H“4oooooo
000000
o0 OoO0ono
7000000
BO0O0 0000
woooooo
0 00000UOO0DODOODO

Figure 5.27: A Typical Breadboard Layout

J KL

G H

A BCDEF

B
L

Figure 5.28: Internal Wiring of the Breadboard in Fig. 5.27

and the legs on the other side of the circuit are on the bottom half of the breadboard. The first
two columns on the left of the board are usually reserved for power and earth connections.
Connections between the components are usually carried out using stranded (or solid) wires
plugged inside the holes to be connected.

Figure 5.29 shows picture of a breadboard holding two integrated circuits and a number of
resistors and capacitors.

The nice thing about the breadboard design is that the circuit can be modified very easily
and quickly and different ideas can be tested without having to solder any components. The

PIC18 Microcontroller Development Tools 285

"y

Figure 5.29: A Breadboard With Some Components

Figure 5.30: IDL-800 Digital Lab

components can easily be removed, and the breadboard can be used for other projects after
the circuit has been tested and works satisfactorily.

Some breadboards have built-in power supplies, LEDs, switches, LCD, and so on, making it
easier to build and test circuits. Figure 5.30 shows such a complex breadboard, the IDL-800
Digital Lab.

5.3 Using the MPLAB ICD 3 In-Circuit Debugger

The MPLAB ICD 3 in-circuit debugger is a PC-based complex debugger system used for
hardware and software development of PIC microcontrollers and dsPIC Digital Signal
Controllers based on in-circuit serial programming technology and is manufactured by
Microchip Inc. The MPLAB ICD 3 can help the embedded system developer to

* Insert hardware and software breakpoints

* Debug the application in real time

www.newnespress.com

286 Chapter 5

» Set breakpoints based on internal events
* Monitor internal file registers
* Program the device

An ICD is similar to a simulator, but in addition, the ICD connects to the target system
hardware and helps the developer to debug the hardware and software in real time. In addition
to debugging functions, the MPLAB ICD 3 can be used to program the program memory of
the target microcontroller device.

The MPLAB ICD 3 can be used with all of the Microchip 8-bit, 16-bit, and 32-bit devices.
Some of the features are not supported in low- and medium-performance PIC12F and PIC16F
8-bit devices (see the MPLAB ICD 3 In-circuit Debugger User's Guide for full details). 8-bit
PIC18F, 16-bit, and 32-bit devices support almost all of the debugger features.

Figure 5.31 is a block diagram of the debugging setup. The MPLAB ICD 3 is connected
to the target development board with an RJ-11 type 6-pin connector. The MPLAB ICD 3
is controlled from a PC and is connected to the PC via a USB connector.

The MLAB ICD 3 can be operated in two modes: target-powered mode and debugger
powered mode.

The target-powered mode is the recommended mode, where the source of power for the
target hardware is external. In debugger-powered mode, power for the target hardware

is derived from the debugger. This mode of operation is not recommended, because the
maximum current that can be drawn from the debugger is limited to 100 mA, and this
current is drawn from the PC via the USB connection. The debugger-powered mode should
be used only during the development of microcontroller-based applications requiring very
little current. In addition, the voltage range is limited in the debugger-powered mode.

In both modes, analog and digital voltage and ground lines should be connected to the
appropriate levels.

USB RJ-11 Target

PC
system

Figure 5.31: The Debugging Setup

PIC18 Microcontroller Development Tools 287

Figure 5.32 shows the standard connection of the MPLAB ICD 3 debugger to a PIC microcontroller
(in some applications, a header may be required). The RJ-11 pin configuration is as follows:

MPLAB ICD 3 pin Microcontroller pin
1 Vpp/MCLR
vdd
Vss
PGD
PGC
LVP (not used in most applications)

(o) N @, NNy G I]

A pull-up resistor (approximately 10K) is recommended to be connected from the Vpp/
MCLR line to the Vdd so that the microcontroller can be reset by the debugger when required.

For programming the microcontroller, no clock is needed on the microcontroller because the
debugger sends clock pulses on the PGC line and data on the PGD line, while placing the
programming voltage on the Vpp/MCLR line.

For debugging, the target microcontroller must be fully functional, with its power supply
connected and its clock running. The requirements for debugging are

e The MPLAB ICD 3 debugger must be connected to a PC via its USB cable, and the PC
must be loaded with the MPLAB IDE software (version 8.15 or higher).

* The MPLAB ICD 3 debugger must be connected to the target system as shown in Figure 5.32.

* An external power should be connected to the target system, and both analog and digital
power and ground lines of the microcontroller must be connected appropriately.

* The microcontroller must be fully functional with a clock source (e.g., crystal, RC,
external oscillator etc.).

Vdd

Vpp/MCLR
PGC
PGD

Microcontroller

Figure 5.32: Standard Connection of MPLAB ICD 3 to a Microcontroller

288 Chapter 5

* The microcontroller configuration words must be programmed correctly.
* Watchdog timer must be disabled.
* Code protection must be disabled.
* Table read protection must be disabled.

¢ LVP must be disabled.

5.3.1 The Debugging Process

The debugging process is shown in Figure 5.33. The debugger copies a small program called
the Debug Executive to the target microcontroller. This executive runs like an application in
the program memory and uses some of the file registers and some stack locations of the target
microcontroller. The resources used by the debugger depend on the processor type, and more
information can be found in the debugger user guide.

To find out whether or not an application program will run correctly, breakpoints are usually set
in the target microcontroller device. The debugger sends commands via the PGC and PGD pins to
set and store breakpoint addresses in the internal debug registers area of the target microcontroller.

The user application program starts to run from reset vector (address 0) of the program
memory and will execute until a breakpoint address is encountered. At this point, control is
transferred to the debug executive, and the user application program is halted. The MPLAB
IDE communicates using the PGC and PGD pins of the MPLAB ICD 3 debugger and gets
information about the state of the CPU and value of registers in the register file of the target
microcontroller at the halted breakpoint and then displays this information on the PC as
requested. The user can examine and also change the value of any register of the register file
at the breakpoint if desired.

Microcontroller

Vdd

Debug
Vpp/ registers
MCLR Debug
PGGC /" executive

PGD/]

[

Program
memory

File
registers

1

Figure 5.33: The Debugging Process

PIC18 Microcontroller Development Tools 289

5.3.2 The MPLAB ICD 3 Test Interface Board

A small PCB called the ICD 3 Test Interface Board is supplied with the MPLAB ICD 3
debugger device, which can be used to test that the debugger is functioning correctly. The
steps to use this board are as follows:

* Disconnect the debugger from the PC.

* Connect the MPLAB ICD 3 to the test interface board.

* Connect the debugger to the PC.

» Start MPLAB IDE and select ICD 3 as the programmer (or debugger).
* MPLAB IDE runs the self-test and gives a status of pass or fail.

The MPLAB ICD 3 debugger device has three indicator lights:

* Power light: Green when debugger is connected to the PC and is receiving power via its
USB cable

* Active light: Blue when power is first applied or when target is connected
» Status light: Green when the debugger is operating normally (in standby)
* Red when failed

* Orange when the debugger is busy

5.3.3 Programming with the MPLAB ICD 3 Debugger

The MPLAB ICD 3 debugger can be used to program a microcontroller. It is important to
realize that all the debug features are disabled when the debugger is used as a programmer
and the debug executive is not loaded into the microcontroller. The debugger can, however,
toggle the MCLR line to restart the microcontroller. Clock is not required when the debugger
is used as a programmer.

An example is given below.

m Example 5.1

Eight LEDs are connected to PORTD of a PIC18F8722 type microcontroller (any other
type of PIC18 series microcontroller can be used in this example, e.g., PIC18F4520)
operating with a 10-MHz clock frequency (see Figure 5.34). Write a program to flash
the LEDs on and off five times with 1-s delay between each flashing.

290 Chapter 5

A +5V

MCLR vdd RD7

RD6 L{);—E«
PGC/RB6 RD5 65 [
PGD/RB7 66

Rz |28

PIC 69
18F8722 RD1 —{)—:I—'
n RDO [2P

31
51| Vss
70

osc1 0scC2
= 49 50

o
1"

Figure 5.34: Circuit Diagram of Example 5.1

22nF 22nF

Solution

Although the circuit can be built on a breadboard, in this example, the PICDEM 18
Explorer Development board is used for simplicity. This board is based on the
PIC18F8722 80-pin microcontroller and has eight LEDs connected to PORTD of
the microcontroller, and the board is compatible with the MPLAB ICD 3 debugger,
providing an RJ-11 type socket for the debugger interface.

The required program listing is shown in Figure 5.35. PORTD is configured as output
and a for loop is used with variable k to flash the LEDs five times with a 1-s delay
between each output. Note that the delay function Delay10KTCYx(250) creates

a 250 x 10,000 cycle time delay. With a 10-MHz clock frequency, the clock period

is 0.1 ps, and the cycle time is 0.4 ps. Thus, 2,500,000 cycle delay is equivalent to
2,500,000 x 0.4 ps = 1,000,000 ps or 1s.

The steps to build and compile the program are given in detail in Section 4.3. After
the successful compilation, the steps to program the microcontroller with the MPLAB
ICD 3 debugger are as follows:

* Connect the MPLAB ICD 3 to the target board (or to the PICDEM 18 Explorer
Development board) via the RJ-11 connector.

* If using the PICDEM 18 Explorer Development board, set the following:
* Switch S4 to PIC MCU.

* Place jumper JP1 to enable LEDs.

www.newnespress.com

PIC18 Microcontroller Development Tools 291

Connect the MPLAB ICD 3 to the PC via the USB cable.

Connect +5-V power supply to the target board (or 9-12-V supply to the PICDEM 18
Explorer Development board).

Select the MPLAB ICD 3 programmer. Programmer -> Select Programmer ->
MPLAB ICD 3.

Select Project -> Build Configuration -> Release.

Select Project -> Build All to rebuild the project in Release mode.

FLASHING LEDs

This program flashes 8 LEDs connected to PortD of a microcontroller 5 times with 1-s intervals. C18 library
function Delay10KTCYx is used to create a 1-s delay between the flashes.

A PIC18F8722 microcontroller is used with a 10-MHz clock.

Programmer: Dogan Ibrahim
File: FLASH.C
Version: 1.0

Date: May, 2009

#include <p18f8722.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = HS

void main(void)

{

unsigned char k;

TRISD = 0; // Configure PORTD as output
for(k=0; k<5; k++) // Do 5 times
{
PORTD = 0; // Turn OFF LED
Delay10KTCYx(250); // 1 second delay
PORTD = OxFF; // Turn ON LED
Delay10KTCYx(250); // 1 second delay
}
while(1); // wait here forever

Figure 5.35: Program Listing of Example 5.1

292 Chapter 5

Select Programmer -> Program to program the target microcontroller. The following
message will be displayed after successful programming:

* Programming...
* Programming/Verify complete

Press the Reset button to start the program. The eight LEDs connected to PORTD

should flash five times with a 1-s delay between each output -

5.3.4 MPLAB ICD 3 Debugging Example |

An example is given in this section to show how the MPLAB ICD 3 debugger can
be used.

m Example 5.2

Repeat Example 5.1, but compile the program in debug mode, and use the MPLAB ICD
3 debugger to run the program in single-step mode.

Solution

The circuit diagram and the program listing are as in Figures 5.34 and 5.35,
respectively. The program should be compiled and run in single-step debug mode.
The steps are

Select the MPLAB ICD 3 debugger. Debugger -> Select Tool -> MPLAB ICD 3.
Select Project -> Build Configuration -> Debug.

Select Project -> Build All to rebuild the project in Debug mode.

Select Debugger -> Program to load the code into the target microcontroller.
Press F7 key several times until the C code is displayed in the debug window.
Press F7 to single-step through the program.

Set the values of PORTD to be displayed during the debugging. Select View ->
Watch. Select PORTD and click Add SFR to add PORTD to the watch window
(see Figure 5.36).

When the debug cursor (green arrow) is on the Delay10KTCYx function, press F8 to
skip to the next instruction without displaying the contents of this function.

www.newnespress.com

PIC18 Microcontroller Development Tools 293

(4dd SFR] |PORTD v | [Add Symbol | _config 0 v|

Symbol Name | Value | Decimal |
PORTD OxFF 255

walch 1 | watch 2 | Watch 3 | Watch 4|
Figure 5.36: The Debug Watch Window

* Press F7 to execute the PORTD = OxFF instruction (the LEDs will turn ON).

* When the cursor is again on the Delay10KTCYx function, press F8 to skip to the next
instruction without displaying the contents of this function.

* Repeat the above sequence as required.

To run the program without single-stepping, press F5 to halt the program, press F6 to
reset, and then press F9 to run continuously.

|
5.3.5 MPLAB ICD 3 Debugging Example I

This example will show how breakpoints can be used with the debugger.

m Example 5.3

Repeat Example 5.2, but set a breakpoint after the LEDs are turned ON and run the
program up to this breakpoint.

Solution

The circuit diagram and the program listing are as in Figures 5.34 and 5.35, respectively.
The required steps are as follows:

* Select the MPLAB ICD 3 debugger. Debugger -> Select Tool -> MPLAB ICD 3.

* Select Project -> Build Configuration -> Debug.

* Select Project -> Build All to rebuild the project in Debug mode.

www.newnespress.com

294 Chapter 5

* Select Debugger -> Program to load the code into the target microcontroller.

* Set breakpoint at the delay instruction just after the LEDs are turned ON
(after the PORTD = OxFF instruction). To do this, place the cursor on the second
DelayKTCYx(250) instruction and right click the mouse. Select Set Breakpoint.
A red character “B” will be inserted onto the left-hand side of the code to indicate
the breakpoint (see Figure 5.37).

* Run the program by pressing F9. The program will run until the second DelayKT-
CYx(250) instruction is encountered and then will halt with the green arrow pointing
to the breakpoint. At this point, all the LEDs will turn ON.

* Press F5 to halt the program.

5.3.6 MPLAB ICD 3 Debugging Example Il

This example will show how more than one breakpoint can be used with the debugger.

m Example 5.4

Repeat Example 5.3, but set two breakpoints, one before turning the LEDs ON and
another after turning the LEDs ON, so that when F9 is pressed to run the program, the
states of the LEDs alternate.

B C:\MYC\FLASH.C

$include <pl8f872Z.h> ¥
#include <delays.h> =
$¢pragma config WDTI = OFF, OSC = HS
wvoid main (void)
{
unsigned char k;
TRISLC = O; // Configure PORT B &s
for (k=0; k<5; k++) // Endless loop
{
PORIL = 0; // Turn ON LED
DelaylGRFCYx (250) ; // 1 second delay
PORILC = OxFE; f/f/ Turn OFF LED L
B DelaylOKTCYx (250) ; // 1 second delay
}
while (1);
v
1B >

Figure 5.37: Setting a Breakpoint

www.newnespress.com

PIC18 Microcontroller Development Tools 295

Solution

* The circuit diagram and the program listing are as in Figures 5.34 and 5.35,
respectively. The required steps are

* Select the MPLAB ICD 3 debugger. Debugger -> Select Tool -> MPLAB ICD 3.
* Select Project -> Build Configuration -> Debug.

* Select Project -> Build All to rebuild the project in Debug mode.

* Select Debugger -> Program to load the code into the target microcontroller.

* Set two breakpoints, one at each delay instruction. To do this, place the cursor on
the first DelayKTCYx(250) instruction and right click the mouse. Select Set Break-
point. A red character “B” will be inserted into the left-hand side of the code to
indicate the breakpoint. Then, place the cursor on the second DelayKTCYx(250)
instruction and right click the mouse. Select Set Breakpoint. A red character “B”
will be inserted into the left-hand side of the code to indicate the breakpoint
(see Figure 5.38).

* Press F9 to run the program. The LEDs will be OFF. Press F9 again, the LEDs will be
ON, and repeat as necessary.

B C:\MYC\FLASH.C

ginclude <plB8£87ZZ_h> A
finclude <delays.h> —_
$pragma config WDTI = OFF, OSC = HS
void main (void)
{
unsigned char k;
TRISC = 0O; J// Configure FORT B as
for (k=0; k<5; k++) // Endless loop
{ =
PORIC = 0; // Turn ON LED
@ DelaylOKICYx (250) ; J/f 1 second delay
PORIC = OxFE; // Turn OFF LED
B DelaylOKTCYx (250) ; // 1 second delay
}
while(l);
}
™|
J(_ il | 2l

Figure 5.38: Setting Two Breakpoints

www.newnespress.com

296 Chapter 5

5.4 Summary

This chapter has described the PIC microcontroller software and hardware development tools.
It shows that software tools like text editors, assemblers, compilers, and simulators may be
required for system development. The required hardware tools include development boards/
kits, programming devices, ICDs, or ICEs. In this book, the MPLAB C18 compiler is used in
the examples and projects.

Steps in developing and testing MPLAB C18-based C programs are given in the chapter
with and without a hardware ICD. In addition, examples of using the PICDEM 18 Explorer
development board are shown with the MPLAB ICD 3 ICD.

5.5 Exercises

1. Describe various phases of the microcontroller-based system development cycle.
2. Give a brief description of the microcontroller development tools.

3. Explain the advantages and disadvantages of assemblers and compilers.

4

Explain why a simulator can be a useful tool during the development of a
microcontroller-based product.

5. Explain in detail what a device programmer is. Give a few examples of device
programmers for the PIC18 series of microcontrollers.

6. Describe briefly the differences between in-circuit debuggers and in-circuit emulators.
List the advantages and disadvantages of each type of debugging tool.

7. Enter the following program into the MPLAB IDE, compile the program, and correct
syntax errors and any other errors you might have. Then, using the MPLAB IDE,
simulate the operation of the program by single-stepping through the code and observe
the values of various variables during the simulation.

/*

A SIMPLE LED PROJECT

This program flashes the eight LEDs connected to PORTC of a
PIC18F452 microcontroller.

*/

void main()

{

TRISC = 0; //PORTC is output

PIC18 Microcontroller Development Tools 297

do
{
PORTC = OxFF; //Turn ON LEDs on PORTC
PORTC = 0; //Turn OFF LEDs on PORTC
} while(1); //Endless loop

}
8. Describe the steps necessary to use the MPLAB ICD 3 in-circuit debugger.

9. The following C program contains some deliberately introduced errors. Compile the
program to find these errors and correct the errors.

void main()

{

unsigned char i,j,k
i=10;

j=i+1;

for(i=0; i< 10; i++)
{

Sum = Sum + i;
j++

}

10. The following C program contains some deliberately introduced errors. Compile the
program to find these errors and correct the errors.

int add(int a, int b)
{

}

result=a+b

void main()
{
int p,q;
p=12;
a=10;
z = add(p, q)
Z++;
for(i=0; i<z i++)p++

This page intentionally left blank

PIC18 Microcontroller MPLAB C18-Based
Simple Projects

In this chapter, we shall be looking at the design of simple PIC18 microcontroller-based
projects using the MPLAB C18 language. Here, the idea is to familiarize ourselves with

the basic interfacing techniques and also to learn how to use the various microcontroller
peripheral registers. We shall be looking at the design of projects using LEDs, push-button
switches, keyboards, LED arrays, sound devices, etc., and we shall be developing programs
in C language using the MPLAB C18 language. The hardware will be designed on a low-
cost breadboard, but development kits such as the PICDEM PIC18 Explorer Development
board, BIGPICS, or others can be used for the projects. We shall be starting with very simple
projects and then moving to more complex ones. It is recommended that the reader follow the
projects in the order given in the book. The following will be given for each project:

* Circuit diagram

* Description of the hardware

* Algorithm description

* Program listing

* Description of the program

* Suggestions for further development

A program’s algorithm can be described using many different graphical or text-based
methods. Some of the commonly used methods are flow diagram, structure chart, and
program description language (PDL). In this book, we shall be using PDL, which is basically
the description of the flow of control in a program using simple English-like commands or
keywords.

6.1 Program Description Language

A PDL is a free-format English-like text, which describes the flow of control in a program.
PDL is not a programming language, but it is a tool that helps the programmer to think about
the logic of the program before the program has been developed. Commonly used PDL
keywords are described below.

© 2010 Elsevier Ltd. All rights reserved. 299
D.O.l.: 10.1016/B978-1-85617-719-1.00010-5

300 Chapter 6

Figure 6.1: START-END in Flow Diagram

6.1.1 START-END

Every PDL program description (or subprogram) should start with a START keyword and
terminate with an END keyword. The keywords in a PDL code should be highlighted in bold
to make the code more clear. It is also a good practice to indent program statements between
PDL keywords in order to enhance the readability of the code.

m Example
START

The flow-diagram representation of the START-END construct is shown in Figure 6.1.

6.1.2 Sequencing

For normal sequencing in a program, write the statements as short English text as if you are
describing the program.

Example

Turn ON the LED
Wait 1 second
Turn OFF the LED

The flow-diagram representation of the SEQUENCING construct is shown in Figure 6.2..

PIC18 Microcontroller MPLAB C18-Based Simple Projects 301

Turn ON the LED

A 4

Wait 1 second

A 4

Turn OFF the LED

Figure 6.2: SEQUENCING in Flow Diagram

6.1.3 IF-THEN-ELSE-ENDIF

Use IF, THEN, ELSE, and ENDIF keywords to describe the flow of control in your program.

m Example

IF switch = 1 THEN
Turn ON LED 1
ELSE
Turn ON LED 2

Start the motor
ENDIF

The flow-diagram representation of the IF-THEN-ELSE-ENDIF construct is shown in
Figure 6.3.

6.1.4 DO-ENDDO

Use DO and ENDDO keywords to show iteration in your PDL code.

Example

To create an unconditional loop in a program, we can write

Turn ON LED
DO 10 times

302 Chapter 6

Switch=172 YNO

Yes

Y

Turn ON LED 2

l

Start the motor

A

Turn ON LED 1

Figure 6.3: IF-THEN-ELSE-ENDIF in Flow Diagram

Set clock to 1
Wait for 10 ms

Set clockto 0
ENDDO

The flow-diagram representation of the DO-ENDDO construct is shown in Figure 6.4.

A variation of the DO-ENDDO construct is to use other keywords such as DO-FOREVER,
DO-UNTIL, etc., as shown in the following examples.

m Example

To create a conditional loop in a program, we can write
Turn OFF buzzer

IF switch = 1 THEN
DO UNTIL Port 1 =1
Turn ON LED
Wait for 10 ms
Read Port 1

ENDDO
ENDIF

PIC18 Microcontroller MPLAB C18-Based Simple Projects 303

or the following construct can be used when an endless loop is required:

DO FOREVER
Read data from Port 1
Send data to Port 2
Wait for 1 s

ENDDO
L |

6.1.5 REPEAT-UNTIL

This is another control construct, which can be used in PDL codes. An example is given
below, where the program waits until a switch value is equal to 1.

Turn ON LED

—

Set clock to 1

l

Wait for 10ms

)

Set clock to 0

}

J=J+1

No

Figure 6.4: DO-ENDDO in Flow Diagram

304 Chapter 6

—

Turn ON buzzer

I

Read switch value

No

Yes

Figure 6.5: REPEAT-UNTIL in Flow Diagram

m Example

REPEAT
Turn ON buzzer
Read switch value

UNTIL switch = 1
Note that the REPEAT-UNTIL loop is always executed at least once and more than once
if the condition at the end of the loop is not met.

The flow-diagram representation of the REPEAT-UNTIL construct is shown in
Figure 6.5.

6.2 Project 1 - Chasing LEDs
6.2.1 Project Description

In this project, eight LEDs are connected to PORTC of a PIC18F452-type microcontroller,
and the microcontroller is operated from a 4-MHz resonator. When power is applied to the
microcontroller (or when the microcontroller is reset), the LEDs turn ON alternately in an
anticlockwise manner, where only one LED is ON at any time. A 1-s delay is used between
each output so that the LEDs can be seen turning ON and OFF.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 305
ZS+5V
47K II] 11] 32
VDD
15 290 I\’/:"
RCO ——1
1
MCLR 16 290 I}
S RC1 —!:I—%'
RESET q] o |7 290
RC2 i
4 15 290 i‘
- RC3 —«:l—[)}‘fo
PIC 53 290
18F452 RC4 —I:I—[%«
04 290
RC5 b
o5 290 §
RC6 —:—%v
31
VSS 26 290
12 RC7 —:_H—"
OSCH1 0SC2

13 | 14
4 MHz resonator

Figure 6.6: Circuit Diagram of the Project

6.2.2 Project Hardware

The circuit diagram of the project is shown in Figure 6.6. LEDs are connected to PORTC in
current-sourcing mode with eight 290-) resistors. A 4-MHz resonator is connected between
the OSC1 and OSC2 pins. In addition, an external Reset-push button is connected to the
MCLR input to reset the microcontroller when required.

306 Chapter 6

START
Configure PORT C pins as output
Initialise J = 1
DO FOREVER
Set PORTC =J
Shift left J by 1 digit
IF J =0 THEN
J=1
ENDIF
Wait 1 second
ENDDO
END

Figure 6.7: PDL of the Project

6.2.3 Project PDL

The PDL of this project is very simple and is given in Figure 6.7.

6.2.4 Project Program

The program is named as LED1.C, and the program listing is given in Figure 6.8. At the
beginning of the program, variable J is declared as an unsigned character and is set to 1 so
that when J is sent to PORTC, the first LED will turn ON. PORTC pins are then configured
as outputs by setting TRISC = 0. The main program is in an endless for loop, where the
LEDs are turned ON and OFF in an anticlockwise manner to give the chasing effect.
Variable J is shifted left and sent to PORTC to turn the LEDs ON and OFF as required. The
program checks continuously so that when LED 7 is turned ON, the next LED to be turned
ON is LED 0.

The program can be compiled using the MPLAB C18 compiler. The HEX file (LED1.HEX)
should be loaded to the PIC18F452 microcontroller using either an in-circuit debugger or a
programming device.

Figure 6.9 shows the same program with the 1-s delay configured as a user function and
called as One_Second_Delay. The modified program is called LED2.C.

6.2.5 Further Development

The project can be modified so that the LEDs chase each other in both directions. For
example, if the LEDs are moving in an anticlockwise direction, the direction can be changed
so that, when LED RB7 is ON, the next LED to turn ON is RB6; when RB6 is ON, the next
LED is RBS5; and so on. The LED flashing rate could also be modified to give a different
effect to the project.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 307

CHASING LEDS

In this project, 8 LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is operated
from a 4-MHz resonator. The program turns on the LEDs in an anticlockwise manner with a one-second delay
between each output. The net result is that the LEDs seem to be chasing each other.

Programmer: Dogan Ibrahim

File: LED1.C
Version: 1.0
Date: June, 2009
/
#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT
void main(void)
{
unsigned char J = 1;
TRISC = 0; // Configure PORT C as output
for(;;) // Endless loop
{
PORTC = J; // Send J to PORT C
Delay10KTCYx(100); // 1 second delay
J=J<<1; // Shift left J
ifd ==0)d =1; // If last LED, move to first LED
}
}
Figure 6.8: Program Listing
CHASING LEDS
In this project, 8 LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is operated
from a 4-MHz resonator. The program turns on the LEDs in an anticlockwise manner with a one-second delay
between each output. The net result is that the LEDs seem to be chasing each other.
The one second delay is implemented as a user function.
Programmer: Dogan Ibrahim
File: LED2.C
Version: 1.0
Date: June, 2009
/

#include <p18f452.h>
#include <delays.h>

Figure 6.9: Program Listing Using a User Delay Function

308 Chapter 6

#pragma config WDT = OFF, OSC = XT

void One_Second_Delay()
{

}

Delay10KTCYx(100); // 1 second delay

void main(void)

{

unsigned char J = 1;

TRISC =0; // Configure PORT C as output
for(;;) // Endless loop
{
PORTC = J; // Send J to PORT C
One_Second_Delay(); // One second delay
J=Jd<<1; // Shift left J
ifd==0)d =1, // If last LED, move to first LED

Figure 6.9: Cont’d

6.3 Project 2 - LED Dice
6.3.1 Project Description

This is a simple dice project based on LEDs, a push-button switch, and a PIC18F452 microcontrol-
ler operating with a 4-MHz resonator. The block diagram of the project is shown in Figure 6.10.

As shown in Figure 6.11, the LEDs are organized so that when they turn ON, they indicate
numbers as in real dice. Operation of the project is as follows: normally, the LEDs are all
OFF to indicate that the system is ready to generate a new number. Pressing the switch gen-
erates a random dice number between 1 and 6 and displays on the LEDs for 3s. After 3 s, the
LEDs turn OFF again.

6.3.2 Project Hardware

The circuit diagram of the project is shown in Figure 6.12. Seven LEDs representing the faces
of dice are connected to PORTC of a PIC18F452 microcontroller in current-sourcing mode
using 290-() current-limiting resistors. A push-button switch is connected to bit 0 of PORTB
(RBO) using a 4.7-K pull-up resistor. Input pin RBO is normally at logic 1, and pressing the
push-button switch forces this pin to logic 0. The MCLR input of the microcontroller is tied

PIC18 Microcontroller MPLAB C18-Based Simple Projects

309

Push-button o—|
L |:|:| ¢ PIC18F452 =P

000
[
000

DICE

Figure 6.10: Block Diagram of the Project

@] (@] (@) O (@] O [J [] [J [J [] []
[N 6] [NON] [N N J OO0 [oN N6 [NON]
@] (@] (@) (@) (@] (@) [) [] [) [) [] []
1 2 3 4 5 6
Figure 6.11: LED Dice
1 3 5V
N 78L05 T - .
Bfﬁ\ér | 0.33WF 2 0.01 uF 10K 11)3
v ; VDD
T MCLR
C _L 47K a3 RCO
— RBO
N Push to RC1
throw q]
dice I RC2
- RC3
290
1 l;lf 9 N
8 5 24 290
RC5
55290
RC6 |———

Figure 6.12: Circuit Diagram of the Project

to the +5 V via a 10-K resistor because external reset is not required. The microcontroller

is operated from a 4-MHz resonator connected between pins OSC1 and OSC2. The

microcontroller is powered from a +9-V battery, and a 78L05-type voltage regulator IC is

used to obtain the +5-V supply required for the microcontroller.

310 Chapter 6

START
Create DICE table
Configure PORT C as outputs
Configure RBO as input
SetJ =1
DO FOREVER
IF button pressed THEN
Get LED pattern from DICE table
Turn ON required LEDs
Wait 3 seconds
Setd=0
Turn OFF all LEDs
ENDIF
Increment J
IF J=7 THEN
SetJ =1
ENDIF
ENDDO
END

Figure 6.13: PDL of the Project

6.3.3 Project PDL

The operation of the project is described in the PDL given in Figure 6.13. At the begin-
ning of the program, PORTC pins are configured as outputs, and bit 0 of PORTB (RBO0)
is configured as input. The program then executes in a loop continuously and increments
a variable between 1 and 6. The state of the push-button switch is checked, and when
the switch is pressed (switch output at logic 0), the current number is sent to the LEDs.
A simple array is used to find out the LEDs to be turned ON corresponding to the dice
number.

Table 6.1 gives the relationship between a dice number and the corresponding LEDs to be
turned ON to imitate the faces of real dice. For example, to display number 1 (i.e., only the
middle LED is ON), we have to turn ON D4. Similarly, to display number 4, we have to turn
ON D1, D3, D5, and D7.

The relationship between the required number and the data to be sent to PORTC to turn ON
the correct LEDs is given in Table 6.2. For example, to display dice number 2, we have to
send hexadecimal 0x22 to PORTC. Similarly, to display number 5, we have to send hexadeci-
mal 0x5D to PORTC, and so on.

6.3.4 Project Program

The program is called DICE.C, and the program listing is given in Figure 6.14. At the begin-
ning of the program, PBSwitch is defined as bit 0 of PORTB, and Pressed is defined as 0.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 311

Table 6.1: Dice Number and LEDs to be Turned ON

Required Number LEDs to Be Turned ON
1 D4
D2, D6
D2, D4, D6
D1, D3, D5, D7
D1, D3, D4, D5, D7
D1, D2, D3, D5, D6, D7

|| h|lW[IN

Table 6.2: Required Number and PORTC Data

Required Number PORTC Data (Hex)
0x08
0x22
0x2A
0x55
0x5D
0x77

Al bh|lW|IN| =

The relationships between the dice numbers and the LEDs to be turned ON are stored in an
array called DICE. Variable J is used as the dice number. Variable Pattern is the data sent to
the LEDs. Program then enters an endless for loop, where the value of variable J is incre-
mented very fast between 1 and 6. When the push-button switch is pressed, the LED pattern
corresponding to the current value of J is read from the array and sent to the LEDs. The LEDs
remain at this state for 3 s (using a variable-seconds delay function with an argument), and
after this time, they all turn OFF to indicate that the system is ready to generate a new dice
number.

6.3.5 Using a Pseudorandom Number Generator

In the preceding project, the value of the variable J changes very fast between 1 and 6,
and when the push-button switch is pressed, the current value of this variable is taken
and used as the dice number. Because the values of J are changing very fast, we can say
that the numbers generated are random (i.e., new numbers do not depend on the previous
numbers).

In this section, we shall see how a pseudorandom number generator function can be used
to generate the dice numbers. The modified program listing (called DICE2.C) is shown

312 Chapter 6

SIMPLE DICE

In this project, 7 LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is
operated from a 4-MHz resonator. The LEDs are organised as the faces of a real dice. When a push-button
switch connected to RBO is pressed, a dice pattern is displayed on the LEDs. The display remains in this state
for 3 seconds and after this period the LEDs all turn OFF to indicate that the system is ready for the button to be
pressed again.

Author: Dogan Ibrahim
Date: June 2009
File: DICE.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define PBSwitch PORTBbits.RBO
#define Pressed O

void N_Seconds_Delay(unsigned char n)
{
unsigned char k;
for(k=0; k<n; k++) Delay10KTCYx(100);

void main(void)
{
unsigned char J = 1;
unsigned char Pattern;
unsigned char DICE][] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

TRISC = 0; // PORT C outputs
TRISB = 1; // RBO input
PORTC = 0; // Turn OFF all LEDs

for(;;) // Endless loop
{
if(PBSwitch == Pressed)
{

//'1s switch pressed ?

Pattern = DICE[J];
PORTC = Pattern;
N_Seconds_Delay(3);

// Get LED pattern
// Turn on LEDs
// 3 seconds delay

PORTC = 0; // Turn OFF all LEDs
J=0; // Initialise J
1
J++; // Increment J
ifJ==7)Jd=1; // Backto 1if > 6

Figure 6.14: Program Listing

PIC18 Microcontroller MPLAB C18-Based Simple Projects 313

in Figure 6.15. In this program, a function called Number generates the dice numbers.
The function receives the upper limit of the numbers to be generated (6 in this example).
Every time the function is called, a number will be generated between 1 and 6 and
returned by the function.

SIMPLE DICE

In this project, 7 LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is
operated from a 4-MHz resonator. The LEDs are organised as the faces of real dice. When a push-button

switch connected to RBO is pressed, a dice pattern is displayed on the LEDs. The display remains in this

state for 3 seconds and after this period the LEDs all turn OFF to indicate that the system is ready for the button to
be pressed again.

In this version of the program a pseudorandom number is generated between 1 and 6
for the dice numbers.

Author: Dogan Ibrahim
Date: June 2009
File: DICE2.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define PBSwitch PORTBbits.RBO
#define Pressed O

/]
// This function generates an “n” seconds delay where “n” is an integer
//
void N_Seconds_Delay(unsigned char n)
{
unsigned char k;
for(k=0; k<n; k++) Delay10KTCYx(100);

//

// This function generates a Pseudo Random integer number between 1 and Lim

//

unsigned char Number(int Lim)

{
unsigned char Result;
static unsigned intY = 1;

Figure 6.15: Dice Program Using a Pseudorandom Number Generator

314 Chapter 6

Y = (Y*32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return (Result);

}

/!
// Start of MAIN program
/!
void main(void)
{
unsigned char J, Pattern;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

TRISC = 0; // PORT C outputs
TRISB = 1; // RBO input
PORTC = 0; // Turn OFF all LEDs
for(;;) // Endless loop
if(PBSwitch == Pressed) //'Is switch pressed ?
J = Number(6);
Pattern = DICE[J]; // Get LED pattern
PORTC = Pattern; // Turn on LEDs
N_Seconds_Delay(3); //'3 seconds delay
PORTC = 0; // Turn OFF all LEDs

Figure 6.15: Cont’d

The operation of the program is basically the same as in Figure 6.14. When the push-button
switch is pressed, function Number is called to generate a new dice number between 1 and 6,
and this number is used as an index in array DICE in order to find the bit pattern to be sent to
the LEDs.

6.4 Project 3 - Two-Dice Project
6.4.1 Project Description

This project is similar to Project 2, but here, a pair of dice are used instead of just one. In
many dice games, such as backgammon, a pair of dice are thrown together and then the player
takes the action based on the outcome.

The circuit given in Figure 6.12 can be modified by adding another set of seven LEDs for the
second dice. For example, the first set of LEDs can be driven from PORTC, the second set
from PORTD, and the push-button switch can be connected to RBO as before. Such a design

PIC18 Microcontroller MPLAB C18-Based Simple Projects 315

Push-button —
switch o—| PIC18F452

000
[)
000

[o)eoXe]
[o)eoXe]

DICE

Figure 6.16: Block Diagram of the Project

|w)
o
N

L

|w)
&
N

E

O
3
Ny

+5V
A D1 A
4.7K 10K 1132 -
om0 D2 3 D4
33 RBO 15290 4 4
RCO
PIC 16290 =
18F452 RC1 D3
17 290 A
RC2 —|:|—{>|:L
RDO 290 —
RC3 18
23290
RD1 RC4 F—
RD2 54290
RC5 H—
RD3 05290
RC6 ———
RD4 31
RD5 VSS %
RD6 -
0OSC1 0sc2

13 14
4

MHz resonator

Figure 6.17: Circuit Diagram of the Project

will require the use of 14 output ports just for the LEDs. Later on, we will see how the LEDs
can be combined in order to reduce the I/O requirements. Figure 6.16 shows the block dia-

gram of the project.

6.4.2 Project Hardware

The circuit diagram of the project is shown in Figure 6.17. The circuit is basically the same as
Figure 6.12, with the addition of another set of LEDs connected to PORTD.

316 Chapter 6

6.4.3 Project PDL

The operation of the project is very similar to that of Project 2. Figure 6.18 shows the PDL
for this project. At the beginning of the program, PORTC and PORTD pins are configured

as outputs, and bit 0 of PORTB (RBO) is configured as input. The program then executes

in a loop continuously and checks the state of the push-button switch. When the switch is
pressed, two pseudorandom numbers are generated between 1 and 6, and these numbers are
sent to PORTC and PORTD. The LEDs remain at this state for 3 s, and after this time, all the
LEDs are turned OFF to indicate that the push button can be pressed again for the next pair
of numbers.

6.4.4 Project Program

The program is called DICE3.C, and the program listing is given in Figure 6.19. At the begin-
ning of the program, PBSwitch is defined as bit 0 of PORTB, and Pressed is defined as 0. The
relationship between the dice numbers and the LEDs to be turned ON are stored in an array
called DICE, as in Project 2. Variable Pattern is the data sent to the LEDs. The program enters
an endless for loop, where the state of the push-button switch is checked continuously. When
the switch is pressed, two random numbers are generated by calling the function Numbers
twice. The bit patterns to be sent to the LEDs are then determined and sent to PORTC and
PORTD to display the dice numbers. The program then repeats inside the endless loop,
checking the state of the push-button switch.

START
Create DICE table
Configure PORT C as outputs
Configure PORT D as outputs
Configure RBO as input
DO FOREVER
IF button pressed THEN
Get a random number between 1 and 6
Find bit pattern
Turn ON LEDs on PORT C
Get second random number between 1 and 6
Find bit pattern
Turn ON LEDs on PORT D
Wait 3 seconds
Turn OFF all LEDs
ENDIF
ENDDO
END

Figure 6.18: PDL of the Project

PIC18 Microcontroller MPLAB C18-Based Simple Projects 317

TWO DICE

In this project, 7 LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is oper-
ated from a 4-MHz resonator. The LEDs are organised as the faces of a real dice. When a push-button switch
connected to RBO is pressed, a dice pattern is displayed on the LEDs. The display remains in this state for

3 seconds and after this period the LEDs all turn OFF to indicate that the system is ready for the button to be
pressed again.

In this version of the program, a pseudorandom number generator function is used to generate numbers
between 1 and 6 for the dice numbers, and two dice are used connected to PORT C and PORT D of the
microcontroller.

Author: Dogan Ibrahim
Date: June 2009
File: DICE3.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define PBSwitch PORTBbits.RBO
#define Pressed O

/!
// This function generates an “n” seconds delay where “n” is an integer
/!
void N_Seconds_Delay(unsigned char n)
{
unsigned char k;
for(k=0; k<n; k++) Delay10KTCYx(100);

/!

// This function generates a Pseudo Random integer number between 1 and Lim

//

unsigned char Number(int Lim)

{
unsigned char Result;
static unsigned intY = 1;

Y = (Y*32719 + 3) % 32749;
Result = (Y % Lim) + 1);
return (Result);

Figure 6.19: Program Listing

318 Chapter 6

//

//

{

// Start of MAIN program

void main(void)

unsigned char J, Pattern;

unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

TRISC = 0;
TRISD = 0;
TRISB = 1;
PORTC = 0;
PORTD = 0;

for(;;)
{
if(PBSwitch == Pressed)

{
J = Number(6);

// PORT C outputs
// PORT D outputs
// RBO input

// Turn OFF all LEDs
// Turn OFF all LEDs

// Endless loop
//'Is switch pressed ?

// Generate first number

Pattern = DICE[J];
PORTC = Pattern;
J = Number(6);

Pattern = DICE[J];

// Get LED pattern

// Turn ON first LEDs

// Generate second number
// Get LED pattern

PORTD = Pattern; // Turn ON second LED
N_Seconds_Delay(3); // 3 seconds delay

PORTC = 0; // Turn OFF all LEDs
PORTD = 0; // Turn OFF all LEDs

Figure 6.19: Cont’d

6.5 Project 4 - Two Dice Project - Fewer 1/O Pins
6.5.1 Project Description

This project is similar to Project 3, but here LEDs are shared and fewer I/O pins are used.

The LEDs in Table 6.1 can be grouped as shown in Table 6.3, and looking at this table, we
can say that

* D4 can appear on its own.
* D2 and D6 are always together.
* D1 and D3 are always together.

* D5 and D7 are always together.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 319

Table 6.3: Grouping the LEDs

Required Number LEDs to Be Turned ON
1 D4

D2, D6

D2, D6, D4

D1, D3, D5, D7, D4

2
3
4 D1, D3, D5, D7
5
6

D2, D6, D1, D3, D5, D7

Thus, we can drive D4 on its own and then drive the D2, D6 pair together in series, the D1,

D3 pair together in series, and also the D5, D7 pair together in series. (Actually, we could

share D1, D3, D5, D7, but this would require 8 V to drive if the LEDs are connected in series.
Connecting these LEDs in parallel will require excessive current, and a driver IC will be required.)
All together, four lines will be required to drive seven LEDs. Similarly, four lines will be required
to drive the second die. Thus, a pair of dice can be easily driven from an 8-bit output port.

6.5.2 Project Hardware

The circuit diagram of the project is shown in Figure 6.20. PORTC of a PIC18F452 micro-
controller is used to drive the LEDs as follows:

e RCOdrives D2, D6 of first die

e RCI1 drives D1, D3 of first die

* RC2drives D5, D7 of first die

* RC3 drives D4 of first die

* RC4 drives D2, D6 of second die
e RCS5 drives D1, D3 of second die
* RC6 drives D5, D7 of second die
* RC7 drives D4 of second die

Because we are driving two LEDs on some outputs, we can calculate the required value of the
current-limiting resistors. Assuming that the voltage drop across each LED is 2 V, the current
through the LED is 10 mA, and the output high voltage of the microcontroller is 4.85 V, the
required resistors are

485—-2—-2
R= 10 =85 Q.

320 Chapter 6

+5V

4,7K[|] 10K 11|32
1 VDD
MCLR

33 RCO

RBO

8 RC1
throw E[I o

dice RC2

= PIC Rcs3
18F452 a

RC5

RC6

\
12 SS RC7

OSC1 0SC2

5100 A A

16100 ; ;

17100 ; ;

15290 ;
53100 % A

(o7} —:—W
24100

25100 ii i

06290 il

D2

D1

D5

D4

D2

D1

D5

———}

D4

13 14
4 MHz resonator
D3O

D1 D5
., 0

D6

D3

D7

D6

D3

D7

D20 O OD6
ODp7

Figure 6.20: Circuit Diagram of the Project

We will choose 100-() resistors.

We now need to find the relationship between the dice numbers and the bit pattern to be sent
to the LEDs for each die. Table 6.4 shows the relationship between the first dice numbers and
the bit pattern to be sent to port pins RCO-RC3. Similarly, Table 6.5 shows the relationship
between the second dice numbers and the bit pattern to be sent to port pins RC4-RC7.

We can now find the 8-bit number to be sent to PORTC to display both dice numbers as follows:

Get the first number from the number generator, call this P.

Index the DICE table to find the bit pattern for low nibble, i.e., L = DICE[P].

Get the second number from the number generator, call this P.

Index the DICE table to the find bit pattern for high nibble, i.e., U = DICE[P].

Multiply high nibble by 16 and add low nibble to find the number to be sent to PORTC,
i.e., R=16 x U+ L, where R is the 8-bit number to be sent to PORTC to display both the

dice values.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 321

Table 6.4: First Die Bit Patterns

Dice Number | RC3 RC2 RC1 RCO | Hex Value
1 1000 8
2 0001 1
3 1001 9
4 0110 6
5 17110 E
6 0111 7

Table 6.5: Second Die Bit Patterns

Dice Number | RC7 RC6 RC5 RC4 | Hex Value
1 1000 8
2 0001 1
3 1001 9
4 0110 6
5 17110 E
6 0111 7

6.5.3 Project PDL

The operation of the project is very similar to that of Project 2. Figure 6.21 shows the
PDL for this project. At the beginning of the program, PORTC pins are configured as
outputs, and bit 0 of PORTB (RBO) is configured as input. The program then executes in
a loop continuously and checks the state of the push-button switch. When the switch is
pressed, two pseudorandom numbers are generated between 1 and 6, and the bit pattern
to be sent to PORTC is found using the method described above. This bit pattern is then
sent to PORTC to display both the dice numbers at the same time. The display shows
the dice numbers for 3 s, and then, all the LEDs turn OFF to indicate that the system is
waiting for the push button to be pressed again to display the next set of numbers.

6.5.4 Project Program

The program is called DICE4.C, and the program listing is given in Figure 6.22. At the
beginning of the program, PBSwitch is defined as bit 0 of PORTB, and Pressed is defined
as 0. The relationships between the dice numbers and the LEDs to be turned ON are stored

322 Chapter 6

START
Create DICE table
Configure PORT C as outputs
Configure RBO as input
DO FOREVER
IF button pressed THEN
Get a random number between 1 and 6
Find low nibble bit pattern
Get second random number between 1 and 6
High high nibble bit pattern
Calculate data to be sent to PORT C
Wait 3 seconds
Turn OFF all LEDs
ENDIF
ENDDO
END

Figure 6.21: PDL of the Project

in an array called DICE as in Project 2. Variable Pattern is the data sent to the LEDs. The pro-
gram enters an endless for loop, where the state of the push-button switch is checked continu-
ously. When the switch is pressed, two random numbers are generated by calling the function
Numbers. Variables L and U store the lower and the higher nibbles of the bit pattern to be
sent to PORTC. The bit pattern to be sent to PORTC is then determined using the method
described in the project hardware section and is stored in variable R. This bit pattern is then
sent to PORTC to display both the dice numbers at the same time. The dice are displayed for
3's, and after this period, the LEDs are turned OFF to indicate that the system is ready.

6.5.5 Modifying the Program

The program given in Figure 6.22 can be modified and made more efficient by combining the
two dice nibbles into a single table value. The new program is described in this section.

There are 36 possible combinations of two dice values. Referring to Tables 6.4 and 6.5 and
Figure 6.20, we can create Table 6.6 to show all the possible two-dice values and the cor-
responding numbers to be sent to PORTC.

The modified program (program name DICES.C) is given in Figure 6.23. In this program,

the array DICE contains the 36 possible dice values. The program enters an endless for loop

and inside this loop, the state of the push-button switch is checked. In addition, a variable is
incremented from 1 to 36 and when the button is pressed, the value of this variable is used as an
index to array DICE to determine the bit pattern to be sent to PORTC. As before, the program
displays the dice numbers for 3 s and then turns OFF all LEDs to indicate that it is ready.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 323

TWO DICE - USING FEWER 1I/0O PINS

In this project, LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is operated
from a 4-MHz resonator. The LEDs are organised as the faces of real dice. When a push-button switch connected to
RBO is pressed, a dice pattern is displayed on the LEDs. The display remains in this state for 3 seconds and after this
period the LEDs all turn OFF to indicate that the system is ready for the button to be pressed again.

In this version of the program, a pseudorandom number generator function us used to generate numbers between
1 and 6 for the dice numbers.

Author: Dogan Ibrahim
Date: June 2009
File: DICE4.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define PBSwitch PORTBbits.RBO
#define Pressed O

/!
// This function generates an “n” seconds delay where “n” is an integer
/]
void N_Seconds_Delay(unsigned char n)
{
unsigned char k;
for(k=0; k<n; k++) Delay10KTCYx(100);

/]

// This function generates a Pseudo Random integer number between 1 and Lim

/!

unsigned char Number(int Lim)

{
unsigned char Result;
static unsigned int Y = 1;

Y = (Y*32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return (Result);

//
// Start of MAIN program
//

Figure 6.22: Program Listing

324 Chapter 6

void main(void)

{

unsigned char J, L, U, R;

unsigned char DICE[| = {0,0x08,0x01,0x09,0x06,0x0E,0x07};

TRISC = 0;
TRISB = 1;
PORTC = 0;

for(;;)
{
if(PBSwitch == Pressed)

J = Number(6);

L = DICE[J];

J = Number(6);

U = DICE[J];
R=16"U + L;
PORTC = R;
N_Seconds_Delay(3);
PORTC = 0;

// PORT C outputs
// RBO input
// Turn OFF all LEDs

// Endless loop
//'Is switch pressed ?

// Generate first number

// Get LED pattern

// Generate second number

// Get LED pattern

// Bit pattern to send to PORTC
// Turn ON LEDs for both dice
// 3 seconds delay

// Turn OFF all LEDs

Figure 6.22: Cont’d

Table 6.6: Two-Dice Combinations and Numbers to be Sent to PORTC

Dice Numbers PORTC Value Dice Numbers PortC Value
1,1 0x88 41 0x86
1,2 0x18 4,2 0x16
1,3 0x98 43 0x96
1,4 0x68 4,4 0x66
1,5 OXES 4,5 0xE6
1,6 0x78 4,6 0x76
2,1 0x81 5,1 Ox8E
2,2 0x11 5,2 Ox1E
2,3 0x91 5,3 0x9E
2,4 0x61 5,4 Ox6E
2,5 OxE1 5,5 OxEE
2,6 0x71 5,6 0x7E
3,1 0x89 6,1 0x87
3,2 0x19 6,2 0x17

PIC18 Microcontroller MPLAB C18-Based Simple Projects 325

Table 6.6: Two-Dice Combinations and Numbers to be Sent to PORTC —cont’d

Dice Numbers PORTC Value Dice Numbers PortC Value
3,3 0x99 6,3 0x97
3,4 0x69 6,4 0x67
3,5 OxE9 6,5 OxE7
3,6 0x79 6,6 0x77

TWO DICE - USING FEWER I/0 PINS

In this project, LEDs are connected to PORT C of a PIC18F452 microcontroller and the microcontroller is operated
from a 4-MHz resonator. The LEDs are organised as the faces of real dice. When a push-button switch connected to
RBO is pressed, a dice pattern is displayed on the LEDs. The display remains in this state for 3 seconds and after this
period the LEDs all turn OFF to indicate that the system is ready for the button to be pressed again.

In this version of the program, a pseudorandom number generator function is used to generate numbers between
1 and 6 for the dice numbers.

Author: Dogan Ibrahim
Date: June 2009
File: DICE5S.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define PBSwitch PORTBbits.RBO
#define Pressed O

/!
// This function generates an
//
void N_Seconds_Delay(unsigned char n)

{

€A ']

n” seconds delay where “n” is an integer

unsigned char k;
for(k=0; k<n; k++) Delay10KTCYx(100);

/!

// This function generates a Pseudo Random integer number between 1 and Lim
//

unsigned char Number(int Lim)

{

Figure 6.23: Modified Program

326 Chapter 6

unsigned char Result;
static unsigned intY = 1;

Y = (Y*32719 + 3) % 32749;
Result = (Y % Lim) + 1);
return (Result);

//

// Start of MAIN program
//

void main(void)

{

unsigned char Pattern, J = 1;

unsigned char DICE[] = {0, 0x88, 0x18, 0x98, 0x68, OxE8, 0x78,
0x81, Ox11, 0x91, Ox61, OxE1, Ox71,
0x89, 0x19, 0x99, 0x69, OxE9, 0x79,
0x86, 0x16, 0x96, 0x66, OxEB, 0x76,
Ox8E, Ox1E, Ox9E, Ox6E, OxEE, Ox7E,
0x87, 0x17, 0x97, Ox67, OxE7, Ox77};

TRISC = 0;
TRISB = 1;
PORTC =0;

for(;;)
{
if(PBSwitch == Pressed)
{
Pattern = DICE[J];
PORTC = Pattern;
N_Seconds_Delay(3);

PORTC =0;
}
J++;
ifJ==37)d=1;

// PORT C outputs
// RBO input
// Turn OFF all LEDs

// Endless loop

// |s switch pressed ?

// Number to send to PORTC
// Send to PORTC

// 3 seconds delay
// Turn OFF all LEDs

// Increment J
//1fJd =37, reset to 1

Figure 6.23: Cont’d

6.6 Project 5 — Seven-Segment LED Counter

6.6.1 Project Description

This project describes the design of a seven-segment LED-based counter, which counts from
0 to 9 continuously with a 1-s delay between each count. The project shows how a seven-
segment LED can be interfaced and used in a PIC microcontroller project.

Seven-segment displays are used frequently in electronic circuits to show numeric or
alphanumeric values. As shown in Figure 6.24, a seven-segment display basically consists of

PIC18 Microcontroller MPLAB C18-Based Simple Projects 327

Figure 6.24: Some Seven-Segment Displays

a

d

Figure 6.25: Segment Names of a Seven-Segment Display

seven LEDs connected so that numbers 0 to 9 and some letters can be displayed. Segments
are identified by letters from a to g, and Figure 6.25 shows the segment names of a typical
seven-segment display.

Figure 6.26 shows how numbers from 0 to 9 can be obtained by turning ON the different
segments of the display.

Seven-segment displays are available in two different configurations: common cathode and com-
mon anode. As shown in Figure 6.27, in common cathode configuration, all the cathodes of all
segment LEDs are connected together to ground. The segments are turned ON by applying the
logic 1 to the required segment LED via current-limiting resistors. In common cathode configur-
ation, the seven-segment LED is connected to the microcontroller in current-sourcing mode.

In a common anode configuration, the anode terminals of all the LEDs are connected
together, as shown in Figure 6.28. This common point is then normally connected to the
supply voltage. A segment is turned ON by connecting its cathode terminal to logic O via
a current-limiting resistor. In common anode configuration, the seven-segment LED is
connected to the microcontroller in current-sinking mode.

In this project, a Kingbright SA52-11 model red common anode seven-segment display is
used. This is a 13-mm (0.52-inch) display with 10 pins, and it also has a segment LED for the
decimal point. Table 6.7 shows the pin configuration of this display.

www.newnespress.com

328 Chapter 6

Figure 6.26: Displaying Numbers 0-9

g
N

Figure 6.27: Common Cathode Seven-Segment Display

erV

TITTTT1

Figure 6.28: Common Anode Seven-Segment Display

6.6.2 Project Hardware

The circuit diagram of the project is shown in Figure 6.29. A PIC18F452-type microcontrol-
ler is used with a 4-MHz resonator. Segments a to g of the display are connected to PORTC
of the microcontroller through 290-Q current-limiting resistors. Before driving the display,
we have to know the relationship between the numbers to be displayed and the corresponding
segments to be turned ON, and this is shown in Table 6.8. For example, to display number 3,

PIC18 Microcontroller MPLAB C18-Based Simple Projects 329

Table 6.7: SA52-11 Pin Configuration

Pin Numbers Segments

1 E

D

Common anode

C

Decimal point

B

A

Common anode

Ol | N[O |wn| M| DN

F

Y
o

G

+5V

11 32
Vdd

15 290
10K RCO

MCLR 16 290 3
RC1

[oe]

(20 Y

17290

RC2

PIC RC3

290
10 6 18F452 RCa 3

N

18 290 2

Q 0 O O T o

i

>4 290
RC5

N

(6]
N
©
o

Dp RC6 Kingbright SA52-11

O 12
1 5 Vss |31
Display top view OSC1 0sc2

13 14 -

-— 4 MHz resonator

Figure 6.29: Circuit Diagram of the Project

we have to send the hexadecimal number 0x4F to PORTC, which turns ON segments a, b, c,
d, and g. Similarly, to display number 9, we have to send the hexadecimal number Ox6F to
PORTC, which turns ON segments a, b, ¢, d, f, and g.

330 Chapter 6

Table 6.8: Displayed Number and Data Sent to PORTC

Number xgfedcba PORTC Data
0 oor1Tt1t1111 0x3F
1 00000110 0x06
2 01011011 0x5B
3 01001111 Ox4F
4 01100110 0x66
5 01101101 0x6D
6 01111101 0x7D
7 00000111 0x07
8 o1T111111 0x7F
9 01101111 Ox6F

If x is not used, it is considered to be 0.

START

Create SEGMENT table

Configure PORT C as outputs

Initialize CNT to O

DO FOREVER
Get bit pattern from SEGMENT corresponding to CNT
Send this bit pattern to PORT C
Increment CNT between 0 and 9
Wait 1 second

ENDDO

END

Figure 6.30: PDL of the Project

6.6.3 Project PDL

The operation of the project is shown in Figure 6.30 with a PDL. At the beginning of the
program, an array called SEGMENT is declared and filled with the relationship between the
numbers 0-9 and the data to be sent to PORTC. PORTC pins are then configured as outputs
and a variable is initialized to 0. The program then enters an endless loop, where the variable
is incremented between 0 and 9, and the corresponding bit pattern to turn ON the appropriate
segments is sent to PORTC continuously with a 1-s delay between each output.

6.6.4 Project Program

The program is called SEVEN1.C, and the listing is given in Figure 6.31. At the beginning of
the program, character variables Pattern and Cnt are declared, and Cnt is cleared to 0. Then,
Table 6.8 is implemented using array SEGMENT. After configuring PORTC pins as outputs,

PIC18 Microcontroller MPLAB C18-Based Simple Projects 331

7-SEGMENT DISPLAY

In this project, a common anode 7-segment LED display is connected to PORT C of a PIC18F452 microcontroller and
the microcontroller is operated from a 4-MHz resonator. The program displays numbers 0 to 9 on the display with a
one-second delay between each output.

Author: Dogan Ibrahim
Date: June 2009
File: SEVEN1.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

//

// This function generates 1 second delay
//

void One_Second_Delay()

{

}

Delay10KTCYx(100);

//
// Start of MAIN program
//
void main(void)
{
unsigned char Pattern, Cnt = 0;
unsigned char SEGMENT]] = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D, 0x07,0x7F,0x6F};

TRISC = 0; // PORT C are outputs

for(;;) // Endless loop

{
Pattern = SEGMENT[Cnt]; // Number to send to PORT C
Pattern = ~Pattern; // Invert bit pattern
PORTC = Pattern; // Send to PORT C
Cnt++; // Increment Cnt
if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
One_Second_Delay(); //' 1 second delay

Figure 6.31: Program Listing

the program enters an endless loop using the for statement. Inside the loop, the bit pattern
corresponding to the contents of Cnt is found and stored in variable Pattern. Because we are
using a common anode display, a segment is turned ON when it is at logic 0, and thus, the bit
pattern is inverted before sending to PORTC. The value of Cnt is then incremented between
0 and 9, after which the program waits for a second before repeating the above sequence.

332 Chapter 6

6.6.5 Modified Program

Note that the program can be made more readable if we create a function to display the
required number and then call this function from the main program. Figure 6.32 shows the
modified program (called SEVEN2.C). A function called Display is created with an argument
called no. The function gets the bit pattern from the local array SEGMENT indexed by no,
inverts it, and then returns the resulting bit pattern to the calling program.

7-SEGMENT DISPLAY

In this project, a common anode 7-segment LED display is connected to PORT C of a PIC18F452 microcontroller and
the microcontroller is operated from a 4-MHz resonator. The program displays numbers O to 9 on the display with a
one-second delay between each output.

In this version of the program, a function called “Display” is used to display the number.
Author: Dogan lbrahim

Date: June 2009
File: SEVEN2.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

/!

// This function generates 1 second delay
//

void One_Second_Delay()

{

}

Delay10KTCYx(100);

/!
// This function displays a number on the 7-segment LED.
// The number is passed in the argument list of the function.
/!
unsigned char Display(unsigned char no)
{
unsigned char Pattern;
unsigned char SEGMENT]] = {Ox3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, Ox7F, Ox6F};

Pattern = SEGMENT[Nno];
Pattern = ~Pattern;
return (Pattern);

Figure 6.32: Modified Program Listing

PIC18 Microcontroller MPLAB C18-Based Simple Projects 333

//

// Start of MAIN program
/!

void main(void)

{

unsigned char Cnt = 0;

TRISC = 0; // PORT C are outputs
for(;;) // Endless loop
{
PORTC = Display(Cnt); // Send to PORT C
Cnt++; // Increment Cnt
if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
One_Second_Delay(); // 1 second delay

Figure 6.32: Cont’d

Digit 1 enable Digit 2 enable
DIGIT 1 DIGIT 2
a —
b— K
C — [| [
d 1 \7\ [
e — |
f ‘ —
. [

Figure 6.33: Two-Digit Multiplexed Seven-Segment Displays

6.7 Project 6 - Two-Digit Multiplexed Seven-Segment LED

6.7.1 Project Description

This project is similar to Project 5, but here, a two-digit multiplexed 7-segment LED is used
instead of just one digit and a fixed number, and in this project, the number 25 is displayed.

In multiplexed LED applications (see Figure 6.33), the LED segments of all the digits are tied
together, and the common pins of each digit are turned ON separately by the microcontroller.
When each digit is displayed for several milliseconds, the eye cannot differentiate that the
digits are not ON all the time. In this manner, we can multiplex any number of seven-segment
displays together. For example, to display the number 53, we have to send number 5 to the
first digit and enable its common pin. After a few milliseconds, number 3 is sent to the second

334 Chapter 6

Table 6.9: Pin Configuration of DC56-11EWA Dual Display

Pin Nos. Segments

1,5 E

2,6 D

3,8 C
14 Digit 1 Enable
17,7 G

15,10 B

16,11 A

18,12 F
13 Digit 2 Enable
4 Decimal Point1
9 Decimal Point 2

digit, and the common point of the second digit is enabled. When this process is repeated
continuously, it appears to the user that both displays are ON continuously.

Some manufacturers provide multiplexed multidigit displays in single packages. For example,
we can purchase 2-, 4-, or 8-digit multiplexed displays in a single package. The display used
in this project is the DC56-11EWA, which is a red, 0.56-inch high common-cathode two-digit
display, having 18 pins and the pin configuration shown in Table 6.9. This display can be
controlled from the microcontroller as follows:

* Send the segment bit pattern for digit 1 to segments a to g.
* Enable digit 1.

* Wait for a few milliseconds.

* Disable digit 1.

* Send the segment bit pattern for digit 2 to segments a to g.
* Enable digit 2.

* Wait for a few milliseconds.

* Disable digit 2.

* Repeat the above process continuously.

The segment configuration of DC56-11EWA display is shown in Figure 6.34. In a multi-
plexed display application, the segment pins of the corresponding segments are connected

PIC18 Microcontroller MPLAB C18-Based Simple Projects 335

Enable 1 Enable 2

SHHR HHH

1
Figure 6.34: DC56-11EWA Display Segment Configuration

2-digit display

PIC18F452

PORTC E=—=Jp

Enable 1
PORT B |Enable 2

Figure 6.35: Block Diagram of the Project

together. For example, pins 11 and 16 are connected as a common a segment. Similarly, pins
15 and 10 are connected as a common b segment, and so on.

6.7.2 Project Hardware

The block diagram of this project is shown in Figure 6.35. The circuit diagram is given in
Figure 6.36. The segments of the display are connected to PORTC of a PIC18F452-type
microcontroller, operated with a 4-MHz resonator. Current-limiting resistors are used on each
segment of the display. Each digit is enabled using a BC108-type transistor switch connected
to the RBO and RB1 port pins of the microcontroller. A segment is turned ON when a logic 1
is applied to the base of the corresponding segment transistor.

6.7.3 Project PDL

At the beginning of the program, PORTB and PORTC pins are configured as outputs. The
program then enters an endless loop, where first the most significant digit (MSD) of the
number is calculated, next function Display is called to find the bit pattern and then sent to the
display, and digit 1 is enabled. Then, after a small delay, digit 1 is disabled, the least significant
digit (LSD) of the number is calculated, function Display is called to find the bit pattern and
then sent to the display, and digit 2 is enabled. Then, again after a small delay, digit 2 is dis-
abled, and the above process repeats indefinitely. Figure 6.37 shows the PDL of the project.

336 Chapter 6

+5V
A
11]32
Vvdd
10K
1
MCLR 15 290
RCO
16 290 DC56-11EWA common cathode
16
RC1 a
17 290 Bl
RC2 —l:—‘_S
c
18 290 2
RC3 —+— nk
o
ros Po—— 19| ;
PIC 17
¢}

18F452 24290 l | | l
RC5 ——3F4——
25 290
RCé6 18

=y
o

=]

CI-EREFER

J

]

RBO
RB1
0OSC1 0SC2

13 14
4 MHz resonator

34

Figure 6.36: Circuit Diagram of the Project

START
Create SEGMENT table
Configure PORT B as outputs
Configure PORT C as outputs
Initialize CNT to 25
DO FOREVER
Find MSD digit
Get bit pattern from SEGMENT
Enable digit 1
Wait for a while
Disable digit 1
Find LSD digit
Get bit pattern from SEGMENT
Enable digit 2
Wait for a while
Disable digit 2
ENDDO
END

Figure 6.37: PDL of the Project

PIC18 Microcontroller MPLAB C18-Based Simple Projects 337

6.7.4 Project Program

The program is named SEVEN3.C, and the listing is shown in Figure 6.38. DIGIT1 and DIGIT2
are defined to be equal to bit 0 and bit 1 of PORTB, respectively. The value to be displayed
(number 25) is stored in variable Cnt. An endless loop is formed using a for statement. Inside
the loop, the MSD of the number is calculated by dividing the number by 10. Function
Display is then called to find the bit pattern to send to PORTC. Then, digit 1 is enabled by
setting DIGIT1 = 1, and the program waits for 10 ms. After this, digit 1 is disabled, and the
LSD of the number is calculated using the mod operator (“%”) and sent to PORTC. At the
same time, digit 2 is enabled by setting DIGIT2 = 1, and the program waits for 10 ms. After
this waiting time, digit 2 is disabled and the program repeats forever.

Dual 7-SEGMENT DISPLAY

In this project, two common cathode 7-segment LED displays are connected to PORT C of a PIC18F452
microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO and digit 2 (right digit) enable pin is connected to port pin RB1 of the microcontroller. The program
displays the number 25 on the displays.

Author: Dogan lbrahim
Date: June 2009
File: SEVENS.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define DIGIT1 PORTBbits.RBO
#define DIGIT2 PORTBbits.RB1

/!
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
/!
unsigned char Display(unsigned char no)
{
unsigned char Pattern;
unsigned char SEGMENT] | = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07, Ox7F,0x6F};

Pattern = SEGMENT[noJ; // Pattern to return
return (Pattern);

}

/!

// This function generates 10ms delay
//

void Ten_Ms_Delay()

Figure 6.38: Program Listing

338 Chapter 6

Delay10KTCYx(1);

/!

// Start of MAIN Program

//

void main(void)

{
unsigned char Msd, Lsd, Cnt = 25;

TRISC = 0; // PORT C are outputs
TRISB = 0; // RBO, RB1 are outputs
DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2

for(;;) // Endless loop

{

Msd = Cnt / 10; // MSD digit

PORTC = Display(Msd); // send to PORT C
DIGIT1 = 1; // Enable digit 1
Ten_Ms_Delay(); // Wait a while

DIGIT1 = 0; // Disable digit 1

Lsd = Cnt % 10; // LSD digit

PORTC = Display(Lsd); // Send to PORT C
DIGIT2 = 1; // Enable digit 2
Ten_Ms_Delay(); // Wait a while

DIGIT2 = 0; // Disable digit 2

}

Figure 6.38: Cont’d

6.8 Project 7 - Two-Digit Multiplexed Seven-Segment LED
Counter With Timer Interrupt
6.8.1 Project Description

This project is similar to Project 6, but here, the timer interrupt of the microcontroller is used
to refresh the displays. In Project 6, the microcontroller was busy updating the displays
continuously every 10ms, and therefore it could not perform any other tasks. For example, if
we wish to make a counter with 1-s delay between each count, the program given in Project 6
cannot be used as the displays cannot be updated while the program waits for 1s.

In this project, a counter will be designed to count from O to 99, and the display will be
refreshed every 5 ms inside the timer interrupt service routine (ISR); the main program

PIC18 Microcontroller MPLAB C18-Based Simple Projects 339

can perform other tasks, in this example, incrementing the count and waiting for a second
between each count.

In this project, Timer O is operated in an 8-bit mode. The time for an interrupt is
given by

Time = (4 x clock period) X Prescaler x (256 — TMROL),

where Prescaler is the selected prescaler value, and TMROL is the value loaded into
timer register TMROL to generate timer interrupts every time period. In our application,
the clock frequency is 4 MHz, i.e., clock period = 0.25 us, and Time = 5 ms. By select-
ing a prescaler value of 32, the number to be loaded into TMROL can be calculated as
follows:

3 3 Time
TMROL =256 4 x clockperiod x prescaler

or

5000 — 100

TMROL =256 — 4= 5755 %33 =

Thus, TMROL should be loaded with 100. The value to be loaded into the TMRO control
register TOCON can then be found as:

TOCON

ot Jo Jo Jo i Jo Jo |

T A
Enable
TMRO

8-bit
mode

Internal)
clock 1:32
Low-high prescaler

transition

Use
prescaler

340 Chapter 6

Thus, the TOCON register should be loaded with hexadecimal 0xC4. The next register to be
configured is the interrupt control register INTCON, where we will disable priority-based
interrupts and enable the global interrupts and TMRO interrupts:

INTCON
o[[0 Jo Jo Jo fx [x |
T A A A
Enable
global
interrupts
Enable
TMRO
int.
Disable
INTO
int. Disable
RB change

int.

Clear TMROIF

Considering the don’t care entries (X) as 0, the hexadecimal value to be loaded into register
INTCON is thus 0xAO.

When an interrupt occurs, the program automatically jumps to the ISR. Inside this routine,
we have to reload register TMROL, we also have to re-enable the TMRO interrupts, and we
have to clear the TMRO interrupt flag bit. Setting the INTCON register to 0x20 re-enables the
TMRO interrupts and, at the same time, clears the TMRO interrupt flag.

The operations to be performed in the main program can thus be summarized as follows:

* Load TMROL with 100

* Set TOCON to 0xC4

* Set INTCON to 0xA0

* Increment the counter with 1-s delays

The operations to be performed in the interrupt service routine can thus be summarized as follows:
* Reload TMROL to 100

» Refresh displays

e Set INTCON to 0x20 (re-enable TMRO interrupts and clear the timer interrupt flag)

PIC18 Microcontroller MPLAB C18-Based Simple Projects 341

6.8.2 Project Hardware

The circuit diagram of this project is same as in Figure 6.36, where a dual seven-segment
display is connected to PORTB and PORTC of a PIC18F452 microcontroller.

6.8.3 Project PDL

The PDL of the project is shown in Figure 6.39. The program is in two sections: the
main program and the ISR. Inside the main program, TMRO is configured to generate
interrupts every 5 ms. In addition, the counter is incremented with 1-s delay. Inside the
ISR, the timer interrupt is re-enabled, and the display digits are refreshed alternately at
every 5Sms.

6.8.4 Project Program

Before looking at the program code, it is worthwhile to describe how the interrupts are
handled in the MPLAB C18 programs. The C18 compiler does not automatically start the
ISR at the high or low interrupt vectors in program memory. The C18 compiler uses several
pragmas, first to locate the start of the ISR at the reset vector and then to distinguish the ISR
from a standard user function.

MAIN PROGRAM:

START
Configure PORT B as outputs
Configure PORT C as outputs
Clear variable Cnt to O
Configure TMRO to generate interrupts every 5ms
DO FOREVER
Increment Cnt between 0 and 99
Delay 1 second
ENDO
END

INTERRUPT SERVICE ROUTINE:
START
Re-configure TMRO
IF Digit 1 updated THEN
Update digit 2
ELSE
Update digit 1
END
END

Figure 6.39: PDL of the Project

342 Chapter 6

The interrupt vector is specified in the program using the #pragma code statement. The high-
priority vector is at address 0x08, and the low-priority vector is at address 0x18. To set the
high-priority vector, the following statement is used:

#pragma code high_vector = 0x08

where the name high_vector is not a reserved name and any other name can be chosen by the
programmer.

The above statement specifies that the code section that follows the statement starts at
memory location 0x08. After the above statement, we have to write the following single line
of assembly code to force a jump to the ISR:

_asm GOTO timer_ISR _endasm

where timer_ISR is the name of the ISR function. To return to the normal program code, we
have to use the statement

#pragma code

Now, we have to use the following pragma statement to specify a high-priority ISR function:

#pragma interrupt timer_ISR

where interrupt is a reserved name, and timer_ISR is the name of the ISR function declared
by the user. This function must follow the above statement.

If it is required to use a low-priority interrupt, then the above pragma statements should be
changed to (assuming the name of the ISR function is timer_ISR)

#pragma code low_vector = 0x18
and
#pragma interruptlow timer_ISR

The program (called SEVEN4.C) is given in Figure 6.40. In this program function, prototypes
are used at the beginning of the program to declare the functions called by the main program.
At the beginning of the main program, PORTB and PORTC are configured as outputs. Then,
register TOCON is loaded with 0xC4 to enable the TMRO and set the prescaler to 32. TMROL
register is loaded with 100 so that an interrupt can be generated after 5 ms. The program then
enters an endless loop, where the value of Cnt is incremented every second using a delay
function.

Inside the ISR register, TMROL is reloaded, TMRO interrupts are re-enabled, and the timer
interrupt flag is cleared so that further timer interrupts can be generated. The display digits
are then updated alternately based on the value of variable Cnt. A variable called Flag is used
to determine which digit to update. The function Display is called as in Project 6 to find the bit
pattern to be sent to PORTC.

PIC18 Microcontroller MPLAB C18-Based Simple Projects

343

Dual 7-SEGMENT DISPLAY COUNTER

In this project, two common cathode 7-segment LED displays are connected to PORT C of a PIC18F452

microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO and digit 2 (right digit) enable pin is connected to port pin RB1 of the microcontroller. The program

counts up from 0O to 99 with a one-second delay between each count.

The display is updated in a timer interrupt service routine every 5 ms.

Author: Dogan lbrahim
Date: June 2009
File: SEVEN4.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define DIGIT1 PORTBbits.RBO
#define DIGIT2 PORTBbits.RB1

unsigned char Cnt = 0;
unsigned char Flag = 0;

void One_Second_Delay(void);
unsigned char Display(unsigned char);
void timer_ISR(void);

//

// Define the high interrupt vector to be at 0x08
//

#pragma code high_vector=0x08

void interrupt(void)

{
}

#pragma code

_asm GOTO timer_ISR _endasm

/!

//Following code at address 0x08

// Jump to ISR

// Return to default code section

// timer_ISR is an interrupt service routine (jumps here every 5ms)

//
#pragma interrupt timer_ISR
void timer_ISR()
{
unsigned char Msd, Lsd;
TMROL = 100;
INTCON = 0x20;
Flag = ~ Flag;
if(Flag == 0)
{
DIGIT2 = 0;
Msd = Cnt / 10;
PORTC = Display(Msd);
DIGIT1 = 1;
}

else

DIGIT1 = 0;
Lsd = Cnt % 10;

// Re-load TMRO

// Set TOIE and clear TOIF
// Toggle Flag

// Do digit 1

// MSD digit
// Send to PORT C
// Enable digit 1

// Do digit 2
// Disable digit 1
// LSD digit

Figure 6.40

: Program of the Project

344 Chapter 6

//

// This function generates 1 second delay

//

PORTC = Display(Lsd);

DIGIT2 = 1;
}

void One_Second_Delay()

{
}

//

Delay10KTCYx(100);

// Send to PORT C
// Enable digit 2

// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.

//

unsigned char Display(unsigned char no)

{

//

unsigned char Pattern;

unsigned char SEGMENT] | = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07, 0x7F,0x6F};

Pattern = SEGMENT[no];
return (Pattern);

// Pattern to return

// Start of MAIN Program. configure PORT B and PORT C as outputs. In addition,

// configure TMRO to interrupt at every 5ms

//

void main(void)

{

//

TRISC = 0;
TRISB = 0;

DIGIT1 =0;
DIGIT2 =0;

// Configure TMRO timer interrupt

//

TOCON = 0xC4;
TMROL = 100;
INTCON = OxAOQ;
One_Second_Delay();

for(;;)

{
Cnt++;
if(Cnt == 100) Cnt = 0;
One_Second_Delay();

// PORT C are outputs
// RBO, RB1 are outputs

// Disable digit 1
// Disable digit 2

// Prescaler = 32
// Load TMROL with 100
// Enable TMRO interrupt

// Endless loop
// Increment Cnt

// Count between 0 and 99
// Wait 1 second

PIC18 Microcontroller MPLAB C18-Based Simple Projects 345

6.8.5 Modifying the Program

In Figure 6.40, the display counts as 00 01...09 10 11...99 00 01...i.e., the first digit is
shown as 0 for numbers less than 10. The program could be modified so that the first digit

is blanked if the number to be displayed is less than 10. The modified program (called
SEVENS.C) is shown in Figure 6.41. Here, the first digit (MSD) is not enabled if the number
to be displayed is 0.

Dual 7-SEGMENT DISPLAY COUNTER

In this project, two common cathode 7-segment LED displays are connected to PORT C of a PIC18F452
microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO and digit 2 (right digit) enable pin is connected to port pin RB1 of the microcontroller. The program
counts up from O to 99 with a one-second delay between each count.

The display is updated in a timer interrupt service routine every 5 ms.
In this version of the program the first digit is blanked if the number is 0.
Author: Dogan Ibrahim

Date: June 2009
File: SEVENS5.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define DIGIT1 PORTBbits.RBO
#define DIGIT2 PORTBbits.RB1

unsigned char Cnt = 0;
unsigned char Flag = 0;

void One_Second_Delay(void);
unsigned char Display(unsigned char);
void timer_ISR(void);

//

// Define the high interrupt vector to be at 0x08

//

#pragma code high_vector=0x08 //Following code at address 0x08
void interrupt(void)

{
}

_asm GOTO timer_ISR _endasm // Jump to ISR

Figure 6.41: Modified Program

346 Chapter 6

#pragma code

// Return to default code section

//
// timer_ISR is an interrupt service routine (jumps here every 5ms)
//
#pragma interrupt timer_ISR
void timer_ISR()
{
unsigned char Msd, Lsd;
TMROL = 100; // Re-load TMRO
INTCON = 0x20; // Set TOIE and clear TOIF
Flag = ~ Flag; // Toggle Flag
if(Flag == 0) // Do digit 1
{
DIGIT2 = 0;
Msd = Cnt / 10; // MSD digit
if(Msd = 0) // blank MSD
{
PORTC = Display(Msd); // Send to PORT C
DIGIT1 =1; // Enable digit 1
}
}
else
{ // Do digit 2
DIGIT1 =0; // Disable digit 1
Lsd =Cnt % 10; // LSD digit
PORTC = Display(Lsd); // Send to PORT C
DIGIT2 = 1; // Enable digit 2
}
}
//
// This function generates 1 second delay
//

void One_Second_Delay()
{

}

Delay10KTCYx(100);

//

// This function finds the bit pattern to be sent to the port to display a number

// on the 7-segment LED. The number is passed in the argument list of the function.

//

unsigned char Display(unsigned char no)

{
unsigned char Pattern;
unsigned char SEGMENT] | = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07, 0x7F,0x6F};

Pattern = SEGMENT[Nno];
return (Pattern);

// Pattern to return

}

Figure 6.41: Cont’d

PIC18 Microcontroller MPLAB C18-Based Simple Projects

347

//

//

void main(void)

{
TRISC = 0;
TRISB = 0;

DIGIT1 =0;
DIGIT2 = 0;
//
// Configure TMRO timer interrupt
//
TOCON = 0xC4;
TMROL = 100;
INTCON = OxAO;
One_Second_Delay();

for(;;)
{
Cnt++;
if(Cnt == 100) Cnt = 0;
One_Second_Delay();
}

// Start of MAIN Program. configure PORT B and PORT C as outputs. In addition,
// configure TMRO to interrupt at every 5ms

// PORT C are outputs
// RBO, RB1 are outputs

// Disable digit 1
// Disable digit 2

// Prescaler = 32
// Load TMROL with 100
// Enable TMRO interrupt

// Endless loop

// Increment Cnt
// Count between 0 and 99
// Wait 1 second

Figure 6.41: Cont’d

6.9 Project 8 - Four-Digit Multiplexed Seven-Segment LED

Counter With Timer Interrupt

6.9.1 Project Description

This project is similar to Project 7, but a 4-digit display is used instead of a 2-digit display.
Thus, any integer in the range from 0 to 9999 can be displayed. As in Project 7, the display is
updated in the ISR; consequently, the processor can perform other tasks while the display is
updated in the background. In this project, the value of a counter is displayed as it counts up
every second. The operation of this project is very similar to that of Project 7; therefore, the

project is not described again here in detail.

6.9.2 Project Hardware

The circuit diagram of this project is shown in Figure 6.42, where four 7-segment displays are
connected to PORTB and PORTC of a PIC18F452 microcontroller. The segments are con-
nected in parallel to PORTC, and they are enabled from PORTB.

348 Chapter 6

+5V
A
11[32
10K Vad
]
15 290
MCLR Rco I8
290 DC56-11EWA DC56-11EWA
Rt 11 161 16 a 16
17 290 15b E b E
RC2 31, 15 . 15
1g 290 2 10 10
Res o= 71 ' d — — 1
290 e 3 e 3
23
PR - EN e N O N I N5 e O R R N Y
7], — —— |2 — — |2
18F452 24 290 g g9
resr=— | [] [T][
1 1
25 290 - -
RC6 18 5] [i8 5]
12 12 17 |12 17
31|Vss RBO E2 7] E1 E2 7]
RBA 13 14 13
= BC108 BC108 BC108
- RB2 K 1K 1K
RB3
0SC1 0SC2

13 14 T - -
4 MHz resonator

Figure 6.42: Circuit Diagram of the Project

6.9.3 Project PDL

The PDL of the project is shown in Figure 6.43. The program is in two sections: the main
program and the ISR. Inside the main program, TMRO is configured to generate interrupts
every Sms. In addition, the counter is incremented with a 1-s delay. Inside the ISR, the
timer interrupt is re-enabled, and the display digits are refreshed alternately every 5 ms.

6.9.4 Project Program

The program (called SEVENG6.C) is given in Figure 6.44. In this program, function prototypes
are used at the beginning of the program to declare the functions called by the main program.
At the beginning of the main program, PORTB and PORTC are configured as outputs. Then,
register TOCON is loaded with 0xC4 to enable the TMRO and set the prescaler to 32. The
TMROL register is loaded with 100 so that an interrupt can be generated after 5 ms. The
program then enters an endless loop, where the value of Cnt is incremented every second
using a delay function.

PIC18 Microcontroller MPLAB C18-Based Simple Projects 349

MAIN PROGRAM:

START
Configure PORT B as outputs
Configure PORT C as outputs
Clear variable Cnt to 0
Configure TMRO to generate interrupts every 5ms
DO FOREVER
Increment Cnt between 0 and 99
Delay 1 second
ENDO
END

INTERRUPT SERVICE ROUTINE:
START
Re-configure TMRO
IF Digit 1 updated THEN
Update digit 2
ELSE IF Digit 2 is updated THEN
Update digit 3
ELSE IF Digit 3 is updated THEN
Update digit 4
ELSE IF Digit 4 is updated THEN
Update digit 1
END
END

Figure 6.43: PDL of the Project

Four 7-SEGMENT DISPLAY COUNTER

In this project, four common cathode 7-segment LED displays are connected to PORT C of a PIC18F452
microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO, digit 2 enable pin is connected to port pin RB1. Digit 3 enable pin is connected to port pin RB2 and
digit 4 (right digit) enable pin is connected to port pin RB3.

The program counts up from 0 to 9999 with a one-second delay between each count.

The display is updated in a timer interrupt service routine every 5 ms.

Author: Dogan Ibrahim
Date: June 2009
File: SEVEN6.C

#include <p18f452.h>

#include <delays.h>

#pragma config WDT = OFF, OSC = XT
#define DIGIT1 PORTBbits.RBO

Figure 6.44: Program of the Project

350 Chapter 6

#define DIGIT2 PORTBbits.RB1
#define DIGIT3 PORTBbits.RB2
#define DIGIT4 PORTBbits.RB3

unsigned int Cnt = 0;
unsigned char Flag = 0;

void One_Second_Delay(void);
unsigned char Display(unsigned char);
void timer_ISR(void);

//

// Define the high interrupt vector to be at 0x08
//

#pragma code high_vector=0x08

void interrupt(void)

{
}

#pragma code

_asm GOTO timer_ISR _endasm

//

//Following code at address 0x08

// Jump to ISR

// Return to default code section

// timer_ISR is an interrupt service routine (jumps here every 5ms)

/!
#pragma interrupt timer_ISR
void timer_ISR()

{
unsigned int Dig;

TMROL = 100;
INTCON = 0x20;

DIGIT1 =0;

DIGIT2 = 0;

DIGIT3 = 0;

DIGIT4 = 0;

switch(Flag)

{

case 0:
Dig = Cnt / 1000;
PORTC = Display(Dig);
DIGIT1 = 1;
break;

case 1:
Dig = Cnt / 100;
Dig = Dig % 10;
PORTC = Display(Dig);
DIGIT2 = 1;
break;

case 2:
Dig =Cnt/10;
Dig = Dig % 10;

PORTC = Display(Dig);

// Re-load TMRO
// Set TOIE and clear TOIF

// MSD digit

// Send to PORT C
// Enable digit 1

// 2nd digit

// Send to PORT C
// Enable Digit 2

// 3rd digit

// Send to PORT C

Figure 6.44

: Cont’d

PIC18 Microcontroller MPLAB C18-Based Simple Projects

351

DIGIT3 = 1; // Enable Digit 3
break;

case 3:
Dig = Cnt % 10; // 4th digit
PORTC = Display(Dig); // Send to PORT C
DIGIT4 = 1; // Enable Digit 4
break;

1

Flag++;

if(Flag == 4)Flag = 0;

//

// This function generates 1 second delay
//

void One_Second_Delay()

{

}

Delay10KTCYx(100);

/!
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
/!
unsigned char Display(unsigned char no)
{
unsigned char Pattern;
unsigned char SEGMENT] | = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07, 0x7F,0x6F};

Pattern = SEGMENT[noJ; // Pattern to return
return (Pattern);

/!

// Start of MAIN Program. configure PORT B and PORT C as outputs. In addition,
// configure TMRO to interrupt at every 5ms

/!

void main(void)

{

TRISC = 0; // PORT C are outputs
TRISB = 0; // RBO, RB1 are outputs
DIGIT1 =0; // Disable digit 1

DIGIT2 = 0; // Disable digit 2

DIGIT3 = 0; // Disable digit 3

DIGIT4 = 0; // Disable digit 4

//

Figure 6.44: Cont’d

352 Chapter 6

// Configure TMRO timer interrupt
//

TOCON = 0xC4; // Prescaler = 32
TMROL = 100; // Load TMROL with 100
INTCON = OxAQ; // Enable TMRO interrupt
One_Second_Delay();
for(;;) // Endless loop

{
Cnt++; // Increment Cnt
if(Cnt == 10000) Cnt = 0; // Count between 0 and 9999
One_Second_Delay(); // Wait 1 second

}

Figure 6.44: Cont’d

Inside the ISR register, TMROL is reloaded, TMRO interrupts are re-enabled, and the timer
interrupt flag is cleared so that further timer interrupts can be generated. The display digits are
then updated based on the value of variable Cnt. A variable called Flag is used to determine
which digit to update. Flag varies between 0 and 3, and the display digits are updated in a
switch statement as follows:

Flag Digit Updated
0 1 (MSD)
1 2
2 3
3 4 (LSD)

Function Display is called as in Project 7 to find the bit pattern to be sent to PORTC.

6.9.5 Modifying the Program

In Figure 6.44, the display counts as 0000 0001...0009 0010 0011...9999 0000 0001...i.e.,
the leading digits are shown even when they are zero. The program could be modified so that
the leading digits are blanked if the corresponding digits are zero. The modified program
(called SEVENT7.C) is shown in Figure 6.45. Note that the first digit is enabled if the number
is greater than or equal to 1000, the second digit is enabled if the number is greater than or
equal to 100, and the third digit is enabled if the number is greater than or equal to 10.

6.9.6 Using MPLAB C18 Compiler Timer Library Routines

In the previous examples, the timer TMRO was configured by writing into the timer regis-
ters. MPLAB C18 compiler provides timer library routines that simplify the configuration
of timers. The program given in Figure 6.45 has been modified to use these timer library

PIC18 Microcontroller MPLAB C18-Based Simple Projects 353

Four 7-SEGMENT DISPLAY COUNTER

In this project, four common cathode 7-segment LED displays are connected to PORT C of a PIC18F452
microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO, digit 2 enable pin is connected to port pin RB1. Digit 3 enable pin is connected to port pin RB2 and
digit 4 (right digit) enable pin is connected to port pin RB3.

The program counts up from 0 to 9999 with a 1-second delay between each count.

The display is updated in a timer interrupt service routine at every 5 ms.
In this version of the program, leading zeroes are blanked.

Author: Dogan Ibrahim
Date: June 2009
File: SEVEN7.C

#include <p18f452.h>
#include <delays.h>
#pragma config WDT = OFF, OSC = XT

#define DIGIT1 PORTBbits.RBO
#define DIGIT2 PORTBbits.RB1
#define DIGIT3 PORTBbits.RB2
#define DIGIT4 PORTBbits.RB3

unsigned int Cnt = 0;
unsigned char Flag = 0;

void One_Second_Delay(void);
unsigned char Display(unsigned char);
void timer_ISR(void);

//

// Define the high interrupt vector to be at 0x08

//

#pragma code high_vector=0x08 //Following code at address 0x08
void interrupt(void)

{
}

#pragma code // Return to default code section

_asm GOTO timer_ISR _endasm // Jump to ISR

/!

// timer_ISR is an interrupt service routine (jumps here every 5ms)

/!

#pragma interrupt timer_ISR

void timer_ISR()

{
unsigned int Dig;
TMROL = 100; // Re-load TMRO
INTCON = 0x20; // Set TOIE and clear TOIF

Figure 6.45: Modified Program

354 Chapter 6

DIGIT1 =0;
DIGIT2 = 0;
DIGIT3 =0;
DIGIT4 = 0;

switch(Flag)
{
case 0:
if(Cnt >= 1000)
{
Dig = Cnt / 1000;
PORTC = Display(Dig);
DIGIT1 = 1;
}

break;

case 1:
if(Cnt >= 100)

Dig = Cnt / 100;
Dig = Dig % 10;
PORTC = Display(Dig);
DIGIT2 = 1;

}

break;

case 2:

if(Cnt >=10)

{
Dig=Cnt/ 10;
Dig = Dig % 10;
PORTC = Display(Dig);
DIGIT3 = 1;

}

break;

case 3:

Dig = Cnt % 10;
PORTC = Display(Dig);
DIGIT4 = 1;
break;

}

Flag++;

if(Flag == 4)Flag = 0;

//

// This function generates 1 second delay

//

void One_Second_Delay()

{
Delay10KTCYx(100);

}

// MSD digit
// Send to PORT C
// Enable digit 1

// 2nd digit

// Send to PORT C
// Enable Digit 2

// 3rd digit

// Send to PORT C
// Enable Digit 3

// 4th digit
// Send to PORT C
// Enable Digit 4

Figure 6.45: Cont’d

PIC18 Microcontroller MPLAB C18-Based Simple Projects

355

//

// This function finds the bit pattern to be sent to the port to display a number

// on the 7-segment LED. The number is passed in the argument list of the function.
/]

unsigned char Display(unsigned char no)

{

unsigned char Pattern;
unsigned char SEGMENT] | = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

Pattern = SEGMENT[Nno]; // Pattern to return
return (Pattern);

}

//

// Start of MAIN Program. configure PORT B and PORT C as outputs. In addition,
// configure TMRO to interrupt at every 5ms

//

void main(void)

{

TRISC = 0; // PORT C are outputs
TRISB = 0; // RBO, RB1 are outputs
DIGIT1 = 0; // Disable digit 1

DIGIT2 = 0; // Disable digit 2

DIGIT3 = 0; // Disable digit 3

DIGIT4 = 0; // Disable digit 4

//
// Configure TMRO timer interrupt
//

TOCON = 0xC4; // Prescaler = 32
TMROL = 100; // Load TMROL with 100
INTCON = OxAQ; // Enable TMRO interrupt
One_Second_Delay();
for(;;) // Endless loop
{
Cnt++; // Increment Cnt
if(Cnt == 10000) Cnt = 0; // Count between 0 and 9999
One_Second_Delay(); // Wait 1 second

}

Figure 6.45: Cont’d

routines. The modified program (called SEVENS.C) is given in Figure 6.46. As can be
seen in this program, the header file <timers.h> should be declared as the beginning of
the program. In the main program, the timer TMRO is configured by calling the library

function OpenTimerQ

OpenTimerO(TIMER_INT_ON & TO_8BIT & TO_SOURCE_INT & TO_PS_1_32);

356 Chapter 6

Four 7-SEGMENT DISPLAY COUNTER

compiler TIMER library routines are used.

Author: Dogan Ibrahim
Date: June 2009
File: SEVENS.C

The display is updated in a timer interrupt service routine every 5 ms.

In this project, four common cathode 7-segment LED displays are connected to PORT C of a PIC18F452
microcontroller and the microcontroller is operated from a 4-MHz resonator. Digit 1 (left digit) enable pin is connected
to port pin RBO, digit 2 enable pin is connected to port pin RB1. Digit 3 enable pin is connected to port pin RB2 and
digit 4 (right digit) enable pin is connected to port pin RB3.

The program counts up from 0 to 9999 with a 1-second delay between each count.

In this version of the program, leading zeroes are blanked and MPLAB C18

#include <p18f452.h>
#include <delays.h>
#include <timers.h>

#pragma config WDT = OFF, OSC = XT

#define DIGIT1 PORTBbits.RBO
#define DIGIT2 PORTBbits.RB1
#define DIGIT3 PORTBbits.RB2
#define DIGIT4 PORTBbits.RB3

unsigned int Cnt = 0;
unsigned char Flag = 0;

void One_Second_Delay(void);
unsigned char Display(unsigned char);
void timer_ISR(void);

//

// Define the high interrupt vector to be at 0x08
//

#pragma code high_vector=0x08

void interrupt(void)

{
}

#pragma code

_asm GOTO timer_ISR _endasm

//

//

// timer_ISR is an interrupt service routine (jumps here every 5ms)

//Following code at address 0x08

// Jump to ISR

// Return to default code section

Figure 6.46: Using the Timer Library Functions

PIC18 Microcontroller MPLAB C18-Based Simple Projects

357

#pragma interrupt timer_ISR

void timer_ISR()

{

unsigned int Dig;
WriteTimerO(100);
INTCON = 0x20;

DIGIT1 =0;
DIGIT2 = 0;
DIGIT3 =0;
DIGIT4 = 0;

switch(Flag)

{

//

case 0:

case 1:

case 2:

case 3:

Flag++;

if(Cnt >= 1000)

{
Dig = Cnt / 1000;
PORTC = Display(Dig);
DIGIT1 = 1;

}

break;

if(Cnt >= 100)

Dig = Cnt/ 100;
Dig = Dig % 10;
PORTC = Display(Dig);
DIGIT2 = 1;

}

break;

if(Cnt >= 10)

Dig =Cnt/ 10;
Dig = Dig % 10;
PORTC = Display(Dig);
DIGIT3 = 1;

}

break;

Dig = Cnt % 10;
PORTC = Display(Dig);
DIGIT4 = 1;

break;

if(Flag == 4)Flag = 0;

// Re-load TMRO
// Set TOIE and clear TOIF

// MSD digit
// Send to PORT C
// Enable Digit 1

// 2nd digit

// Send to PORT C
// Enable Digit 2

// 3rd digit

// Send to PORT C
// Enable Digit 3

// 4th digit
// Send to PORT C
// Enable Digit 4

Figure 6.46

358 Chapter 6

// This function generates 1 second delay
//
void One_Second_Delay()
{
Delay10KTCYx(100);
}

/]
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
/]
unsigned char Display(unsigned char no)
{
unsigned char Pattern;
unsigned char SEGMENT(] = {Ox3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D, 0x07,0x7F,0x6F};

Pattern = SEGMENT[no]; // Pattern to return
return (Pattern);

}

//

// Start of MAIN Program. configure PORT B and PORT C as outputs. In addition,
// configure TMRO to interrupt at every 5ms

//

void main(void)

{

TRISC =0; // PORT C are outputs
TRISB = 0; // RBO, RB1 are outputs
DIGIT1 =0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
DIGIT3 =0; // Disable digit 3
DIGIT4 = 0; // Disable digit 4
//
// Configure timer TMRO
//

OpenTimerO(TIMER_INT_ON & TO_8BIT & TO_SOURCE_INT & TO_PS_1_32);
WriteTimer0(100);

INTCON = OxAQ; // Enable interrupts
One_Second_Delay();

for(;;) // Endless loop

{
Cnt++; // Increment Cnt
if(Cnt == 10000) Cnt = 0; // Count between 0 and 9999
One_Second_Delay(); // Wait 1 second

}

Figure 6.46: Cont’d

PIC18 Microcontroller MPLAB C18-Based Simple Projects 359

This function has been called with the following arguments:

Enable timer interrupts.
Use timer in 8-bit mode.
Use internal clock source for the timer.

Use 1:32 prescaler value.

The timer is loaded by calling function WriteTimer(O and specifying the timer value as the
argument.

WriteTimer0(100);

6.10 Summary

In this chapter, working examples of microcontroller C programs developed using the
MPLAB C18 compiler are given. These examples should be very useful to readers who are
new to programming the PIC microcontrollers using the C language.

6.11 Exercises

1.

It is required to connect eight LEDs to PORTB of a PIC18F452-type microcontroller.
Draw the circuit diagram of the project assuming that the microcontroller is to be
operated from a 4-MHz crystal. Write a C program to turn ON the odd-numbered LEDs
(i.e., LEDs connected to RB1, RB3, RB5, and RB7).

. Eight LEDs are connected to a microcontroller as in Exercise 1. Write a C program to

turn the LEDs ON and OFF every minute. Use C18 delay routines in your program.

. Eight LEDs are connected to a microcontroller as in Exercise 1. Write a C program using

TMRO interrupts to turn the LEDs ON and OFF every 500 ms.

. It is required to test a two-input NAND gate using a microcontroller. Assume that the

inputs of the NAND gate are connected to ports RBO and RB1, and the output is
connected to port RB2. In addition, an LED is connected to port RB7. Draw the circuit
diagram of the project and also write a C program to test the gate. If the gate is faulty,
turn ON the LED, otherwise the LED should remain OFF.

. Repeat Exercise 4, but this time, write a C program to test a NOR gate.

. Write a C program to use TMRO in a 16-bit mode and generate timer interrupts at 1-s

intervals. Assume that an LED is connected to port RB7 of the microcontroller and turn
this LED ON and OFF every 5.

This page intentionally left blank

Serial Peripheral Interface Bus Operation

As described in Chapter 3, the secure digital (SD) card will be used in serial peripheral
interface (SPI) bus mode. Before looking at the MPLAB C18 SD card functions and sub-
programs, it is worthwhile to see how the PIC18 microcontrollers can be configured and
used in SPI mode. With a good understanding of the operation of the SPI bus, the SD card
functions and subprograms can easily be modified if required.

In this chapter, the configuration and operation of the PIC18 microcontrollers in SPI mode
will be described and then an MPLAB C18-based example will be given to show how the
microcontrollers can be programmed and used for SPI operation using a real external device.

7.1 The Master Synchronous Serial Port Module

The master synchronous serial port (MSSP) module is a serial interface module on the
PIC18 series of microcontrollers used for communicating with other serial devices, such as
EEPROMs, display drivers, A/D converters, D/A converters, and so on.

The MSSP module can operate in one of two modes:
« SPI
* Inter-integrated circuit (I*C)

Both SPI and I*C are serial bus protocol standards. The SPI protocol was initially developed
and proposed by Motorola for use in microprocessor- and microcontroller-based interface appli-
cations. In a system that uses the SPI bus, one device acts as the master and other devices act as
slaves. The master initiates a communication and also provides clock pulses to the slave devices.

The I°C is a two-wire bus and was initially developed by Philips for use in low-speed
microprocessor-based communication applications.

In this chapter, we shall be looking at the operation of the MSSP module in SPI mode.

7.2 MSSP in SPI Mode

The SPI mode allows 8 bits of data to be transmitted synchronously and received
simultaneously. In master mode, the device uses three signals, and in slave mode, a fourth
signal is used. In this chapter, we shall be looking at how to use the MSSP module in master

© 2010 Elsevier Ltd. All rights reserved. 361
D.O.l.: 10.1016/B978-1-85617-719-1.00011-7

362 Chapter 7

< Internal
data bus
Read @% Write

SSPBUF reg

RC4/SDI/SDA ﬁ JL

b SSPSR reg
bit 0 Shlft
?

clock

my)

87
X & X

O

(@)

RAS/SS/AN4 SSCOntrOl
enable
Edge
select
2
Clock select
SSPM3:SSPMO
RC3/SCK/ SMP: CZKE 4 (TMR2 output)
SCL/LVDIN * 2

XH e
select Prescaler | TOSC
4,16, 64
— Data to TX/RX in SSPSR
— TRIS bit

Figure 7.1: MSSP Module in SPI Mode

mode only because in a microcontroller and SD card communication, the microcontroller
operates as an SPI master device and the SD card operates as an SPI slave device.

In master mode, the following microcontroller pins are used:
e Serial data out (SDO) — Pin RC5
e Serial datain (SDI) - Pin RC4
e Serial clock (SCK) - Pin RC3

Figure 7.1 shows the block diagram of the MSSP module when operating in SPI mode.
7.3 SPI Mode Registers

The MSSP module has four registers when operating in SPI mode:
* MSSP control register (SSPCONT1)
e MSSP status register (SSPSTAT)

Serial Peripheral Interface Bus Operation 363

* Serial receive/transmit buffer register (SSPBUF)

* MSSP shift register (not accessible by the programmer)

7.3.1 SSPSTAT

SSPSTAT is the status register, with the lower 6 bits read only and the upper 2 bits read/
write. Figure 7.2 shows the bit definitions of this register. Only bits 0, 6, and 7 are related
to operation in SPI mode. Bit 7 (SMP) allows the user to select the input data sample time.
When SMP = 0, input data is sampled at the middle of data output time, and when SMP =1,
the sampling is done at the end. Bit 6 (CKE) allows the user to select the transmit clock

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit O

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0
SMP CKE D/A P S R/W UA BF
bit 7 bit O

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time
SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

CKE: SPI clock edge select

When CKP = 0:

1 = Data transmitted on the rising edge of SCK
0 = Data transmitted on the falling edge of SCK
When CKP = 1:

1 = Data transmitted on the falling edge of SCK
0 = Data transmitted on the rising edge of SCK

D/A: Data address bit

Used in I°C mode only

P: STOP bit

Used in I°C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.
S: START bit

Used in I°C mode only

R/W: Read write bit information

Used in I°C mode only

UA: Update address
Used in I°C mode only

BF: Buffer full status bit (receive mode only)
1 = Recevie complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘I = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Figure 7.2: SSPSTAT Register Bit Configuration

364 Chapter 7

edge. When CKE = 0, transmit occurs on transition from idle to active clock state, and
when CKE = 1, transmit occurs on transition from active to idle clock state. Bit O (BF) is
the buffer full status bit. When BF = 1, receive is complete (i.e., SSPBUF is full), and when
BF =0, receive is not complete (i.e., SSPBUF is empty).

7.3.2 SSPCONT1

SSPCONI1 is the control register (see Figure 7.3) used to enable the SPI mode and to set
the clock polarity (CP) and the clock frequency. In addition, the transmit collision detection
(bit 7) and the receive overflow detection (bit 6) are indicated by this register.

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0
SMP CKE D/A P S R/W UA BF
bit 7 bit O
bit 7 SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time
SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

bit 6 CKE: SPI clock edge select
When CKP = 0:
1 = Data transmitted on the rising edge of SCK
0 = Data transmitted on the falling edge of SCK
When CKP = 1:
1 = Data transmitted on the falling edge of SCK
0 = Data transmitted on the rising edge of SCK

bit 5 D/A: Data address bit
Used in I°C mode only
bit 4 P: STOP bit
Used in I°C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.
bit 3 S: START bit
Used in I°C mode only
bit 2 R/W: Read write bit information
Used in I°C mode only
bit 1 UA: Update address

Used in I°C mode only

bit 0 BF: Buffer full status bit (receive mode only)
1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘I' = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Figure 7.3: SSPCON1 Register Bit Configuration

Serial Peripheral Interface Bus Operation 365

7.4 Operation in SPI Mode

Figure 7.4 shows a simplified block diagram with a master and a slave device communicating
over the SPI bus. The SDO (pin RC5) output of the master device is connected to the SDI
(pin RC4) input of the slave device, and the SDI input of the master device is connected to the
SDO output of the slave device. The clock SCK (pin RC3) is derived by the master device.
The data communication is as follows:

Sending Data to the Slave: To send data from the master to the slave, the master writes the
data byte into its SSPBUF register. This byte is also written automatically into the SSPSR
register of the master. As soon as a byte is written into the SSPBUF register, eight clock
pulses are sent out from the master SCK pin and at the same time, the data bits are sent
out from the master SSPSR into the slave SSPSR, i.e., the contents of master and slave
SSPSR registers are swapped. At the end of this data transmission, the SSPIF flag (PIR1
register) and the BF flag (SSPSTAT) will be set to show that the transmission is complete.
Care should be taken not to write a new byte into SSPBUF before the current byte is
shifted out, otherwise an overflow error will occur (indicated by bit 7 of SSPCON1).

Receiving Data From the Slave: To receive data from the slave device, the master has
to write a “dummy” byte into its SSPBUF register to start the clock pulses that have
to be sent out from the master. The received data is then clocked into SSPSR of the
master, bit-by-bit. When the complete eight bits are received, the byte is transferred to
the SSPBUF register and flags SSPIF and BF are set. It is interesting to note that the
received data is double-buffered.

7.4.1 Configuration of MSSP for SPI Master Mode

The following MSSP parameters for the master device must be set up before the SPI com-
munication can take place successfully:

e Set data clock rate

* Set clock edge mode

Master Slave
SSPBUF SSPBUF
D DI D DI
SDO SSPSR [« S SO SSPSR |« S
SCK R

Figure 7.4: A Master and a Slave Device on the SPI Bus

366 Chapter 7

* Clear bit 5 of TRISC (i.e., SDO = RCS5 is output)

* Clear bit 3 of TRISC (i.e., SCK = RC3 is output)

* Enable the SPI mode

Note that the SDI pin (pin RC4) direction is automatically controlled by the SPI module.
Data Clock Rate

The clock is derived by the master, and the clock rate is user programmable to one of the
following values via the SSPCONT register bits 0-3 (see Figure 7.3):

e Fosc/4
e Fosc/16
e Fosc/64

e Timer 2 output/2
Clock Edge Mode

The clock edge is user programmable via register SSPCONT (bit 4), and the user can either
set the clock edge as idle high or idle low. In the idle high mode, the clock is high when the
device is not transmitting, and in the idle low mode, the clock is low when the device is not
transmitting. Data can be transmitted either at the rising or at the falling edge of the clock.
The CKE bit of SSPSTAT (bit 6) is used to select the clock edge.

Enabling the SPI Mode

Bit 5 of SSPCONI1 must be set to enable the SPI mode. To reconfigure the SPI parameters,
this bit must be cleared, SPI mode configured, and then the SSPEN bit set back to 1.

The example given below demonstrates how to set the SPI parameters.
m Example 7.1

It is required to operate the MSSP device of a PIC microcontroller in SPI mode. The
data should be shifted on the rising edge of the clock, and the SCK signal must be idle
low. The required data rate is at least 1 Mbps. Assume that the microcontroller clock
rate is 16 MHz and the input data is to be sampled at the middle of data output time.
What should be the settings of the MSSP registers?

Solution

Register SSPCON1 should be set as follows:

* Clear bits 6 and 7 of SSPCONT1 (i.e., no collision detect and no overflow).

Serial Peripheral Interface Bus Operation 367

e Clear bits 4 to 0 to select idle low for the clock.

* Set bits 0 through 3 to 0000 or 0001 to select the clock rate to Fosc/4 (i.e., 16/4 =
4 Mbps data rate) or Fosc/16 (i.e., 16/16 = 1 Mbps).

* Set bit 5 to enable the SPI mode.

Thus, register SSPCON1 should be set to the following bit pattern:
00100000 i.e.,0x 20

Register SSPSTAT should be set as follows:

* Clear bit 7 to sample the input data at the middle of data output time.

* Clear bit 6 to 0 to transmit the data on the rising edge (low-to-high) of the SCK

clock.
* Bits 5 through 0 are not used in the SPI mode.
Thus, register SSPSTAT should be set to the following bit pattern:
00000000 i.e.,0x 00

7.5 SPI Bus MPLAB C18 Library Functions

MPLAB C18 compiler provides useful library functions for programming the MSSP module
in SPI mode. These library functions are shown in Table 7.1 (see the Microchip document
MPLAB CI18 C Compiler Libraries for more details).

The header file spi.h must be included at the beginning of the C18 programs to use these
functions. The available functions are briefly described below.

Table 7.1: MPLAB C18 SPI Library Functions

Functions Descriptions
CloseSPI Disable the SPI module

DataRdySP! Determine whether a data byte is available on the

SPI bus

getcSPI Read a byte from the SPI bus
getsSPI Read a string from the SPI bus
OpenSPI Initialize the SPI module
putcSPI Write a byte to the SPI bus
putsSPI Write a string to the SPI bus
ReadSPI Read a byte from the SPI bus
WriteSPI Write a byte to the SPI bus

368 Chapter 7

7.5.1 CloseSPI

Description:
Example code:

7.5.2 DataRdySPI

Description:

Example code:

7.5.3 getcSPI

Description:
Example code:

7.5.4 getsSPI

Description:
Example code:

7.5.5 OpenSPI

Description:

Example code:

This function disables the SPI module.
closeSPI();

This function determines whether the SPI buffer contains data.
0 is returned if there is no data in the SSPBUF register, and 1 is
returned if new data is available in the SSPBUF register.

While (DataRdySPI());

This function reads a byte from the SPI bus.
d = getcSPI();

This function reads a string from the SPI bus. The number of
characters to read must be specified in the function argument.
getsSPI(dat, 10);

This function initializes the SPI module for SPIbus
communications.
OpenSPI(SPI_FOSC_4, MODE_00, SMPEND);

The first argument is the SCK clock rate, and it can have the following values:

SPI_FOSC_4
SPI_FOSC_16
SPI_FOSC_64
SPI_FOSC_TMR?2
SLV_SSON
SLV_SSOFF

Master clock rate is Fosc/4

Master clock rate is Fosc/16

Master clock rate is Fosc/64

Master clock rate is TMR2 output/2
(used in slave mode only)

(used in slave mode only)

The second parameter specifies the clock edge, and it can take one of the following values:

MODE_00
MODE_01

Clock is idle low, transmit on rising edge
Clock is idle low, transmit on falling edge

Serial Peripheral Interface Bus Operation 369

MODE_10 Clock is idle high, transmit on falling edge
MODE_11 Clock is idle high, transmit on rising edge

The last parameter is the input data sampling time, and it can take one of the following values:
SMPEND Input data sample at the end of data out
SMPMID Input data sample at middle of data out

7.5.6 putcSPI

Description: This function writes a byte to the SPI bus. The function returns 0
if there is no collision and 1 if a collision has occurred.
Example code: stat = putcSPI(data);

7.5.7 putsSPI

Description: This function writes a string to the SPI bus.
Example code: unsigned char test[] = “SPI bus”; putsSPI(test);

7.5.8 ReadSPI

Description: This function reads a byte from the SPI bus. The function is same
as getcSPL
Example code: x =readSPI();

7.5.9 WriteSPI

Description: This function writes a byte to the SPI bus. The function is same as
the putcSPIL
Example code: stat = writeSPI(‘c’);

7.6 Example of an SPI Bus Project

In this section, an example of an SPI bus project is given to show how the SPI bus can be
used to communicate with an SPI bus device. In this example, a TC72-type integrated circuit
digital temperature sensor chip is used to read the ambient temperature and then display on an
LCD every second.

Figure 7.5 shows the block diagram of the project. The temperature sensor TC72 is connected
to the SPI bus pins of a PIC18F452-type microcontroller. In addition, the microcontroller is
connected to a standard LCD device to display the temperature.

The specifications and operation of the TC72 temperature sensor are described below in detail.

370 Chapter 7

TC72 SPI

A4
A4

LCD

PIC18F452

Temperature sensor

Figure 7.5: Block Diagram of the Project

[1]ne vDD [8]
[2]|cE NC|[7]
[3|sck spif6]
[4]aND sDO|5]
TC72

Figure 7.6: TC72 Pin Configuration

7.6.1 TC72 Temperature Sensor

The TC72 is an SPI bus—compatible digital temperature sensor IC that is capable of reading
temperatures from —55 to +125°C.

The device has the following features:

* SPI bus compatible

* 10-bit resolution with 0.25°C/bit

e 12°C accuracy from —40 to +85°C

* 2.65-5.5V operating voltage

* 250-uA typical operating current

* 1-uA shutdown operating current

* Continuous and one-shot (OS) operating modes

The pin configuration of TC72 is shown in Figure 7.6. The device is connected to an SPI bus
via standard SPI bus pins SDI, SDO, and SCK. Pin CE is the chip-enable pin and is used to
select a particular device in multiple TC72 applications. CE must be logic 1 for the device to
be enabled. The device is disabled (output in tri-state mode) when CE is logic 0.

The TC72 can operate either in one-shot (OS) mode or in continuous mode. In OS mode, the
temperature is read after a request is sent to read the temperature. In the continuous mode, the
device measures the temperature approximately every 150 ms.

Serial Peripheral Interface Bus Operation 371

Temperature data is represented in 10-bit two’s complement format with a resolution of
0.25°C/bit. The converted data is available in two 8-bit registers. The MSB register stores the
decimal part of the temperature, whereas the LSB register stores the fractional part. Only
bits 6 and 7 of this register are used. The format of these registers is shown below:

MSB: S 26 25 2% 23222120
LSB: 2220 00 00 O

where S is the sign bit. An example is given below.

m Example 7.2

The MSB and LSB settings of a TC72 are as follows:

MSB: 00101011
LSB: 10000000

Find the reading of the temperature.
Solution

The temperature is found to be

MSB =25+234+27+20=43
LSB=2"=0.5

Thus, the temperature is 43.5°C.

Table 7.2 shows the sample temperature output data of the TC72 sensor.

Table 7.2: TC72 Temperature Output Data

Temperature (°C) Binary (MSB/LSB) Hex
+125 0111 1101/0000 0000 7D00
+74.5 0100 1010/1000 0000 4A80

+25 0001 1001/0000 0000 1900
+1.5 0000 0001/1000 0000 0180
+0.5 0000 0000/1000 0000 0080
+0.25 0000 0000/0100 0000 0040
0 0000 0000/0000 0000 0000
-0.25 1111 1111/1100 0000 FFCO
-0.5 1111 1111/1000 0000 FF80
-13.25 1111 0010/1100 0000 F2CO0
=25 11100111/0000 0000 E700
=55 1100 1001/0000 0000 C900

372 Chapter 7

TC72 Read/Write Operations

The SDI input writes data into TC72’s control register, whereas SDO outputs the temperature
data from the device. The TC72 can operate using either the rising or the falling edge of the
clock (SCK). The clock idle state is detected when the CE signal goes high. As shown in
Figure 7.7, the CP determines whether the data is transmitted on the rising or on the falling
clock edge.

The maximum clock frequency (SCK) of TC72 is specified as 7.5 MHz. Data transfer con-
sists of an address byte, followed by one or more data bytes. The most significant bit (A7) of
the address byte determines whether a read or a write operation will occur. If A7 =0, one or
more read cycles will occur, otherwise, if A7 = 1, one or more write cycles will occur. The
multibyte read operation will start by writing onto the highest desired register and then by
reading from high to low addresses. For example, the temperature high-byte address can be
sent with A7 =0 and then the resulting high-byte, low-byte, and control register can be read
as long as the CE pin is held active (CE = 1).

The procedure to read a temperature from the device is as follows:

* Configure the microcontroller SPI bus for the required clock rate and clock edge.

* Enable TC72 by setting CE = 1.

* Send temperature result high-byte read address (0 x 02) to the TC72 (see Table 7.3).

* Write a “dummy” byte into the SSPBUF register to start eight pulses to be sent out from
the SCK pin and then read the temperature result high byte.

* Write a “dummy” byte into SSPBUF register to start eight pulses to be sent out from the
SCK pin and then read the temperature low byte.

* Set CE =0 to disable the TC72 so that a new data transfer can begin.

Internal Registers of the TC72

As shown in Table 7.3, the TC72 has four internal registers: Control register, LSB tempera-
ture register, MSB temperature register, and Manufacturer’s ID register.

CP=0 CP=1
CE
Y A
soK N L
Data shift on the rising edge Data shift on the falling edge

Figure 7.7: Serial Clock Polarity

Serial Peripheral Interface Bus Operation 373

Table 7.3: TC72 Internal Registers

Read Write
Register Address | Address | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0
Control 0x00 0x 80 0 0 0 (O 0 1 0 SHDN
LSB temperature 0x01 N/A T T0 0 0 0 0 0 0
MSB temperature | 0x 02 N/A T9 T8 T7 T6 TS5 T4 T3 T2
Manufacturer’s ID | 0x 03 N/A 0 1 0 1 0 1 0 0

Table 7.4: Selecting the Mode of Operation

Operating Mode One Shot Shutdown (SHDN)
Continuous X 0
Shutdown 0 1
One shot 1 1
Control Register

The Control register is a read and write register used to select the mode of operation as shut-
down, continuous, or OS. The address of this register is 0 X 00 when reading and 0 x 80 when
writing onto the device. Table 7.4 shows how different modes are selected. At power-up, the
shutdown bit (SHDN) is set to 1 so that the device is in shutdown mode at start-up, and the
device is used in this mode to minimize power consumption.

A temperature conversion is initiated by a write operation to the Control register to select
either the continuous mode or the OS mode. The temperature data will be available in
the MSB and LSB registers after approximately 150 ms of the write operation. The OS
mode performs a single temperature measurement, after which time the device returns

to the shutdown mode. In continuous mode, new temperature data is available at 159-ms
intervals.

LSB and MSB Registers
The LSB and MSB registers are read-only registers that contain the 10-bit measured tempera-
ture data. The address of the MSB register is 0 X 02 and that of the LSB register is 0 x O1.

Manufacturer’s ID

The Manufacturer’s ID is a read-only register with address 0 x 03. This register identifies
the device as a temperature sensor, returning 0 x 054.

374 Chapter 7

7.6.2 The Circuit Diagram

The circuit diagram of the project is shown in Figure 7.8. The TC72 temperature sensor

is connected to the SPI bus pins of a PIC18F452 microcontroller, which is operated

from a 4-MHz crystal. The CE pin of the TC72 is controlled from pin RCO of the
microcontroller. An LCD is connected to PORTB of the microcontroller in the

default configuration, i.e., the connection between the TC72, LCD, and microcontroller is as
follows:

Microcontroller LCD
RBO D4
RB1 D5
RB2 D6
RB3 D7
RB4 E
RB5 R/S
RB6 RW

Microcontroller TC72
RCO CE
RC3 SCK
RC4 SDO
RC5 SDI

The operation of the project is very simple. The microcontroller sends control commands to the
TC72 sensor to initiate the temperature conversions every second. The temperature data is then
read and displayed on the LCD.

7.6.3 The Program

The program listing of the project is shown in Figure 7.9. The program reads the
temperature from the TC72 sensor and displays it on the LCD every second. In this version
of the program, only the positive temperatures and only the integer part are

displayed.

The program consists of a number of functions. At the beginning of the program,
some definitions are made to make the program more readable. The LCD delay
routines DelayFor18TCY, DelayPORXLCD, and DelayXLCD are then given for a 4-MHz
clock rate. Two further delay routines are also used in the program: Delay200 ms
creates a delay of 200 ms and is used during the TC72 temperature conversion routine.
One_Second_Delay creates a 1-s delay and is used to read and display the temperature
every second.

Serial Peripheral Interface Bus Operation 375

A+5V
11[32
10K vDD
] 2| 3 =
MCLR »s 5| VDD VEE
° 2 15 RB6 o4 4| W
VDDcE 5 5|RCO RB5 (=2 51RS
SCK|z—7,RC3 (SCK) RB4 [E LeD
TG72 SDIZ—24RC5 (SDO) RBO -2 15| D4
SDO RC4 (SDI) RBi = 15105
GND RB2 = 14106
4j_ PIC RB3 D7 VSS
= 18F452 1
Temperature sensor_12 1
31|Vss)
1 |osct 0sC2

13 14
4 MHz resonator

Figure 7.8: Circuit Diagram of the Project

SPI BUS-BASED DIGITAL THERMOMETER

In this project, a TC72-type SPI bus-based temperature sensor IC is used.

The IC is connected to the SPI bus pins of a PIC18F452 type microcontroller
(i.e., to pins RC3 = SCK, RC4 = SDI, and RC5 = SDO) and the microcontroller is
operated from a 4-MHz resonator.

In addition, PORT B pins of the microcontroller are connected to a standard
LCD.

The microcontroller reads the temperature every second and displays on the
LCD as a positive number (fractional part of the temperature and negative
temperatures are not displayed in this version of the program).

An example display is:
23
Author: Dogan Ibrahim

Date: July 2009
File: TC72-1.C

#include <p18f452.h>
#include <spi.h>
#include <stdlib.h>
#include <xlcd.h>
#include <delays.h>

Figure 7.9: Program Listing of the Project

376 Chapter 7

#pragma config WDT = OFF, OSC = XT, LVP = OFF
#define CE PORTCbits.RCO

#define CLR_LCD 1
#define HOME_LCD 2

#define Ready SSPSTATbits.BF

unsigned char LSB, MSB;
int result;

//

// LCD Delays

/!

void DelayFor18TCY(void)
{

Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;

}

void DelayPORXLCD(void)

{
Delay1KTCYx(15);

}

void DelayXLCD(void)
{

}

Delay1KTCYx(5);

/!

// This function generates 200ms delay for the TC72 conversion
/!

void Delay200ms(void)

{

}

Delay1KTCYx(200);

//

// This function generates 1 second delay
//

void One_Second_Delay(void)

{
}

Delay10KTCYx(100);

// 18 cycle delay

// 15ms Delay

// 5ms Delay

Figure 7.9: Cont’d

Serial Peripheral Interface Bus Operation

377

//

// Clear LCD and home cursor

//

void Clr_LCD(void)

{
while(BusyXLCD());

WriteCmdXLCD(CLR_LCD); // Clear LCD
while(BusyXLCD()); // Wait until ready
WriteCmdXLCD(HOME_LCD); // Home the cursor

1

//

// Initialize the LCD, clear and home the cursor

/!

void Init_LCD(void)

{
OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit, 5x7 character

Clr_LCD(); // Clear LCD and home cursor
1
/!
// Initialize the SPI bus
//

void Init_SPI(void)
{

}

OpenSPI(SPI_FOSC_4, MODE_01, SMPEND); // SPI clk = 1MHz

/!

// This function sends a control byte to the TC72 and waits until the
// transfer is complete

/!

void Send_To_TC72(unsigned char cmd)

{

SSPBUF = cmd; // Send control to TC72
while(!Ready); // Wait until data is shifted out

1

/!

// This function reads the temperature from the TC72 sensor

//

// Temperature data is read as follows:

/!

// 1. Enable TC72 (CE=1, for single byte write)

// 2. Send Address 0x80 (A7=1)

// 3. Clear BF flag

// 4. Send One-Shot command (Control = 0001 0001)
// 5. Disable TC72 (CE=0, end of single byte write)

// 6. Clear BF flag

// 7. Wait at least 150ms for temperature to be available

Figure 7.9: Cont’d

378 Chapter 7

// 8. Enable TC72 (CE=1, for multiple data transfer)

// 9. Send Read MSB command (Read address=0x02)

// 10. Clear BF flag

// 11. Send dummy output to start clock and read data (Send 0x00)
// 12. Read high temperature into variable MSB

// 13. Send dummy output to start clock and read data (Send 0x00)
// 14. Read low temperature into variable LSB

// 15. Disable TC72 data transfer (CE=0)

// 16. Copy high result into variable “result”

void Read_Temperature(void)

{

char dummy;

CE=1; // Enable TC72
Send_To_TC72(0x80); // Send control write with A7=1
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x11); // Set for one-shot operation

CE =0; // Disable TC72

dummy = SSPBUF; // Clear BF flag

Delay200ms(); // Wait 200ms for conversion

CE =1; // Enable TC72
Send_To_TC72(0x02); // Read MSB temperature address
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x00); // Read temperature high byte
MSB = SSPBUF; // save temperature and clear BF
Send_To_TC72(0x00y); // Read temperature low byte
LSB = SSPBUF; // Save temperature and clear BF
CE =0; // Disable TC72

result = MSB;

/!

// This function formats the temperature for displaying on the LCD.

// The temperature is read as a byte. We have to convert it to a string
// to display on the LCD.

//

// Only the positive MSB is displayed in this version of the program

/!

void Format_Temperature(char *tmp)

{
}

itoa(result,tmp); // Convert integer to ASCII

//

// This function clears the LCD, homes the cursor and then displays the

// temperature on the LCD

//

void Display_Temperature(char *d)

{
Clr_LCD(); // Clear LCD and home cursor
putsXLCD(d);

Figure 7.9: Cont’d

Serial Peripheral Interface Bus Operation

379

/* ============ START OF MAIN PROGRAM /

// Start of MAIN Program. Display a message on the LCD and then
// display the temperature every second

/!

void main(void)

{

char msg[] = “Temperature...”;

char tmp|[3];

TRISC = 0; // Configure RCO (CE) as output
TRISB = 0; // PORT B are outputs

One_Second_Delay();

/!
// Initialize the LCD
//
Init_LCD();
/!
// Display a message on the LCD
/!
putsXLCD(msg);
//
// Wait 2 seconds before starting
/!
One_Second_Delay();
One_Second_Delay();
/!
// Clear the LCD and home cursor
/!
Clr_LCD();
//
// Initialize the SPI bus
/!
Init_SPI();
/¥ =============== ENDLESS PROGRAM LOOP */
/!

// Endless loop. Inside this loop read the TC72 temperature, display on the LCD,
// wait for 1 second and repeat the process

/!
for(;;) // Endless loop
{
Read_Temperature(); // Read the TC72 temperature
Format_Temperature(tmp); // Format the data for display
Display_Temperature(tmp); // Display the temperature
One_Second_Delay(); // Wait 1 second

Figure 7.9: Cont’d

380 Chapter 7

Some other functions used in the program are as follows:
CiIr_LCD: This function clears the LCD screen and homes the cursor.

Init_LCD: This function initializes the LCD to 4-bit operation with 5 X 7 characters. The
function also calls Clr_LCD to clear the LCD screen and home the cursor.

Init_SPI: This function initializes the microcontroller SPI bus to
Clock rate: Fosc/4 (i.e., 1 MHz)
Clock idle low, shift data on clock falling edge
Input data sample at end of data out.

Send_To_TC72: This function loads a byte to SPI register SSPBUF and then waits until the
data is shifted out.

Read_Temperature: This function communicates with the TC72 sensor to read the
temperature. The following operations are performed by this function:

1. Enables TC72 (CE = 1, for single-byte write).

. Sends Address 0 x 80 (A7 =1).

. Clears BF flag.

. Sends OS command (Control = 0001 0001).

. Disables TC72 (CE = 0, end of single-byte write).

. Clears BF flag.

. Waits at least for 150 ms for the temperature to be available.

. Enables TC72 (CE = 1 for multiple data transfer).

O 0 3 N B~ W

. Sends Read MSB command (Read address = 0 x 02).

—_
o

. Clears BF flag.

—
—_—

. Sends dummy output to start clock and read data (Send 0 x 00).

—_
[\

. Reads high temperature into variable MSB.

—_
98]

. Sends dummy output to start clock and read data (Send 0 x 00).

._
n

. Reads low temperature into variable LSB.

—_
|91

. Disables TC72 data transfer (CE = 0).

—_
)}

. Copies high result into variable “result.”

Serial Peripheral Interface Bus Operation 381

Format_Temperature: This function converts the integer temperature into ASCII string
so that it can be displayed on the LCD.

Display_Temperature: This function calls to Clr_LCD to clear the LCD screen and
homes the cursor. The temperature is then displayed calling function putsXLCD.

Main Program: At the beginning of the main program, the port directions are
configured, LCD is initialized, the message “Temperature...” is sent to the LCD, and the
microcontroller SPI bus is initialized. The program then enters an endless loop, where the
following functions are called inside this loop:

Read_Temperature();
Format_Temperature(tmp);
Display_Temperature(tmp);
One_Second_Delay();

7.6.4 Displaying Negative Temperatures

The program given in Figure 7.9 displays only the positive temperatures. Negative
temperatures are stored in TC72 in two’s complement format. If bit 8 of the MSB byte is set,
the temperature is negative and two’s complement should be taken to find the correct tem-
perature. For example, if the MSB and LSB bytes are “1110 0111/1000 0000,” the correct
temperature is

1110 0111/1000 0000 -> the complement is 0001 1000/0111 1111
Adding “1” to find the two’s complement gives 0001 1000/1000 0000,
i.e., the temperature is “-24.5°C.”
Similarly, if the MSB and LSB bytes are “1110 0111/0000 0000,” the correct temperature is
1110 0111/0000 0000 -> the complement is 0001 1000/1111 1111
Adding “1” to find the two’s complement gives 0001 1001/0000 0000,
i.e., the temperature is “-25°C.”

The modified program is shown in Figure 7.10. In this program, both negative and positive
temperatures are displayed, and the sign “—" is inserted before the negative temperatures. The
temperature is displayed in the integer format with no fractional part in this version of the
program.

In this version of the program, the Format_Temperature function is modified such that
if the temperature is negative, the two’s complement is taken, the sign bit is inserted,

382 Chapter 7

and then the value is shifted right by eight digits and converted into an ASCII string
for the display.

7.6.5 Displaying the Fractional Part

The program in Figure 7.10 displays both the positive and negative temperatures, but it does
not display the fractional part of the temperature. The modified program given in Figure 7.11
displays the fractional part as well. The main program is basically the same as that in

Figure 7.10, but function Format_Temperature is modified. In the new program, the LSB
byte of the converted data is taken into consideration and the fractional part is displayed as
“0.00,” “0.25,” “0.50,” or “0.75.” The two most significant bits of the LSB byte are shifted
right by 6 bits. The fractional part then takes one of the following values:

Two-Shifted LSB Bits Fractional Part
00 0.00
01 0.25
10 0.50
11 0.75

SPI BUS-BASED DIGITAL THERMOMETER

In this project, a TC72 type SPI bus-based temperature sensor IC is used.
The IC is connected to the SPI bus pins of a PIC18F452-type microcontroller
(i.e., to pins RC3=SCK, RC4=SDI, and RC5=SDO0) and the microcontroller is
operated from a 4-MHz resonator.

In addition, PORT B pins of the microcontroller are connected to a standard
LCD.

The microcontroller reads the temperature every second and displays it on the
LCD as a positive or negative number (fractional part of the temperature is
not displayed in this version of the program).
An example display is:
-25
Author: Dogan Ibrahim

Date: July 2009
File: TC72-2.C

Figure 7.10: Modified Program to Display Negative Temperatures

Serial Peripheral Interface Bus Operation 383

#include <p18f452.h>
#include <spi.h>
#include <stdlib.h>
#include <xlcd.h>
#include <delays.h>

#pragma config WDT = OFF, OSC = XT, LVP = OFF

#define CE PORTCbits.RCO

#define CLR_LCD 1
#define HOME_LCD 2

#define Ready SSPSTATbits.BF

unsigned char LSB, MSB;
unsigned int result;

//

// LCD Delays

Vi

void DelayFor18TCY/(void)
{

return;

}

void DelayPORXLCD(void)
{

}

Delay1KTCYx(15);

void DelayXLCD(void)
{

}

Delay1KTCYx(5);

/!

// 18 cycle delay

// 15ms Delay

// 5ms Delay

// This function generates 200ms delay for the TC72 conversion

//
void Delay200ms(void)
{

}

Delay1KTCYx(200);

Figure 7.10: Cont’d

384 Chapter 7

//
// This function generates 1 second delay
//
void One_Second_Delay(void)
{
Delay10KTCYx(100);
}
//
// Clear LCD and home cursor
//

void Clr_LCD(void)

{
while(BusyXLCD());

WriteCmdXLCD(CLR_LCD); // Clear LCD
while(BusyXLCD()); // Wait until ready
WriteCmdXLCDHOME_LCD); // Home the cursor

}

//

// Initialize the LCD, clear and home the cursor

//

void Init_LCD(void)

{
OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit, 5x7 character
Clr_LCD(); // Clear LCD, home cursor

}

Vi

// Initialize the SPI bus

//

void Init_SPI(void)
{

}

OpenSPISPI_FOSC_4, MODE_01, SMPEND); // SPI clk = 1MHz

Vi

// This function sends a control byte to the TC72 and waits until the

// transfer is complete

Vi

void Send_To_TC72(unsigned char cmd)

{
SSPBUF = cmd; // Send control to TC72
while(!Ready); // Wait until shifted out

Vi
// This function reads the temperature from the TC72 sensor

Figure 7.10: Cont’d

Serial Peripheral Interface Bus Operation

385

//

// Temperature data is read as follows:

Vi

/1. Enable TC72 (CE=1, for single byte write)

/2. Send Address 0x80 (A7=1)

// 3. Clear BF flag

// 4. Send One-Shot command (Control = 0001 0001)
//'5. Disable TC72 (CE=0, end of single byte write)

// 6. Clear BF flag

/7. Wait at leat 150ms for temperature to be available
// 8. Enable TC72 (CE=1, for multiple data transfer)

/7 9. Send Read MSB command (Read address=0x02)

//10. Clear BF flag

// 11, Send dummy output to start clock and read data (Send 0x00)
//12. Read high temperature into variable MSB

// 13. Send dummy output to start clock and read data (Send 0x00)
// 14. Read low temperature into variable LSB

// 15. Disable TC72 data transfer (CE=0)

// 16. Copy high result into variable “result”

void Read_Temperature(void)

{

char dummy;

CE=1; // Enable TC72
Send_To_TC72(0x80); // Send control with A7=1
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x11); // Set for one-shot operation

CE =0; // Disable TC72

dummy = SSPBUF; // Clear BF flag

Delay200ms(); // Wait 200ms for conversion
CE=1; // Enable TC72
Send_To_TC72(0x02); // Read MSB temperature address
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x00); // Read temperature high byte
MSB = SSPBUF; // Save temperature and clear BF
Send_To_TC72(0x00y); // Read temperature low byte
LSB = SSPBUF; // Save temperature and clear BF
CE=0; // Disable TC72

result = MSB*256 + LSB; // The complete temperature

//

// This function formats the temperature for displaying on the LCD.

// The temperature is read as a byte. We have to convert it to a string

// to display on the LCD.

//

// Positive and negative temperatures are displayed in this version of the program

//

void Format_Temperature(char *tmp)

{
if(result & 0x8000) // If negative
{

result = ~result; // Take complement

Figure 7.10: Cont’d

386 Chapter 7

result++; // Take 2's complement
result >>= 8; // Get integer part
tTmp++ = -5 // Insert “-” sign
}
else
{
result >>= 8; // Get integer part
}
itoa(result,tmp); // Convert integer to ASCII

Vi

// This function clears the LCD, homes the cursor and then displays the

// temperature on the LCD

Vi

void Display_Temperature(char *d)

{
Clr_LCD(); // Clear LCD and home cursor
putsXLCD(d);

/* START OF MAIN PROGRAM

//

// Start of MAIN Program. Display a message on the LCD and then
// display the temperature every second

//

void main(void)

{

char msg[] = “Temperature...”;
char tmp[4];
TRISC =0; // Configure RCO (CE) as output
TRISB = 0; // PORT B are outputs
One_Second_Delay();
//
// Initialize the LCD
//
Init_LCD();
Vi
// Display a message on the LCD
//
putsXLCD(msg);
//
// Wait 2 seconds before starting
Vi
One_Second_Delay();
One_Second_Delay();
Vi

// Clear the LCD and home cursor

Figure 7.10: Cont’d

Serial Peripheral Interface Bus Operation 387

//
Clr_LCD();
/]
// Initialize the SPI bus
/!
Init_SPI();
/* ENDLESS PROGRAM LOOP */
/]

// Endless loop. Inside this loop, read the TC72 temperature, display on the LCD,
// wait for 1 second and repeat the process
//
for(;;) // Endless loop
{
Read_Temperature()

; // Read the TC72 temperature
Format_Temperature(tm

p); // Format the data for display
Display_Temperature(tmp); // Display the temperature
One_Second_Delay(); // Wait 1 second

Figure 7.10: Cont’d

SPI BUS-BASED DIGITAL THERMOMETER

In this project, a TC72-type SPI bus-based temperature sensor IC is used.
The IC is connected to the SPI bus pins of a PIC18F452-type microcontroller
(i.e., to pins RC3=SCK, RC4=SDI, and RC5=SDO) and the microcontroller is
operated from a 4-MHz resonator.

In addition, PORT B pins of the microcontroller are connected to a standard
LCD.

The microcontroller reads the temperature every second and displays it on the
LCD as a positive or negative number. The fractional part of the temperature is
displayed as 2 digits in this version of the program.

An example display is:
-25.75
Author: Dogan Ibrahim

Date: July 2009
File: TC72-3.C

#include <p18f452.h>
#include <spi.h>
#include <stdlib.h>
#include <xlcd.h>
#include <delays.h>

Figure 7.11: Modified Program to Display Fractional Part as Well

388 Chapter 7

#pragma config WDT = OFF, OSC = XT, LVP
#define CE PORTCbits.RCO

#define CLR_LCD 1
#define HOME_LCD 2

#define Ready SSPSTATbits.BF

unsigned char LSB, MSB;
unsigned int result, int_part, fract_part;

//

// LCD Delays

//

void DelayFor18TCY(void)
{

return;

}

void DelayPORXLCD(void)
{

}

Delay1KTCYx(15);

void DelayXLCD(void)
{

}

Delay1KTCYx(5);

//

= OFF

// 18 cycle delay

// 15ms Delay

// 5ms Delay

// This function generates 200ms delay for the TC72 conversion

//
void Delay200ms(void)
{

}

Delay1KTCYx(200);

//

// This function generates 1 second delay
Vi

void One_Second_Delay(void)

{
}

Delay10KTCYx(100);

Figure 7.11: Cont’d

Serial Peripheral Interface Bus Operation

389

/!

// Clear LCD and home cursor
/!

void Clr_LCD(void)

{
while(BusyXLCD());

WriteCmdXLCD(CLR_LCD); // Clear LCD
while(BusyXLCD()); // Wait until ready
WriteCmdXLCD(HOME_LCD); // Home the cursor

}

/!

// Initialize the LCD, clear and home the cursor

/!

void Init_LCD(void)

{
OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit, 5x7 character
Clr_LCD(); // Clear LCD, home cursor

}

//

// Initialize the SPI bus

/!

void Init_SPI(void)
{

}

OpenSPI(SPI_FOSC_4, MODE_01, SMPEND); // 'SPl clk = 1MHz

//

// This function sends a control byte to the TC72 and waits until the
// transfer is complete

//

void Send_To_TC72(unsigned char cmd)

{

SSPBUF = cmd; // Send control to TC72
while(!Ready); // Wait until data is shifted out

}

//

// This function reads the temperature from the TC72 sensor

/!

// Temperature data is read as follows:

/!

// 1. Enable TC72 (CE=1, for single byte write)

// 2. Send Address 0x80 (A7=1)

// 3. Clear BF flag

// 4. Send One-Shot command (Control = 0001 0001)
// 5. Disable TC72 (CE=0, end of single byte write)

Figure 7.11: Cont’d

390 Chapter 7

// 6. Clear BF flag

// 10. Clear BF flag

// 15. Disable TC72 data transfer (CE=0)
// 16. Copy high result into variable “result”
void Read_Temperature(void)

{

char dummy;

CE=1;
Send_To_TC72(0x80);
dummy = SSPBUF;
Send_To_TC72(0x11);
CE=0;

dummy = SSPBUF;
Delay200ms();

CE =1,
Send_To_TC72(0x02);
dummy = SSPBUF;
Send_To_TC72(0x00y);
MSB = SSPBUF;
Send_To_TC72(0x00);
LSB = SSPBUF;
CE=0;

result = MSB*256 + LSB;

/!

// to display on the LCD.

//
Vi
void Format_Temperature(char *tmp)
{
if(result & 0x8000)
{
result = ~result;
result++;
int_part = result >> 8;
tmp++ = *-;

else

int_part = result >> 8;

// 7. Wait at leat 150ms for temperature to be available
// 8. Enable TC72 (CE=1, for multiple data transfer)
//'9. Send Read MSB command (Read address=0x02)

// 11. Send dummy output to start clock and read data (Send 0x00)
// 12. Read high temperature into variable MSB

// 13. Send dummy output to start clock and read data (Send 0x00)
// 14. Read low temperature into variable LSB

// Enable TC72

// Send control write with A7=1

// Clear BF flag

// Set for one-shot operation

// Disable TC72

// Clear BF flag

// Wait 200ms for conversion

// Enable TC72

// Read MSB temperature address
// Clear BF flag

// Read temperature high byte

// Save temperature and clear BF
// Read temperature low byte

// Save temperature and clear BF
// Disable TC72

// The complete temperature

// This function formats the temperature for displaying on the LCD.
// The temperature is read as a byte. We have to convert it to a string

// Positive and negative temperatures are displayed in this version of the program

// If negative

// Take complement

// Take 2’s complement
// Get integer part

// Insert “-” sign

// Get integer part

Figure 7.11: Cont’d

Serial Peripheral Interface Bus Operation 391
//
// Convert integer part to ASCII string
//
itoa(int_part,tmp); // Convert integer to ASCII
//
// Now find the fractional part. First we must find the end of the string “tmp”
// and then append the fractional part to it
//
while(*tmp 1="\0")tmp++; // find end of string “tmp”
//
// Now add the fractional part as “.00”, “.25”, “.50”, or “.75”
//
fract_part = result &0x00CO; // fractional part
fract_part = fract_part >> 6; // fract is between 0-3
switch(fract_part)
{
case 1: // Fractional part = 0.25
tmp++=".; // decimal point
tmp++ = 2'; /2"
*tmp++ = '5’; /15"
break;
case 2: // Fractional part = 0.50
Tmp++ =" // decimal point
*tmp++ = ‘5’; /] “5”
*tmp++ = ‘0’; /10"
break;
case 3: // Fractional part = 0.75
tmp++ = ".; // decimal point
*tmp++ = '77; Y/
“tmp++ = ‘6’; //“5”
break;
case O: // Fractional part = 0.00
tmp++=".; // decimal point
*tmp++ = ‘0’; /10"
*tmp++ = ‘0’; /10"
break;
1
*tmp++ = \0’; // Null terminator
1
//
// This function clears the LCD, homes the cursor and then displays the
// temperature on the LCD
//
void Display_Temperature(char *d)
{
Clr_LCD(); // Clear LCD and home cursor
putsXLCD(d);
1

Figure 7.11: Cont’d

392 Chapter 7

/* START OF MAIN PROGRAM */
//

// Start of MAIN Program. Display a message on the LCD and then display the
// temperature every second

//

void main(void)

{

char msg[] = “Temperature...”;
char tmpl[8];
TRISC = 0; // Configure RCO (CE) as output
TRISB = 0; // PORT B are outputs
One_Second_Delay();
/!
// Initialize the LCD
//
Init_LCD();
/!
// Display a message on the LCD
/!
putsXLCD(msgq);
//
// Wait 2 seconds before starting
/!
One_Second_Delay();
One_Second_Delay();
/!
// Clear the LCD and home cursor
/!
Clr_LCD();
//
// Initialize the SPI bus
/!
Init_SPI();
/* ENDLESS PROGRAM LOOP
//

// Endless loop. Inside this loop, read the TC72 temperature, display on the LCD,
// wait for 1 second and repeat the process
//
for(;;) // Endless loop
{
Read_Temperature();
// Read the TC72 temperature

Format_Temperature(tmp); // Format the data for display
Display_Temperature(tmp); // Display the temperature
One_Second_Delay(); // Wait 1 second

*/

Figure 7.11: Cont’d

Serial Peripheral Interface Bus Operation 393

7.7 Summary

In this chapter, the properties of the SPI bus and how it can be used in the PIC microcontroller
circuits are described. An example is given to show how the SPI bus can be used to read the
temperature from an SPI bus—compatible temperature sensor device.

7.8 Exercises

1.
2.
3.

What are the operating modes of the MSSP module?
Which pins are used in the SPI mode? Describe the function of each pin.

Describe the SPI mode registers in detail. How can the MSSP be configured to operate in
SPI mode?

. Explain in detail, by drawing a diagram, how data can be sent and received by a master

SPI device.

. It is required to operate the MSSP device of a PIC microcontroller in SPI mode. The

data should be shifted on rising edge of the clock and the SCK signal must be idle low.
The required data rate is at least 2 Mbps. Assume that the microcontroller clock rate

is 32 MHz and the input data is to be sampled at the middle of data output time. What
should be the settings of the MSSP registers?

. Describe which MPLAB C18 library functions can be used to read and write to an SPI

device.

. The MSB and LSB registers of a TC72 sensor contain the following bits. What is the

temperature reading?

MSB: 00111101
LSB: 11000000

. Modify the program given in Figure 7.9 to display the temperature as a 2-digit integer

number between 0 and 99 on a pair of seven-segment displays.

This page intentionally left blank

MPLAB C18 SD Card Functions and
Procedures

Reading and writing onto secure digital (SD) cards is a complex process and requires the
development of a number of rather complex functions and procedures to handle the card I/O
operations correctly.

Fortunately, Microchip Inc. provides a library of file I/O functions for implementing the card
file operations. This library is named “Microchip MDD File system,” where MDD stands for
“memory disk drive.” The library can be downloaded free of charge from the Microchip Web
site. The library is based on the ISO/IEC 9293 specifications and supports the MPLAB C18
and MPLAB C30 compilers. The library can be used for

* FAT16 and FAT32 file systems. FAT16 is an earlier file system usually found in
MSDOS-based systems and early Windows systems. The current Windows operating
systems (e.g., Windows XP) support both FAT16 and FAT32 file systems. SD cards (and
multimedia cards) up to 2 GB use the FAT16 standard filing system. The FAT32 filing
system is used for higher-capacity SD cards, usually between 2 GB and 2 TB.

* The MDD library supports SD cards, compact flash cards, and USB thumb drives.

In this book, we shall be looking at how to install the MDD library and how to use the library
functions and procedures in the PIC18 series of microcontrollers, using the MPLAB C18
compiler (further information about the MDD library can be obtained from the Microchip
application note AN1045, Document no: DS01045B, entitled “Implementing File I/O Func-
tions Using Microchip’s Memory Disk Drive File System Library.”)

8.1 Installation of the MDD Library

The current version (at the time of writing this book) of the Microchip MDD library has the
filename “Microchip MDD File System 1.2.1 Installer.exe.” The library can be installed by
the following steps:

* Download the library from Microchip Web site

¢ Double-click the file and follow the instructions to load

© 2010 Elsevier Ltd. All rights reserved. 395
D.O.l.: 10.1016/B978-1-85617-719-1.00012-9

396 Chapter 8

The MDD library creates a directory called “Microchip Solutions” under the “C:\’ root
directory. The following directories are created and files are copied to the “Microchip
Solutions” directory:

Directory: “MDD File System-SD Card” contains demonstration programs for the PIC18,
PIC24, and PIC32 microcontrollers.

Directory: “MDD File System-SD Data Logger” contains an example SD card data
logging application.

Directory: “Microchip” contains various common files, help files, include files, and
documentation files.

8.2 MDD Library Functions
8.2.1 File and Disk Manipulation Functions

The MDD library provides a large number of “File and Disk Manipulation” functions that
can be called and used from MPLAB C18 programs. The functions can be placed under the
following groups:

Initialize a card

Open/create/close/delete/locate/rename a file on the card
Read/write to an opened file
Create/delete/change/rename a directory on the card
Format a card

Set file creation and modification date and time

The summary of each function is given briefly in Tables 8.1-8.6.

8.2.2 Library Options

A number of options are available in the MDD library. These options are enabled or disabled
by uncommenting or commenting them, respectively, in include file FSconfig.h. The avail-
able options are given in Table 8.7.

Table 8.1: Initialize a Card Function

Functions Descriptions

FSinit Initialize the card

MPLAB C18 SD Card Functions and Procedures 397

Table 8.2: Open/Create/Close/Delete/Locate/Rename Functions

Functions Descriptions

FSfopen/FSfopenpgm Opens an existing file for reading or for appending at the end of the file or
creates a new file for writing.
FSfclose Updates and closes a file. The file time-stamping information is also updated
FSRemove/FSremovepgm Deletes a file

FSrename Changes the name of a file

FindFirst/FindFirstpgm Locates a file in the current directory that matches the specified name and
attributes
FindNext Locates the next file in the current directory that matches the name and

attributes specified earlier

...pgm versions are to be used with the PIC18 microcontrollers where the arguments are specified in ROM.

Table 8.3: Read/Write Functions

Functions Descriptions

FSfread Reads data from an open file to a buffer

FSfwrite | Writes data from a buffer onto an open file

FSftell Returns the current position in a file

FSfprintf Writes a formatted string onto a file

Table 8.4: Create/Delete/Change/Rename Directory

Functions Descriptions

FSmkdir | Creates a new subdirectory in the current woking directory

FSrmdir Deletes the specified directory

FSchdir Changes the current working directory
FSrename Changes the name of a directory
FSgetcwd Returns name of the current working directory

Table 8.5: Format a Card

Function Description

FSformat Formats a card

Table 8.6: File Time-Stamping Function

Function Description

SetClockVars Sets the date and time that will be applied to files when they are
created or modified

398 Chapter 8

Table 8.7: MDD Library Options (in File FSconfig.h)

Library Options Descriptions
ALLOW_WRITES Enables write functions to write onto the card
ALLOWS_DIRS Enables directory functions (writes must be enabled)
ALLOW_FORMATS Enables card formatting function (writes must be
enabled)
ALLOW_FILESEARCH Enables file and directory search
ALLOW_PGMFUNCTIONS | Enables pgm functions for getting parameters from
the ROM
ALLOW_FSFPRINTF Enables Fsfprintf function (writes must be enabled)
SUPPORT _FAT32 Enables FAT32 functionality

Table 8.8: MPLAB C18 Memory Usage with MDD Library

Functions Included Program Memory (Bytes) | Data Memory (Bytes)
Read-only mode (basic) 11099 2121
File search enabled +2098 +0
Write enabled +7488 +0
Format enabled +2314 +0
Directories enabled +8380 +90
pgm functions enabled +288 +0
FSfprintf enabled +2758 +0
FAT32 support enabled +407 +4

8.2.3 Memory Usage

The MPLAB C18 program memory and the data memory usage with the MDD library func-
tions when the MPLAB C18 compiler is used are shown in Table 8.8. Note that 512 bytes of
data are used for the data buffer, and an additional 512 bytes are used for the file allocation
table buffer. The amount of required memory also depends on the number of files opened at a
time. In Table 8.8, it is assumed that two files are opened. The first row shows the minimum
memory requirements, and additional memory will be required when any of the subsequent
row functionality is enabled.

MPLAB C18 SD Card Functions and Procedures

399

8.2.4 Library Setup

There are a number of header files that should be customized before compiling a project (see
Chapter 9 for details). These files and the type of customization that can be done are given
below (it is assumed that we will be using dynamic memory allocation in the filing system):

* File FSConfig.h can be modified to change

1. The maximum number of files open at any time (the default is 2)

2. FAT sector size (the default is 512 bytes)

3. Library options. The defaults are (comment the ones not required to save code space):

ALLOW_FILESEARCH
ALLOW_WRITES
ALLOW_DIRS
ALLOW_PGMFUNCTIONS
SUPPORT_FAT32
USERDEFINEDCLOCK

* File HardwareProfile.h can be modified
1. to change system clock (the default is 4 MHz)
2. to enable SD-SPI interface. The default is
USE_SD_INTERFACE_WITH_SPI

3. todefine SD card interface pins. The defaults are

SD chip select (SD_CS) -> RB3
SD card detect (SD_CD) | -> RB4
SD write enable (SD_WE) | -> RA4

SPI clock (SPICLOCKPORT) | -> RC3

SPI input (SPIINPORT) | -> RC4

SPI output (SPIOUTPORT) | -> RC5

(If any of the above is changed, then the corresponding TRIS registers must also be

changed accordingly.)

400 Chapter 8

4. Configure main SPI control registers. The defaults are

SPICON1 -> SSP1CON1
SPISTAT -> SSP1STAT
SPIBUF -> SSP1BUF

SPISTAT_RBF -> SSP1STATbits.BF
SPICON1bits -> SSP1CON1bits
SPISTATDbits -> SSP1STATDbits
SPI_INTERRUPT_FLAG -> PIR1bits.SSPIF
SPIENABLE -> SPICON1bits.SSPEN

* Make sure that all the I/O pins used in the SD card interface are configured as digital I/O
(and not as analog I/O)

* Modify the linker file to include a 512-byte section of RAM to act as a buffer for file read
and write operations. In addition, create a section in the linker called dataBuffer that
maps to this RAM.

* Modify the linker file to include a 512-byte section of RAM to act as a buffer for read and
write of FAT. In addition, create a section in the linker called FATBuffer that maps to
this RAM.

* Select the appropriate microcontroller definition file at the beginning of your program.

8.3 Sequence of Function Calls

The sequence of function calls to read or write data onto a file or to delete an existing file is
given in this section.

8.3.1 Reading from an Existing File

The steps to open an existing file and read from it are
Call FSInit to initialize the card and SPI bus
Call FSfopen or FSfopenpgm to open the existing file in read mode
Call FSfread to read data from the file
Call FSfclose to close the file

The FSread function can be called as many times as required.

MPLAB C18 SD Card Functions and Procedures 401

8.3.2 Writing Onto an Existing File

The steps to open an existing file and append data to it are
Call FSInit to initialize the card and SPI bus
Call FSfopen or FSfopenpgm to open the existing file in append mode
Call FSwrite to write data onto the file
Call FSfclose to close the file

The FSwrite function can be called as many times as required.

8.3.3 Deleting an Existing File

The steps to delete an existing file are
Call FSInit to initialize the card and SPI bus
Call FSfopen or FSfopenpgm to open the existing file in write mode
Call FSremove or FSremovepgm to delete the file

Call FSfclose to close the file

8.4 Detailed Function Calls

This section gives a detailed description of the Microchip file and disk manipulation functions
(further information can be obtained from the Microchip Application Note: AN1045, Docu-
ment no: DS01045B). The functions return and its typical use are shown with a simple call to
each function. The functions are given in the order of typical use, i.e., initializing, opening,
reading, writing, deleting, renaming, directories, and so on.

8.4.1 FSinit

This function initializes the SPI bus and mounts the SD card, and it must be called before any
other MDD functions are called. The function returns an integer status. If the card is detected
and the card is formatted with FAT12/FAT16 or FAT32, then TRUE is returned, otherwise a
FALSE is returned.

The following example shows how this function can be called:

if(FSInit() == FALSE)
//
// Failed to initialize

402 Chapter 8

The low-level function MedialsPresent() can be used to check whether or not the card is
present. If the card is removed, FSInit must be called again to remount the card.

8.4.2 FSfopen

This function opens a file on the SD card and associates a file structure with it. The function
has two parameters: the filename and the mode.

The filename must be NULL terminated and must be less than eight characters, followed
by a dot ““.” and a three-character file-extension name. The filename must be stored in RAM
memory; thus, it should be declared as a character string.

The mode is a NULL-terminated one-character string that specifies the mode of access. The
mode must be stored in RAM memory. Some of the valid modes are

r Read-only

w Write (a new file is created if it already exists)

w+ | Create a new file (read and writes are enabled)

a Append (if the file exists, any writing will be
appended to the end of the file. If the file does not
exist, a new file will be created)

The function returns a file structure or a NULL if the file could not be opened.

The following example shows how this function can be called to open a new file called
“MYFILE.DAT”:

FSFILE * MyFile;

char FileName[11] = “MYFILE.DAT”;

char FileMode[2] = “w+7;
MyFile = FSfopen(Filename, FileMode);

8.4.3 FSfopenpgm

This function opens a file on the SD card and associates a file structure with it. The function
has two parameters: the filename and the mode.

The filename must be NULL terminated and must be less than eight characters, followed
by a dot “.” and a three-character file-extension name. The filename must be stored in ROM
memory; thus, the filename can be entered directly as a string in the function.

MPLAB C18 SD Card Functions and Procedures 403

The mode is a NULL-terminated one-character string that specifies the mode of access. The
mode must be stored in the ROM memory. Valid modes are

r Read-only
w Write (a new file is created if it already exists)
w+ | Create a new file (read and writes are enabled)
a Append (if the file exists, any writing will be
appended to the end of the File. If the file does not
exist, a new file will be created)

The function returns a file structure or a NULL if the file could not be opened.

The following example shows how this function can be called to open a new file called
“MYFILE.DAT”:

FSFILE * MyFile;
MyFile = FSfopenpgm(“MYFILE.DAT”, “w+");

8.4.4 FSfclose

This function is called to close an opened file. The function returns an integer O if the file
is closed successfully or a —1 (EOF) if the file failed to close. A pointer to the opened file
(obtained from a previous call to FSopen) must be specified as the argument.

The following example shows how an opened file can be closed:

if(FSfclose(MyFile) == 0)
//
// File closed successfully

8.4.5 FSfeof

This function detects whether end-of-file is reached while reading from a file. A pointer to the
opened file must be specified as the argument. The function returns an integer 1 (EOF) if the
end-of-file is reached, otherwise O is returned. A pointer to the opened file must be specified
as the argument.

The following example shows how the end-of-file can be detected:

if(FSfeof(MyFile) == EOF)
//
// end-of-file detected

404 Chapter 8

8.4.6 FSfread

This function reads n bytes of data, each of length size bytes from the opened file and copies
the data to the buffer pointed to by the buffer pointer.

The following parameters are required:

pntr | Pointer to the buffer that is to hold the data
size Length of each item (bytes)

n Number of items to read
ptr Pointer to the opened file

The total number of bytes read is actually n*size.
The function returns the number of items read or a 0 if there is an error in transferring n*size bytes.

The following example shows how 20 packets of size 10 bytes each can be read and trans-
ferred to a buffer pointed to by pntr:
count = FSfread(pntr, 10, 20, MyFile);

In the above example, if the transfer is successful, count stores the total number of items
actually read from the card. The possibilities are:

count ==0 // no data was read from the card
count < 20 // could not read 20 packets (EOF, or other error)
count == 20 // all 20 packets have been read

8.4.7 FSfwrite

This function writes n bytes of data, each of length size bytes, from a buffer pointed to by
pntr to a previously opened file.

The following parameters are required:

pntr | Pointer to the buffer where data is to be written
size Length of each item (bytes)

n Number of items to read
ptr Pointer to the opened file

The total number of bytes read is actually n*size.

The function returns the number of items read or O if there is an error in transferring n*size bytes.

MPLAB C18 SD Card Functions and Procedures 405

The following example shows how 20 packets of size 10 bytes each can be written from a
buffer pointed to by pntr to the card:

count = FSfwrite(pntr, 10, 20, MyFile);

In the above example, if the transfer is successful, count stores the total number of items
actually written to the card. The possibilities are

count == // no data was written to the card
count < 20 // could not write 20 packets
count == 20 // all 20 packets have been written

8.4.8 FSremove

This function deletes a file from the current directory. The filename must be specified in the RAM.
The function returns O if the deletion is successful or —1 on failure.

The following example shows how the file named “MYFILE.DAT” can be deleted:

char FileName[12] = “MYFILE.DAT”;
if(FSremove(FileName) == 0)

//

// file deleted successfully

8.4.9 FSremovepgm

This function deletes a file from the current directory. The filename must be specified in the
ROM, i.e., the filename can be directly entered as a string to the function.

The function returns O if the deletion is successful, or —1 on failure.

The following example shows how the file named “MYFILE.DAT” can be deleted:

if(FSremovepgm(“MYFILE.DAT”) == Q)
//
// file deleted successfully

8.4.10 FSrewind

This function sets the file pointer to the beginning of the file. The file structure opened earlier
must be specified as an argument to the function. The function does not return anything.

A typical call to this function is
FSrewind(MyFile);

8.4.11 FSmkdir

This function creates a directory where the directory path string must be passed as an argument
to the function. Directory names must be eight ASCII characters or less and must be delimited

406 Chapter 8

by the backslash character “\”. The standard MSDOS “dot” formatting is used, where a dot ““.”

accesses the current directory and two dots “..” access the previous directory. A directory in the
“root directory” is created by specifying a backslash “\” before the directory name.

If the directory creation is successful, 0 is returned, otherwise —1 is returned.

In the following example, a directory called “COUNTS” will be created in the current
directory:

char DirPath[] = \COUNTS”;

if(lFSmkdir(DirPath))

//

// directory created successfully

8.4.12 FSrmdir

This function deletes a directory where the directory path string must be passed as an argument
to the function. Directory names must be eight ASCII characters or less and must be delimited
by the backslash character “\”. The standard MSDOS “dot” formatting is used, where a dot ““.”

accesses the current directory and two dots “..” access the previous directory. A directory in the
“root directory” is accessed by specifying a backslash “\” before the directory name.

The function requires two arguments: the directory path name and the mode. If the mode is
TRUE, all subdirectories and files will be deleted. If the mode is FALSE, the directory will be
deleted only if it is empty.

The function returns 0 on success and —1 if it fails to delete the directory.

In the following example, the directory called “COUNTS” in the current directory will be
deleted. In addition, all the files within this directory will also be deleted:

char DirPath[] = \COUNTS";

if(FSrmdiir(DirPath, TRUE) == 0)

//

// directory and all its files deleted successfully

8.4.13 FSchdir

This function changes the current default directory. Directory names must be eight ASCII
characters or less and must be delimited by the backslash character “\”. The standard MSDOS
“dot” formatting is used, where a dot *“.” accesses the current directory and two dots “..”
access the previous directory. A directory in the “root directory” is accessed by specifying a

backslash “\” before the directory name.
The path of the directory to be changed to must be specified as an argument to the function.

The function returns O on success and —1 if it fails to change the default working directory.

MPLAB C18 SD Card Functions and Procedures 407

In the following example, the working directory is changed to “NUMBERS”:

char NewDir[] = “\NUMBERS";
if(FSchdir(NewDir == 0)

//

// directory changed successfully

8.4.14 FSformat

This function deletes the FAT and root directory of a card. A new boot sector will be created
if required. The function only supports FAT16 formatting.

The function has three arguments:

0 erases the FAT and root directory

mode 1 creates a new master boot sector
(MBR must be present)

serno Serial number to write into the new boot sector

volume Volume ID of the card (up to eight characters)

The function returns 0 if the formatting is successful, otherwise —1 is returned.

In the following example, an SD card is formatted and a new boot sector is created. The card
volume name is set to “LOGS,” and the card serial number is set to hexadecimal 0x11223344:
char CardVol[] = “LOGS”;
if(FSformat(1, Ox11223344, CardVol) == 0)

//
// card formatted successfully

8.4.15 FSrename

This function changes the name of a file or a directory. The new filename and the name of the
file to be changed must be specified as arguments to the function. If a NULL is passed as a
pointer, then the name of the current working directory will be changed.

The function returns O if the filename is changed, otherwise —1 is returned.

In the following example, the name of the file pointed to by structure ptr will be changed to
“NEW.DAT”:

FSFILE *ptr;
if(FSrename(“NEW.DAT”, ptr) == 0)
/]

// flename changed successfully

408 Chapter 8

8.4.16 FindFirst

This function finds the first file in the current directory that matches the specified filename
and file attribute criteria passed in the arguments.

The function has three arguments:

filename The filename that must match (see Table 8.9)

attr The file attribute that must match (see Table 8.10)

rec Pointer to a structure of type SearchRec that will
contain the file information if the file is found
(see Table 8.11)

The function returns O if a match is found, otherwise —1 is returned.

Table 8.9: Filename Formats

Format Description

* %

Any file or directory

FILE.EXT File with name FILE.EXT

FILE.* | Any file with name FILE and any extension

*.EXT | Any file with any name and extension EXT

Any directory

DIRS Directory names DIRS

Table 8.10: File Attributes (Can Be Logically OR’ed)

Attribute Description
ATTR_READ_ONLY Files with read-only attribute
ATTR_HIDDEN Hidden files
ATTR_SYSTEM System files
ATTR_VOLUME File may be a volume label
ATTR_DIRECTORY File may be a directory
ATTR_ARCHIVE File with archive attribute
ATTR_MASK File with any attribute

MPLAB C18 SD Card Functions and Procedures 409

Table 8.11: The SearchRec Structure

Member Function
Char filename Name of the file (NULL terminated)
Unsigned char attributes File attributes
Unsigned long size Size of files (bytes)
Unsigned long time-stamp File creation date and time:

31:25 Year (0 = 1980, 1 =1981,....)
24-21 Month (1 = Jan, 2 = Feb,...)
20:16 Day (1-31)

15:11 Hours (0-23)

10:05 Minutes (0-59)

04:00 Seconds/2 (0-29)

Unsigned int entry Internal use only
Char search name Internal use only
Unsigned char search attr Internal use only
Unsigned int cwd clus Internal use only
Unsigned char initialized Internal use only

In the following example, files starting with “MY”” and having extensions “.TXT” are
searched in the current directory. The attribute field is set to hidden or system files:

SearchRec MyFile;

unsigned char attr = ATTR_HIDDEN | ATTR_SYSTEM;
char FileName[] = “MY*. TXT”;

if(FindFirst(FileName, attr, &MyFile) == 0)

/]

// file match found

Note that after a file match is found, we can get information about the file using the function
SearchRec. For example, the full name of the file can be obtained using MyFile.filename or
the file size can be obtained using MyFile.size.

8.4.17 FindFirstpgm

This function is very similar to FindFirst, except that the filename must be specified in ROM.

In the following example, files starting with “MY” and having extensions “.TXT” are
searched in the current directory. The attribute is set to hidden or system files:

SearchRec MyFile;

unsigned char attr = ATTR_HIDDEN | ATTR_SYSTEM;
if(FindFirst(“MY*.TXT”, attr, &MyFile) == 0)

//

// file match found

410 Chapter 8

8.4.18 FindNext

This function matches the next file in the current directory to the filename and attribute cri-
teria specified by the last call to Findfirst (or FindFirstpgm).

The pointer to a SearchRec structure must be specified as an argument. The function returns 0
if a match is found, otherwise —1 is returned.

In the following example, a second match is found to a previously specified filename and
attribute criteria (here, it is assumed that a FindFirst function call was made earlier):

if(FindNext(&MyFile) == 0)
//
// second match is found

8.4.19 SetClockVars

This function is used when the user-defined Clock mode is selected, and the function sets the
timing variables used to set file creation and modification times.

The following arguments must be specified when the function is called:

Year | The current year (1980-2107)

Month The current month (1-12)

Day The current day (1-31)

Hour The current hour (0-23)

Minute | The current minute (0-59)

Second | The current second (0-59)

The function returns O on success and —1 if one or more parameters are invalid.

In the example given below, the date and time are set to July 10, 2009, 11:30:10 a.m.

if(SetClockVars(2009, 7, 10, 11, 30, 10) == 0)
//
// date and time set successfully

8.4.20 FSfprintf

This function writes a formatted string to a file opened on a card. The function is similar to the
standard fprintf statement. The first argument is a pointer to the file, the second argument is the
string to write to (must be specified in ROM), and the other arguments are the format specifiers.

The function returns the number of bytes written on success or —1 if the write failed.

MPLAB C18 SD Card Functions and Procedures 411

The format specifiers are similar to that used in standard fprintf statements and are normally
written in the following order:

Flag characters, field width, field precision, size specification, and conversion specifiers.
Further details on format specifiers can be obtained from the Microchip Application note:
AN1045 (Implementing File I/O Functions Using Microchip’s Memory Disk Drive File
System Library).

An example is given below:

FSfprintf(ptr, "Binary number=%#16b", 0x1eff);

The output will be:
Binary number=0b0001111011111111

8.5 Summary

In this chapter, the MDD functions available for reading and writing onto SD cards using the
MPLAB C18 compiler are described. The use of SD cards in microcontroller-based projects
is highly simplified when these functions are used.

8.6 Exercises

1. Explain the steps required to read and write onto an SD card using the MDD library
functions.

2. Assume that a text file called “DATA.TXT” exists on an SD card. It is required to create a
new file called “NEW.TXT” on the card and copy the first 100 bytes from “DATA.TXT”
to “NEW.TXT.” Show the steps required to perform this operation.

3. It is required to find out how many files with extensions “. TXT” are there in the current
default working directory of an SD card. Show the steps required to perform this
operation.

4. Assume that a file called “MONTHLY.DAT” exists on an SD card. Show the steps
required to change the name of this file to “MONTH2.DAT.”

5. Show the steps required to delete a file on an SD card.

6. Show the steps required to find out how many files with names “TEMP” there are in the
working default directory of an SD card and show how this number can be displayed on
an LCD.

7. It is required to find the names and sizes of all the files in the current working directory of
an SD card. Show how this information can be found and stored in a buffer in RAM.

412 Chapter 8

8. Assume that a text file called “MYDATA.TXT” exists in the current directory. Show the
steps required to create a new directory called NEWD in the current directory, and also
show how the file can be copied to this new directory.

9. Show the steps required to delete a directory called “DIRS” and all of its contents.
Assume that this directory is in the current working directory.

10. It is required to find out the number of files in the current directory with the system
attribute. Show the steps required to perform this operation, and also show how the
number found can be displayed on an LCD.

11. Show the steps required to format and create a new boot sector on an SD card. Give the
volume name “MYSD” and serial number 0x87654321 to the formatted card.

12. It is required to delete all the files in the current directory of an SD card. Show the steps
required to perform this operation.

13. Explain what happens when an SD card is removed from its socket. How can we find out
whether or not the card is mounted?

Secure Digital Card Projects

The details of the Microchip memory disk drive (MDD) library, which consist of a large
number of MPLAB C18 compiler—compatible functions that can be used in secure digital
(SD) card-based projects, are given in Chapter 8.

In this chapter, we shall be looking at how these functions can actually be used in practical
projects. The many simple-to-complex projects given in this chapter show how SD
card-based projects can be built and how an SD card can be used as a large external storage
medium.

The projects have been organized by increasing level of complexity. Thus, it is advised that the
reader start from Project 1 and then move to more complex projects as experience is gained.

The following information is given for each project:

* Description of the project

* Aim of the project

* Block diagram of the project

* Circuit diagram of the project

* Operation of the project

* Program code of the project

* Description of the program code

* Suggestions for future work

The projects can be built using most of the commercially available PIC18 microcontroller
development boards. Alternatively, complete projects can be built on a breadboard of suitable
size. It is recommended to use an external +5-V power supply to provide power to the micro-

controller and the associated circuitry used in the projects. Alternatively, a 9-V battery and a
7805 type +5-V regulator can be used to supply power to the projects.

In this book, the PICDEM PIC18 Explorer demonstration board (see Figure 9.1) is used
for the projects. As described in Chapter 5, this development board has been specifically

© 2010 Elsevier Ltd. All rights reserved. 4 13
D.O.l.: 10.1016/B978-1-85617-719-1.00013-0

414 Chapter 9

P
T

o

B

.

MICROCHIP

Figure 9.1: PICDEM PIC18 Explorer Demonstration Board

designed for PIC18-based applications. The board incorporates a PIC18F8722-type
microcontroller operating with a 10-MHz clock. The board has the following features:

* Connector for external daughter boards (e.g., SD card board)
* LCD display

* Eight LEDs

* Analog temperature sensor

* Push-button switches

* RS232 socket for serial communications

* External reset button

* Potentiometer for analog inputs

Secure Digital Card Projects 415

Figure 9.2: PICtail Daughter Board for SD and MMC Cards

* In-circuit-debugger connector

* Header pins to use different processors

A Microchip daughter SD card board (known as the PICtail daughter board for SD and

MMC Cards, see Figure 9.2) is used as the SD card interface. This board directly plugs into
the PICDEM PIC18 Explorer board (see Figure 9.3) and provides SD card interface to the
demonstration board. (Note that there are minor design faults with the voltage-level con-
version circuitry on some of the PICtail daughter boards for SD and MMC Cards. You can get
around these problems by providing a 3.3-V supply for the daughter board directly from the
PICDEM Explorer board. Cut short the power supply pin of the daughter board connector and
connect this pin to the 4+3.3-V test point on the PICDEM Explorer board.)

The SD card daughter board has an on-board positive-regulated charge pump DC/DC
converter chip (MCP1253) used to convert the +5-V supply to +3.3 V required for the SD

416 Chapter 9

g2 ks

g

|
'

!
L
L
"
RiE
)

z3232p22 &

Figure 9.3: The Daughter Board Plugs onto the PICDEM Board

card. In addition, the board has buffers to provide correct voltages for the SD card inputs.

Seven jumpers are provided on the board to select the SD card signal interface. The following
jumpers should be selected:

Jumpers Descriptions
JPI Pin 1-2 SCK connected to RC3
JP2 Pin 1-2 SDI connected to RC4
JP3 Pin 1-2 SDO connected to RCS
JP4 Pin 2-3 (default)

Card detect to RB4 (not used)

JP5 Pin 2-3 (default)
JP6 Pin 2-3 (default)
JP7 Pin 2-3 (default)

Write protect to RA4 (not used)

CS connected to RB3

Shutdown (not used)

The default jumper positions are connected by circuit tracks on the board, and these tracks
should be cut to change the jumper positions if different connections are desired. Signals

“card detect,” “write protect,” and “shutdown” are not used in this book, and the jumper
settings can be left as they are.

Secure Digital Card Projects 417

Before starting the programming, make sure that you have a suitable programming device
that can program the PIC18 series of microcontrollers. In addition, you will require a copy of
the MPLAB C18 compiler and a copy of the Microchip MDD library. In this book, the ICD3
in-circuit-debugger device is used to program the PICDEM Explorer board.

9.1 Creating an MPLAB C18 Template

In this section, we shall be creating an MPLAB C18 template that can be used in all of our
SD card projects. The template will be based on using the PIC18F8722 microcontroller with
the MDD library. The steps are given below:

» Start the MPLAB and select Project -> Project Wizard (see Figure 9.4)
* Click Next and select the processor type as PIC18F8722 (see Figure 9.5)

* Click Next. Select Microchip C18 Toolsuite. Make sure that the tool suite components
point to the correct directories (see Figure 9.6):

MPASM assembler (mpasmwin.exe) -> C:\MCC18\mpasm\mpasmwin.exe
MPLINK Object Linker (mplink.exe) -> C:\MCC18\bin\mplink.exe
MPLAB C18 C Compiler (mcc18.exe)-> C:\MCC18\bin\mcc18.exe
MPLIB Librarian (mplib.exe) -> C:\MCC18\bin\mplib.exe

This wizard helps you create or configure a new MPLAE IDE
project.

To continue, click Nest,

[Net> | [cCancel | [Hep |

Figure 9.4: Start the Project Wizard

418 Chapter 9

Project Wizard

Step One:
Select a device

Device:

PIC18FE722 v

ook J o>) (oo] []

Figure 9.5: Select the Processor Type

Project Wizard

Step Two:
Select a language toolsuite

Active Toolsuite: | Microchip C18 Toolsuite v
Toolsuite Contents
MPASHM Assernb[er [mpasmwin. exe]

Location
‘ C:AMCC18\binhmce 1 8.eve

l [Browse...]

[Store tool locations in project

[Help! My Suite Isn't Listed!] [[] Show all installed toolsuites

[<ﬁack][ﬂe:d>][Cancel][He|D]

Figure 9.6: Check the C18 Toolsuite Components

www.newnespress.com

Secure Digital Card Projects 419

Click Next. Create a new project called SD_CARD_PROJECTS in directory C:\
Microchip Solutions\MDD File System-SD Card. That is, enter C:\Microchip Solutions\
MDD File System-SD Card\SD_CARD_PROJECTS (see Figure 9.7). You can click the
Browse to find the directory, and then enter the filename and click Save button. Click
Next to create the project file.

Open the Notepad and create a text file called FIRST.C. Save this file in directory C:\
Microchip Solutions\MDD File System-SD Card. This will be your template source file.
The contents of this file should be as shown in Figure 9.8.

Click Next. Click the following files on the left-hand side and click Add to add them to
the project (see Figure 9.9):

C:\Microchip Solutions\Microchip\MDD File System\FSIO.c
C:\Microchip Solutions\Microchip\MDD File System\SD-SPI.c
C:\Microchip Solutions\Microchip\PIC18 salloc\salloc.c

C:\Microchip Solutions\Microchip\Include\Compiler.h

C:\Microchip Solutions\Microchip\Include\GenericTypeDefs.h
C:\Microchip Solutions\MDD File System-SD Card\Pic18f\FSconfig.h

Save in: | 3 MDD File System-SD Card v O T m

CPic1sf
(C)Pic2af

C)Pic32

N MDDFS-SD-PIC 18.mcp j
PN MDDFS-SD-PIC24.mcp
M MDDFS-5D-PIC32.mep

File name: |S D;éAH-D_?ROJ ECTS

Save astype: | MPLAB IDE Project Files (*mcp) v| [cancel

Jumpto: MYy v

<Back || Net> | [Cancel | [Hebp

Figure 9.7: Create a New Project SD_CARD_PROJECTS

420 Chapter 9

PROJECT TO WRITE SHORT TEXT TO AN SD CARD

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller is
operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to the SD card.

Insert other comments here

Author: Dogan Ibrahim
Date: July 2009
File: write filename here
/
#include <p18f8722.h>
#include <FSIO.h>
#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON, CCP2MX = PORTC, MODE = MC
/* START OF MAIN PROGRAM */
//
// Start of MAIN Program
//

void main(void)

{

//
// Initialize the SD card routines
//

FSInit();

//
// Other code here
//

Figure 9.8: Template Source File

Secure Digital Card Projects

421

Step Four:

Add existing files to your project

® {1 MPLAB
il |

&] MDD File System-
= 1 Microchip
] Common
& _] Help
] Include
&) MDD File Syst
=] PIC18 salloc
] Object - M

®] MikroBasic
®] MOTOR_CDROM

2|

e

A G)

Remaove

A CAMCC184kr\ 18037 22 lkr ~
A C:\Microchip Solutions\MDD F
A C:A\Microchip Solutions\MDD F
A C:\Microchip Solutions\MDD F
A C:AMicrochip Solutions\Microc
A C:AMicrochip Solutions\Microc
A C:\Microchip Solutions\Microc
A C:\Microchip Solutions\Microc
A C:\Microchip Solutions\Micioc
A C:AMicrochip Solutions\Microc
A C:\Microchip Solutions\Microc s
< I >

E%,,@ -

[<ok |

Next >

] [Cancel] [Help

l

Figure 9.9: Adding Files to the Project

C:\Microchip Solutions\MDD File System-SD Card\Pic18f\HardwareProfile.h

C:\Microchip Solutions\Microchip\Include\MDD File System\FSDefs.h

C:\Microchip Solutions\Microchip\Include\MDD File System\SD-SPL.h

C:\Microchip Solutions\Microchip\Include\MDD File System\FSIO.h

C:\Microchip Solutions\Microchip\Include\PIC18 salloc\salloc.h

Click Next. Click Finish to complete (see Figure 9.10)

Specify the MDD header include files in the project. Click Project -> Build Options ->

Project (see Figure 9.11)

Select Include Search Path in Show directories for textbox and enter the following
directory names (click New before entering a new set of data), see Figure 9.12:

C:\mcc18\h
\Pic18f
..\Microchip\Include

.\Microchip\Include\MDD File System

..\Microchip\Include\PIC18 salloc

..\Microchip\PIC18 salloc

422 Chapter 9

Project Wizard

Summary

Click Finish' to create/configure the project with these
parameters.

Project Parameters
Device: PIC18F8722

Toolsuite: Microchip C18 Toolsuite

File: CAMYCASD-CARD-PROJECTS.mep

& new workspace will be created, and the new project added
to that workspace.

| <Back || Fnmisn | | Cancel | [Hep

Figure 9.10: Click Finish to complete

Build Options For Project "SD-CARD-PROJECTS.mcp” HE
MPASM Assembler | MPLINKLinker | MPLABCIE |
Directori CustomBuld | Trace | MPASM/CIZ/C18Sute |

Directories and Search Paths

Show directonies for: | Output Directory v

Delste Dawn Up

Suite Defaults

Build Directory Policy
O Assemble/Compils in source-file dirsctory, link in output directony
() Assemble/Compile/Link in the project directony

—
Figure 9.11: Open the Project Folder

www.newnespress.com

Secure Digital Card Projects 423

 Build Opti \RD._ PROJECTS.mcp" 2]
MPASM Assembler | MPLINK Linker MPLAB C18
Drectories | CustomBuld | Trsce | MPASM/CT7/CIESute |

Directories and Search Paths

Show directories for: .Indu:la Search Path v

[MiciochiphFICTE sallo —J
MicrochipinchdetFICTS salloc

_AMicrochiphincludeiMDD File System
_AMicrochiphinchude

APic1 8f

chmic]8ih

Build Drirectory Policy
() Assemble/Compile in source-fle directory, ik in output directory
(%) Assemble/Compile/Link in the project directony

[ok J[cancel J[memy |[Heb |

Figure 9.12: Enter the Include Search Path

* Select Library Search Path in Show directories for textbox; click New and enter the
following directory name (see Figure 9.13):

C:\mcc18\ib

* Click OK. Click File -> Save Workspace and then File -> Exit to exit from MPLAB after
saving it.

The compiler linker file must be modified to include a 512-byte section for the data read-write
and also a 512-byte section for the FAT allocation. This is done by editing the linker file
1818722.Ikr in folder c:\mcc18\Ikr and adding lines for a dataBuffer and an FATBuffer. In
addition, it is required to add a section named _SRAM_ALLOC_HEAP to the linker file.
The modified linker file is shown in Figure 9.14.

We can now verify if everything has been setup correctly.

* Restart MPLAB. Select Project -> Open and select SD_CARD_PROJECTS. Click Open.
Double-click on program file FIRST.C. The project file should now open.

* Compile the program by clicking Build All. The program should compile and link with
no errors.

424 Chapter 9

_MPASM Assembler | MPLINKLinker | MPLABCIE
Directories | Custom Build Trece | MPASM/C17/C18 Sute

Directories and Search Paths

Show directories for: | Library Search Path v |
[e2\mecTBib i
Suite Defaults

Build Directory Policy
() Assemble/Compile in source-file directary, link in output directary
() Azsemble/Compile/Link in the project directany

Lok J[Canced J[ooy [Heb |

Figure 9.13: Enter the Library Search Path

9.1.1 Setting the Configuration Files

It is now necessary to customize some of the header files for our requirements. You
should make the following modifications when using the PICDEM PIC18 Explorer
demonstration board with the PICtail SD card daughter board (you are recommended to
make copies of the original files before modifying them, in case you ever want to return
to them):

* Modify the file C:\Microchip Solutions\MDD File System-SD Card\Pic18f\FSconfig.h
and enable the following defines:
1. #define FS_MAX_FILES_OPEN 2
2. #define MEDIA_SECTOR_SIZE 512

3. #define ALLOW_FILESEARCH
#define ALLOW_WRITES

Secure Digital Card Projects 425
// File: 18f8722.Ikr
// Sample linker script for the PIC18F8722 processor
LIBPATH .
FILES c018i.0
FILES clib.lib
FILES p18f8722.lib
CODEPAGE NAME=page START=0x0 END=0x1FFFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xFO0000 END=0xFOO3FF PROTECTED
ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=buffer1 START=0x700 END=0x8FF PROTECTED
DATABANK NAME=buffer2 START=0x900 END=0xAFF PROTECTED
DATABANK NAME=gpr7 START=0xB00 END=0xBFF
DATABANK NAME=gpr8 START=0xC00 END=0xCFF
DATABANK NAME=gpr9 START=0xD00 END=0xEFF
//DATABANK NAME=gpr9 START=0xEQ0 END=0xEFF
//DATABANK ~ NAME=gpr10 START=0xFO0 END=0xFFF
DATABANK NAME=gpr11 START=0xF0O0 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED
SECTION NAME=CONFIG ROM=config
SECTION NAME=_SRAM_ALLOC_HEAP RAM=gpr7
SECTION NAME=dataBuffer RAM=Dbuffer1
SECTION NAME=FATBuffer RAM=Dbuffer2

STACK SIZE=0x200 RAM=gpr9

Figure 9.14: Modified 18f8722.Ink Linker File

#define ALLOW_DIRS
#define ALLOW_PGMFUNCTIONS

4. #define USERDEFINEDCLOCK

5. Make sure that the file object allocation is dynamic. i.e.

#if 1

Modify the file C:\Microchip Solutions\MDD File System-SD Card\Pic18f\
HardwareProfile.h and set the following options (notice that the system clock is 10 MHz,

426 Chapter 9

but the configuration option OSC = HSPLL is used to multiply the clock by a factor of
four, and it should be set to 40 MHz):

1. Set clock rate to 40 MHz:
#define GetSystemClock() 40000000
2. Enable SD-SPI interface.

#define USE_SD_INTERFACE_WITH_SPI

3. Define SD card interface pins and SPI bus pins to be used:

#define SD_CS PORTBBIts.RB3
#define SD_CS_TRIS TRISBBIts. TRISB3
#define SD_CD PORTBBIts.RB4
#define SD_CD_TRIS TRISBBIts. TRISB4
#define SD_WE PORTABIts.RA4
#define SD_WE_TRIS TRISABIts. TRISA4
#define SPICON1 SSP1CON1
#define SPISTAT SSP1STAT
#define SPIBUF SSP1BUF

#define SPISTAT_RBF SSP1STATbits.BF
#define SPICON1bits SSP1CON1bits
#define SPISTATbits SSP1STATbits
#define SPICLOCK TRISCbits. TRISC3
#define SPIIN TRISCbits. TRISC4
#define SPIOUT TRISCbits. TRISC5
#define SPICLOCKLAT LATCbits.LATC3
#define SPIINLAT LATCbits.LATC4
#define SPIOUTLAT LATCbits.LATC5S
#define SPICLOCKPORT PORTCbits.RC3
#define SPIINPORT PORTCbits.RC4
#define SPIOUTPORT PORTChbits.RC5

9.1.2 The Memory Model

The memory model should now be selected correctly. Select Project -> Build Option ->
Project; then click the MPLAB C18 tab and select Memory Model in Categories. Set the

following options (see Figure 9.15):
Code Model: Large code model
Data Model: Large data model

Secure Digital Card Projects 427

PROJECTS.mc; E]}B
 Dwectories | CustomBuid | Trece MPASM/CT7/C18 Suie
| MPASM Assemblar MPLINK linkar MPLAB C18
Cateqor | Memary Maodel v!

Generate Command Line

Code Model

O Small code model (<= B4K bytes)
(&) Large code modsl (> B4K bytes)

Diata Model

(=) Large data model [all RA&M banks]
) Small data model [access BaM only)

Stack Model

) Single-bank mads!
&) Multi-bank model

alo Hiri Restore Defaults
-mL -Ls -0u- -0t -0b- -0p- -Or- -0d- -Opa-
[Use Alternate Settings

Figure 9.15: Setting the Memory Model

Stack Model: Multibank model

We are now ready to develop projects using the created template file and the working environment.

9.2 PROJECT 1 - Writing a Short Text Message to an SD Card
9.2.1 Description

In this project, a file called “MESSAGE.TXT” is created on an SD card and the following
short text message is written to this file:

“Thisisa TEXT message”

9.2.2 Aim

The aim of this project is to familiarize the reader with the minimum hardware required

to build an SD card-based project. In addition, the configuration of the MDD library and

the MPLAB C18 compiler are described so that the reader can compile and build the basic
software for an SD card-based project. With the knowledge gained in this project, the reader
should be able to move to more complex SD card-based projects.

428 Chapter 9

PI
PIC | | sp
micro- |[«—>
card
controller

Figure 9.16: Block Diagram of the Project

9.2.3 Block Diagram

The block diagram of the project is shown in Figure 9.16. The hardware setup is very simple.
Basically, the microcontroller I/O ports are connected to an SD card using a card holder.

9.2.4 Circuit Diagram

The complete circuit diagram of the project is shown in Figure 9.17. In the actual implemen-
tation, the PICDEM Explorer demonstration board is used together with the PICtail SD card
daughter board. The circuit given in Figure 9.17 can be built on a breadboard if you do not
have the PICDEM demonstration board or the SD card daughter board.

The circuit is built around a PIC18F8722-type microcontroller operated from a 10-MHz
crystal. The MCLR input is connected to an external push-button switch for external reset of
the microcontroller.

The interface between the microcontroller and the SD card pins is as follows. (The card
adapter on the PICtail daughter board provides two additional signals: card detect [CD] and
write enable [WE].)

SD Card Pins Microcontroller Pins
(&) RB3
CLK RC3
DO RC4
DI RC5

The maximum allowable input voltage at the inputs of an SD card is +3.6 V. The voltage
at the outputs of the microcontroller is about +4.3 V, which is too high for the inputs (CS,
DO, CLK) of the SD card. As a result, potential divider resistors are used to lower the
voltage to acceptable levels (on the PICDEM board, buffers are used to lower the voltage
levels). With the 2.2- and 3.3-K resistors, the voltage at the inputs of the SD card will be

SDcardinputvoltage =4.3V x3.3K/(22K + 3.3K) =248V

429

Secure Digital Card Projects
A+5V
12|25|32|48| 71
10K vdd
[]] 2fMCLR
Reset |
mMc - PIC
33269
braz oY 18F8722
+
10 uF
= 4
VDD 00K
csH —°2 RB3 ;?
5 44
SD card CLK 2 :E RC3 -
DO RC4 Vss
2 22K 46 !
VSS DI 149 RC5
I :
L 0SC1 0SC2
3.3K 3.3K 49 10MHz 50
mll
0]
= ——22pF ——22pF

1

Figure 9.17: Circuit Diagram of the Project

9.2.6 Program Code

9.2.5 Operation of the Project

The program code (file WRITE1.C) is shown in Figure 9.20.

In Figure 9.17, the +3.3-V power for the SD card is derived from a MC33269DT-3.3 type
regulator (see Figure 9.18) powered from the +5-V power. (On the PICtail SD card daughter
board, an MCP1253 type DC/DC converter is used to provide the +3.3-V supply for the

The operation of the project is very simple and can be described by the program description
language (PDL) given in Figure 9.19.

430 Chapter 9

DT Suffix
Plastic Package
Case 369A
(DPAK)
1
3
yi
1. Gnd/Adj
2. Vout
1 2 3 3 Vin
u
U u ST Suffix
(Top view) Plastic Package

@ Case 318E
]

(SOT-223)
3

Figure 9.18: The MC33269DT3-3 Regulator

BEGIN
Initialize the SD card
Create file “MESSAGE.TXT”
Write text message to the file
Close the file

END

Figure 9.19: Operation of the Project

9.2.7 Description of the Program Code

At the beginning of the program, file pointer MyFile is declared and the text to be written
to the card is assigned to character array txt. The MDD file system is initialized by calling
function FSInit, and file called MESSAGE.TXT is opened on the SD card using function
call FSfopenpgm. The text message is then written to the file by calling function FSfwrite.
Finally, the file is closed by calling function FSfclose.

The program given in Figure 9.20 works, but there is no indication as to whether or not
all the function calls returned success or as to when the program is terminated and the
SD card removed. The program can be made more user friendly by testing the return
of each function call for success. In addition, an LED can be connected to the RDO

pin of the microcontroller, and this LED can be turned ON to indicate the successful
termination of the program. The modified program listing (file WRITE2.C) is shown in
Figure 9.21.

Secure Digital Card Projects

431

PROJECT TO WRITE SHORT TEXT TO AN SD CARD

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller

is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to

the SD card.

Author: Dogan Ibrahim
Date: July 2009
File: WRITE1.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF

#pragma config MCLRE = ON, CCP2MX = PORTC, MODE = MC

/* START OF MAIN PROGRAM

//
// Start of MAIN Program
//
void main(void)
{
FSFILE *MyFile;
unsigned char txt[]="This is a TEXT message";

//
// Initialize the SD card routines
//
FSInit();
//
// Create a new file called MESSAGE.TXT
//
MyFile = FSfopenpgm("MESSAGE.TXT", "w+");
//
// Write message to the file
//
FSfwrite(txt, 1, 22, MyFile);
//

*/

Figure 9.20: The Program Code

432 Chapter 9

/!

while(1);
}

// Close the file

FSfclose(MyFile);

Figure 9.20: Cont’d

SD card
CSs
CLK
DO

DI

Author:
Date:
File:

PROJECT TO WRITE SHORT TEXT TO AN SD CARD

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

microcontroller
RB3
RC3
RC4
RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this version of the program an LED is connected to port RDO and
the LED is turned ON when the program is terminated successfully.

Dogan Ibrahim
July 2009
WRITE2.C

/*

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON, CCP2MX = PORTC, MODE = MC

#define LED PORTDbits.RDO
#define ON 1
#define OFF O

START OF MAIN PROGRAM */

//

/!

// Start of MAIN Program

Figure 9.21: Modified Program Code

Secure Digital Card Projects 433

void main(void)
{
FSFILE *MyFile;
unsigned char txt[]="This is a TEXT message";

TRISD = 0;
PORTD = 0;
//
// Initialize the SD card routines
//
while(IFSInit());
//
// Create a new file called MESSAGE.TXT
//
MyFile = FSfopenpgm("MESSAGE.TXT", "w+");
if(MyFile == NULL)while(1);
//
// Write message to the file
//
if(FSfwrite((void *)txt, 1, 22, MyFile) |= 22)while(1);
//
// Close the file
//
if(FSfclose(MyFile) |= O)while(1);
//
// Success. Turn ON the LED
//
LED = ON;

while(1);
}

Figure 9.21: Cont’d

9.2.8 Suggestions for Future Work

The programs given in Figures 9.20 and 9.21 can be improved using several LEDs to indicate
the cause of the error if the program does not terminate. Alternatively, an LCD can be used to
show the status of the program and the cause of any errors.

9.3 PROJECT 2 - Time Stamping a File
9.3.1 Description

In this project, a file called TIME.TXT is created and the following text is written into the file:
The date is 10-July-2009, time is 10:12:05.
The file creation date is set to July 10, 2009, time 10:12:05.

Turn ON the LED connected to port RDO when the program terminates.

434 Chapter 9

9.3.2 Aim

The aim of this project is to show how the creation (or modification) date of a file can
be set.

9.3.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.3.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.

9.3.5 Operation of the Project

The operation of the project is shown in Figure 9.22.

9.3.6 Program Code

The program code (file WRITE3.C) is shown in Figure 9.23.

9.3.7 Description of the Program Code

The program is similar to the program given in Project 1 except that the function
SetClockVars is called in this program to set the file creation date and time. Figure 9.24
shows the card directory listing (obtained on a PC) with file TEXT.TXT having the creation
date of 10/07/2009 10:12.

9.3.8 Suggestions for Future Work

The program given in Figure 9.23 can be extended by opening several files with different
creation dates.

BEGIN
Turn OFF the LED
Initialize the SD card
Set date to 10th July 2009, time 10:12:05
Create file "MESSAGE. TXT"
Write text message to the file
Close the file
Turn ON the LED
END

Figure 9.22: Operation of the Project

Secure Digital Card Projects

435

PROJECT TO TIME STAMP A FILE

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this program a new file called TIME.TXT is created and its creation date is
set to 10th of July 2009, 10:12:05

Author: Dogan Ibrahim
Date: July 2009
File: WRITE3.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

#define LED PORTDbits.RDO
#define ON 1
#define OFF O

/* START OF MAIN PROGRAM */
//

// Start of MAIN Program

/!

void main(void)

{

FSFILE *MyFile;
unsigned char txt[]="The date is 10-July-2009, time is 10:12:05";

TRISD = 0;
PORTD = 0;
//
// Initialize the SD card routines
//
while(IFSInit());
//

Figure 9.23: Program Code

436 Chapter 9

// Set the date and time values
//
SetClockVars(2009, 7, 10, 10, 12, 5);
//
// Create a new file called MESSAGE.TXT
//
MyFile = FSfopenpgm("TIME. TXT", "w+");
//
// Write message to the file
//
FSfwrite(txt, 1, 42, MyFile);
//
// Close the file
//
FSfclose(MyFile);
//
// Success. Turn ON the LED
//
LED = ON;

while(1);
}

Figure 9.23: Cont’d

ar

v B
— " Size Type Date Modified
File and Folder Tasks \A) E] MESSAGE.TXT 1KB TextDocument
E| TIME.TXT 1KB TextDocument 10/07/200% 10:12

() Make anew folder

€ Publsh this folder to the
Web

fad Share this folder

Figure 9.24: Directory Listing of the SD Card

9.4 PROJECT 3 - Formatting a Card
9.4.1 Description

In this project, an SD card is formatted with the volume name MYSDCRD and the serial
number is set to hexadecimal 0x11223344. An LED connected to port RDQ is turned ON to
indicate the end of formatting.

9.4.2 Aim

The aim of this project is to show how an SD card can be formatted with a given volume
name and serial number using the MDD library functions.

www.newnespress.com

Secure Digital Card Projects

437

9.4.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.4.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.
9.4.5 Operation of the Project

The operation of the project is shown in Figure 9.25.

9.4.6 Program Code

The program code is shown in Figure 9.26.

BEGIN
Turn OFF the LED
Format the card
Turn ON the LED
END

Figure 9.25: Operation of the Project

PROJECT TO FORMAT A CARD

is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

the SD card.

is also created on the card.

Author: Dogan Ibrahim
Date: July 2009

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller

The program uses the Microchip MDD library functions to read and write to

This program formats a file to volume name MYSDCRD. A new boot-sector

Figure 9.26: The Program Code

438 Chapter 9

File: FORMAT.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

#define LED PORTDbits.RDO
#define ON 1
#define OFF O

/* =============== START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

char VolNamel[] = "MYSDCRD";

TRISD = 0;
PORTD = 0;
//
// Format the card
//
FSformat(0, Ox11223344, VoIName);
//
// Success. Turn ON the LED
//
LED = ON;

while(1);
}

Figure 9.26: Cont’d

9.4.7 Description of the Program Code

The program simply calls function FSformat to format the card. Notice that the entries
#define ALLOW_FORMATS, #define ALLOW_DIRS, and #define ALLOW_WRITES must
be enabled in configuration file FSconfig.h

9.4.8 Suggestions for Future Work

Try formatting different cards with different volume names.

Secure Digital Card Projects 439

9.5 PROJECT 4 - Deleting a File

9.5.1 Description

In this project, a file called TEMP.TXT that was created earlier on the SD card is deleted. An
LED connected to port RDO is turned ON to indicate the end of the program.

9.5.2 Aim

The aim of this project is to show how a file can be deleted using the MDD library
functions.

9.5.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.5.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.
9.5.5 Operation of the Project

The operation of the project is shown in Figure 9.27.

9.5.6 Program Code

The program code is shown in Figure 9.28.

9.5.7 Description of the Program Code

The program (DELETE.C) simply calls the function FSInit to initialize the MDD library and
then calls the function FSremovepgm to delete the file.

BEGIN
Turn OFF the LED
Initialise the MDD library
Delete the file
Turn ON the LED

END

Figure 9.27: Operation of the Project

440 Chapter 9

PROJECT TO DELETE AFILE

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

This program deletes file called TEMP.TXT
Author: Dogan Ibrahim

Date: July 2009
File: DELETE.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

#define LED PORTDbits.RDO
#define ON 1
#define OFF O

/¥ =============== START OF MAIN PROGRAM */

// Start of MAIN Program
//
void main(void)
{
TRISD = 0;
PORTD = 0;
//
// Initialize MDD library
//
while(IFSInit());
//
// Delete the file
//

Figure 9.28: The Program Code

Secure Digital Card Projects 441

if(FSremovepgm("TEMP.TXT") |= O)while(1);
/!
// Success. Turn ON the LED
//

LED = ON;

while(1);
}

Figure 9.28: Cont’d

9.5.8 Suggestions for Future Work

Try creating two files, check the card directory on a PC, then delete one of the files and check
the directory again to make sure that the correct file is deleted.

9.6 PROJECT 5 - Renaming a File

9.6.1 Description

In this project, a file called TEMP.TXT is created on the SD card and then the name of this
file is changed to MYTEMP.TXT.

9.6.2 Aim

The aim of this project is to show how a file can be renamed using the MDD library
functions.

9.6.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.6.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.

9.6.5 Operation of the Project

The operation of the project is shown in Figure 9.29.

442 Chapter 9

9.6.6 Program Code

The program code is shown in Figure 9.30.

9.6.7 Description of the Program Code

The program (RENAME.C) first creates a file called TEMP.TXT and then calls the function
FSrenamepgm to change the name of this file to MYTEMP.TXT. Note that the file must be
closed before its name can be changed.

BEGIN
Turn OFF the LED
Initialise the MDD library
Create a file
Close the file
Rename the file
Turn ON the LED

END

Figure 9.29: Operation of the Project

RENAME A FILE

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project a file named TEMP.TXT is created, then the name
of the file is changed to MYTEMP.TXT.

Author: Dogan lbrahim
Date: July 2009
File: RENAME.C

Figure 9.30: The Program Code

Secure Digital Card Projects 443

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

/ START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

FSFILE * MyFile;

//
// Initialize MDD library
/!
while(IFSInit());
//
// Create file TEMP.TXT
//
MyFile =FSfopenpgm("TEMP.TXT", "w+");
/!
// Close the file
//
FSfclose(MyFile);
//
// Rename the file to MYTEMP.TXT
/!
FSrenamepgm("MYTEMP.TXT", MyFile);

while(1);
}

Figure 9.30: Cont’d

9.6.8 Suggestions for Future Work

Try creating two files, check the card directory on a PC, then delete one of the files and
rename the other file, and check the directory again to make sure that the correct files are
deleted and renamed.

9.7 PROJECT 6 - Creating a Directory
9.7.1 Description

In this project, a directory called MYDATA is created in the current directory.

444 Chapter 9

9.7.2 Aim

The aim of this project is to show how a directory can be created using the MDD library
functions.

9.7.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.7.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.

9.7.5 Operation of the Project

The operation of the project is shown in Figure 9.31.

9.7.6 Program Code

The program code is shown in Figure 9.32.

9.7.7 Description of the Program Code

The program (DIR1.C) initializes the MDD library and calls the function FSmkdir to create a
directory within the default working directory.

9.7.8 Suggestions for Future Work

Create two directories called DATA1 and DATA?2 in the current working directory. Then,
create a directory called DATA1-1 inside the first directory. Check the card directory
using a PC.

BEGIN
Initialise the MDD library
Create a directory

END

Figure 9.31: Operation of the Project

Secure Digital Card Projects

445

CREATE A DIRECTORY

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CSs RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project a directory called MYDATA is created within the
current default working directory

Author: Dogan Ibrahim
Date: July 2009
File: DIR1.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

/* START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

1/
// Initialize MDD library
//

char DirPath[] = "\MYDATA";

while(IFSInit());
//
// Create directory MYDATA within the current working directory
//

FSmkdir(DirPath);

while(1);
}

Figure 9.32: The Program Code

446 Chapter 9

9.8 PROJECT 7 - Create a Directory and a File
9.8.1 Description

In this project, a directory called MYDATA is created in the current directory and then a file
called RESULTS.DAT is created inside this directory. The following numbers are written
inside this file: 24, 45, 22, 10, 28, 30.

9.8.2 Aim

The aim of this project is to show how a directory and a file inside this directory can be
created using the MDD library functions.

9.8.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.8.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.
9.8.5 Operation of the Project

The operation of the project is shown in Figure 9.33.

9.8.6 Program Code

The program code is shown in Figure 9.34.

9.8.7 Description of the Program Code

The program (DIR2.C) initializes the MDD library and calls the function FSmkdir to create a
directory MYDATA within the default working directory. Then the function FSchdir is used
to change the working directory to MYDATA. The file RESULTS.DAT is then created inside

BEGIN
Initialise the MDD library
Create a directory
Create a file inside this directory
Write numbers inside the file
Close the file

END

Figure 9.33: Operation of the Project

Secure Digital Card Projects

447

CREATE A DIRECTORY AND A FILE

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project a directory called MYDATA is created within the current default
working directory and then a file called RESULTS.DAT is created inside this
directory. Some numbers are then written into this file

Author: Dogan Ibrahim
Date: July 2009
File: DIR2.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

/* START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

FSFILE * MyFile;

char DirPath[] = "\MYDATA";
char txt[] = "24, 45, 22,10, 28, 30";
//
// Initialize MDD library
//
while(IFSInit());
//
// Create directory MYDATA within the current working directory
//
FSmkdir(DirPath);

Figure 9.34: The Program Code

448 Chapter 9

//
// Change default working directory to MYDATA
//
FSchdir(DirPath);
//
// Create a file in this directory
//
MyFile = FSfopenpgm("RESULTS.DAT", "w+");
//
// Write numbers into this file
//
FSfwrite((void *)txt, 1, 17, MyFile);
//
// Close the file
//
FSfclose(MyFile);

while(1);
}

Figure 9.34: Cont’d

this directory and the required numbers are written to this file. The contents of the card can be
verified using a PC to list the card directory.

9.8.8 Suggestions for Future Work

Create a directory called MYTEXT inside the current default directory. Then, create two
files inside this directory and write some text to both the files. Verify the card directory and
contents of the files using a PC.

9.9 PROJECT 8 - File Copying
9.9.1 Description

In this project, the contents of a file are copied to another file. The source file called SRC.
TXT is loaded with some text using a PC. The contents of this file are then copied to a file
called DST.TXT. The success of the copy operation is verified by reading the destination file
on a PC.

9.9.2 Aim

The aim of this project is to show how multiple files can be handled using the MDD library.
In addition, the steps to read and write to a card are described in this project.

Secure Digital Card Projects 449

9.9.3 Block Diagram

The block diagram of this project is as in Figure 9.16.

9.9.4 Circuit Diagram

The circuit diagram of this project is the same as in Figure 9.17.

9.9.5 Operation of the Project

The operation of the project is shown in Figure 9.35.

9.9.6 Program Code

The program code (COPY.C) is shown in Figure 9.36.

9.9.7 Description of the Program Code

After initializing the MDD library, file SRC.TXT is opened in read mode and file DST.TXT
is created as a new file. Then a while loop is formed and the statements inside this loop are
executed until the end of the source file is reached. Inside this loop, 10 items of 1 byte each
are read (other sizes could also be used). Variable ReadCnt actually stores the number of
bytes read from SRC.TXT. The data is then written to file DST.TXT. Both the source and the
destination files are closed at the end of the copy operation.

9.9.8 Suggestions for Future Work

Modify the program given in Figure 9.36 to copy a file using different numbers of items and
different lengths for each item.

BEGIN
Initialise the MDD library
Open source file
Open destination file
WHILE not end of source file
Read from source file
Write to destination file
WEND
Close source file
Close destination file
END

Figure 9.35: Operation of the Project

450 Chapter 9

FILE COPY

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project a file called SRC.TXT is copied to another file
called DST.TXT. It is assumed that SRC.TXT had some text data in
it before the copy operation.

Author: Dogan lbrahim
Date: July 2009
File: COPY.C

#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

/ START OF MAIN PROGRAM

//

// Start of MAIN Program
/!

void main(void)

FSFILE *MySrcFile, *MyDstFile;
char bufr{10];
char ReadCnt;
/!
// Initialize MDD library
//
while(IFSInit());
//
// Open the source file
/!
MySrcFile = FSfopenpgm("SRC.TXT", "r");

Figure 9.36: The Program Code

Secure Digital Card Projects 451

Z Create the destination file
! MyDstFile = FSfopenpgm("DST.TXT", "w+");
Z Read from SRC.TXT and write to DST.TXT until the end-of-file
! while(FSfeof(MySrcFile) == 0)
{ ReadCnt = FSfread((void *)bufr,1, 10, MySrcFile);
FSfwrite((void *)buft, 1, ReadCnt, MyDstFile);

}

//

// Close the files

/!
FSfclose(MySrcFile);
FSfclose(MyDstFile);

while(1);
}

Figure 9.36: Cont’d

9.10 PROJECT 9 - Displaying File on a PC
9.10.1 Description

In this project, the contents of a file are displayed on a PC connected to the
microcontroller. Before starting the project, a file called MYTEST.TXT is created on
the SD card using a PC and this file is loaded with some text. The card is then connected
to the microcontroller, the file is opened and its contents are displayed on the PC

screen. The message “Displaying the file...” is sent to the PC before displaying contents
of the file.

9.10.2 Aim

The aim of this project is to show how the serial port of the microcontroller can be connected
to a PC and how the contents of a file can be displayed on the PC screen using the MDD
library functions.

9.10.3 Block Diagram

The block diagram of this project is as in Figure 9.37.

452 Chapter 9

| sDb

PIC "| card
micro-
controller

< > PC

E—

Figure 9.37: Block Diagram of the Project

A +5V
12(25(32[48|71 1pF
10K Vdd |—|]E‘|
9 16l 1| 3
[]] MCLR i wEl, [vecci+ c1—
1
—10
Reset 37? Ve poutt {4 TS0
M = TXD DINT gy 18 2150
33269 | 3.3V 38 12 TR
ROUT1]
DT-3.3 RO o 1 Z_%O
+ .J_—._ MAX232
PIC Gnd C2+ C2— To PC serial port
101F 18F8722 B
VDD ; 2.2Kgs
CS :IH RB3
SDcard| CLK —F 1 RC3
7 45
DO RC4 Vss
A 22K 46
vss DI o 1 RC5
I
1 0SC1 0sc2
3.3K 33K 49| 10MHz 50
Tl
0]
= == 22pF = 22pF

11

Figure 9.38: Circuit Diagram of the Project

9.10.4 Circuit Diagram

The circuit diagram of the project is shown in Figure 9.38. As in the other projects in this
book, the PICDEM PIC18 Explorer board and the PICtail SD card daughter board are used
in this project, but the circuit can easily be built on a breadboard if desired (the RS232 port
jumper J13 should be set as described in the Explorer Demonstration board if this board

is used for RS232 communication). PIC18F8722 contains two UART-type serial hard-
ware modules. In this project, UART 1 (pin RX1 = RC7 and TX1 = RC6) is used for serial

Secure Digital Card Projects 453

communication and is connected to a MAX232-type level converter chip. This chip converts
the 0 to +5-V TTL level output voltage of the microcontroller to £12-V RS232 levels and also
the £12'V RS232 levels to 0 to +5 V required for the microcontroller inputs. The MAX232 is
connected to the serial port of a PC via a 9-pin D-type connector.

There are two types of RS232 connector: 9-pin and 25-pin. The required pins in each type are
as follows:

Pins Signals

9-pin

Transmit (TX)
Receive (RX)
Ground (GND)

25-pin

Transmit (TX)
Receive (RX)
Ground (GND)

9.10.5 Operation of the Project

The operation of the project is shown in Figure 9.39.
9.10.6 The Program Code

The program code (RS232.C) is shown in Figure 9.40.
9.10.7 Description of the Program Code

At the beginning of the program, the USART module is initialized by calling the C18
library function Open1USART (since there are two USART modules on the PIC18F8722
microcontroller, we have to specify which module we shall be using). Serial port interrupts
are disabled, USART is set to asynchronous mode, and the baud-rate clock is set to low

BEGIN
Initialize USART module
Initialize the MDD library
Open file on SD card
WHILE not end of source file
Read from source file
Send to USART
WEND
Close file
Close USART
END

Figure 9.39: Operation of the Project

454 Chapter 9

SEND FILE CONTENTS TO THE PC

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
Cs RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project the microcontroller is connected to a PC via a MAX232-type
level converter chip. USART 1 hardware module of the microcontroller is used
for serial communication. The pin configuration of the RS232 connector is as

follows:
Pin 2 X
Pin 3 RX
Pin 3 GND

The communication is established using the C18 USART library functions. The USART
is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project a text file called MYTEST.TXT is opened on the SD card and the
contents of this file are displayed on the PC.

Author: Dogan Ibrahim
Date: August 2009
File: RS232.C

#include <p18f8722.h>
#include <usart.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON, CCP2MX = PORTC, MODE = MC

Figure 9.40: The Program Code

Secure Digital Card Projects 455

/* START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

FSFILE *MySrcFile;
char bufr{1];

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
129);

//
// Send a message to the PC
//
while(Busy1USART());
putrs1TUSART(" Displaying the file...\n\r");
//
// Initialize MDD library
//
while(IFSInit());
//
// Open the source file
//
MySrcFile = FSfopenpgm("MYTEST.TXT", "r");
//
// Read from the file and send to the PC until the end-of-file
//

while(FSfeof(MySrcFile) == 0)

{

FSfread((void *)bufr,1, 1, MySrcFile);
while(Busy1USART());
putc1USART (bufr[0]);

1
//
// Close the file
//
FSfclose(MySrcFile);
//
// Close USART
//
Close1USART();

while(1);
}

Figure 9.40: Cont’d

456 Chapter 9

speed. In this project, the serial communication baud rate is set to 4800. The last argument
of openUSART (spbrg) sets the baud rate according to the formula:

Baudrate = Fosc/(64 X (spbrg + 1)),
where Fosc is the microcontroller operating clock frequency. Here, the value of spbrg is
calculated as
spbrg = Fosc/(64 X baudrate) — 1
giving
spbrg =40 x 10%(64 x 4800) — 1 =129
Then the message “Displaying the file...,” followed by the characters carriage-return and line
feed are sent to the PC. File MYTEST.TXT is then opened in read mode on the SD card. A
while loop is formed that executes as long as the end of file is not detected. Inside this loop,
a byte is read from the file using the function FSfread and this byte is sent to the USART by
calling the function putc1USART. Note that we should make sure that the USART is ready to

receive a character before we send the next character. After all the data in the file is sent, the
file is closed and the USART is disabled by closing it.

The operation of the program can be tested using a serial communications program on the
PC, such as the HyperTerminal. The steps in using this program are given below:

» Start the HyperTerminal program by selecting it from Start -> Programs ->
Accessories -> Communications -> HyperTerminal

* Enter a name for the connection (e.g., TEST) and click OK (see Figure 9.41)

F - susrrmr e -!Eig

New Connection

Enter a name and choose an icon for the connection:

Name:
TEST

Icon:

[oK] [Cancel

Figure 9.41: Create a New Serial Connection

Secure Digital Card Projects 457

TEST

Enter details for the phone number that you want to dial:

Country/region:

Area code: [

Phone number: [

Connect using: |COM2 b

[oK J[Cancel J

Figure 9.42: Select the Serial Port Number

* Select the serial port the microcontroller is connected to. In this example, COM?2 is used,
as shown in Figure 9.42. (If you are not sure which serial ports are available in your PC,
check the Device Manager in Control Panel. Most modern PCs do not have any serial

ports and you may have to use a serial to USB connector device to provide serial ports to
your PC.) Click OK.

* Select the serial port parameters as (see Figure 9.43)

Bits per second: 4800
Data bits: 8

Parity: None
Stop bits: 1

Flow control: None

Click Apply and OK.

e Insert the SD card into its holder and make sure that there is a file called MYTEST.TXT
on the card.

* Press the Reset button. The contents of the file should be displayed on the PC (see the
example in Figure 9.44).

9.10.8 Suggestions for Future Work

Write a program to read a file name from the PC and then open this file on the SD card and
display its contents on the PC screen.

458 Chapter 9

COM2 Properties HES

Port Settings |
Bits per second: [4300 .".’ﬂi
Qata bits: | 8 ~ |
Parity: [None v|
Stop bits: l 1 v |
Flow control: [None v |
[ok J[cance || soph

Figure 9.43: Select the Serial Port Parameters

B TEST - HyperTerminal

File Edit Wiew Cal Transfer Help

OD& @35 DB &

Displaving the file...
10:00 00000000
10:16 60601111
10:26 11111111
10:30 00000000
10:40 00RBOBOO
12:00 60601111
13:00 11060001

Figure 9.44: Example PC Display

9.11 PROJECT 10 - Reading a Filename from the PC and
Displaying the File

9.11.1 Description

In this project, the name of a file is received from the PC and then contents of this file are
displayed on the PC. Before starting the project, it is assumed that a file called MYTEST.
TXT exists on the SD card. The following message is displayed on the PC screen by the

www.newnespress.com

Secure Digital Card Projects 459

microcontroller (the filename string is terminated when the Enter key is pressed on the PC
keyboard):

Enter the Filename:

9.11.2 Aim

The aim of this project is to show how a string of data can be received from a PC and how a
file can be opened on the SD card and its contents displayed on the PC screen.

9.11.3 Block Diagram

The block diagram of this project is as in Figure 9.37.
9.11.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.
9.11.5 Operation of the Project

The operation of the project is shown in Figure 9.45.
9.11.6 Program Code

The program code (RS232-2.C) is shown in Figure 9.46.
9.11.7 Description of the Program Code

The USART module is initialized at the beginning of the program (as in the earlier project)
by calling to C18 library function Openl USART (since there are two USART modules on
the PIC18F8722 microcontroller, we have to specify which module we shall be using).

BEGIN
Initialize USART module
Initialize the MDD library
Display a heading message
Read the filename
Open the file on SD card
WHILE not end of source file
Read from the file
Send to USART
WEND
Close the file
Close USART
END

Figure 9.45: Operation of the Project

460 Chapter 9

Serial port interrupts are disabled, USART is set to asynchronous mode, the baud-rate clock
is set to low speed, and the baud rate is set to 4800. The message “Enter the Filename:”

is displayed on the PC screen and the user is requested to enter the name of the file. The
filename is stored in a character array called FileName. This array is terminated with a
NULL character as the function FSfopen requires the name to be a NULL-terminated string.
The required text file is then opened on the SD card and its contents are displayed on the PC
screen as in the earlier project.

Figure 9.47 shows a typical output from the project.

READ FILENAME AND SEND FILE CONTENTS TO THE PC

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project the microcontroller is connected to a PC via

a MAX232-type level converter chip. USART 1 hardware module
of the microcontroller is used for serial communication. The

pin configuration of the RS232 connector is as follows:

Pin2 IR
Pin3 RX
Pin 3 GND

The communication is established using the C18 USART library
functions. The USART is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project the filename is read from the PC keyboard and the content of
the file is displayed on the PC screen (it is assumed that the requested file exists
on the SD card).

Figure 9.46: The Program Code

Secure Digital Card Projects 461

Author: Dogan Ibrahim
Date: August 2009
File: RS232-2.C

#include <p18f8722.h>
#include <usart.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON, CCP2MX = PORTC, MODE = MC

/ START OF MAIN PROGRAM */
//

// Start of MAIN Program

//

void main(void)

{

FSFILE *MySrcFile;

char bufr[1];

char FileName[20];

char FileLen = 0, itm = 0;

char mode[2] = "r";

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
129);

/!
// Send a message to the PC
/]
while(Busy1USART());
putrs1USART(" Enter the Filename:");
/]
// Read the filename (until the Enter key is pressed)
/]

while(itm = 0x0D)

{

while(!DataRdy1USART());

itm = getc1USART();

putc1USART(itm);

FileNamelFileLen] = itm;

FileLen++;

1

/]
// Terminate the Filename with a NULL character
/!

Figure 9.46: Cont’d

462 Chapter 9

FileLen--;
FileName[FileLen] = "\0';
/!
// Insert a new line
/!
putrs1USART("\n\r");
//
// Initialize MDD library
/!
while(IFSInit());
/!
// Open the file
//
MySrcFile = FSfopen(FileName, mode);
/!
// Read from the file and send to the PC until the end-of-file
/!
while(FSfeof(MySrcFile) == 0)
{
FSfread((void *)oufr,1, 1, MySrcFile);
while(Busy1USART());
putc1USART (bufr[0]);
}
//
// Close the file
/!
FSfclose(MySrcFile);
//
// Close USART
//
Close1USARTY();

while(1);
}

Figure 9.46: Cont’d

Enter the Filename:EW.HEX

11000000004 28FF3FFF3FFF3F3F3003138312A1004F
:100010000630A2005B30A3004F30A4L00663BAS0B7C
:100020006D30A6007D30A7000730A3007F30A90002
1100030006 730AN0BABR1031783168901013003135A
:10004000860088010313831683120618222820038CD
:10005000213F840000088300ABBA2008BA3AB31DF6
:100060003228A00122283328FF3FFF3FFF3FFF3FF8
:04400EQBF20FFFFFAF

:00OBBOO1FF

nnected 05:11:27 Auto detect 4800 8-N-1

Figure 9.47: Example PC Display

Secure Digital Card Projects 463

9.11.8 Suggestions for Future Work

Store several files on the SD card with the extension “.DAT.” Write a program to read a file
name from the keyboard without the file extension. Append the extension “.DAT” to the file
name and display the contents of the file on the PC screen.

9.12 PROJECT 11 - Looking for a File
9.12.1 Description

In this project, the current directory is searched for a given filename with any attribute value.
The name of the file to be searched is entered from the PC keyboard as in Project 10. If the
file is not found, the message NOT FOUND is displayed; if the file is found, the size of the
file is displayed in bytes on the PC screen.

9.12.2 Aim

The aim of this project is to show how a file can be searched in the current directory using the
MDD library functions.

9.12.3 Block Diagram
The block diagram of this project is as in Figure 9.37.
9.12.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.

9.12.5 Operation of the Project

The operation of the project is shown in Figure 9.48.

BEGIN
Initialize USART module
Initialize the MDD library
Read the filename
Search for the file in current directory
IF file not found
Display NOT FOUND
ELSE
Display size of the file
ENDIF
Close USART
END

Figure 9.48: Operation of the Project

464 Chapter 9

9.12.6 Program Code

The program code (FIND.C) is shown in Figure 9.49.

9.12.7 Description of the Program Code

At the beginning of the program, variable Attribute is set to ATTR_MASK so that the file
attribute is not considered while finding the specified file. As in the previous project, the
USART module is initialized by calling to C18 library function Open1 USART (since there
are two USART modules on the PIC18F8722 microcontroller, we have to specify which

LOOK FOR A FILE IN CURRENT DIRECTORY

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project the microcontroller is connected to a PC via a MAX232-type level
converter chip. USART 1 hardware module of the microcontroller is used for serial
communication. The pin configuration of the RS232 connector is as follows:

Pin2 L
Pin 3 RX
Pin 3 GND

The communication is established using the C18 USART library functions. The
USART is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

Figure 9.49: The Program Code

Secure Digital Card Projects

465

In this project a given file is searched in the current default directory and the message

NOT FOUND is displayed if the file is not found; otherwise,
displayed on the PC screen.

Author: Dogan Ibrahim
Date: August 2009
File: FIND.C

the size of the file is

#include <p18f8722.h>
#include <usart.h>
#include <stdlib.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE

=MC

/* START OF MAIN PROGRAM

*/

//

// Start of MAIN Program
//

void main(void)

{

FSFILE *MySrcFile;

SearchRec File;

char bufr1];

char FileName[20];

char FileLen =0, itm = 0;

unsigned char Attribute = ATTR_MASK;

unsigned long FileSize;

unsigned char FileSizeStr[10];

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,

129);

//
// Send a message to the PC
//

while(Busy1USART());

putrs1TUSART(" Enter the Filename:");
//
// Read the filename (until the Enter key is pressed)
//

Figure 9.49: Cont’d

466 Chapter 9

while(itm = 0x0D)
{
while(!DataRdy1USART());
itm = getc1TUSART();
putcTUSART(itm);
FileName(FileLen] = itm;
FileLen++;
}
//
// Terminate the Filename with a NULL character
//

FileLen—;
FileName[FileLen] = "\0";
/!
// Insert a new line
//
putrsTUSART("\n\r");
//
// Initialize MDD library
/!
while(IFSInit());
//
// Look for the file
//
if(FindFirst(FileName, Attribute, &File) |= 0)
putrs1USART("NOT FOUND");
else

FileSize = File filesize;
ltoa(FileSize, (void*)FileSizeStr);
puts1USART((void *)FileSizeStr);
1
//
// Close USART
//
Close1USART();

while(1);
}

Figure 9.49: Cont’d

module we shall be using). Serial port interrupts are disabled, USART is set to asynchronous
mode, the baud-rate clock is set to low speed, and the baud rate is set to 4800. The message
“Enter the Filename:” is displayed on the PC screen, and the user is requested to enter the
name of the file. The filename is stored in a character array called FileName and is terminated
with a NULL character.

The MDD library function FindFirst is called to search for the specified file in the cur-
rent default directory. If the file is not found, the function returns a nonzero value and
the message “NOT FOUND” is displayed on the PC screen. If the file is found, its size is

Secure Digital Card Projects 467

Enter the Filename:MYTEST.TXT
112

Figure 9.50: Example PC Display

extracted from the filesize member of structure SearchRec. The file size is a long variable;
it is converted into a string using the C18 library function Itoa and is stored in character
array FileSizeStr. USART function putslUSART is then called to display the file size

(in bytes).

Figure 9.50 shows a typical output from the project where the size of the file was 112 bytes.

9.12.8 Suggestions for Future Work

Write a program to look for a file on the SD card, and if the file is found, display the creation
date of the file; otherwise, display a message “NOT FOUND” on the PC screen.

9.13 PROJECT 12 - Looking for a Number of Files with a
Given File Extension

9.13.1 Description

In this project, a file extension is given and then all the files in the current directory with the
given extension name are found and listed on the PC screen. If no files are found, the message
“NO SUCH FILES” is displayed. For example, if the file extension is specified as

* TXT,

then all the files having extensions “TXT” will be searched for in the current directory.

9.13.2 Aim

The aim of this project is to show how multiple files can be searched in the current directory
using the MDD library functions.

468 Chapter 9

9.13.3 Block Diagram

The block diagram of this project is as in Figure 9.37.

9.13.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.
9.13.5 Operation of the Project

The operation of the project is shown in Figure 9.51.
9.13.6 Program Code

The program code (FINDEXT.C) is shown in Figure 9.52.

9.13.7 Description of the Program Code

At the beginning of the program, variable Attribute is set to ATTR_MASK so that the file
attribute is not considered while finding the specified files. As in the previous project, the
USART module is initialized by calling to C18 library function Open1 USART (since there
are two USART modules on the PIC18F8722 microcontroller, we have to specify which
module we shall be using). Serial port interrupts are disabled, USART is set to asynchronous
mode, the baud-rate clock is set to low speed, and the baud rate is set to 4800. The message
“Enter the File extension:” is displayed on the PC screen and the user is requested to enter the
file extension name. The file extension is stored in a character array called FileName and is
terminated with a NULL character.

The MDD library function FindFirst is called to search for the specified file in the current
default directory. If the file is not found, the function returns a nonzero value and the message
“NO SUCH FILES” is displayed on the PC screen. If a file is found matching the specified

BEGIN
Initialize USART module
Initialize the MDD library
Read the file extension
Search for all files with the given extension
IF file not found
Display NO SUCH FILES
ELSE
Display names of all found files
ENDIF
Close USART
END

Figure 9.51: Operation of the Project

Secure Digital Card Projects

469

LOOK FOR A NUMBER OF FILES WITH A GIVEN EXTENSION

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project the microcontroller is connected to a PC via a MAX232-type level
converter chip. The USART 1 hardware module of the microcontroller is used for serial
communication. The pin configuration of the RS232 connector is as follows:

Pin2 IS
Pin 3 RX
Pin 3 GND

The communication is established using the C18 USART library functions. The USART
is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project a file extension is given and then names of all the files in the current
directory having the given extension are displayed. If there are no files with the given
extension then message NO SUCH FILES is displayed. For example, the following file
specification:

*TXT
displays all the files having extensions "TXT"
Author: Dogan lbrahim

Date: August 2009
File: FINDEXT.C

#include <p18f8722.h>
#include <usart.h>
#include <stdlib.h>
#include <FSIO.h>

Figure 9.52: The Program Code

470 Chapter 9

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

/¥ =============== START OF MAIN PROGRAM

// Start of MAIN Program
//

void main(void)

{

FSFILE *MySrcFile;

SearchRec File;

char bufr{1];

char FileName[12];

char FileLen =0, itm = 0;

unsigned char Attribute = ATTR_MASK;

char Flag = 0;

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,

129);
//
// Send a message to the PC
//
while(Busy1USART());
putrsTUSART(" Enter the File extension: ");
//
// Read the filename (until the Enter key is pressed)
//
while(itm != 0x0D)
{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
FileName([FileLen] = itm;
FileLen++;
}
//
// Terminate the Filename with a NULL character
//
FileLen--;
FileNamelFileLen] = "\0';
//
// Insert a new line
//

putrsTUSART("\n\r");

Figure 9.52: Cont’d

Secure Digital Card Projects 471

//
// Initialize MDD library
//
while(IFSInit());
//
// Look for the files with given extension
//
if(FindFirst(FileName, Attribute, &File) != 0)
putrsTUSART("NO SUCH FILES");
else
{
puts1USART(File.filename);
putrs1USART("\n\r");

while(Flag == 0)
{
if(FindNext(&File) != 0)
Flag = 1;
else
{
puts1USART(File.filename);
putrs1USART("\n\r");

}
//
// Close USART
//
Close1USART();

while(1);
}

Figure 9.52: Cont’d

extension name, then the full name of this file is extracted from the filename member of
structure SearchRec and the filename is displayed on the PC screen using USART function
puts1USART. The MDD function FindNext is then called in a while loop to check if there
are any more files with the specified extension name. The return of function FindNext is zero
if another file is found, and the name of the found file is displayed, followed by a new-line
character. When there are no more files matching the specified extension name, then function
FindNext returns a nonzero value and the variable Flag is set to 1 to terminate the while loop.

Figure 9.53 shows a typical output from the project. In this example, there are six files on the
SD card with the following names:

TEST1.TXT
TEST2.TXT

472 Chapter 9

O -3 DB

Enter the File extension: =.THT
TEST1.TKT
TEST2.TKT
TEST3.TKT
TESTA . THT

Figure 9.53: Example PC Display

TEST3.TXT
TEST4.TXT
TESTS.DAT
TEST6.DAT
Only the files with extensions “TXT” are displayed.

Note that the program given in this project can be used to look for other types of files. Some
examples are given below:

** All files in the current directory
*.ext Files with extension “ext”
File.* Files with name “File”

* Any directory

9.13.8 Suggestions for Future Work

Write a program to look for a file in the current directory and in all the subdirectories of the
SD card.

9.14 PROJECT 13 - Displaying the Attributes of a File

9.14.1 Description

In this project, a file name is read from the PC keyboard and then the specified file is
searched on the SD card and the attributes of the file are displayed on the PC screen. If the
file does not exist, then the message “NO SUCH FILE” is displayed.

Secure Digital Card Projects 473

9.14.2 Aim

The aim of this project is to show how the attributes of a given file can be determined.

9.14.3 Block Diagram

The block diagram of this project is as in Figure 9.37.

9.14.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.

9.14.5 Operation of the Project

The operation of the project is shown in Figure 9.54.

9.14.6 Program Code

The program code (ATTR.C) is shown in Figure 9.55.

9.14.7 Description of the Program Code

At the beginning of the program, the variable Attribute is set to ATTR_MASK so that the file
attribute is not considered while finding the specified file. As in the previous project, the
USART module is initialized by calling to C18 library function Open1 USART (since there
are two USART modules on the PIC18F8722 microcontroller, we have to specify which
module we shall be using). Serial port interrupts are disabled, USART is set to asynchronous
mode, the baud-rate clock is set to low speed, and the baud rate is set to 4800. The message
“Enter the Filename:” is displayed on the PC screen and the user is requested to enter the file
name. The file name is stored in a character array called FileName and is terminated with a
NULL character.

BEGIN
Initialize USART module
Initialize the MDD library
Read the filename
Search for the file
IF file not found
Display NO SUCH FILE
ELSE
Display attributes of the file
ENDIF
Close USART
END

Figure 9.54: Operation of the Project

474 Chapter 9

DISPLAY ATTRIBUTES OF A FILE

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller is operated
with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

In this project the microcontroller is connected to a PC via a MAX232-type level converter chip.
The USART 1 hardware module of the microcontroller is used for serial communication. The pin
configuration of the RS232 connector is as follows:

Pin 2 RS
Pin3 RX
Pin3 GND

The communication is established using the C18 USART library functions. The
USART is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project a file name is read from the PC keyboard and then the attributes of this file are
found and displayed on the PC screen.

Author: Dogan Ibrahim
Date: August 2009
File: ATTR.C

#include <p18f8722.h>
#include <usart.h>
#include <stdlib.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

Figure 9.55: The Program Code

Secure Digital Card Projects

475

/* START OF MAIN PROGRAM

*/

/7

// Start of MAIN Program
//

void main(void)

{

SearchRec File;

char bufr1];

char FileName[12];

char FileLen =0, itm = 0;

unsigned char Attribute = ATTR_MASK;

unsigned char Attributes;

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,

129);
/7
// Send a message to the PC
//
while(Busy1USART());
putrsTUSART(" Enter the Filename: ");
//
// Read the filename (until the Enter key is pressed)
//
while(itm = 0x0D)
{
while(!DataRdy1USART());
itm = getc1TUSART();
putc1USART(itm);
FileNamel[FileLen] = itm;
FileLen++;
}
//
// Terminate the Filename with a NULL character
//
FileLen— —;
FileNamelFileLen] = "\0';
//
// Insert a new line
//
putrs1TUSART("\n\r");
//
// Initialize MDD library

Figure 9.55: Cont’d

476 Chapter 9

/!
while(IFSInit());
/!
// Look for the files with given extension
//
if(FindFirst(FileName, Attribute, &File) != 0)
putrs1USART("NO SUCH FILES");
else
{
Attributes = File.attributes;
if(Attributes & 0x01)putrs1USART("Read-only file\n\r");
if(Attributes & 0x02)putrs1USART("Hidden file\n\r");
if(Attributes & 0x04)putrs1USART("System file\n\r");
if(Attributes & 0x08)putrs1USART("Volume labeln\r");
if(Attributes & 0x20)putrs1USART("Archived File\n\r");

}
//
// Close USART
//
Close1USART();

while(1);
}

Figure 9.55: Cont’d

. bb - HyperTerminal

Enter the Filename: TEST1.THT
Read-only file

Hidden file

Archived File

Figure 9.56: Example for PC Display

The MDD library function FindFirst is called to search for the specified file in the current
default directory. If the file is not found, the function returns a nonzero value and the
message “NO SUCH FILE” is displayed on the PC screen. If a file is found matching the
specified extension name, then the attributes of this file is extracted from the attributes
member of structure SearchRec and the attributes of the file are displayed on the PC
screen.

Figure 9.56 shows typical output from the project. In this example, the file TEST1.TXT had
read-only, archive, and hidden attributes set.

Secure Digital Card Projects 477

9.14.8 Suggestions for Future Work

Write a program to display a list of all the files in the current default working directory with
their sizes and attributes.

9.15 PROJECT 14 - SD Card File Handling
9.15.1 Description

In this project, a program is developed to handle a number of SD card operations. The following
operations are performed:

CD Change directory

DEL Delete a file

DIR Directory listing
FORM Format SD card
HELP Help on these commands

MD Create a directory

RD Delete a directory

REN Rename a file

TYPE Display the contents of a file
COPY Copy a file

The command mode is identified by character “$” where any of the above commands can
be entered. After entering a command, the user should press the Enter key and then enter
the appropriate command option. The following command options are available for each
command:

CD
Enter directory name:

DEL
Enter filename:

DIR

FORM
Enter volume name:

HELP

MD
Enter directory name:

478 Chapter 9

RD
Enter directory name:

REN
Source filename:
Destination filename:

TYPE
Enter filename:

COPY
Source filename:
Destination filename:

9.15.2 Aim

The aim of this project is to show how several file-handling operations can be performed
in a program.

9.15.3 Block Diagram

The block diagram of this project is as in Figure 9.37.
9.15.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.
9.15.5 Operation of the Project

The operation of the project is shown in Figure 9.57.
9.15.6 Program Code

The program code (FILES.C) is shown in Figure 9.58.

9.15.7 Description of the Program Code

The following functions are used in the program:

Read_Filename: This function reads the filename, directory name, or the volume name from
the keyboard. The argument specifies the text string to be displayed before accepting
the user input. The function is terminated when the Enter key is pressed and a NULL
character is added to the end of the name.

Secure Digital Card Projects 479

Read_SrcDst: This function reads the source filename and the destination filename in
commands Copy and Rename.

As in the previous project, at the beginning of the program, the USART module is initialized
by calling to C18 library function Openl1 USART (since there are two USART modules on the
PIC18F8722 microcontroller, we have to specify which module we shall be using). Serial port
interrupts are disabled, USART is set to asynchronous mode, the baud-rate clock is set to low
speed, and the baud rate is set to 4800.

BEGIN
Initialize USART module
Initialize the MDD library
DO FOREVER
Display command mode ("$")
Get a command
IF Command = CD
Get directory name
Change to given directory
ELSE IF Command = DEL
Get filename
Delete filename
ELSE IF Command = DIR
Display directory listing
ELSE IF Command = HELP
Display list of commands
ELSE IF Command = MD
Get directory name
Create new directory
ELSE IF Command = RD
Get directory name
Delete directory
ELSE IF Command = TYPE
Get filename
Display file
ELSE IF Command = FORM
Get volume name
Format SD card
ELSE IF Command = REN
Get source filename
Get destination filename
Rename file
ELSE IF Command = COPY
Get source filename
Get destination filename
Copy file
END IF
ENDDO
Close USART
END

Figure 9.57: Operation of the Project

480 Chapter 9

SD CARD FILE HANDLING COMMANDS

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to the
SD card.

In this project the microcontroller is connected to a PC via a MAX232-type level
converter chip. The USART 1 hardware module of the microcontroller is used for
serial communication. The pin configuration of the RS232 connector is as follows:

Pin 2 >
Pin 3 RX
Pin 3 GND

The communication is established using the C18 USART library functions. The
USART is configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project various commands are provided for handling file operations on an
SD card. The following commands are provided:

CD change directory

DEL delete a file

DIR directory listing

FORM format SD card

HELP help on these commands
MD create a directory

RD delete directory

REN rename a file

TYPE display contents of a file
COPY copy a file

The command mode is identified with a $ character and the command should be
entered after the command mode. The following command tails are available:

CD
Enter Directory name:

Figure 9.58: The Program Code

Secure Digital Card Projects

481

Author:
Date:
File:

DEL
Enter Filename:

DIR

FORM
Enter Volume name

HELP

MD

Enter Directory name:

RD

Enter Directory name:

REN
Source Filename:

Destination Filename:

TYPE
Enter Filename:

COPY
Source Filename:

Destination Filename:

Dogan Ibrahim
August 2009
FILES.C

#include <p18f8722.h>
#include <usart.h>
#include <stdlib.h>
#include <string.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

SearchRec File;
char bufr[10];
char FileName[13];

char SourceFileName[12];
char DestinationFileName[12];
char DirectoryName[12];

char FileLen = 0, itm;

unsigned char Attribute = ATTR_MASK;

//

// Read a filename

//

Figure 9.58: Cont’d

482 Chapter 9

void Read_Filename(const rom char *msg)
{
itm = 0;
FileLen = 0;
putrs1USART(msg);
while(itm != 0x0D)
{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
FileNamelFileLen] = itm;

FileLen++;

}
//
// Terminate the Filename with a NULL character
//

FileLen--;

FileName(FileLen] = "\0';
1
//
// Read source filename and destination filename
//

void Read_SrcDst(void)
{
chari=0;
Read_Filename(" Enter source filename: ");
for(i=0; i<12; i++) SourceFileNameli] = FileNamefil;
Read_Filename("\n\rEnter destination filename: ");
for(i=0; i<12; i++) DestinationFileNameli] = FileNamel[i];

}

/ START OF MAIN PROGRAM

//

// Start of MAIN Program
//

void main(void)

{

FSFILE *pntrs, *pntrd;

char Command[6];

char CmdLen, Flag, i;

char mode_read[2] = "r";

char mode_write[3] = "w+";

int ReadCnt;

//
// Initialize the USART
//

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &

Figure 9.58: Cont’d

Secure Digital Card Projects

483

USART_BRGH_LOW,
129);
/!
// Display command prompt character $
//
while(Busy1USART());
/!

// START OF LOOP

/
while(1)
{

/!
// Read a command (until the Enter key is pressed)
/!

putrs TUSART("\n\r$ *;

itm = 0;
CmdLen = 0;
while(itm = 0x0D)
{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
Command[CmdLen] = itm;
CmdLen++;
}
//
// Terminate the Command with a NULL character
/!
CmdLen--;
Command[CmdLen] = "\0';
/!
// Insert a new line
//
putrs TUSART("\n\r");
/!
// Initialize MDD library
/!
while(IFSInit());
//
// Determine what type of command it is and process the command
/!
if(strcmppgm2ram(Command, "HELP") == 0)
{

putrs1USART
putrsTUSART
putrsTUSART
putrsTUSART
putrsTUSART
putrsTUSART
putrs1USART
putrsTUSART
putrsTUSART
putrsTUSART

"CD\tchange directory\n\r");
"DEL\tdelete a file\n\r");
"DIR\tdirectory listing\n\r");
"FORM\tformat SD card\n\r");
"HELP\tthis display\n\r");
"MD\tcreate directory\n\r");
"RD\tdelete directory\n\r");
"REN\trename a file\n\r");
"TYPE\tdisplay a file\n\r");
"COPY\tcopy a file\n\r");

Figure 9.58: Cont’d

484 Chapter 9

else if(stremppgm2ram(Command, "CD") == 0)
{
Read_Filename("Enter directory name: ");
FSchdir(FileName);
}
else if(stremppgm2ram(Command, "DEL") == 0)
{
Read_Filename("Enter filename: ");
FSremove(FileName);
}
else if(stremppgm2ram(Command, "DIR") == Q)
{
FileName[0] = "™**;
FileName[1] = ".";
FileName[2] = ",
FileName[3] = "\0';
FindFirst(FileName, Attribute, &File);
puts1USART(File.filename);
putrs TUSART("\n\r");

Flag = 0;
while(Flag == 0)
{
if(FindNext(&File) == 0)

puts1USART File.filename);
putrs1USART("\n\r");
}
else Flag = 1;
1
1
else if(strcemppgm2ram(Command, "FORM") == 0)
{
Read_Filename("Enter Volume name: ");
FSformat(1, 0x12345678, FileName);
1

else if(strcemppgm2ram(Command, "MD") == 0)

Read_Filename("Enter directory name: *);
FSmkdir(FileName);

}

else if(strcemppgm2ram(Command, "RD") == 0)

{
Read_Filename("Enter directory name: ");
FSrmdir(FileName, 1);

1

else if(strcemppgm2ram(Command, "REN") == 0)

{
Read_SrcDst();
pntrs = FSfopen(SourceFileName, mode_read);
FSrename(DestinationFileName, pntrs);
FSfclose(pntrs);

Figure 9.58: Cont’d

Secure Digital Card Projects 485

else if(stremppgm2ram(Command, "TYPE") == Q)
{

Read_Filename("Enter filename: ");

pntrs = FSfopen(FileName, mode_read);

ReadCnt = 1;

while(ReadCnt != 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);
for(i=0; i<ReadCnt; i++)

while(Busy1USART());
putc1USART (bufr(i]);
}
}
FSfclose(pntrs);
}
else if(stremppgm2ram(Command, "COPY") == 0)
{
Read_SrcDst();
pntrs = FSfopen(SourceFileName, mode_read);
pntrd = FSfopen(DestinationFileName, mode_write);

ReadCnt = 1;

while(ReadCnt != 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);
FSfwrite((void *)bufr, 1, ReadCnt, pntrd);

}

FSfclose(pntrs);

FSfclose(pntrd);

}

//
// Close USART
//
Close1USART();

while(1);
}

Figure 9.58: Cont’d

When the microcontroller is reset, the command mode identifier “$” character is displayed
and the user is expected to enter a command. The user command is stored in a character array
Command and the requested command is determined and processed. The C18 string com-
parison function strcmppgm?2ram is used to determine the command entered by the user. The
commands are processed as follows:

486 Chapter 9

HELP

A list of the available commands is displayed using the USART function putrslUSART. The
command names and command descriptions are separated by a tab character “\t”:

putrs1USART!
putrs1TUSART
putrs1USART
putrs1USART!
putrs1USART!
putrs1USART!
putrsTUSART
putrs1TUSART
putrs1USART
putrs1USART!

"CD\tchange directory\n\r");
"DEL\tdelete a file\n\r");
"DIR\tdirectory listing\n\r");
"FORM\tformat SD card\n\r");
"HELP\tthis display\n\r");
"MD\tcreate directory\n\r");
"RD\tdelete directory\n\r");
"REN\trename a file\n\r");
“TYPE\tdisplay a file\n\r");
"COPY\tcopy a file\n\r");

0 0 0 0 0 1 1 1 1

CD

The directory name to be changed is read from the keyboard and the MDD function FSchdir
is used to change this directory:

Read_Filename("Enter directory name: ");
FSchdir(FileName);

DEL

The name of the file to be deleted is read from the keyboard and the MDD function FSremove
is used to delete the file:

Read_Filename("Enter filename: ");
FSremove(FileName);

DIR

The filename is set to wild character string “*.*” and the MDD function FindFirst is called to
find any file in the default directory. The name of the found file is then displayed. Then, the
MDD function FindNext is used in a while loop to look for more files in the directory and the
names of all found files are displayed:

FileName[Q] = ",

FileName[1] = ".";

FileName[2] = ",

FileName[3] = "\0';
FindFirst(FileName, Attribute, &File);
puts1USART (File.filename);
putrsTUSART("\n\r");

Flag = 0;
while(Flag == 0)

Secure Digital Card Projects 487

if(FindNext(&File) == 0)

puts1USART(File.filename);
putrs1TUSART("\n\r");
}

else Flag = 1;

}
FORM

The volume name to be given to the SD card is read from the keyboard and the MDD function
FSformat is used to format the card. The card is given the serial number 0x12345678:

Read_Filename("Enter Volume name: ");
FSformat(1, Ox12345678, FileName);

MD

The name of the directory to be created is read from the keyboard and the MDD function
FSmkdir is used to create a new directory:

Read_Filename("Enter directory name: ");
FSmkdir(FileName);

FS

The name of the directory to be deleted is read from the keyboard and the MDD function
FSrmdir is used to delete the directory:

Read_Filename("Enter directory name: ");
FSrmdir(FileName, 1);

REN

The function Read_SrcDst is called to read the source and the destination filenames. Then,
the source file is opened in read mode with pointer pntrs. The MDD function FSrename
is called to change the name of the source file. The source file is closed after the rename
operation:

Read_SrcDst();

pntrs = FSfopen(SourceFileName, mode_read);

FSrename(DestinationFileName, pntrs);
FSfclose(pntrs);

TYPE

The name of the file to be displayed is read from the keyboard and the MDD function
FSfopen is used to open the file in read mode. The contents of the file are read into a
buffer called bufr in a while loop using the function FSfread until the end of file is

488 Chapter 9

detected. The contents of this buffer are then sent to the PC screen using USART function
putc1USART:

Read_Filename("Enter filename: ");
pntrs = FSfopen(FileName, mode_read);

ReadCnt = 1;
while(ReadCnt = 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);

for(i=0; i<ReadCnt; i++)

{
while(Busy1USART());

putc1USART (bufr(i]);

}

}
FSfclose(pntrs);

}

COPY

The function Read_SrcDst is called to read the source and the destination filenames. The
source file is opened in read mode and the destination file is created in write mode. Then, a
while loop is formed and data is read from the source file and copied to the destination file
until the end of file is reached. At the end of the copy operation, both the source file and the
destination files are closed:

Read_SrcDst();
pntrs = FSfopen(SourceFileName, mode_read);
pntrd = FSfopen(DestinationFileName, mode_write);

ReadCnt = 1;
while(ReadCnt = 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);

FSfwrite((void *)oufr, 1, ReadCnt, pntrd);

}
FSfclose(pntrs);

FSfclose(pntrd);

Figures 9.59 and 9.60 show typical outputs from the project.

9.15.8 Suggestions for Future Work

Write a file-handling program similar to the program given in Figure 9.58 but
include appropriate error messages in your program to inform the user of any error
conditions.

Secure Digital Card Projects

489

M cc - HyperTerminal

File Edit Wiew Call Transfer Help

$ HELP

cD change directory
DEL delete a file

DIR directory listing

FORM format 3D card
HELP this display

MD create directory
RD delete directory
REN rename a file

TYPE display a file
COPY copy a file

$

Figure 9.59: Example for PC Display

M cc - HyperTerminal

File Edit Wiew Call Transfer Help

O @ & 058

MD create directory
RD delete directory
REN rename a file
TYPE display a file
copy copy a fTile

COUNT . HEX
GTHERS .HEX
CNT.THT

$ DEL

Enter filename: COUNT.HEX
$ DIR

SD

BOOKS

BOOK

GTHERS . HEX

CNT . THT

$

Connected 00:34:25 Auto detect | 4800 8-N-1 SCROLL

Figure 9.60: Example for PC Display

www.newnespress.com

490 Chapter 9

9.16 PROJECT 15 - MENU-Based SD Card File Handling

9.16.1 Description

This project is similar to Project 14, but here the SD card file handling is MENU based. When
the program is activated, the following MENU is displayed on the PC screen:

MENU

. Change directory

. Delete a file

. Directory listing

. Format SD card

. Help

. Create a directory

. Delete a directory

. Rename a file

. Display a file

O|lVW||IN|O|»n|h~|[WIN| =

—_

. Copy afile

Option:

After making a selection, the user should press the Enter key and then enter the command
option (e.g., the filename). The available command options are the same as the command
options in the previous project.

In this project, error messages are also displayed, depending on the type of error.

9.16.2 Aim

The aim of this project is to show how several file-handling operations can be performed in a
program.

9.16.3 Block Diagram

The block diagram of this project is as in Figure 9.37.
9.16.4 Circuit Diagram

The circuit diagram of this project is as in Figure 9.38.

9.16.5 Operation of the Project

The operation of the project is shown in Figure 9.61.

Secure Digital Card Projects 491

BEGIN
Initialize USART module
Initialize the MDD library
DO FOREVER
Display MENU
Get an option
IF Command = CD
Get directory name
Change to given directory
ELSE IF Command = DEL
Get filename
Delete filename
ELSE IF Command = DIR
Display directory listing
ELSE IF Command = HELP
Display list of commands
ELSE IF Command = MD
Get directory name
Create new directory
ELSE IF Command = RD
Get directory name
Delete directory
ELSE IF Command = TYPE
Get filename
Display file
ELSE IF Command = FORM
Get volume name
Format SD card
ELSE IF Command = REN
Get source filename
Get destination filename
Rename file
ELSE IF Command = COPY
Get source filename
Get destination filename
Copy file
END IF
ENDDO
Close USART
END

Figure 9.61: Operation of the Project

9.16.6 Program Code

The program code (MENU.C) is shown in Figure 9.62.

9.16.7 Description of the Program Code

As in the previous project, at the beginning of the program, the USART module is initialized
by calling to C18 library function Open1 USART (since there are two USART modules on the
PIC18F8722 microcontroller, we have to specify which module we shall be using). Serial port

492 Chapter 9

MENU-BASED SD CARD FILE-HANDLING COMMANDS

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller is
operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
Cs RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to the SD card.

In this project the microcontroller is connected to a PC via a MAX232-type level converter
chip. The USART 1 hardware module of the microcontroller is used for serial communication.
The pin configuration of the RS232 connector is as follows:

Pin 2 ™
Pin 3 RX
Pin3 GND

The communication is established using the C18 USART library functions. The USART is
configured as follows:

4800 Baud
8 data bits
No parity
1 stop bit

In this project a MENU system is designed to handle the various file operations. The
MENU consists of following options:

. Change directory
. Delete a file

. Directory listing

. Format SD card
Help

Create a directory
Delete a directory
. Rename a file

. Display a file

. Copy afile

COONDO A ®N =

-

Option:

Figure 9.62: The Program Code

Secure Digital Card Projects

493

Author: Dogan lbrahim
Date: August 2009
File: MENU.C

#include <p18f8722.h>
#include <usart.h>
#include <stdlib.h>
#include <string.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF

#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

SearchRec File;

char bufr[10];

char FileName[13];

char SourceFileName[12];

char DestinationFileName[12];

char DirectoryName[12];

char FileLen = 0, itm;

unsigned char Attribute = ATTR_MASK;

//
// Read a filename
//
void Read_Filename(const rom char *msg)
{
itm = 0;
FileLen = 0;
putrs1TUSART(msg);
while(itm != 0x0D)
{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
FileNamelFileLen] = itm;
FileLen++;
1
//
// Terminate the Filename with a NULL character
//
FileLen--;
FileNamel[FileLen] = "\O';

/]

// Read source filename and destination filename

//

void Read_SrcDst(void)

{
chari=0;
Read_Filename(" Enter source filename: ");
for(i=0; i<12; i++) SourceFileNameli] = FileNamefil;

Figure 9.62: Cont’d

494 Chapter 9

Read_Filename("\n\rEnter destination filename: ");
for(i=0; i<12; i++) DestinationFileName(i] = FileNamel[i];

}

/* START OF MAIN PROGRAM
//

// Start of MAIN Program

//

void main(void)

{

FSFILE *pntrs, *pntrd;

char Command[6];

char CmdLen, Flag, i;

char mode_read[2] = "r";

char mode_write[3] = "w+";

int ReadCnt, Cmd;

//
// Initialize the USART
/!

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
129);

//
// Display command prompt character $
//
while(Busy1USART());
/!
// START OF LOOP

//

while(1)

{
putrs TUSART("\n\rOption: ");

/!
// Read an Option (until the Enter key is pressed)
/!
itm = 0;
CmdLen =0;
while(itm = 0x0D)
{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
Command[CmdLen] = itm;
CmdLen++;
1
//
// Terminate the Command with a NULL character
/!

*/

Figure 9.62: Cont’d

Secure Digital Card Projects

495

CmdLen--;
Command[CmdLen] = "\0";
/!
// Insert a new line
//
putrs1USART("\n\r");
/!
// Initialize MDD library
/!
while(IFSInit());
//
// Determine what type of command it is and process the command
/!
Cmd = atoi(Command); // convert to integer
/!
// Process the command
//
switch(Cmd)
{
case 1:
Read_Filename("Enter directory name: ");
if(FSchdir(FileName) = 0)
putrsTUSART("Error to change directory...\n\r");
break;
case 2:
Read_Filename("Enter filename: ");
if(FSremove(FileName) != 0)
putrs TUSART("Error to delete the file...\n\r");
break;
case 3:
FileName[0] = "™**;
FileName[1] = ".";
FileName[2] = "™,
FileName[3] = "\0';
FindFirst(FileName, Attribute, &File);
puts1USART(File.filename);
putrs TUSART("\n\r");

Flag = 0;
while(Flag == 0)
{

if(FindNext(&File) == 0)
{
puts1USART (File.filename);
putrs1TUSART("\n\r");
}
else Flag = 1;
1
break;
case 4:
Read_Filename("Enter Volume name: ");
if(FSformat(1, 0x12345678, FileName) != 0)
putrsTUSART("Error to format...\n\r");
break;

Figure 9.62: Cont’d

496 Chapter 9

case 5:
putrs TUSART("\n\r MENU\N\r");
putrs1TUSART(" ====\n\r");
putrs1USART("1. Change directory\n\r");
putrsTUSART("2. Delete a file\n\r");
putrs1USART("3. Directory listing\n\r");
putrsTUSART("4. Format SD card\n\r");
putrsTUSART("5. Help\n\r");
putrs1TUSART("6. Create a directory\n\r");
putrsTUSART("7. Delete a directory\n\r");
putrsTUSART("8. Rename a file\n\r");
putrsTUSART("9. Display a file\n\r");
putrsTUSART("10.Copy a file\n\r");
break;

case 6:

Read_Filename("Enter directory name: ");
if(FSmkdir(FileName) != 0)
putrs1USART("Error to create directory...\n\r");
break;
case 7:
Read_Filename("Enter directory name: ");
if(FSrmdir(FileName, 1) I= 0)
putrsTUSART("Error to delete directory...\n\r");
break;
case 8:
Read_SrcDst();
pntrs = FSfopen(SourceFileName, mode_read);
if(FSrename(DestinationFileName, pntrs) = 0)
putrs TUSART("Error to rename file...\n\r");
FSfclose(pntrs);
break;
case 9:
Read_Filename("Enter filename: ");
pntrs = FSfopen(FileName, mode_read);

ReadCnt = 1;
while(ReadCnt |= 0)

ReadCnt = FSfread(bufr, 1, 10, pntrs);
for(i=0; i<ReadCnt; i++)
{
while(Busy1USART());
putc1USART (bufr(i]);
1

}
FSfclose(pntrs);

break;
case 10:
Read_SrcDst();
pntrs = FSfopen(SourceFileName, mode_read);
pntrd = FSfopen(DestinationFileName, mode_write);

ReadCnt = 1;
while(ReadCnt != 0)

Figure 9.62: Cont’d

Secure Digital Card Projects 497

ReadCnt = FSfread(bufr, 1, 10, pntrs);
FSfwrite((void *)bufr, 1, ReadCnt, pntrd);

}

FSfclose(pntrs);

FSfclose(pntrd);

break;

default:
putrsTUSART("Wrong choice...\n\r");

}

/]
// Close USART
/!
Close1USART();

while(1);
}

Figure 9.62: Cont’d

interrupts are disabled, USART is set to asynchronous mode, the baud-rate clock is set to low
speed, and the baud rate is set to 4800.

At the beginning of the program, string “Option:” is displayed and the user is expected to
choose an option between 1 and 10. The received user option is saved in a character array
Command. This option is then converted into an integer number called Cmd using built-in
MPLAB C18 function atoi and a switch statement is used to process the user commands as
described below:

Case 1:

The new directory name is read from the keyboard and the function FSchdir is used to change
to the new directory. The error message “Error to change directory...” is displayed if an error
is detected:
Read_Filename("Enter directory name: ");
if(FSchdir(FileName) = 0)
putrs1USART("Error to change directory...\n\r");
break;

Case 2:

The name of the file to be deleted is read from the keyboard and the function FSremove is used to
delete the file. The error message “Error to delete the file...” is displayed if an error is detected:

Read_Filename("Enter filename: ");
if(FSremove(FileName) = 0)

putrs1USART("Error to delete the file...\n\r");
break;

498 Chapter 9

Case 3:

The filename is set to “*.*” and names of all the files (including directory names) in the
current working directory are displayed. The function FindFirst is used to find the first file in
the directory and the function FindNext is used to find other files in the directory:

FileName[0] = "™*;

FileName[1] = ".";

FileName[2] = "™,

FileName[3] = "\0';
FindFirst(FileName, Attribute, &File);
puts1USART(File.filename);
putrsTUSART("\n\r");

Flag = 0;
while(Flag == 0)

{
if(FindNext(&File) == 0)

puts1USART (File.filename);
putrs1TUSART("\n\r");

}

else Flag = 1;

}

break;

Case 4:

This option reads the required volume name from the keyboard and formats the SD card by
giving the card this volume name. The error message “Error to format...” is displayed if an
error is detected:

Read_Filename("Enter Volume name: ");

if(FSformat(1, 0x12345678, FileName) != 0)

putrsTUSART("Error to format...\n\r");
break;

Case 5:

This option displays the MENU items:

putrsTUSART("\n\r MENU\N\r");
putrsTUSART(" ====\n\r");
putrs1USART("1. Change directory\n\r");
putrs1USART("2. Delete a file\n\r");
putrs1USART("3. Directory listing\n\r");
putrs1USART("4. Format SD card\n\r");
putrs1TUSART("5. Help\n\r");
putrs1USART("6. Create a directory\n\r");
putrs1TUSART("7. Delete a directory\n\r");
putrs1TUSART("8. Rename a file\n\r");

Secure Digital Card Projects 499

putrs1USART("9. Display a file\n\r");
putrs1TUSART("10.Copy a file\n\r");
break;

Case 6:

This function reads a directory name and creates a directory with this name using the function
FSmkdir. The error message “Error to create directory...” is displayed if an error is detected:
Read_Filename("Enter directory name: ");
if(FSmkdir(FileName) != 0)
putrs1USART("Error to create directory.. \n\r");
break;

Case 7:

This option reads a directory name and then this directory is deleted from the current work-
ing directory using the function FSrmdir. The error message “Error to delete directory...” is
displayed if an error is detected:
Read_Filename("Enter directory name: ");
if(FSrmdir(FileName, 1) |= 0)
putrs1USART("Error to delete directory...\n\r");
break;

Case 8:

This option changes the name of a file. The user function Read_SrcDst is called to read the
destination and the source filenames, and then the MDD function FSrename is used to rename
the file. Note that the source file must be opened with read attribute and its file pointer must
be used in the FSrename function. The error message “Error to rename file...” is displayed if
an error is detected:

Read_SrcDst();

pntrs = FSfopen(SourceFileName, mode_read);

if(FSrename(DestinationFileName, pntrs) |= 0)

putrs1USART("Error to rename file...\n\r");

FSfclose(pntrs);
break;

Case 9:

This option displays a file on the PC screen. The filename is read from the keyboard and the
file is opened in read mode. Then, a while loop is formed to read and display the contents of
the file until the end of file is reached:

Read_Filename("Enter filename: ");
pntrs = FSfopen(FileName, mode_read);

ReadCnt = 1;

500 Chapter 9

while(ReadCnt = 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);

for(i=0; i<ReadCnt; i++)

{
while(Busy1USART());
putc1USART(bufr[i]);

}

}
FSfclose(pntrs);

break;

Case 10:

This option copies one file to another file. The user function Read_SrcDst is called to read
the source and the destination filenames. Then the source file is opened in read mode and the
destination file is opened in write mode. A while loop is formed, and the data is read from the
source file and written into the destination file until the end of the source file is reached. At
the end, both the source file and the destination file are closed:

Read_SrcDst();

pntrs = FSfopen(SourceFileName, mode_read);
pntrd = FSfopen(DestinationFileName, mode_write);

ReadCnt = 1;
while(ReadCnt = 0)

{
ReadCnt = FSfread(bufr, 1, 10, pntrs);

FSfwrite((void *)bufr, 1, ReadCnt, pntrd);

}
FSfclose(pntrs);

FSfclose(pntrd);
break;

Default:

This option of the switch statement is executed if the user option is not between 1 and 10:

putrs1USART("Wrong choice... \n\r");
Figures 9.63 and 9.64 show typical outputs from the project.

In the program code in Figure 9.62, the error messages are displayed by checking the return values
of the MDD functions. The MDD library provides a function called FSerror that can be used to
find the exact cause of a problem when an error occurs in a previous MDD function call. FSerror
returns an integer where the actual error messages can be found in the MDD documentation (e.g.,
the Release Notes for Microchip Memory Disk Drive File System, Version 1.2.0, August 20, 2008).

An example for the use of function FSerror is shown in Figure 9.65, where the MDD func-
tion FSremove is used to delete a file from the current working directory. For example,

Secure Digital Card Projects 501

M test HyperTerminal

File Edit Yew Call Transter Help

O &8 B i

Uption: b
MFNU
1. Change dircctory
2. Delete a file
J. Directory listing
4. Format SD card
9. Help
6. Create a directory
1. Delete a directory
8. Rename a file
9. Display a file
10.Copy a file
Option: 3
sSD
BOOKS
BOOK
GIHERS .HEX
CNT2.THT
Option:
Connected 00:00:29 Auto detect | 4800 8-N-1 SLROLL

Figure 9.63: Typical Output from the Project

M toct - HyperTerminal

Flle Edt wew Call Transfer Help

N @3 DB o

. Display a file
1@ Copy a file

Option: 3
1]

BOOKS

BOOK
GTICRS.IICH
CNT2.THT

Option:
Error to delete the file..

Option: 6

Enter directory name: COUNTS
Option: 3

sh

BOOKS

BOOK

COUNTS

GTHERS .HEX

CNI12.1KI

Option:

Lonnected UU:UZ 20 Auto detect 4500 8-N-1 BRiet A

Figure 9.64: Typical Output from the Project

www.newnespress.com

502 Chapter 9

case 2:
Read_Filename("Enter filename: ");
Ret = FSremove(FileName);
if(Ret = 0)
Error = FSerror();

switch(Error)
{
case CE_WRITE_PROTECTED:
putrs1TUSART("Devide write protected...\n\r");
break;
case CE_FILE_NOT_FOUND:
putrs1TUSART("The specified file is not found...\n\r");
break;
case CE_INVALID_FILENAME:
putrs1USART("Specified filename was invalid...\n\r");
break;
case CE_ERASE_FAIL:
putrs1USART("The file could not be erased...\n\r");
break;

Figure 9.65: Using the FSerror Function

if the file to be deleted is not found in the directory, the error message “The specified file
could not be found” will be displayed (see the MDD documentation for a full list of error
messages).

9.16.8 Suggestions for Future Work

Write a program, similar to the program given in this project, but include all the FSerror-
based error messages in your program.

9.17 PROJECT 16 - Digital Data Logging to SD Card
9.17.1 Description

This project is about data logging of digital data to the SD card. In this project, microcontrol-
ler’s PORTE and PORTF data are collected every second and stored on the SD card in a file
called DIGITAL.TXT in hexadecimal format. The data items are separated with a comma so
that the data is compatible with Excel spreadsheet and can be imported into Excel, if required
for further processing.

An active low push-button Start/Stop switch is provided (connected to RBO) to control oper-
ation of the program. Data collection starts when the switch is pressed. The program stops
when the switch is pressed for a few seconds so that the SD card can be removed safely.

Secure Digital Card Projects 503

9.17.2 Aim

The aim of this project is to show how digital data can be collected and stored on the SD card
every second.

9.17.3 Block Diagram

The block diagram of this project is shown in Figure 9.66.

9.17.4 Circuit Diagram

The circuit diagram of this project is shown in Figure 9.67.

9.17.5 Operation of the Project

The operation of the project is shown in Figure 9.68.

9.17.6 Program Code

The program code (DIGLOG.C) is shown in Figure 9.69.

9.17.7 Description of the Program Code

At the beginning of the program, the port directions are configured and the program waits
until the Start/Stop button is pressed. After the button is pressed and released, the MDD
library is initialized and a new file called DIGITAL.TXT is created on the SD card. The main
part of the program is in a while loop. Inside this loop, data from PORTE and PORTF are
read and stored in the file using the MDD function FSfprint. Data is written to the file in the
hexadecimal format and is separated with a comma. The program then checks whether or
not the Start/Stop button is pressed to stop the program, and if so, the file is closed and the
program stops waiting in a while loop forever.

Start/Stop ED RBO

PIC
L B SD
micro- <
card
controller

Digital —»| PORT E
inputs —»! PORT F

Figure 9.66: Block Diagram of the Project

504 Chapter 9

A +5V
12{25]32] 48] 71
10K vdd
Reset 9 REO 4
[]] MCLR
0 +5v A
i I
3
3:?'2%9 10K A L
3.3V 24 o
- 58 £
DT-3.3 []] REO RFO 5
+ o] PIC —
-~ 18F8722
10 wF Start/Stop
p— RF7
- 4 13
VDD pok
csH —122RB3 70
5 44 51
SD card CLK T 1+—RC3
po |2 451 Rca vss |28
2 22K 46 1
vss DI o— —RC5
|3a6 =
— oscH 0sc2
49 50
3.3K 3.3K 10MHz
B ji 22pF —— 22pF

Figure 9.67: Circuit Diagram of the Project

Figure 9.70 shows the typical contents of file DIGITAL.TXT where data was collected for a
short period of time.

9.17.8 Suggestions for Future Work

Write a program similar to the program given in this project, but save the data from all the
free ports of the PIC18F8722 microcontroller and also save the data every minute.

Secure Digital Card Projects 505

BEGIN
Initialise the MDD library
Open new file on SD card
Wait until START/STOP button is pressed
DO FOREVER
Read PORT B and PORT D data
Store data in file (separated with a comma)
IF Start/Stop button is pressed
Close file
Wait here forever
ENDIF
Wait a second
ENDDO
END

Figure 9.68: Operation of the Project

DIGITAL DATA LOGGING USING SD CARD

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to the SD card.

This is a digital data logging project where digital data from ports PORT E and PORT F
are read and stored on the SD card in a file called DIGITAL.TXT every second. The data
items are separated with a comms so that the data is compatible with most spreadsheet
programs.

Author: Dogan Ibrahim
Date: August 2009
File: DIGLOG.C

#include <p18f8722.h>
#include <stdlib.h>
#include <string.h>
#include <delays.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

#define STRT PORTBbits.RBO

Figure 9.69: The Program Code

506 Chapter 9

void main(void)
{
FSFILE *pntr;
int PortEData, PortFData,j;
//
// Configure PORTS E and PORT F to digital inputs
//
TRISE = OxFF;
TRISF = OxFF;
TRISB = 1;
ADCON1 = OxFF;
/7
// Wait until START BUTTON is pressed and released
//
while(STRT);
while(ISTRT);
//
// Initialize MDD library
//
while(IFSInit());
/7
// Open file DIGITAL. TXT in write mode (create it)
//
pntr = FSfopenpgm("DIGITAL.TXT", "w+");
//
// START OF LOOP
/7
// Read PORT E and PORT F data and store in file
//
while(1)
{

PortEData = PORTE;
PortFData = PORTF;
/!
// Write to SD card
/!
FSforintf(pntr, "%02X, %02X\n", PortEData, PortFData);
//
// Check if BUTTON is pressed and if so, close the file and stop the program
/!
if(STRT == 0)

FSfclose(pntr);
while(1);
}
//
// Wait for a second. Clock freq = 40MHz, clock cycle = 0.1 microsecond
// The basic delay with Delay10KTCYx is 1ms. With a count of 1000 // the delay is 1 second.
A loop is formed to iterate 4 times // for the required delay of 1 second
//
for(i=0; i< 4; i++)Delay10KTCYx(250);
1

}

Figure 9.69: Cont’d

Secure Digital Card Projects

507

20,
20,
20,
23,
20,
22,
21,
23,
OE, 44
OF 44
1F, 42

4F
4E
4E
40
4C
4D
42
4A

Figure 9.70: Typical DIGITAL.TXT File

9.18 PROJECT 17 - Temperature Data Logging

9.18.1 Description

This project is about data logging of the ambient temperature data on the SD card every

second. An analog temperature sensor IC (MCP9701A) is used to sense the ambient
temperature and is connected to port RA1 of the PIC18F8722 microcontroller. A file called
TEMP.TXT is created on the SD card, and the temperature is stored in this file every

second, one data item on each line, with each data item followed by a new-line character.

An active low push-button Start/Stop switch is provided (connected to RB0) to control
operation of the program. Data collection starts when the switch is pressed. The program
stops when the switch is pressed for a few seconds so that the SD card can be removed

safely.

9.18.2 Aim

The aim of this project is to show how analog data can be collected and stored on the SD card

every second.

9.18.3 Block Diagram

The block diagram of this project is shown in Figure 9.71.

9.18.4 Circuit Diagram

The circuit diagram of this project is shown in Figure 9.72. The PICDEM PIC18 Explorer

board is equipped with an MCP9701A temperature sensor IC connected to port RA1 of
the microcontroller. Thus, the board can be used with this project without any hardware

changes.

508 Chapter 9

Start/Stop I:D

Temperature
sensor

v

RBO

PIC
micro-

controller

RA1

A

SD
card

Figure 9.71: Block Diagram of the Project

A+5V
12(25|32(48(71
10K Vdd
Reset 9
I:l] MCLR VDD
5V
OZTU RA1 MCP
9701A
MC
10K
33269 13.3V o1 s GND
DT-3.3 [” RBO J_
+ C
= PIC =
10wk Start/Stop 18F8722 Temperature sensor
- 4
VDD 13
1 22K 55 70
Cs — 1+ RB3
CLK |2 —*4 Re3 51
SD card
7 45 26
DO RC4 Vss
2.2K 11
vss P'|2 —*% Res
I -
— 0OSCH1 0Ssc2
33K [] 33K 49| 10MHz 50
Ial
+ il

IZZPF

T 22pF

Figure 9.72: Circuit Diagram of the Project

Secure Digital Card Projects 509

9.18.5 Operation of the Project

The operation of the project is shown in Figure 9.73.

9.18.6 Program Code

The program code (ANALOG.C) is shown in Figure 9.74.

9.18.7 Description of the Program Code

Before looking at the code in detail, it is worthwhile to see how the MPC9701A temperature
sensor IC operates.

MCP9701A is a linear active analog thermistor IC that senses and converts ambient tempera-
ture into analog voltage. The IC is a low-power, low-cost sensor with an accuracy of +1°C
from 0°C to +70°C and operating with a current as low as 6 pA. Unlike resistive thermistors,
this sensor does not require an additional signal-conditioning circuit. The voltage output pin
of the device can be directly connected to the analog input of the microcontroller. An advan-
tage of this sensor is that it can drive large capacitive loads and thus can be located away from
the microcontroller.

MCP9701A has three pins:
* Pin 1 is the supply voltage (+5V)
* Pin 2 is the output voltage

* Pin 3 is the ground

BEGIN
Initialise the MDD library
Open new file on SD card
Wait until START/STOP button is pressed
DO FOREVER
Read temperature from analog port
Format to find temperature in Celsius
Store temperature in file
IF Start/Stop button is pressed
Close file
Wait here forever
ENDIF
Wait a second
ENDDO
END

Figure 9.73: Operation of the Project

510 Chapter 9

ANALOG TEMPERATURE DATA LOGGING

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to
the SD card.

This is an analog temperature data logger project. The temperature is read
every second and stored in a filed called ANALOG.TXT on an SD card.

The temperature is sensed using the analog sensor chip MCP9701A. This chip
is a 3-pin device where pin 1 the supply (+5V), pin 2 is the Vout and pin 3 is the ground.

MCP9701A is connected to analog port RA1 of the PIC18F877 microcontroller.

The output voltage of the sensor is proportional to the temperature and the
temperature is given by:
C = (Vout —400) / 19.5

where, Vout is the sensor output voltage in mV

Data logging is started when button START/STOP (connected to RBO) is pressed.
During the data collection, pressing this button for a few seconds stops the data collection.
The SD card should only be removed after the data collection is stopped

Author: Dogan Ibrahim

Date: August 2009
File: ANALOG.C

#include <p18f8722.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <delays.h>
#include <adc.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON,MODE = MC, CCP2MX = PORTC

#define STRT PORTBbits.RBO

//

// This function opens the A/D converter, reads analog data, converts into
// digital and then returns. The required channel number is passed as an
// argument to the function

//

int Read_ADC_Chan(unsigned char chan)

{

Figure 9.74: Program Code

Secure Digital Card Projects

511

int Res;

OpenADC(ADC_FOSC_64
ADC_RIGHT_JUST
ADC_O_TAD,

ADC_CH1
ADC_INT_OFF
ADC_VREFPLUS_VDD &
ADC_VREFMINUS_VSS,
13);

Delay10TCYx(10);

SetChanADC(chan);

ConvertADC();

while(BusyADC());

Res = ReadADC();

CloseADC();

return Res;

}
void main(void)

FSFILE *pntr;

int result, i, j;

float mV, Temp;
/!

& // Open the A/D

// Delay for 100 cycles
// Select channel

// Convert

// Wait until complete
// Read analog data
// Close A/D

// Return the result

// Configure PORT RBO is inout (START/STOP switch and RA1 is the
// analog input where the MCP9701A is connected to

/!
TRISAbits. TRISA1 = 1;
TRISB = 1;
/!
// Wait until BUTTON is pressed and relesed
/!
while(STRT);
while(ISTRT);
/!
// Initialize MDD library
//
while(IFSiInit());
/!
// Open file ANALOG.TXT in write mode (create it)
/!
pntr = FSfopenpgm("ANALOG.TXT", "w+");
//

// START OF LOOP

//
// Read the temperature and store in the file
//

while(1)
{
result = Read_ADC_Chan(ADC_CH1);
mV = result * 5000.0 / 1024.0;
Temp = (MV - 400.0) / 19.5;
i = (int)Temp;
j = (int)((Temp-i)*10);

// Get the data
// Convert to mV
// Calculate temperature
// Integer part
// Fractional part

Figure 9.74: Cont’d

512 Chapter 9

//
// Write to SD card
//
FSfprintf(pntr, "%d.%d\n", i, j);
//
// Check if BUTTON is pressed and if so, close the file and stop the program
//
ifSTRT == 0)

{
FSfclose(pntr);
while(1);
}
//
// Wait for a second. Clock freq = 40MHz, clock cycle = 0.1 microsecond
// The basic delay with Delay10KTCYx is 1ms. With a count of 1000, the
// delay is 1 second. A loop is formed to iterate 4 times for the required delay
// of 1 second
//

for(i=0; i< 4; i++)Delay10KTCYx(250);

Figure 9.74: Cont’d

The output voltage V, of MCP9701A is proportional to the ambient temperature and the
relationship is given by

Vo=Tc X T\ + Vi,

where V, is the sensor output voltage, T is the sensor temperature coefficient, 7, is the ambient
temperature, and V|, is the sensor output voltage at 0°C.

From the manufacturer’s specifications,
T.=19.5mV/°C
Ve =400mV
Thus, we can write the equation as
V, =400+ 19.5C,
where V is the sensor output voltage (mV) and C is the ambient temperature in °C.

Rearranging the formula, we get
V. — 400
19.5

Figure 9.75 shows change of the output voltage with the ambient temperature.

C=

Secure Digital Card Projects 513

1800
1600

1200 el

1000 /
/

/

0 20 40 60 80
Temperature, C

-
N
o
o

Voltage, mV

D ™
o O
o o

N
o
o

Figure 9.75: Change of Output Voltage with Ambient Temperature

The steps to calculate the temperature are as follows:
* Read the output voltage of the sensor using the A/D converter
* Convert the voltage to mV

* Use the above formula to calculate the temperature in °C

At the beginning of the program (see Figure 9.74), analog port pin RA1 and digital port pin
RBO are configured as inputs. The program then waits until the Start/Stop switch is pressed,
and after the switch is released, the MDD library is initialized and new file ANALOG.TXT is
created on the SD card. The main program loop starts with a while loop where the following
code is executed every second inside the loop.

e Temperature data is read from analog port RA1 by calling the function Read_ADC_Chan.
The port number is passed as an argument to the function. The function opens the ADC
port using a clock frequency Fosc/64, the data is right-justified, interrupts are disabled,
and port RA1 is configured as analog port. The C18 function SetChanADC selects the
channel CH1 and then the function ConvertADC is called to start the A/D conversion, and
the code waits until the conversion is ready. Once the data is converted, it is read from the
A/D module by calling the function ReadADC, and the result is returned by the function
to the calling program:

OpenADC(ADC_FOSC_64 &
ADC_RIGHT_JUST &
ADC_O_TAD,

ADC_CHT1 &
ADC_INT_OFF &
ADC_VREFPLUS_VDD &

ADC_VREFMINUS_VSS,
13);

514 Chapter 9

Delay10TCYx(10); // Delay for 100 cycles
SetChanADC(chan); // Select channel
ConvertADC(); // Convert
while(BusyADCY()); // Wait until complete
Res = ReadADC(); // Read analog data
CloseADC(); // Close A/D

return Res; // Return the result

* The converted data is multiplied by 5000 and divided by 1024 to obtain the temperature
data in millivolts. The physical temperature is then calculated in °C using the derived
formula and stored in variable Temp:
result = Read_ADC_Chan(ADC_CH1); // Get the data

mV = result * 5000.0 / 1024.0; // Gonvert to mV
Temp = (MV - 400.0) / 19.5; // Calculate temperature

* The decimal part of the temperature is stored in the variable i and the fractional part
is stored in the variable j. In this program, only one digit is used after the decimal

point:
i = (int)Temp; // Integer part
j = (int)((Temp—i)*10); // Fractional part

* The temperature data is then written to the file using the MDD function FSfprintf:
FSfprintf(pntr, "%d.%d\n", i, j);

* The program then checks whether or not the Start/Stop button is pressed and if so closes
the file and stops the program; otherwise, the above steps are repeated after a 1-s delay.

Figure 9.76 shows contents of file ANALOG.TXT for a typical run of the program.

26.8
26.3
25.4
26.6
26.2
27.5
29.3
28.5
28.5
26.8
28.8
29.0
29.0
29.0
29.0
29.3

Figure 9.76: Typical ANALOG.TXT File

Secure Digital Card Projects 515

9.18.8 Suggestions for Future Work

Write a program similar to the program given in this project, but use two temperature sensors
and save the data from both the sensors in the same file every minute.

9.19 PROJECT 18 - Temperature and Pressure Data Logging
with Real-Time Clock

9.19.1 Description

This project is about data logging of temperature and pressure data on the SD card every
second with real-time clock data. As in the previous project, an analog temperature sensor IC
(MCP9701A) is used to sense the ambient temperature and is connected to port RA1 of the
PIC18F8722 microcontroller. In addition, a pressure sensor IC (MPX4115A), connected to
port RA2, is used to measure the ambient pressure. The temperature and the pressure data are
stored in files TEMP.DAT and PRESS.DAT, respectively.

A real-time clock is made up in software using timer TMRO of the microcontroller. The clock
software is updated every second and keeps the absolute date and time information as long as
the program is running. The clock is loaded from the PC by entering the current date and time
from the keyboard.

An active low push-button Start/Stop/Configure switch is provided (connected to RBO) to
control the operation of the program. The program operates in three modes: Configuration
mode, Run mode, and Stop mode. The Configuration mode is entered when the Start/Stop/
Configure button is pressed after the microcontroller is turned on or after the master reset is
applied. During this mode, the user enters the real-time date and clock data. Pressing the Start/
Stop/Configure button again places the program in the Run mode. In this mode, data is col-
lected from the temperature and pressure sensors and stored in the files on the SD card every
second. Pressing the Start/Stop/Configure button for a few seconds places the program into
Stop mode where the files on the SD card are closed and the card can be removed safely from
its holder.

9.19.2 Aim

The aim of this project is to show how multiple analog data can be collected and stored on
the SD card continuously. In addition, the project shows how a real-time clock can be imple-
mented in software.

9.19.3 Block Diagram

The block diagram of this project is shown in Figure 9.77.

516 Chapter 9

9.19.4 Circuit Diagram

The circuit diagram of this project is shown in Figure 9.78. The temperature sensor

and the pressure sensor ICs are connected to analog ports RA1 and RA2 of the micro-
controller, respectively. The project is based on a PIC18F8722 microcontroller, and a
10-MHz crystal is used to provide clock pulses to the microcontroller. The serial port is
connected to port pins TXD and RXD of the microcontroller via a MAX232-type RS232
level converter chip.

9.19.5 Operation of the Project

The operation of the project is shown in Figure 9.79.

9.19.6 Program Code

The program code (LOG.C) is shown in Figure 9.80.

9.19.7 Description of the Program Code

Before looking at the code in detail, it is worthwhile to see how the MPX4115A pressure
sensor IC operates.

MPX4115A is a 6- or 8-pin pressure sensor IC that provides an output voltage proportional to
the ambient atmospheric pressure. The pin configurations are as follows:

Pins Descriptions

6-pin sensor

1 Output voltage

2 Ground

3 +5-V supply
4-6 Not used

8-pin sensor

1 Not used

2 +5-V supply
3 Ground

4 Output voltage

5-8 Not used

Figure 9.81 shows the 6-pin MPX4115A pressure sensor chip.

Secure Digital Card Projects 517

o—>|
:D RBO
Start/Stop/Configure
PIC SD
micro- |« card
controller
Temperature R
sensor > RA1
Pressure » RA2 < » PC
sensor
Figure 9.77: Block Diagram of the Project
H+5V
12]25|32|48| 71 1uF
10K 10K Vdd
9 16| 1 3
[I]C [UC MCLR 1 Wi Vce C1+ C1-
—0
Start/Stop/ Reset “E\H pouTil14__ 10
. 37 11)
Configure — = TXD DIN1 RiN1L3 OO
58| oo RxD [38—12IRoUT1 __Og
V™ mAx232 o
1 Gnd C2+ C2— J_To PC serial port
29 —
MCP9701A | TeMP RA1 I1 nF 15| 4|_|]55J
sensor
- = 12cBUS THF
1
28
MPX4115A P’essure}i RA2
sensor
I PIC -
— 18F8722 51
mc 1 22Ks5 26
33269 [3.3v Cs 5 7, | RB3 Vss
DT-3.3 CLK — RC3 1
+| 4| Do 45 Rca
vDD 2.2K =
10uF [vssDI}2 —*% res
- 3,6
SDcard _| 0SCt 0SC2
3.3K 3.3K 49 10MHz 50
ull
0]
h = 22pF —=22pF

1

1

Figure 9.78: Circuit Diag‘ram of the Project

518 Chapter 9

BEGIN
IF START/STOP/CONFIGURE is pressed
Enter into configuration mode
Read Date and time from keyboard
ENDIF
IF START/STOP/CONFIGURE is pressed
Initialise the MDD library
Create Temperature file on SD card
Create Pressure file on SD card
DO FOREVER
Read current date and time
Read temperature from analog port
Calculate absolute temperature and store temperature in file
Read current date and time
Read Pressure from analog port
Calculate absolute pressure and store pressure in file
IF START/STOP/CONFIGURE is pressed

Close files
Wait here forever
ENDIF
Wait a second
ENDDO
ENDIF
END

Figure 9.79: Operation of the Project

REAL-TIME CLOCK TEMPERATURE AND PRESSURE DATA LOGGING

In these projects, a PIC18F8722-type microcontroller is used. The microcontroller
is operated with a 10-MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library functions to read and write to the SD card.

In this project two analog sensors are connected to the microcontroller:

An MCP9701-type analog temperature is connected to port RA1 of the microcontroller. Similarly, an
MPX4115A-type analog pressure sensor is connected to port RA2 of the microcontroller. In addition,
a real-time clock is implemented in software to store and update the absolute date and time. The
real-time clock data is loaded and modified from a PC through the RS232 port.

Figure 9.80: The Program Code

Secure Digital Card Projects

519

Two files are created on the SD card: TEMP.DAT and PRESS.DAT store the temperature and
pressure data, respectively.

MCP9701A chip is a 3-pin device where pin 1 is the supply (+5V), pin 2 is the Vout and pin 3 is the
ground.

The output voltage of the sensor is proportional to the temperature and is given by:
C = (Vout — 400) / 19.5
where, Vout is the sensor output voltage in mV

MPX4115 chip is a 6- or 8-pin chip. The 6-pin version is used in this project with the following pin
configuration:

Pin 1 Output voltage
Pin 2 Ground

Pin 3 +5V supply
Pins 4-6 not used

The output voltage of MPX4115 is proportional to the atmospheric pressure and is given by:
mb = (2.0V + 0.95)/0.009
where mb is the pressure in millibars and V is the sensor output voltage.
The system has three modes of operation: the Configuration Mode, Run mode, and the STOP mode.
The Configuration Mode is entered when button START/STOP/CONFIGURE is pressed. Current date

and time are entered from the PC keyboard and stored and updated every second in the program.

When the START/STOP/CONFIGURATION button is pressed the program enters the RUN mode where
data is collected every second from the two sensors and stored in files on the SD card every second.

When the START/STOP/CONFIGURE button is held down for a few seconds the program enters the
STOP mode where the files are closed on the SD card and thus the SD card can be removed from
its holder.

Author: Dogan Ibrahim
Date: August 2009
File: LOG.C

#include <p18f8722.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <delays.h>
#include <adc.h>
#include <usart.h>
#include <i2c.h>
#include <FSIO.h>

Figure 9.80: Cont’d

520 Chapter 9

#pragma config WDT = OFF, OSC = HSPLL, LVP = OFF
#pragma config MCLRE = ON,MODE = MC, CCP2MX = PORTC

#define STRT PORTBbits.RBO
#define NUM(x,y) (10*(x - '0') +y - '0")
#define MSD(x) ((x / 10 + '0")

#define LSD(x) ((x % 10) + '0")

unsigned char DateTime[] = "12/10/09 10:00:00 *;
unsigned char One_Sec_Flag;
unsigned char Days[]={0,31,28,31,30,31,30,31,31,30,31,30,31};

void One_Second_Delay(void);
void timer_ISR(void);

/!

// Define the high interrupt vector to be at 0x08

//

#pragma code high_vector=0x08 // Following code at void address 0x08
interrupt(void)

{

_asm GOTO timer_ISR _endasm // Jump to ISR
}
#pragma code // Return to default code section
/!
// timer_ISR is an interrupt service routine (jumps here every 5ms)
/!

#pragma interrupt timer_ISR
void timer_ISR()
{

One_Sec_Flag = 1; // Set One_Sec_Flag
TMROL = 0x69; // Re-load TMRO

TMROH = 0x67; // Re-Load TMROH
INTCON = 0x20; // Set TOIE and clear TOIF

//

// This function opens the A/D converter, reads analog data, converts into
// digital and then returns. The required channel number is passed as an
// argument to the function

//

int Read_ADC_Chan(unsigned char chan)

{

int Res;
OpenADC(ADC_FOSC_64 & // Open the A/D
ADC_RIGHT_JUST &
ADC_0_TAD,
ADC_CH1 &
ADC_INT_OFF &

Figure 9.80: Cont’d

521

Secure Digital Card Projects

ADC_VREFPLUS_VDD &

ADC_VREFMINUS_VSS,

129);
Delay10TCYx(10); // Delay for 100 cycles
SetChanADC(chan); // Select channel
ConvertADC(); // Convert
while(BusyADC()); // Wait until complete
Res = ReadADC(); // Read analog data
CloseADC(); // Close A/D
return Res; // Return the result

/!

// Configure Timer for 1 second interrupts. Load TIMER registers with
// 16 bit value 26473 = Ox6769

/!

void Config_Timer(void)

{

TOCON = 0x87; // 16 bit,Prescaler = 256
TMROL = 0x69; // Load TMROL=0x69
TMROH = 0x67; // Load TMROH=0x67
INTCON = OxAOQ; // Enable TMRO interrupt

//

// This function initializes the USART

//

void Init_USART(void)

{

Open1USART(USART_TX_INT_OFF &

USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
129);

//

// This function is used to read the real-time date and time from the PC

// keyboard and then load, store, and update the date and time in software

//

void Configure(void)

{
char itm, RTCLen;

//

// Initialise USART to 4800 baud, 8 bits, no parity

//

Init_USART();

Figure 9.80: Cont’d

522 Chapter 9

//
// Read the date and time from the keyboard
//
while(Busy1USART());
putrsTUSART(" Enter Date and Time (12/10/09 10:00:00): ");

//
// Read the date and time (until the Enter key is pressed)
//

itm = 0;

RTCLen =0;

while(itm != 0x0D)

{
while(!DataRdy1USART());
itm = getc1USART();
putc1USART(itm);
DateTime[RTCLen] = itm;

RTCLen++;

}

RTCLen--;

DateTime[RTCLen] = "\0";
//
// send a message
//

putrsTUSART("\n\rDate and time set. Press START/STOP to start data logging...\n\r");
}
//

// This function updates the clock fields.
// 02/10/09 12:00:00

// 01234567890123456

//

void Update_Clock(void)

{

unsigned char day,month,year,hour,minute,second;

day = NUM(DateTime[0], DateTime[1]);
month=NUM(DateTime[3], DateTime[4]);
year = NUM(DateTime[6], DateTime[7]);

hour = NUM(DateTime[9], DateTime[10]);
minute = NUM(DateTime[12], DateTime[13]);
second = NUM(DateTime[15], DateTime[16]);

second++;
if(second == 60)
{
second = 0; minute++;
if(minute == 60)
{
minute = O; hour++;
if(hour == 24)
{

hour = 0; day++;

Figure 9.80: Cont’d

Secure Digital Card Projects

523

if(day == Days[month]+1)
day = 1; month++;
if(month == 13)
{

}

month = 1; year++;

}
}

DateTime[15] = MSD(second);
DateTime[16] = LSD(second);
DateTime[12] = MSD(minute);
DateTime[13] = LSD(minute);
DateTime[9] = MSD(hour);
DateTime[10] = LSD(hour);

]

9
1
6] = MSD(year);
DateTime[7] = LSD(year);
DateTime[3] = MSD(month);
DateTime[4] = LSD(month);
DateTime[0] = MSD(day);

1

[
[
[
[
[
[
DateTime]
[
[
[
[
DateTime[1] = LSD(day);

void main(void)

FSFILE *pntrTemp, *pntrPress;
int result, i, j;
float mV, Temp, Press;
//
// Configure PORT RBO is inout (START/STOP switch, RA1, and RA2 are the
// analog inputs where the MCP9701A and MPX4115A are connected to
//

TRISAbits. TRISAT = 1; // RA1 is input
TRISAbits. TRISA2 = 1; // RA2 is input
TRISBbits. TRISBO = 1; // RBO is input

//
// Check if START/STOP button is pressed and if so enter the Configuration mode,
// read the clock data and wait until START/STOP button is pressed and then
//" continue to data logging
//
One_Sec_Flag = 0;

while(STRT); // Wait until button pressed
while(ISTRT);

//

// Enter Configuration mode. Wait until the button is released

// and call function Configure to read the real time date and time.

//

Configure();

Figure 9.80: Cont’d

524 Chapter 9

//
// Configure Timer. Start timer interrupts
//

Config_Timer();
//
// Look for leap year and adjust for February
//

result = 10*(DateTime[B] - '0") + DateTime[7] - '0";

result = result % 4;

if(result == 0)

Days[2] = 29;
else
Days[2] = 28;

//
// Wait until the START/STOP button is pressed and if so enter the Run mode.
// In this mode data is collected from the sensors and stored in two files
// on the SD card
//

while(STRT);

while(ISTRT);

Vi
// Initialize MDD library
//
while(IFSInit());
//
// Create files TEMP.DAT and PRESS.DAT (in write mode)
Vi
pntrTfemp = FSfopenpgm("TEMP.DAT", "w+");
pntrPress = FSfopenpgm("PRESS.DAT", "w+");

//

// START OF LOOP

//

// Read the temperature and store in the file

//

while(1)

{
result = Read_ADC_Chan(ADC_CH1); // Get the temperature
mV = result * 5000.0 / 1024.0; // Convert to mV
Temp = (mV - 400.0) / 19.5; // Calculate temperature
i = (int)Temp; // Integer part
j = (int)(Temp-i)*10); // Fractional part

//

// Write to file TEMP.DAT on the SD card. First get the date and time

//
FSfprintf(pntrTemp, "%s %d.%d\n", DateTime, i, j);

//

// Read the pressure and store in the file

//
result = Read_ADC_Chan(ADC_CH2); // Get the Pressure
mV = result * 5000.0 / 1024.0; // Convert to mV

Figure 9.80: Cont’d

Secure Digital Card Projects

525

Press = (2.0*'mV + 950.0) / 9.0; // Calculate pressure
i = (int)Press; // Integer part
j = (int)((Press-i)*10); // Fractional part
//
// Write to file PRESS.DAT on the SD card. First get the date and time
//
FSfprintf(pntrPress, "%s %d.%d\n", DateTime, i, j);
//

// Check if START/STOR is pressed and if so, enter the Stop mode and close
// the files and stop the program
//

if(STRT == 0)

{

FSfclose(pntrTemp);
FSfclose(pntrPress);
while(1);
}
//
// Wait for a second. Variable "flag" is set whevenever an interrupt occurs
//

while(IOne_Sec_Flag);
One_Sec_Flag = 0;
Update_Clock();

Figure 9.80: Cont’d

MPX4115A
Case 867

Figure 9.81: MPX4115A Pressure Sensor

The output voltage V of MPX4115A is given by

V=5.0x (0.009 X kPa —0.095)

or

v
=g +0.095

kPa = =500

where kPa = Atmospheric pressure (kilopascals) and V = Output voltage (Volts).

526 Chapter 9

Volts
N

0
200 300 400 500 600 700 800 900 1000 1100
Millibars

Figure 9.82: Variation of the Output Voltage with Pressure

In atmospheric pressure measurements, millibar is the most frequently used unit. The atmos-
pheric pressure at sea level and at 15°C temperature is 1013.3 millibars. We can express the
pressure in millibars if the above equation is multiplied by 10:

% +0.095
or
_2.0V+0.95
mb = ==5000

Figure 9.82 shows variation of the output voltage with the ambient pressure. Here, the area
of interest is in the region 800—1000 millibars. To calculate the ambient pressure, we have to
read the output voltage of the pressure sensor and then use the above formula to calculate the
actual pressure in millibars.

The program (see Figure 9.80) consists of the following functions:

Timer_ISR: This is the interrupt service routine. The timer registers TMROL and TMROH
are loaded and the timer interrupt is reenabled.

Read_ADC: This function opens the A/D converter and reads the analog data. The channel
number is passed as an argument to the function. The A/D is opened with the following
parameters:

* A/D clock is set to Fosc/64

* A/D data is right-justified

* A/D interrupts are disabled

* VDD is used as the A/D reference voltage
e VSSisused as the A/D ground voltage

The required A/D channel is selected using the SetChanADC statement. After this, the
ConvertADC statement is used to start the conversion process. The program uses the

Secure Digital Card Projects 527

BusyADC function to wait until the conversion is complete. The converted data is then read
using the ReadADC function of the C18 compiler. The function returns the converted digital
data to the main calling program.

Config_Timer: This function configures the timer TMRO so that interrupts are generated
every second. The timer is configured with the following settings:

* TMRO in 16-bit mode
* Prescaler =256
» TMROL =0 x 69
* TMROH =0 x 67
* INTCON = 0 x AO to enable timer interrupts and global interrupts
The timer TMRO interrupts are generated at the intervals given by the formula:
Interval =4 X Tosc X Prescaler X (65536 — TMRO),

where Tosc is the microcontroller clock period, Prescaler is the TMRO prescaler value
selected, and TMRO is the value to be loaded into the 16-bit timer registers.

Here, the following values are used:
Tosc = 0.025 us (Fosc =40 MHz)
Prescaler = 256
TMRO =0 x 6769 ordecimal 26,473
The timer interrupt interval is then given by

Interval =4 x 0.1 x 256 x (65536 — 26473) = 1000012 ps
or by 1.000012 s.

Init_USART: This function opens the USART and prepares it for serial communication. The
following parameters are used:

* USART transmit and receive interrupts are disabled.
* USART is in asynchronous mode.

* USART is in 8-bit mode.

* Continuous receive is used.

* Baud rate is set to 4800.

Configure: This function reads the current date and time as entered from the PC keyboard.
The function calls Init_USART to initialize the USART. Then the message

528 Chapter 9

LJ

Enter Date and Time (12/10/09 10:00:00): 36/68/09 18:23:85
Date and time set. Press START/STOP to start data logging...

Figure 9.83: Prompting for Date and Time

“Enter Date and Time (12/10/09 10:00:00):”

is displayed and the user is expected to enter the current data and time (see Figure 9.83).
The message

“Date and time set. Press Start/Stop to start data logging”

is displayed after reading the current date and time.

Update_Clock: This function updates the real-time clock software. Initially, Macro NUM
is used to convert the date and time fields into decimal values. Then, the seconds field is
incremented, and depending on the value of seconds, all other fields are updated accord-
ingly. For example, if the seconds field is 60, it is set to O and the minutes field is incre-
mented. If the minutes field is 60, it is set to 0 and the hours field is incremented, and so
on. Before exiting the function, Macros MSD and LSD are used to convert the date and
time fields back into character variables.

At the beginning of the main program (see Figure 9.80), analog ports RA1 and RA2 and
digital port RBO are all configured as inputs. The program then checks and enters the Con-
figuration mode if the Start/Stop/Configure button is pressed. In this mode, the function
Configure is called to read the real-time date and time from the user and also the timer TMRO
is configured by calling to the function Config_Timer. The program then checks for leap years
and adjusts the number of days in February. The number of days in each month is stored in
array Days.

The Run mode is entered when the button Start/Stop/Configure is pressed. The program
initializes the MDD library, creates files TEMP.DAT and PRESS.DAT on the SD card, and
then the main program loop is entered. Inside this loop, the temperature and pressure sensor
data are read every second and are stored in files.

Secure Digital Card Projects 529

30/12/08 21:59:00 26.5
31/12/08 23:59:01 26.5
31/12/08 23:59:02 23.5
31/12/08 23:59:03 27.8
31/12/08 23:59:04 27.0
31/12/08 23:59:05 28.3
31/12/08 23:59:06 28.3
31/12/08 23:59:07 28.3
31/12/08 23:59:08 28.5
31/12/08 23:59:09 28.8
31/12/08 23:59:10 29.2
31/12/08 23:58:11 28.8
31/12/08 23:59:12 27.8
31/12/08 23:59:13 27.3
31/12/08 23:59:14 26.5
31/12/08 23:59:15 26.0

Figure 9.84: Contents of TEMP.DAT for a Typical Run

The temperature data is read by setting the channel to ADC_CH1. The value read is converted
into millivolts, and then the absolute temperature is obtained in Celsius by subtracting 400
from the data and dividing it by 19.5. Variables i and j are set to store the integer and frac-
tional parts of the temperature data. This data is written to file TEMP.DAT using the MDD
function FSfprintf.

The pressure data is read by setting the channel number to ADC_CH2. The value read
is converted into millivolts, and then the absolute pressure is obtained in millibars by
multiplying the data by 2, adding 950, and then dividing by 9.

The variable One_Sec_Flag is set whenever an interrupt occurs, and this causes the real-time
clock to be updated and the program to wait for a second before repeating the data collection
process.

The Stop mode is entered when Start/Stop/Configure is pressed for a few seconds. In this
mode, the two files are closed and the program waits forever so that the SD card can be
removed from its holder safely.

Figure 9.84 shows the contents of file TEMP.DAT for a typical run.

9.19.8 Suggestions for Future Work

Modify the program given in Figure 9.80 so that the data collection interval can be read from
the keyboard. In addition, use a DS1307 or a PCF8583-type RTC chip to store the real-time
clock data. Store the data collection interval in the electrically erasable programmable read
only memory (EEPROM) of the microcontroller.

This page intentionally left blank

Appendix A—MC33269 Data Sheet

Order this document by MC33269/D

@ MOTOROLA
Advance Information
Low Dropout Positive
Fixed and Adjustable 800 mA
Voltage Regulators LOW DROPOUT
The MC33269 series are low dropout, medium current, fixed and THREE-TERMINAL
adjustable, positive voltage regulators specifically designed for use in low VOLTAGE REGULATORS
input voltage applications. These devices offer the circuit designer an
economical solution for precision voitage regulation, while keeping power
losses to a minimum.
The regulator consists of a 1.0 V dropout composite PNP-NPN pass D SUFFIX
transistor, current limiting, and thermal shutdown. 8 ,@ PU‘SJACSE';g:(AGE
® 33V,50V, 12V and Adjustable Versions 1 (SOP-8)
* Space Saving DPAK, SOP-8 and SOT-223 Power Packages
® 10V Dropout onding (1] ° (8] nc
* OQutput Current in Excess of 800 mA E ZI
® Thermal Protection Voot { E E }cht
® Short Circuit Protection v E E NG
* Qutput Timmed to 1.0% Tolerance "
® No Minimum Load Requirement for Fixed Voltage Output Devices (Top View)
ORDERING INFORMATION DT SUEEIX
Operating %9 PLASTIC PACKAGE
i Te ture R: 1 CASE 369A
Device 'emperature Range Package . (DPAK)
MC332630 SOP-8
MC33263DT DPAK 1. Gnd/Ad
MC332695T SOT-223 ? Vout
MC33269T Insertion Mount [l 2 Ij 3.¥in ST SUFFIX
MC332630-3.3 SOP-8 Vi PLASTIC PACKAGE
MC3326907-3.3 DPAK (Top View) w %‘035}2’2%%
MC33263ST-3.3 S0T-223 ! A
MC33269T-3.3 _ Insertion Mount Heatsink surface (shown as terminal 4 in
MC33269D5.0 Ty=-4010 +125°C SOP-8 case outine drawing)is connected (0 P 2.
MC332630T-5.0 DPAK
MC33269T-5.0 Insertion Mount
MC332638T-5.0 SO0T-223
MC33269D-12 SOP-8 T SUFFIX
MC33269DT—12 DPAK P PCKkAGE
MC33269T-12 Insertion Mount
MC33268ST-12 SOT-223
DEVICE TYPE/NOMINAL OUTPUT VOLTAGE g
MC33269D Ad MC33269D-5.0 50V [] e 1 Grdng
MC33269DT Adj MC33269DT-5.0 50V ERYe
MC33269T Adj MC33268T-5.0 50V
MC33269ST Adj MC332638T-5.0 50V
MC332690-3.3 33V | MC33269D-12 12v 123
MC332690T-3.3 33v MC33269DT-12 12y (Top View)
MC33269T-3.3 33V MC33269T-12 12V leatsink surface (shown as terminal 4 in
MC33263ST-3.3 33V MC332638T-12 12V case outine drawing} is connected to Pin 2.
contains i a new pioduct. i i and i hereir © Motorols, Inc. 1997 Rev4

Thi "
are subject to change without notice

531

This page intentionally left blank

Appendix B-MAX232 Data Sheet

MAX232, MAX2321
DUAL ElA-232 DRIVERS/RECEIVERS

SLLS047! - FEBRUARY 1989 - REVISED OCTOBER 2002
——

® Meet or Exceed TIA/EIA-232-F and ITU MAX232...D, DW, N, OR NS PACKAGE

Recommendation V.28 MAX2321. .. D, DW, OR N PACKAGE
e (TOP VIEW)

® Operate With Single 5-V Power Supply w)

® Operate Up to 120 kbit/s C1+[]1 18[] Vo

® Two Drivers and Two Receivers ::/?:, § 1i <T31I\‘ODUT

- 1

® 130-V Input Levels o+ lla 130 &1

® Low Supply Current. .. 8 mA Typical co-lls 12 rR10UT

® Designed to be Interchangeable With vs_[ls 1A TIIN
Maxim MAX232 T20UT [} 7 10]] T2IN

® ESD Protection Exceeds JESD 22 R2IN[] 8 9]] R20UT

- 2000-V Human-Body Model {A114-A)
® Applications
TIA/EIA-232-F
Battery-Powered Systems
Terminals
Modems
Computers

description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-232 voltage
levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These
receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V, and can accept £30-V inputs. Each
driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator
functions are available as cells in the Texas Instruments LinASIC™ library.

ORDERING INFORMATION

ORDERABLE TOP-SIDE
Ta PACKAGEF PARTNUMBER | MARKING
PDIP (N} Tube MAX232N MAX232N
S0IC (D) Tube MAX232D 12
Te 1
0C B 70°C ‘ape and reel MAX232DR
Tube MAX232DW
80IC (DW) MAX232
Tape and reel MAX232DWR
SOP (NS) Tape and reel MAX232NSR MAX232
PDIP (N} Tube MAX232IN MAX232IN
Tube MAX2321D
S0IC (D) MAX2321
—40°C 10 85°C Tape and reel MAX232IDR
Tube MAX232IDW
SOIC (DW) MAX232{
Tape and reel MAX232IDWR

T Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.

Please be aware that an i notice i ilability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas [nstruments.
e ———————

PRODUCTION DATA Information I cumset 15 of tor: Se. Copyright © 2002, Texas Instruments Incorporated
Products conform ta spciications pet 1he tetms of Texas Instruments. i
e o, e "‘ TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 ® DALLAS. TEXAS 75265 1

533

This page intentionally left blank

Appendix C—LM35 Data Sheet

NNational Semiconductor

LM35

November 2000

Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature
sensors, whose output voltage is lineariy proportional to the
Celsius (Centigrade) temperature. The LM35 thus has an
advantage over linear temperature sensors calibrated in
* Kelvin, as the user is not required to subtract a large
constant voitage from its output to obtain convenient Centi-
grade scaling. The LM35 does not require any extemal
calibration or trimming to provide typical accuracies of £%4°C
at room temperature and +%°C over a full -55 to +150°C
temperature range. Low cost is assured by frimming and
calibration at the wafer level. The LM35's low output imped-
ance, linear output, and precise inherent calibration make
interfacing to readout or confrol circuitry especially easy. It
can be used with single power supplies, or with pius and
minus supplies. As it draws only 60 pA from its supply, it has
very low self-heating, less than 0.1°C in still air. The LM35 is
rated to operate over a 55" to +150°C temperature range,
white the LM35C is rated for a -40° to +110°C range (-10°
with improved accuracy). The LM35 series is available pack-

aged in hemmetic TO-46 transistor packages, while the
LM35C, LM35CA, and LM35D are also available in the
plastic TO-92 transistor package. The LM35D is also avail-
able in an 8-lead surface mount small outline package and a
plastic TO-220 package.

Features

= Calibrated directly in * Celsius (Centigrade}
u Linear + 10.0 mv/*C scale factor

= 0.5°C accuracy guaranteeable (at +25°C)
= Rated for full -55° to +150°C range

= Suitable for remote applications

® Low cost due to wafer-level trimming

= Operates from 4 to 30 voits

= Less than 60 pA current drain

= Low self-heating, 0.08°C in still air

= Nonlinearity only %°C typical

& Low impedance output, 0.1 Q for 1 mA load

Typical Applications

+%
Y10 20%)

| _ ourer
Lwas 0wV +10.0m¥/°C

-

DSWES163

FIGURE 1. Basic Centigrade Temperature Sensor
(#2°C to +150°C)

+¥
1
M35 Your
1 n
~¥%
DSO0ES16-4

Choose Ry = ~VgfS0 yA
V our=+1,500 mV at +150°C
=+250 mV at +25°C
= -550 mV at -55'C
FIGURE 2. Full-Range Centigrade Temperature Sensor

© 2000 National Semiconductor Corporation DSD05516

www.national.com

535

siosuag ainjesadwa) apesbnual uoisivald SCINT

This page intentionally left blank

Appendix D—MPX4115A Data Sheet

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

©Order this document
by MPX4115A/ID

Integrated Silicon Pressure Sensor
for Manifold Absolute Pressure,
Altimeter or Barometer Applications
On-Chip Signal Conditioned,
Temperature Compensated

and Calibrated

Motorola's MPX4115A/MPXA4115A series sensor integrates on—chip, bipolar op amp
dircuitry and thin film resistor networks to provide a high output signal and temperature
compensation. The small form factor and high reliability of on—chip integration make the
Motorola pressure sensor a logical and economical choice for the system designer.

The MPX4115A/MPXA4115A series piezoresistive transducer is a state—of—the-art,
monalithic, signal conditioned, silicon pressure sensor. This sensor combines advanced
micromachining techniques, thin film metallization, and bipolar semiconductor processing to
provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure
sensor chip.

Features

* 1.5% Maximum Error over 0° to 85°C

« Ideally suited for Microprocessor or Microcontroller—
Based Systems

« Temperature Compensated from —40° to +125°C

Durable Epoxy Unibody Element or Thermoplastic

{PPS) Surface Mount Package

MPX4115A
MPXA4115A
SERIES

INTEGRATED
PRESSURE SENSOR
1510 115 kPa (2.2 to 16.7 psi)
0.2 to 4.8 Volts Output

Application Examples SMALL OUTLINE PACKAGE
« Aviation Altimeters

» Industrial Controls

UNIBODY PACKAGE

D

MPX4115A
CASE 867

» Engine Control \-
+ Weather Stations and Weather Reporting Devices H
MPX4115AP
7 MPXA4115A6U CASE 867B
CASE 482
L=
1 -
———— P
THNFILM GAINSTAGE #2 ¢ ()
TEMPERATURE | AND <v’
SENSNG COMPENSATION GROUND Vag \Y
ELEMENT AND | | rererence 1
GANSTAGES! [| SHFTGRGUITRY
MPXA4115AC6U MPX4115AS
CASE 482A
$ PINS 1,5, 6, 7AND S ARE NO CONNECTS CASE 867E
FOR SMALL OUTUNE PACKAGE DEVICE
S o 45 AND 6ARE NOGORNECTS FOR PIN NUMBER PIN NUMBER
UNBODYDEVICE 1 NC | 5] NC 1 Vou | 4] NC
Figure 1. Fully Integrated Pressure Sensor 2 Vs 6 N/IC 2 Gnd 5 NIC
Schematic 3 Gnd 7| NC 3 Vs 6| NC
4 Vout 8 NIC NOTE: Pins 4, 5, and 6 are internal

NOTE: Pins 1, 5,6, 7, and 8 are
intemnal device connections. Do not
connect to external circuitry or
ground. Pin 1 is noted by the notch in

REV4 the lead.

© Motorala, Inc. 2001

537

device connections. Do not connect
to external circuitry or ground. Pin 1
is noted by the notch in the lead.

@ MOTOROLA

This page intentionally left blank

A

Acquisition time, 89-91
Address bus, 6
Analog comparator, 10
Analog-to-digital (A/D) converter,
8-9, 84, 86, 245-247
analog input model of, 8§9-91
bipolar, 84
clock sources, 89
conversion process, 85
unipolar, 84
Arithmetic operators, 168—169
Arrays, 161-162
passing to functions, 199-200
pointers, 163-164
Assemblers, 258
Assembly language, 258
statements, 187-188
Assignment operators, 172-173

B

Baud rate, 240, 479
BCD numbers. See Binary-coded
decimal numbers
BIGPIC4 development kit,
270-271
Binary numbers, 13-14
adding, 26-27
converting into decimal,
14-16
converting into
hexadecimal, 18-19
converting into octal, 24
division, 29
multiplication, 28-29
subtracting, 27-28
Binary-coded decimal (BCD)
numbers, 36-37
packed, 36-37

Bipolar A/D converters, 84
Bitwise operators, 171-172
Breadboards, 283-285
Break statement, 186187
Brown-out detector, 8

bufr, 487
Buses, 6
C

C compilers, 258
CCS C compiler, 137
mikroC C compiler, 137
MPLAB C18 compiler.
See MPLAB C18
compiler
for PIC18 microcon-
trollers, 137-138
PICC18 C compiler, 137
C18 compiler. See MPLAB C18
compiler
Capture mode, 77-79, 81
Capture/compare/PWM (CCP)
modules, 77-80
Card reset state, 135
CCS C compiler, 137
Central processing unit (CPU), 4
Character classification
functions, 211-212
example, 212
Character output functions,
218-219
examples, 20, 219-221
CID register, 123-125
Clock, 7
Clock frequency with RC, 61
Clock sources, 56-62
crystal/ceramic resonator
as, 58-59
external, 59-60

539

Index

resistor/capacitor
operation, 60-61
Commands, SD card, 133
Compact flash (CF) card, 110-111
advantages of, 110
speeds of, 110, 111
Compare mode, 79-81
Compilers, 258
C language, 258
high-level language, 260
Complex instruction set computer
(CISO), 12
Conditional operators, 173
Config_Timer, 527
Configuration files, 424-426
Configuration registers, of
PIC18F452, 49-50, 52, 53
Constants
character, 158
character array, 158
enumeration, 159
floating point, 158
integer, 157-158
string, 158-159
Continue statement, 186
Control bus, 6
Control unit (CU), 4
Controller area network (CAN)
interface, 11
CPU. See Central processing unit
CSD register, 125-130
Current sink/source capability, 11

D

Data bus, 6

Data conversion functions, 213
example, 213,214

Data logging, temperature. See
Temperature data logging

540 Index

Data memory organization of
PIC18F452, 49, 50
Data read, 132
Data tokens, 134—135
Data write, 132-133
DataBuffer, 400
Daughter SD card board, 415
DC56-11EWA pin
configuration, 334, 335
Debugger powered mode, 286
Debugging
process, 288
requirements for, 287
set up, 286
Decimal number system, 13
converting into binary,
16-17
converting into floating
point, 33-34
converting into hexadeci-
mal, 21
converting into octal, 22-23
Delay functions, 207, 228
for 4-MHz and 8-MHz
Clock, 229
for 2400 baud with 4-MHz
Clock, 242
flashing LED example
program, 208-211
Deleting file, 439
operation, 439
program code, 440-441
Development boards, 260
BIGPIC4 development
kit, 270-271
FUTURELEC PIC18F458
training board, 272
LAB-XUSB experimenter
board, 261-262
MK-1 Universal PIC
board, 265-266
PIC18F4520 development
kit, 269-270
PICDEM 2 plus board,
262-263
PICDEM 4 board, 263-264
PICDEM HPC explorer
board, 264
PICDEM PIC18 EXPLORER
demonstration
board, 273-274

SSEA452 board, 266-267
SSE8680 board, 268-269
SSE8720 board, 267-268
Digital data logging to SD
card, 502
block diagram, 503
circuit diagram, 504
operation of, 505
program code, 503-506
Directory
creating, 443-445
operation, 444
program code, 445
and file, creating
description, 446
operation, 446
program code,
447-448
Displaying attributes of file, 472
description, 472
operation, 473
program code, 473-476
Displaying file on PC, 451
block diagram, 452
circuit diagram, 452-453
description, 451
operation, 453
program code, 453-457
Do statement, 185
DSR register, 130
Dynamic random access memory
(DRAM), 4

E

EasyProg PIC programmer, 275,
276

Eight-bit microcontrollers, 4

Eight-bit mode, timer O in, 72

Electrically erasable program-
mable read only memory
(EEPROM), 5,9

Embedded controllers, 1

Erasable programmable read only
memory (EPROM), 5

Escapes sequences, 159

Ethernet interface, 11

eXtended capacity (SDXC), 113

F

FAT16 file system, 395
FAT32 file system, 395

FATBuffer, 400
Files
deleting, 439-441
directories and, 446-448
file copying, 448-451
description, 448
operation, 449
program code, 450-451
with given file extension,
looking for, 467
description, 467
operation, 468
program code, 468-472
handling operations,
477-488
command mode, 477
command options,
477478
program for, 477-479
Read_Filename function
in, 478
Read_SrcDst function
in, 479
looking for, 463—467
description, 463
operation, 463
program code, 463-466
renaming, 441-443
FindFirst function, 498
Flash EEPROM, 6
Flash memory card. See Memory
card
Flashing LED program, 150-151,
208-211, 289-292
Floating point numbers, 30-31
addition and subtraction,
35-36
converting decimal number
into, 33-34
converting into decimal,
31-32
mantissa, 30
multiplication and
division, 34-35
normalizing, 32
For statement, 181-183
Forest electronics USB
programmer, 274
Formatting card, 436438
operation, 437
program code, 437-438

Index 541

FSConfig.h, modifying, 399
Function calls
FindFirst, 408409, 486
FindFirstpgm, 409
FindNext, 410, 486
FSchdir, 406407,

486, 497
FSerror, 500, 502
FSfclose, 403
FSfeof, 403
FSfopen, 402, 487
FSfopenpgm, 402-403
FSformat, 407, 487
FSfprintf, 410411
FSfread, 404
FSfwrite, 404—406
FSInit, 401-402
FSmkdir, 487
FSremove, 405,

486, 497
FSremovepgm, 405
FSrename, 407, 487
FSrewind, 405
FSrmdir, 406, 487
sequence

deleting existing file, 401

reading from existing

file, 400
writing onto existing
file, 401
SetClockVars, 410
Functions, 193-194
to calculate area of

circle, 194-196
to calculate cylinder area and

volume, 196, 197, 195
to convert lowercase to

uppercase, 195, 197,

198, 200
definition, 193
examples, 194-198
passing arrays to, 199-200

examples, 200-204
passing variables by reference

to, 204

example, 204, 205
prototypes, 198-199
static variables, 204-205
void, 152, 193, 194

FUTURELEC PIC18F458 training
board, 272

G

Global interrupt enable bit
(GIE), 96

Goto statement, 186

Graphical user interface
(GUID), 260

H

Hardware development tools
breadboards, 283-285
development boards.

See Development boards
device programmers, 274-275
in-circuit debuggers, 276-280
in-circuit emulators,

280-283

Hardware peripheral library
functions, 206
A/D converter, 245-247
input capture, 247
integrated interconnect (I>C)

bus, 247
I/O port, 247
microwire bus, 247
pulse width modulation, 247
serial peripheral interface

(SPI) bus, 248
timer, 248-249
universal synchronous-

asynchronous
receiver-transmitter

(USART), 249-252

HardwareProfile.h, modifying, 399

Harvard architecture, 11, 12

HD44780 LCD controller, 226-227
pin configuration and pin

functions of, 227

Hexadecimal number system, 14
converting into binary, 19-20
converting into decimal, 20

High-capacity SD (SDHC)
card, 113, 115-116

High-level language
compilers, 260
simulators, 259-260

I

ICD. See In-circuit debuggers
ICE. See In-circuit emulators
ICEPIC 3, 281,282

IDEs. See Integrated development
environments
IDL-800 Digital Lab, 285
IEEE standard, 30
If statement, 178-179
In-circuit debuggers (ICD), 276-280
ICD-U40, 278, 279
PICFlash-2 ICD, 278-279
In-circuit emulators (ICE), 280-283
Instruction cycle, 7
Integrated development
environments (IDEs), 260
Integrated interconnect (I*)C)
bus, 239, 247
Internal clock control registers,
62, 63
Interrupt service routine (ISR),
8, 340
Interrupt vector address, 8
Interrupts, 8,91, 97
applications, 92
bit definitions of registers,
97
core and peripheral
sources, 92
enabling/disabling, 94-96
priority structure, 96-103
1/0 ports
functions in hardware, 247
PIC microcontroller, 188
Iteration statements
do statement, 185
goto statement, 186
for statement, 181-183
while statement, 183-185

L

LAB-XUSB experimenter
board, 261-262
LCD. See Liquid crystal display
LED. See Light-emitting diodes
Library functions, MPLAB C18,
206-207. See also specific
library functions
Light-emitting diodes (LED)
chasing, project
circuit diagram, 305
description, 304
hardware of, 305
PDL of, 306
program listing, 307, 306

542 Index

Light-emitting diodes (LED) (cont’d)

dice project, 308
block diagram, 309
circuit diagram, 309
description, 308
hardware, 308
PDL of, 310
program, 310-311
flashing, program, 150-151,
208-211, 289, 290-292
two-dice project, 314
block diagram, 315
circuit diagram, 315
description, 314-315,
318-319
hardware, 315, 319-321
PDL of, 316, 321
program, 316-318, 321
using I/O pins, 318-326
Liquid crystal display (LCD), 225
See also HD44780 LCD
controller
drivers, 10
functions, 225-226,
228,232
BusyXLCD, 228-230
examples, 233-235,
237-239
OpenXLCD, 230
putcXLCD, 231
putrsXLCD, 231
putsXLCD, 231
WriteCmdXLCD,
232-233
parallel, 226
serial, 226
LM35 precision centigrade
temperature sensors, 535
Logical operators, 170
Low-power operation, 10

M

Mach X programmer, 274-275
Master synchronous serial port
(MSSP) module, 361
configuration of, 365-367

in SPI mode, 361-362

Math library functions, 207, 222,223

examples, 223-225
MAX?232 dual EIA-232 drivers/
receivers, 533

MC33269 low dropout
three-terminal voltage
regulators, 531

MC33269DT3-3 regulator,
429, 430

MDD. See Memory disk drive
library

Melabs U2 Programmer,
275,276

Memory and string manipulation
functions, 213
examples, 214-217

Memory card, 107
applications, 107
properties of

physical, 117

technical, 117
technologies of, 108
types of, 108

Memory card readers, 116

Memory disk drive (MDD) library
data memory usage, 398
file and disk manipulation

functions, 396
installation, 395-396
MPLAB C18 memory

usage, 398
options, 396-398
setup, 399-400

Memory model, 426

Memory stick (MS) card, 111

MENU-based SD card file
handling, 490
block diagram, 452
circuit diagram, 452
operation of, 491
program code, 491-502

Microchip daughter SD card
board, 415

Microchip memory disk drive
(MDD), 413

Microchip solutions, 396

Microcomputer, 2

Microcontroller
A/D converter, 8-9
analog comparator, 10
architectures, 11-12
assembly languages, 2
brown-out detector, 8
buses, 6
CAN interface, 11

choosing for application, 12
clock, 7
current sink/source
capability, 11
defined, 1
difference in
microprocessor, 1
EEPROM, 5,9
EPROM, 5
Ethernet interface, 11
features, 6-11
flash EEPROM, 6
interrupts, 8
LCD drivers, 10
low-power operation, 10
motor control interface, 11
PIC18F452, 4-6
pins, 428
power-on reset, 10
PROM, 5
RAM, 4
real-time clock, 10
reset input, 8
ROM, 5
serial I/0, 9
sleep mode, 10
supply voltage, 6-7
systems, 1-4
temperature data logger
system, 2,3
timers, 7
USB interface, 11
watchdog, 7-8
ZigBee interface, 11
Microdrive, 112
Microprocessor, difference in
microcontroller, 1
microSD card, 114
mikroC C compiler, 137
miniSD card, 114, 115
MK-1 Universal PIC development
board, 265-266
Motor control interface, 11
MPLAB C18 compiler, 138
arrays, 161-162
basic structure of, 152, 153
case sensitivity, 154
comments, 152-154
compiler files, 142
constants, 157-159
control statements, 178

Index 543

directory, 139
enumerated variables, 160
environment variables, 140
escapes sequences, 159
example program
building the
project, 143-147
flashing LED
program, 150-151
simulating the project,
147-150
external variables, 160
installing, 138-142
library functions, 206-207,
367-369
memory usage, 398
mixing with assembly
language statements,
187-188
operators, 168-177
pointers, 162-164
programming examples,
189-192
static variables, 160
structures, 164-167
terminating program
statements, 154
unions, 167-168
variable names, 155
variable types, 155-157
volatile variables, 160
white spaces, 154
MPLAB C18 template,
creating, 417
configuration files
setting, 424-426
memory model setting, 427
MPLAB ICD2, 278
MPLAB ICD3, 279-280
connection of, 287
debugger, 289-292
debugging
examples, 292-295
process, 288
modes of operation, 286
test interface board, 289
using, 285-288
MPLAB ICE 4000, 281
MPLAB IDE
C18 directory structure, 142
installing, 138

options, 141
starting, 143
MPX4115A pressure sensors,
525,537
MSSP. See Master synchronous
serial port
Multimedia card MMC), 109
Multiplexed seven-segment
LED counter
four-digit with timer
interrupt, 347
circuit diagram, 348
description, 347
hardware, 347
PDL, 348, 349
program, 348-352
two-digit, 333
block diagram, 335
circuit diagram, 336
description, 333
hardware, 335
PDL, 335-336
program, 337-338
two-digit with timer
interrupt, 338
description, 338-340
hardware, 341
modified program,
345-347
PDL, 341
program, 341-344

N

NAND technology, 108
Negative numbers, 25-26
NOR technology, 108

o

OCR register, 123, 124

Octal number system, 14
converting into binary, 24
converting into decimal,

21-22

One time programmable
(OTP) memory, 5

Operators in C18 language
arithmetic, 168—-169
assignment, 172-173
bitwise, 171-172
conditional, 173
logical, 170

preprocessor, 173-177
relational, 169—-170

P

PC display, 489
PDL. See Program description
language
PIC microcontroller
flashing LED program,
208-211
1/0O port programming, 188
SD card interface, 122
PIC prog plus
programmer, 275, 277
PIC programmer module, 275, 277
PIC16 microcontroller series, 41
PIC18 microcontrollers,
C programming languages
for, 137-138
PIC18F microcontroller series, 41
features of, 41, 44
interrupts in, 93
1/0O ports, 63
PICI6F and, 44
PIC18F452 microcontroller, 4-6,
45, 46
A/D converter, 84-91
clock sources on, 56-62
configuration bits, 177
configuration registers, 49-50,
52,53
data memory organization,
49, 50
interrupts, 91, 97
pin configuration of, 45
ports, 47
PORTA pin, 64-66
PORTB pin, 6668
PORTC pin, 67-69
PORTD pin, 70
PORTE pin, 70
power supply, 50-51, 55
program memory
organization, 47-49
reset, 53-57
timers, 69-77
PIC18F4520 development
kit, 269-270
PIC18FXX2 microcontroller
family, 43
architecture, 43, 44

544 Index

PICC18 C compiler, 137

PICDEM 2 plus development
board, 262-263

PICDEM 4 development
board, 263-264

PICDEM HPC explorer
development board, 264

PICDEM PIC18 EXPLORER
demonstration board,
273-274

PICDEM PIC18 Explorer
demonstration board,
413,414
features, 414

PICE-MC, 282-283

PICFlash-2 ICD, 278-279

PICtail daughter board.
See Microchip daughter
SD card board

Pointers, 162-164
array, 163-164
incrementing, 164

Power supply of PIC18F452,
50-51, 55

Power-on reset (POR), 10, 56-57

Preprocessor commands, 174-176
#define, 152, 174
#include, 152,175
#pragma, 176-177

Preprocessor operators, 173-177

Program description language
(PDL) keywords, 299-304
Do and ENDDO, 301-303
IF-THEN-ELSE-ENDIF,

301, 302

REPEAT-UNTIL, 303-304
START-END, 300

Program memory map of
PIC18F452, 47, 48

Programmable read only memory
(PROM), 5

Pseudorandom number
generator, 311-314

Pulse width modulation
(PWM), 80-84, 247

R

Random access memory (RAM), 4
RCA register, 130

RCON register, 94

Read only memory (ROM), 5

Read_ADC function, 526
Read_Filename function, 478
Reading filename from PC and
displaying file, 458-463
description, 458
operation of, 459
program code, 460—462
Read_SrcDst function, 479,
487-500
Real-time clock (RTC), 3, 10
Reduced instruction set computer
(RISC), 12
Register bits
CONFIGI1H, 54
CONFIG2H, 55
CONFIG2L, 54
Relational operators, 169-170
Renaming file, 441
operation, 442
program code, 442-443
Reset functions, 216, 217
example, 217,218
Reset input, 8
Resistor/capacitor operation,
60-61
Response tokens, 133-134
RICE3000, 281, 282
RS232-based serial

communication, 239, 240, 249

25-way and 9-way
connectors, 240, 453

bit timing in, 240

1/0, 9

pins required for, 241

S

SAS52-11 pin configuration, 329
SCR register, 131
SearchRec structure, 409
Secure digital (SD) card, 113-116
bus mode, 118,119
capacity, calculation,
131-132
commands, 133
high-capacity, 115-116
interface, 119-122
internal registers, 122—-131
pins, 428
assignments, 120
configuration, 118-120
in SD bus mode, 118, 119

sizes of, 113-115
in SPI bus mode, 118, 120
standard. See Standard SD card
status register, 131
structure of, 118-122
writing short text message
to, 427
block diagram, 428
circuit diagram, 428-429
description, 427
modified program,
432-433
operation, 430
program code, 431-432
Selection statements
if statement, 178-179
switch statement, 179-181
Serial communication. See RS232-
based serial communication
Serial peripheral interface (SPI)
bus, 248
mode, 120, 118
MSSP in, 361-362
operation, 365-367
registers, 362-364
MPLAB C18 library
functions, 239, 248,
367-369
project, 369, 370, 375
protocol, 132-134, 361
Serial port parameters, 457, 458
SetClockVars function, 410
Seven-segment LED counter,
326, 329
circuit diagram, 329
common anode
configuration, 327
common cathode
configuration, 327
description, 326-328
hardware, 328-329
modified program, 332-333
PDL, 330
program, 330
Signal conditioning, 84, 85
Simulators, 257, 259
high-level language, 259-260
Sixteen-bit mode, timer O
in, 73,74
Sleep mode, 10
Smart media (SM) card, 108-109

Index 545

Software development tools,
257-260
assemblers/compilers,

258-259
high-level language
simulators, 259-260
IDEs, 260
simulators, 257, 259
text editors, 258

Software peripheral library
functions, 206
CAN2510, 239
integrated interconnect (I*C)

bus, 239
LCD. See Liquid crystal
display (LCD), functions
serial peripheral interface
(SPI) bus, 239
UART, 239-243
example, 243-245

Solid state floppy disc card
(SSFDC), 108

Source-level debuggers, 259

Special function register (SFR),
49, 51

SPI. See Serial peripheral interface

SSE452 development board,
266267

SSE8680 development board,
268-269

SSE8720 development board,
267-268

SSPCONT1 register, 364

SSPSTAT register, 363-364

Standard SD card, 113-115
modes of, 118
voltage levels of, 119, 121

Static random access memory
(SRAM), 4

strcmppgm2ram function, 485

Structures, 164-167

Supply voltage, 6-7

Switch statement, 179-180
example using, 180-181

T

Target powered mode, 286
TC72 temperature sensor,
370-371

block diagram, 370
circuit diagram, 374, 375
features of, 370
internal registers of, 372-373
MSB and LSB settings of, 371
pin configuration of, 370
program, 374-381
to displaying fractional
part, 382, 387-392
to displaying negative
temperatures,
381-387
read/write operations, 372
Temperature and pressure data
logging with real-time
clock, 515
block diagram, 517
circuit diagram, 516, 517
operation of, 518
program code, 516-529
Temperature data logging, 507
block diagram, 508
circuit diagram, 507, 508
operation of, 509
program code, 509-514
system, 2,3
Text editors, 258
Time stamping file, 433
operation of, 434
program code, 435-436
Timer library routines,
352-359
Timer_ISR function, 526
Timers, 7, 69
Timer 0, 71-73
Timer 1, 73-76
Timer 2, 73-77
Timer 3, 77,79
Typedef statements, 166

U

Unions, 167-168

Unipolar A/D converters, 84

Universal asynchronous
receiver-transmitter (UART)
functions, 239-243
example, 243-245
OpenUART, 241-242
putsUART, 243

ReadUART, 242
WriteUART, 242

Unions, 167-168

Unipolar A/D converters, 84

Universal serial bus (USB)
interface, 11

Universal synchronous-asynchronous
receiver-transmitter (USART)
function, 9, 249-252
baudUSART, 252
BusyUSART, 250
CloseUSART, 250
DataRdyUSART, 250
getcUSART, 250
getsUSART, 250
Init_USART, 527
OpenUSART, 250
putcUSART, 252
putrsUSART, 252
putsUSART, 252

Update_Clock function, 528

USB programmer, Forest
electronics, 274

v

Variables
enumerated, 160
environment, 140
external, 160
names, 155
static, 160, 204-205
types, 155-157
volatile, 160

Void, 152, 193, 194

Von Neumann architecture,
11,12

W

Watchdog timer (WDT), 7-8,
62-63

While statement, 183-185,
486-488

WriteTimer0, 359

X
xD card, 112-113

V4
ZigBee interface, 11

This page intentionally left blank

	Half Title Page
	Title Page
	Copyright Page
	Copyright Exceptions
	Contents

	Preface
	About the Web Site
	Chapter 1. Microcontroller Systems
	1.1 Introduction
	1.2 Microcontroller Systems
	1.2.1 Random Access Memory
	1.2.2 Read Only Memory
	1.2.3 Programmable Read Only Memory
	1.2.4 Erasable Programmable Read Only Memory
	1.2.5 Electrically Erasable Programmable Read Only Memory
	1.2.6 Flash EEPROM

	1.3 Microcontroller Features
	1.3.1 Buses
	1.3.2 Supply Voltage
	1.3.3 The Clock
	1.3.4 Timers
	1.3.5 Watchdog
	1.3.6 Reset Input
	1.3.7 Interrupts
	1.3.8 Brown-Out Detector
	1.3.9 A/D Converter
	1.3.10 Serial I/O
	1.3.11 EEPROM Data Memory
	1.3.12 LCD Drivers
	1.3.13 Analog Comparator
	1.3.14 Real-Time Clock
	1.3.15 Sleep Mode
	1.3.16 Power-on Reset
	1.3.17 Low-Power Operation
	1.3.18 Current Sink/Source Capability
	1.3.19 USB Interface
	1.3.20 Motor Control Interface
	1.3.21 Controller Area Network Interface
	1.3.22 Ethernet Interface
	1.3.23 ZigBee Interface

	1.4 Microcontroller Architectures
	1.4.1 Reduced Instruction Set Computer and Complex Instruction Set Computer

	1.5 Choosing a PIC Microcontroller
	1.6 Number Systems
	1.6.1 Decimal Number System
	1.6.2 Binary Number System
	1.6.3 Octal Number System
	1.6.4 Hexadecimal Number System

	1.7 Converting Binary Numbers into Decimal
	1.8 Converting Decimal Numbers into Binary
	1.9 Converting Binary Numbers into Hexadecimal
	1.10 Converting Hexadecimal Numbers into Binary
	1.11 Converting Hexadecimal Numbers into Decimal
	1.12 Converting Decimal Numbers into Hexadecimal
	1.13 Converting Octal Numbers into Decimal
	1.14 Converting Decimal Numbers into Octal
	1.15 Converting Octal Numbers into Binary
	1.16 Converting Binary Numbers into Octal
	1.17 Negative Numbers
	1.18 Adding Binary Numbers
	1.19 Subtracting Binary Numbers
	1.20 Multiplication of Binary Numbers
	1.21 Division of Binary Numbers
	1.22 Floating Point Numbers
	1.23 Converting a Floating Point Number into Decimal
	1.23.1 Normalizing the Floating Point Numbers
	1.23.2 Converting a Decimal Number into Floating Point
	1.23.3 Multiplication and Division of Floating Point Numbers
	1.23.4 Addition and Subtraction of Floating Point Numbers

	1.24 Binary-Coded Decimal Numbers
	1.25 Summary
	1.26 Exercises

	Chapter 2. PIC18F Microcontroller Series
	2.1 PIC18FXX2 Architecture
	2.1.1 Program Memory Organization
	2.1.2 Data Memory Organization
	2.1.3 The Configuration Registers
	2.1.4 The Power Supply
	2.1.5 The Reset
	2.1.6 The Clock Sources
	2.1.7 Watchdog Timer
	2.1.8 Parallel I/O Ports
	2.1.9 Timers
	2.1.10 Capture/Compare/PWM Modules
	2.1.11 Pulse Width Modulation Module
	2.1.12 Analog-to-Digital Converter Module
	2.1.13 Interrupts

	2.2 Summary
	2.3 Exercises

	Chapter 3. Memory Cards
	3.1 Memory Card Types
	3.2 Smart Media Card
	3.3 Multimedia Card
	3.4 Compact Flash Card
	3.5 Memory Stick Card
	3.6 Microdrive
	3.7 xD Card
	3.8 Secure Digital Card
	3.8.1 Standard SD Cards
	3.8.2 High-Capacity SD Cards

	3.9 Memory Card Readers
	3.10 Memory Card Physical Properties
	3.11 Memory Card Technical Properties
	3.12 Detailed SD Card Structure
	3.12.1 SD Card Pin Configuration
	3.12.2 SD Card Interface

	3.13 SD Card Internal Registers
	3.13.1 OCR Register
	3.13.2 CID Register
	3.13.3 CSD Register
	3.13.4 RCA Register
	3.13.5 DSR Register
	3.13.6 SCR Register
	3.13.7 SD Status Register

	3.14 Calculating the SD Card Capacity
	3.15 SD Card SPI Bus Protocol
	3.15.1 Data Read
	3.15.2 Data Write
	3.15.3 Response Tokens

	3.16 Data Tokens
	3.17 Card Reset State
	3.18 Summary
	3.19 Exercises

	Chapter 4. Programming with the MPLAB C18 Compiler
	4.1 C Programming Languages for PIC18 Microcontrollers
	4.2 MPLAB C18 Compiler
	4.2.1 Installing the MPLAB C18 Compiler

	4.3 An Example Program
	4.3.1 Building the Project
	4.3.2 Simulating the Project

	4.4 Flashing LED Example
	4.4.1 Building and Simulating the Project

	4.5 Structure of the MPLAB C18 Compiler
	4.5.1 Comments
	4.5.2 Terminating Program Statements
	4.5.3 White Spaces
	4.5.4 Case Sensitivity
	4.5.5 Variable Names
	4.5.6 Variable Types
	4.5.7 Constants
	4.5.8 Escape Sequences
	4.5.9 Static Variables
	4.5.10 External Variables
	4.5.11 Volatile Variables
	4.5.12 Enumerated Variables
	4.5.13 Arrays
	4.5.14 Pointers
	4.5.15 Structures
	4.5.16 Unions
	4.5.17 Operators in C
	4.5.18 Modifying the Flow of Control
	4.5.19 Iteration Statements
	4.5.20 Mixing C18 with Assembly Language Statements

	4.6 PIC Microcontroller I/O Port Programming
	4.7 Programming Examples
	4.8 Functions
	4.8.1 Function Prototypes
	4.8.2 Passing Arrays to Functions
	4.8.3 Passing Variables by Reference to Functions
	4.8.4 Static Function Variables

	4.9 MPLAB C18 Library Functions
	4.9.1 Delay Functions
	4.9.2 Character Classification Functions
	4.9.3 Data Conversion Functions
	4.9.4 Memory and String Manipulation Functions
	4.9.5 Reset Functions
	4.9.6 Character Output Functions
	4.9.7 Math Library Functions
	4.9.8 LCD Functions
	4.9.9 Software CAN2510 Functions
	4.9.10 Software I2C Bus Functions
	4.9.11 Software SPI Bus Functions
	4.9.12 Software UART Functions
	4.9.13 Hardware Analog-to-Digital (A/D) Converter Functions
	4.9.14 Hardware Input Capture Functions
	4.9.15 Hardware I2C Functions
	4.9.16 Hardware I/O Port Functions
	4.9.17 Hardware Microwire Functions
	4.9.18 Hardware Pulse Width Modulation Functions
	4.9.19 Hardware SPI Functions
	4.9.20 Hardware Timer Functions
	4.9.21 Hardware USART Functions

	4.10 Summary
	4.11 Exercises

	Chapter 5. PIC18 Microcontroller Development Tools
	5.1 Software Development Tools
	5.1.1 Text Editors
	5.1.2 Assemblers and Compilers
	5.1.3 Simulators
	5.1.4 High-Level Language Simulators
	5.1.5 Integrated Development Environments

	5.2 Hardware Development Tools
	5.2.1 Development Boards
	5.2.2 Device Programmers
	5.2.3 In-Circuit Debuggers
	5.2.4 In-Circuit Emulators
	5.2.5 Breadboards

	5.3 Using the MPLAB ICD 3 In-Circuit Debugger
	5.3.1 The Debugging Process
	5.3.2 The MPLAB ICD 3 Test Interface Board
	5.3.3 Programming with the MPLAB ICD 3 Debugger
	5.3.4 MPLAB ICD 3 Debugging Example I
	5.3.5 MPLAB ICD 3 Debugging Example II
	5.3.6 MPLAB ICD 3 Debugging Example III

	5.4 Summary
	5.5 Exercises

	Chapter 6. PIC18 Microcontroller MPLAB C18-Based Simple Projects
	6.1 Program Description Language
	6.1.1 START-END
	6.1.2 Sequencing
	6.1.3 IF-THEN-ELSE-ENDIF
	6.1.4 DO-ENDDO
	6.1.5 REPEAT-UNTIL

	6.2 Project 1 – Chasing LEDs
	6.2.1 Project Description
	6.2.2 Project Hardware
	6.2.3 Project PDL
	6.2.4 Project Program
	6.2.5 Further Development

	6.3 Project 2 – LED Dice
	6.3.1 Project Description
	6.3.2 Project Hardware
	6.3.3 Project PDL
	6.3.4 Project Program
	6.3.5 Using a Pseudorandom Number Generator

	6.4 Project 3 – Two-Dice Project
	6.4.1 Project Description
	6.4.2 Project Hardware
	6.4.3 Project PDL
	6.4.4 Project Program

	6.5 Project 4 – Two Dice Project – Fewer I/O Pins
	6.5.1 Project Description
	6.5.2 Project Hardware
	6.5.3 Project PDL
	6.5.4 Project Program
	6.5.5 Modifying the Program

	6.6 Project 5 – Seven-Segment LED Counter
	6.6.1 Project Description
	6.6.2 Project Hardware
	6.6.3 Project PDL
	6.6.4 Project Program
	6.6.5 Modified Program

	6.7 Project 6 – Two-Digit Multiplexed Seven-Segment LED
	6.7.1 Project Description
	6.7.2 Project Hardware
	6.7.3 Project PDL
	6.7.4 Project Program

	6.8 Project 7 – Two-Digit Multiplexed Seven-Segment LED Counter With Timer Interrupt
	6.8.1 Project Description
	6.8.2 Project Hardware
	6.8.3 Project PDL
	6.8.4 Project Program
	6.8.5 Modifying the Program

	6.9 Project 8 – Four-Digit Multiplexed Seven-Segment LED Counter With Timer Interrupt
	6.9.1 Project Description
	6.9.2 Project Hardware
	6.9.3 Project PDL
	6.9.4 Project Program
	6.9.5 Modifying the Program
	6.9.6 Using MPLAB C18 Compiler Timer Library Routines

	6.10 Summary
	6.11 Exercises

	Chapter 7. Serial Peripheral Interface Bus Operation
	7.1 The Master Synchronous Serial Port Module
	7.2 MSSP in SPI Mode
	7.3 SPI Mode Registers
	7.3.1 SSPSTAT
	7.3.2 SSPCON1

	7.4 Operation in SPI Mode
	7.4.1 Configuration of MSSP for SPI Master Mode

	7.5 SPI Bus MPLAB C18 Library Functions
	7.5.1 CloseSPI
	7.5.2 DataRdySPI
	7.5.3 getcSPI
	7.5.4 getsSPI
	7.5.5 OpenSPI
	7.5.6 putcSPI
	7.5.7 putsSPI
	7.5.8 ReadSPI
	7.5.9 WriteSPI

	7.6 Example of an SPI Bus Project
	7.6.1 TC72 Temperature Sensor
	7.6.2 The Circuit Diagram
	7.6.3 The Program
	7.6.4 Displaying Negative Temperatures
	7.6.5 Displaying the Fractional Part

	7.7 Summary
	7.8 Exercises

	Chapter 8. MPLAB C18 SD Card Functions and Procedures
	8.1 Installation of the MDD Library
	8.2 MDD Library Functions
	8.2.1 File and Disk Manipulation Functions
	8.2.2 Library Options
	8.2.3 Memory Usage
	8.2.4 Library Setup

	8.3 Sequence of Function Calls
	8.3.1 Reading from an Existing File
	8.3.2 Writing Onto an Existing File
	8.3.3 Deleting an Existing File

	8.4 Detailed Function Calls
	8.4.1 FSInit
	8.4.2 FSfopen
	8.4.3 FSfopenpgm
	8.4.4 FSfclose
	8.4.5 FSfeof
	8.4.6 FSfread
	8.4.7 FSfwrite
	8.4.8 FSremove
	8.4.9 FSremovepgm
	8.4.10 FSrewind
	8.4.11 FSmkdir
	8.4.12 FSrmdir
	8.4.13 FSchdir
	8.4.14 FSformat
	8.4.15 FSrename
	8.4.16 FindFirst
	8.4.17 FindFirstpgm
	8.4.18 FindNext
	8.4.19 SetClockVars
	8.4.20 FSfprintf

	8.5 Summary
	8.6 Exercises

	Chapter 9. Secure Digital Card Projects
	9.1 Creating an MPLAB C18 Template
	9.1.1 Setting the Configuration Files
	9.1.2 The Memory Model

	9.2 PROJECT 1 – Writing a Short Text Message to an SD Card
	9.2.1 Description
	9.2.2 Aim
	9.2.3 Block Diagram
	9.2.4 Circuit Diagram
	9.2.5 Operation of the Project
	9.2.6 Program Code
	9.2.7 Description of the Program Code
	9.2.8 Suggestions for Future Work

	9.3 PROJECT 2 – Time Stamping a File
	9.3.1 Description
	9.3.2 Aim
	9.3.3 Block Diagram
	9.3.4 Circuit Diagram
	9.3.5 Operation of the Project
	9.3.6 Program Code
	9.3.7 Description of the Program Code
	9.3.8 Suggestions for Future Work

	9.4 PROJECT 3 – Formatting a Card
	9.4.1 Description
	9.4.2 Aim
	9.4.3 Block Diagram
	9.4.4 Circuit Diagram
	9.4.5 Operation of the Project
	9.4.6 Program Code
	9.4.7 Description of the Program Code
	9.4.8 Suggestions for Future Work

	9.5 PROJECT 4 – Deleting a File
	9.5.1 Description
	9.5.2 Aim
	9.5.3 Block Diagram
	9.5.4 Circuit Diagram
	9.5.5 Operation of the Project
	9.5.6 Program Code
	9.5.7 Description of the Program Code
	9.5.8 Suggestions for Future Work

	9.6 PROJECT 5 – Renaming a File
	9.6.1 Description
	9.6.2 Aim
	9.6.3 Block Diagram
	9.6.4 Circuit Diagram
	9.6.5 Operation of the Project
	9.6.6 Program Code
	9.6.7 Description of the Program Code
	9.6.8 Suggestions for Future Work

	9.7 PROJECT 6 – Creating a Directory
	9.7.1 Description
	9.7.2 Aim
	9.7.3 Block Diagram
	9.7.4 Circuit Diagram
	9.7.5 Operation of the Project
	9.7.6 Program Code
	9.7.7 Description of the Program Code
	9.7.8 Suggestions for Future Work

	9.8 PROJECT 7 – Create a Directory and a File
	9.8.1 Description
	9.8.2 Aim
	9.8.3 Block Diagram
	9.8.4 Circuit Diagram
	9.8.5 Operation of the Project
	9.8.6 Program Code
	9.8.7 Description of the Program Code
	9.8.8 Suggestions for Future Work

	9.9 PROJECT 8 – File Copying
	9.9.1 Description
	9.9.2 Aim
	9.9.3 Block Diagram
	9.9.4 Circuit Diagram
	9.9.5 Operation of the Project
	9.9.6 Program Code
	9.9.7 Description of the Program Code
	9.9.8 Suggestions for Future Work

	9.10 PROJECT 9 – Displaying File on a PC
	9.10.1 Description
	9.10.2 Aim
	9.10.3 Block Diagram
	9.10.4 Circuit Diagram
	9.10.5 Operation of the Project
	9.10.6 The Program Code
	9.10.7 Description of the Program Code
	9.10.8 Suggestions for Future Work

	9.11 PROJECT 10 – Reading a Filename from the PC and Displaying the File
	9.11.1 Description
	9.11.2 Aim
	9.11.3 Block Diagram
	9.11.4 Circuit Diagram
	9.11.5 Operation of the Project
	9.11.6 Program Code
	9.11.7 Description of the Program Code
	9.11.8 Suggestions for Future Work

	9.12 PROJECT 11 – Looking for a File
	9.12.1 Description
	9.12.2 Aim
	9.12.3 Block Diagram
	9.12.4 Circuit Diagram
	9.12.5 Operation of the Project
	9.12.6 Program Code
	9.12.7 Description of the Program Code
	9.12.8 Suggestions for Future Work

	9.13 PROJECT 12 – Looking for a Number of Files with a Given File Extension
	9.13.1 Description
	9.13.2 Aim
	9.13.3 Block Diagram
	9.13.4 Circuit Diagram
	9.13.5 Operation of the Project
	9.13.6 Program Code
	9.13.7 Description of the Program Code
	9.13.8 Suggestions for Future Work

	9.14 PROJECT 13 – Displaying the Attributes of a File
	9.14.1 Description
	9.14.2 Aim
	9.14.3 Block Diagram
	9.14.4 Circuit Diagram
	9.14.5 Operation of the Project
	9.14.6 Program Code
	9.14.7 Description of the Program Code
	9.14.8 Suggestions for Future Work

	9.15 PROJECT 14 – SD Card File Handling
	9.15.1 Description
	9.15.2 Aim
	9.15.3 Block Diagram
	9.15.4 Circuit Diagram
	9.15.5 Operation of the Project
	9.15.6 Program Code
	9.15.7 Description of the Program Code
	9.15.8 Suggestions for Future Work

	9.16 PROJECT 15 – MENU-Based SD Card File Handling
	9.16.1 Description
	9.16.2 Aim
	9.16.3 Block Diagram
	9.16.4 Circuit Diagram
	9.16.5 Operation of the Project
	9.16.6 Program Code
	9.16.7 Description of the Program Code
	9.16.8 Suggestions for Future Work

	9.17 PROJECT 16 – Digital Data Logging to SD Card
	9.17.1 Description
	9.17.2 Aim
	9.17.3 Block Diagram
	9.17.4 Circuit Diagram
	9.17.5 Operation of the Project
	9.17.6 Program Code
	9.17.7 Description of the Program Code
	9.17.8 Suggestions for Future Work

	9.18 PROJECT 17 – Temperature Data Logging
	9.18.1 Description
	9.18.2 Aim
	9.18.3 Block Diagram
	9.18.4 Circuit Diagram
	9.18.5 Operation of the Project
	9.18.6 Program Code
	9.18.7 Description of the Program Code
	9.18.8 Suggestions for Future Work

	9.19 PROJECT 18 – Temperature and Pressure Data Logging with Real-Time Clock
	9.19.1 Description
	9.19.2 Aim
	9.19.3 Block Diagram
	9.19.4 Circuit Diagram
	9.19.5 Operation of the Project
	9.19.6 Program Code
	9.19.7 Description of the Program Code
	9.19.8 Suggestions for Future Work

	Appendix A–MC33269 Data Sheet
	Appendix B–MAX232 Data Sheet
	Appendix C–LM35 Data Sheet
	Appendix D–MPX4115A Data Sheet
	Index

