

Sams Teach Yourself Shell
Programming in 24 Hours,
Second Edition
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32358-3

Library of Congress Catalog Card Number: 2001096631

Printed in the United States of America

First Printing: April 2002

06 05 04 7 6 5 4

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affect-
ing the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

ACQUISITIONS EDITOR

Katie Purdum

DEVELOPMENT EDITOR

Steve Rowe

TECHNICAL EDITOR

Michael Watson

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Natalie Harris

COPY EDITORS

Kezia Endsley
Rhonda Tinch-Mize

INDEXER

Kelly Castell

PROOFREADERS

Linda Seifert
Karen Whitehouse

INTERIOR DESIGN

Gary Adair

COVER DESIGN

Aren Howell

PAGE LAYOUT

Stacey Richwine-DeRome

Contents at a Glance
Introduction 1

PART I Introduction to UNIX and Shell Tools 7
Hour 1 Shell Basics 9

2 Script Basics 21

3 Working with Files 37

4 Working with Directories 53

5 Input and Output 71

6 Manipulating File Attributes 89

7 Processes 105

PART II Shell Programming 119
Hour 8 Variables 121

9 Substitution 135

10 Quoting 147

11 Flow Control 159

12 Loops 181

13 Parameters 197

14 Functions 213

15 Text Filters 231

16 Filtering Text with Regular Expressions 249

17 Filtering Text with awk 267

18 Other Tools 293

PART III Advanced Topics 311
Hour 19 Signals 313

20 Debugging 325

21 Problem Solving with Functions 341

22 Problem Solving with Shell Scripts 359

23 Scripting for Portability 389

24 Shell Programming FAQs 403

PART IV Appendixes 417
Appendix A Command Quick Reference 419

B Glossary 433

C Answers to Questions 441

D Shell Function Library 461

Index 465

Contents
Introduction 1

PART I Introduction to UNIX and Shell Tools 7

HOUR 1 Shell Basics 9

What Is a Command? ..10
Simple Commands..11
Complex Commands ..11
Compound Commands ..12

What Is the Shell?..13
The Shell Prompt..14
Different Types of Shells..14

Summary ..18
Questions..19
Terms..19

HOUR 2 Script Basics 21

The UNIX System ..22
Logging In ..23

Shell Modes and Initialization ..24
Initialization Procedures ..24
Initialization File Contents ..26
Interactive and Non-Interactive Shells ..28

Getting Help ..31
man ..31
Online Resources..34

Summary ..35
Questions..35
Terms..35

HOUR 3 Working with Files 37

Listing Files ..38
Hidden Files..39
Option Grouping ..40

File Contents ..41
cat ..41
wc ..43

Manipulating Files ..46
Copying Files (cp) ..46
Renaming Files (mv) ..48
Removing Files (rm) ..49

Summary ..50
Questions..51
Terms..51

HOUR 4 Working with Directories 53

The Directory Tree ..54
Filenames..54
Pathnames ..55

Switching Directories ..57
Home Directories..57
Changing Directories..58

Listing Files and Directories..60
Listing Directories ..60
Listing Files ..61

Manipulating Directories ..62
Creating Directories..62
Copying Files and Directories..63
Moving Files and Directories ..64
Removing Directories ..66

Summary ..68
Questions..68
Terms..69

HOUR 5 Input and Output 71

Output ..71
Output to the Terminal ..72
Output Redirection ..77

Input ..79
Input Redirection ..79
Reading User Input ..81
Pipelines..81

File Descriptors..82
Associating Files with a File Descriptor ..82
General Input/Output Redirection ..83

Summary ..87
Questions..87
Terms..87

HOUR 6 Manipulating File Attributes 89

File Types ..89
Determining a File’s Type ..90
Regular Files ..90
Links ..91
Device Files ..94
Named Pipes ..95

vi Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Owners, Groups, and Permissions ..95
Viewing Permissions ..96
Changing File and Directory Permissions..98
Changing Owners and Groups ..101

Summary ..103
Questions..103
Terms..104

HOUR 7 Processes 105

Starting a Process ..105
Foreground Processes ..106
Background Processes ..106

Listing and Terminating Processes ..111
jobs ..112
ps Command ..112
Killing a Process (kill Command)..114

Parent and Child Processes..114
Subshells ..115
Process Permissions..116
Overlaying the Current Process (exec Command) ..116

Summary ..117
Questions..117
Terms..117

PART II Shell Programming 119

HOUR 8 Variables 121

Working with Variables..121
Scalar Variables ..122
Array Variables ..124
Read-Only Variables ..128
Unsetting Variables ..129

Environment and Shell Variables ..129
Exporting Environment Variables ..130
Shell Variables ..131

Summary ..132
Questions..132
Terms..133

HOUR 9 Substitution 135

Filename Substitution (Globbing) ..136
The * Meta-Character ..136
The ? Meta-Character ..138
Matching Sets of Characters ..139

Contents vii

Variable Substitution..141
Default Value Substitution..141
Default Value Assignment ..142
Null Value Error..142
Substitute When Set ..143

Command and Arithmetic Substitution ..143
Command Substitution ..143
Arithmetic Substitution ..144

Summary ..146
Questions..146
Terms..146

HOUR 10 Quoting 147

Quoting with Backslashes..148
Meta-Characters and Escape Sequences ..149

Using Single Quotes ..149
Using Double Quotes ..150
Quoting Rules and Situations ..151

Quoting Ignores Word Boundaries ..152
Combining Quoting in Commands ..152
Embedding Spaces in a Single Argument ..152
Quoting Newlines to Continue on the Next Line ..153
Quoting to Access Filenames Containing Special Characters154
Quoting Regular Expression Wildcards ..155
Quoting the Backslash to Enable echo Escape Sequences155
Quoting Wildcards for cpio and find ..156

Summary ..157
Questions..158
Terms..158

HOUR 11 Flow Control 159

The if Statement ..160
An if Statement Example ..160
Using test ..163

The case Statement..175
A case Statement Example ..175
Using Patterns ..177

Summary ..178
Questions..178
Terms..179

HOUR 12 Loops 181

The while Loop ..181
Nesting while Loops ..183
Validating User Input with while ..184

viii Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Input Redirection and while ..185
The until Loop..187

The for and select Loops ..188
The for Loop..188
The select Loop ..190

Loop Control..192
Infinite Loops and the break Command ..192
The continue Command ..194

Summary ..195
Questions..195
Terms..196

HOUR 13 Parameters 197

Special Variables ..198
Using $0..198

Options and Arguments ..200
Dealing with Arguments ..201
Using basename ..201
Common Argument Handling Problems ..203

Option Parsing in Shell Scripts..205
Using getopts ..206

Summary ..210
Questions..210
Terms..211

HOUR 14 Functions 213

Using Functions ..213
Executing Functions ..214
Aliases Versus Functions ..217
Unsetting Functions..218

Understanding Scope, Recursion, Return Codes, and Data Sharing218
Scope ..218
Recursion ..221
Return Codes ..223
Data Sharing ..223
Moving Around the File System ..223

Summary ..228
Questions..228
Terms..229

HOUR 15 Text Filters 231

The head and tail Commands..231
The head Command..232
The tail Command..233

Contents ix

x Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Using grep ..234
Looking for Words..235
Reading From STDIN ..236
Line Numbers ..237
Listing Filenames Only ..238

Counting Words ..238
The tr Command ..239
The sort Command..241
The uniq Command..241
Sorting Numbers ..242
Using Character Classes with tr ..244

Summary ..245
Questions..246
Terms..247

HOUR 16 Filtering Text with Regular Expressions 249

The Basics of awk and sed ..250
Invocation Syntax ..250
Basic Operation ..250
Regular Expressions ..251

Using sed ..257
Printing Lines ..258
Deleting Lines ..259
Performing Substitutions ..260
Using Multiple sed Commands..262
Using sed in a Pipeline ..263

Summary ..264
Questions..264
Terms..265

HOUR 17 Filtering Text with awk 267

What Is awk? ..267
Basic Syntax ..268
Field Editing ..269
Taking Pattern-Specific Actions ..270
Comparison Operators..271
Using STDIN as Input..274

Using awk Features ..275
Variables ..276
Flow Control ..283

Summary ..288
Questions..289
Terms..291

Contents xi

HOUR 18 Other Tools 293

The Built-In Commands ..293
The eval Command..294
The : Command ..294
The type Command..296

The sleep Command ..297
The find Command ..298

find: Starting Directory ..299
find: -name Option ..300
find: -type Option ..300
find: -mtime, -atime, -ctime ..301
find: -size Option ..302
find: Combining Options ..302
find: Negating Options ..303
find: -print Action..303
find: -exec Action..303

xargs ..304
The expr Command ..306

expr and Regular Expressions..307
The bc Command ..307
Summary ..308
Questions..309
Terms..309

PART III Advanced Topics 311

HOUR 19 Signals 313

How Are Signals Represented? ..314
Getting a List of Signals ..314
Default Actions ..315
Delivering Signals ..315

Dealing with Signals..316
The trap Command..317
Cleaning Up Temporary Files ..317
Ignoring Signals..319
Setting Up a Timer ..320

Summary ..324
Questions..324
Terms..324

HOUR 20 Debugging 325

Enabling Debugging ..326
Using the set command ..327

xii Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Using Syntax Checking ..328
Why Syntax Checking Is Important ..329
Using Verbose Mode ..331

Shell Tracing ..332
Finding Syntax Bugs Using Shell Tracing ..333
Finding Logical Bugs Using Shell Tracing..335
Using Debugging Hooks ..337

Summary ..339
Questions..339
Terms..340

HOUR 21 Problem Solving with Functions 341

Library Basics ..341
What Is a Library?..342
Using a Library ..342

Creating a Library..343
Naming the Library ..343
Naming the Functions ..344
Displaying Error and Warning Messages ..344
Asking Questions..345
Checking Disk Space..351
Obtaining a Process ID by its Process Name ..354
Getting a User’s Numeric User ID ..355

Summary ..356
Questions..356
Terms..357

HOUR 22 Problem Solving with Shell Scripts 359

Startup Scripts..360
System Startup..360
Developing an Init Script ..364

Maintaining an Address Book ..373
Showing People ..375
Adding a Person ..377
Deleting a Person..380

Summary ..385
Questions..385
Terms..387

HOUR 23 Scripting for Portability 389

Determining UNIX Versions..390
BSD ..390
System V ..390
Linux ..391
Using uname to Determine the UNIX Version..392
Determining the UNIX Version Using a Function ..394

Techniques for Increasing Portability..396
Conditional Execution ..396
Abstraction..397

Summary ..400
Question ..401
Terms..401

HOUR 24 Shell Programming FAQs 403

Shell and Command Questions..404
Variable and Argument Questions ..409
File and Directory Questions ..412
Summary ..416

PART IV Appendixes 417

APPENDIX A Command Quick Reference 419

Reserved Words and Built-in
Shell Commands ..420

Conditional Expressions ..423
File Tests ..423
String Tests ..424
Integer Comparisons ..424
Compound Expressions ..424

Arithmetic Expressions (ksh, bash, and zsh Only) ..424
Integer Expression Operators ..425

Parameters and Variables ..426
User-Defined Variables ..426
Special Variables ..427
Shell Variables ..428

Input/Output ..428
Input and Output Redirection ..429
Here Document ..429

Pattern Matching and Regular Expressions ..430
Filename Expansion and Pattern Matching..430
Limited Regular Expression Wildcards..430
Extended Regular Expression Wildcards ..430

APPENDIX B Glossary 433

APPENDIX C Answers to Questions 441

APPENDIX D Shell Function Library 461

Index 465

Contents xiii

About the Author
SRIRANGA VEERARAGHAVAN is a material scientist by training and a software engineer by
trade. He has several years of software development experience in C, Java, Perl, and
Bourne Shell and has contributed to several books, including Solaris 8: Complete
Reference, UNIX Unleashed and Special Edition Using UNIX. Sriranga graduated from
the University of California at Berkeley in 1997 and is presently pursuing further studies.
He is currently employed in the Server Appliance group at Sun Microsystems, Inc.
Before joining Sun, Sriranga was employed at Cisco Systems, Inc. Among other inter-
ests, Sriranga enjoys mountain biking, classical music, and playing Marathon with his
brother Srivathsa. Sriranga can be reached via e-mail at ranga@soda.berkeley.edu.

Dedication
For my grandmother, who taught me to love the English language.

For my mother, who taught me to love programming languages.

Acknowledgments
Writing a book on shell programming is a daunting task, due to the myriad UNIX ver-
sions and shell versions that are available. Thanks to the hard work of my development
editor Steve Rowe, my technical editor Michael Watson, and my copy editor Kezia
Endsley, I was able to make sure the book covered the material completely and correctly.
Their suggestions and comments have helped enormously.

In addition to the technical side of the book, the task of coordinating and managing the
publishing process is a difficult one. The assistance of my acquisitions editor, Kathryn
Purdum, in handling all of the editorial issues and patiently working with me to keep this
book on schedule was invaluable.

Working on a book takes a lot of time and makes it difficult to concentrate on work and
family activities. Thanks to the support of my manager, Larry Coryell, my parents, my
brother Srivathsa, and my uncle and aunt Srinvasa and Suma, I was able to balance work,
family, and authoring.

Thanks to everyone else on the excellent team at Sams who worked on this book.
Without their support, this book would not exist.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Introduction
In recent years, the UNIX operating system has seen a huge boost in its popularity, espe-
cially with the emergence of Linux. For programmers and users of UNIX, this comes as no
surprise: UNIX was designed to provide an environment that’s powerful yet easy to use.

One of the main strengths of UNIX is that it comes with a large collection of standard
programs. These programs perform a wide variety of tasks from listing your files to read-
ing e-mail. Unlike other operating systems, one of the key features of UNIX is that these
programs can be combined to perform complicated tasks and solve your problems.

One of the most powerful standard programs available in UNIX is the shell. The shell is
a program that provides a consistent and easy-to-use environment for executing programs
in UNIX. If you have ever used a UNIX system, you have interacted with the shell.

The main responsibility of the shell is to read the commands you type and then ask the
UNIX kernel to perform these commands. In addition to this, the shell provides several
sophisticated programming constructs that enable you to make decisions, repeatedly exe-
cute commands, create functions, and store values in variables.

This book concentrates on the standard UNIX shell called the Bourne shell. When
Dennis Ritche and Ken Thompson were developing much of UNIX in the early 1970s,
they used a very simple shell. The first real shell, written by Stephen Bourne, appeared
in the mid 1970s. The original Bourne shell has changed slightly over the years; some
features were added and others were removed, but its syntax and its resulting power have
remained the same.

The most attractive feature of the shell is that it enables you to create scripts. Scripts are
files that contain a list of commands you want to run. Because every script is contained
in a file and every file has a name, scripts enable you to combine existing programs to
create completely new programs that solve your problems. This book teaches you how to
create, execute, modify, and debug shell scripts quickly and easily. After you get used to
writing scripts, you will find yourself solving more and more problems with them.

How This Book Is Organized
This book assumes that you have some familiarity with UNIX and know how to log in,
create, and edit files, as well as how to work with files and directories to a limited extent.
If you haven’t used UNIX in a while or you aren’t familiar with one of these topics,
don’t worry; the first part of this book reviews this material thoroughly.

This book is divided into three parts:

• Part I is an introduction to UNIX, the shell, and some common tools.

• Part II covers programming using the shell.

• Part III covers advanced topics in shell programming.

Part I consists of Chapters 1 through 7. The following material is covered in the individ-
ual chapters:

• Chapter 1, “Shell Basics,” discusses several important concepts related to the shell
and describes the different versions of the shell.

• Chapter 2, “Script Basics,” describes the process of creating and running a shell
script. It also covers the login process and the different modes in which the shell
executes.

• Chapters 3, “Working with Files,” and 4, “Working with Directories,” provide an
overview of the commands used when working with files and directories. These
chapters show you how to list the contents of a directory, view the contents of a
file, and manipulate files and directories.

• Chapter 5, “Input and Output” covers the echo, printf, and read commands along
with the < and > input redirection operators. This chapter also covers using file
descriptors.

• Chapter 6, “Manipulating File Attributes,” introduces the concept of file attributes.
It covers the different types of files along with how to modify a file’s permissions.

• Chapter 7, “Processes,” shows you how to start and stop a process. It also explains
the term process ID and how you can view them.

By this point, you should have a good foundation in the UNIX basics. This will enable
you to start writing shell scripts that solve real problems using the concepts covered in
Part II. Part II is the heart of this book, consisting of Chapters 8 through 18. It teaches
you about all the tools available when programming in the shell. The following material
is covered in these chapters:

• Chapter 8, “Variables,” explains the use of variables in shell programming, shows
you how to create and delete variables, and explains the concept of environment
variables.

• Chapters 9, “Substitution,” and 10, “Quoting,” cover the topics of substitution and
quoting. Chapter 9 shows you the four main types of substitution: filename, vari-
able, command, and arithmetic substitution. Chapter 10 shows you the behavior of
the different types of quoting and its affect on substitution.

2 Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

• Chapters 11, “Flow Control,” and 12, “Loops,” provide complete coverage of flow
control and looping. The flow control constructs if and case are covered along
with the loop constructs for and while.

• Chapter 13, “Parameters,” shows you how to write scripts that use command-line
arguments. The special variables and the getopts command are covered in detail.

• Chapter 14, “Functions,” discusses shell functions. Functions provide a mapping
between a name and a set of commands. Learning to use functions in a shell script
is a powerful technique that helps you solve complicated problems.

• Chapters 15, “Text Filters,” 16, “Filtering Text with Regular Expressions,” and 17,
“Filtering Text with awk,” cover text filtering. These chapters show you how to use
a variety of UNIX commands including grep, tr, sed, and awk.

• Chapter 18, “Other Tools,” provides an introduction to some tools that are used in
shell programming. Some of the commands that are discussed include type, find,
bc, and expr.

At this point, you will know enough about the shell and the external tools available in
UNIX that you can solve most problems. The last part of the book, Part III, is designed
to help you solve the most difficult problems encountered in shell programming. Part III
spans Chapters 19 through 24 and covers the following material:

• Chapter 19, “Signals,” explains the concept of signals and shows you how to
deliver a signal and how to deal with a signal using the trap command.

• Chapter 20, “Debugging,” discusses the shell’s built-in debugging tools. It shows
you how to use syntax checking and shell tracing to track down bugs and fix them.

• Chapters 21, “Problem Solving with Functions,” and 22, “Problem Solving with
Shell Scripts,” cover problem solving. Chapter 21 covers problems that can be
solved using functions. Chapter 22 introduces some real-world problems and
shows you how to solve them using a shell script.

• Chapter 23, “Scripting for Portability,” covers the topic of portability. In this chap-
ter, you will rewrite several scripts from previous chapters to be portable to differ-
ent versions of UNIX.

• Chapter 24, “Shell Programming FAQs,” is a question-and-answer chapter. Several
common programming questions are presented along with detailed answers and
examples.

Each chapter in this book includes complete syntax descriptions for the various com-
mands along with several examples to illustrate the use of commands. The examples are
designed to show you how to apply the commands to solve real problems. At the end of

Introduction 3

each chapter are a few questions that you can use to check your progress. Some of the
questions are short answers, whereas others require you to write scripts.

After Chapter 24, four appendixes are available for your reference:

• Appendix A, “Command Quick Reference,” provides a complete command
reference.

• Appendix B, “Glossary,” contains the terms used in this book.

• Appendix C, “Answers to Questions,” contains the answers to all the questions in
the book.

• Appendix D, “Shell Function Library,” contains a listing of the shell function
library discussed in Chapter 21, “Problem Solving with Functions.”

About the Examples
As you work through the chapters, try typing in the examples to get a better feeling for
how the computer responds and how each command works. After you get an example
working, try experimenting with the example by changing commands. Don’t be afraid to
experiment. Experiments (both successes and failures) teach you important things about
UNIX and the shell.

Many of the examples and the answers to the questions are available for downloading
from the following URL:

http://www.csua.berkeley.edu/~ranga/downloads/tysp2.tar.Z

After you have downloaded this file, change to the directory where the file was saved
and execute the following commands:

$ uncompress tysp2.tar.Z
$ tar –xvf tysp2.tar

This creates a directory named tysp2 that contains the examples from this book.

There is no warranty of any kind on the examples in this book. Much effort has been
placed into making the examples as portable as possible. To this end the examples have
been tested on the following versions of UNIX:

• Sun Solaris versions 2.5.1 to 8

• Hewlett-Packard HP-UX versions 10.10 to 11.0

• OpenBSD versions 2.6 to 2.9

• Apple MacOS X 10.0 to 10.1.2

• Red Hat Linux versions 4.2, 5.1, 5.2, 6.0, and 6.2

• FreeBSD versions 2.2.6 and 4.0 to 4.3

4 Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Hour
1 Shell Basics

2 Script Basics

3 Working with Files

4 Working with Directories

5 Input and Output

6 Manipulating File Attributes

7 Processes

PART I
Introduction to UNIX and
Shell Tools

HOUR 1
Shell Basics

My father is an avid woodworker. He has a tool chest that holds all his
woodworking tools, from screwdrivers and chisels to power sanders and
power drills. Over the years, he has used his tools to build everything from a
toy bridge to a shed. By applying the same tools, he has been able to build
all the elements required in his projects.

In many ways, shell programming is similar to woodworking. A woodwork-
ing project requires a design for the project and its elements along with the
right tools. In shell programming, the project design is provided by the pro-
grammer and the tools are utilities or commands provided by UNIX. There
are simple commands such as ls and cd, and there are also commands such
as awk and sed, which are the power tools in UNIX.

The simple commands are easy to learn. You probably already know how to
use many of them. The power tools take longer to learn, but after mastering
them almost any problem can be tackled. This book covers both the simple
tools and the power tools, with the main focus on the most powerful tool in
UNIX, the shell. In this chapter you will learn about

• Simple, complex, and compound commands

• Command separators

• Different types of shells

Compound Commands
It is possible to combine simple and complex commands into compound commands. A
compound command consists of a list of simple and complex commands, with each com-
mand separated by a semicolon, ;. The syntax for a complex command is

$ cmd1 ; cmd2 ; cmd3 ; ... ; cmdN ;

Here, cmd1 through cmdN are either simple or complex commands. The order of execution
is cmd1, followed by cmd2, followed by cmd3, and so on. When cmdN finishes executing,
the prompt is returned.

An example of a complex command is

$ date ; who am i ;
Wed Dec 9 10:10:10 PST 1998
ranga pts/0 Dec 9 08:49
$

Here the compound command consists of the simple command date and the complex
command who am i. The date command is executed first, followed by the who am i
command. The behavior of the previous complex command is the same as if each of the
commands were executed as follows:

$ date
Wed Dec 9 10:25:34 PST 1998
$ who am i
ranga pts/0 Dec 9 08:49
$

The difference between executing commands in this fashion and using a compound com-
mand is that in a compound command, the prompt is returned only after all the com-
mands that compose the complex command have been executed.

Command Separators
The semicolon character (;) is treated as a command separator. Command separators
indicate where one command ends and another begins. If a command separator is not
used to separate each of the individual commands in a complex command, the system
will not be able to distinguish between the ending of one command and the beginning of
the next command.

For example, if the previous example is executed without the first semicolon, such as
shown here,

$ date who am i

12 Hour 1

Bourne Shell
The original UNIX shell was written at AT&T Bell Labs in New Jersey during the mid-
1970s by Steve Bourne. Because the Bourne shell was the first shell to appear on UNIX
systems, it is often referred to as “the shell.” Historically, it was installed as /bin/sh.

In addition to being a command interpreter, the Bourne shell is a powerful language with
a programming syntax similar to that of the ALGOL language. Steve Bourne had written
a ALGOL-68 compiler when he was at Cambridge University in England and liked the
syntax of that language so much that he modeled the syntax of the shell after it.

Some of the features of the Bourne shell are

• Process control (see Chapter 7, “Processes”)

• Variables (see Chapter 8, “Variables”)

• Regular expressions (see Chapter 9, “Substitution”)

• Flow control (see Chapter 11, “Flow Control,” and Chapter 12, “Loops”)

• Powerful input and output controls (see Chapter 5, “Input and Output”)

• Functions (see Chapter 14, “Functions”)

One of the main complaints against the Bourne shell is that, although it is excellent for
programming, it is hard to use interactively. Some of the major drawbacks are

• Lack of filename completion

• Lack of command history or command editing

• Difficulty in executing multiple background processes

C Shell
The C shell was written at the University of California at Berkeley in the early 1980s by
Bill Joy. C shell was designed to make the shell easier to use interactively. It first
appeared in BSD UNIX and was later incorporated into AT&T’s version of UNIX. C
shell is usually installed as /bin/csh.

Shell Basics 15

1(called the sysadmin) uses to perform maintenance and upgrades.

When the root account is used, both Bourne-type and C-type shells display
the # character as the last character of the prompt.

Use extreme caution when executing commands as the root user because
the commands affect the whole system. None of the examples in this book
require that you have access to the root account to execute them.

The C shell updated the shell’s syntax from the older ALGOL-like syntax to a more
modern C-like syntax. At the time, most people felt that this change would simplify shell
programming for Berkeley’s UNIX programmers, who were well versed in C and its syn-
tax. As it turned out, C shell could not be used for much more than the most trivial
scripts because of the following flaws:

• Weak input and output controls

• Lack of functions

• Confusing syntax

Although the C shell did not catch on for scripts, it has become extremely popular for
interactive use. Some of the key improvements responsible for this popularity are:

• Command History. Previously executed commands can be recalled for re-execu-
tion. The command can also be edited before it is re-executed.

• Aliases. C shell allows for the creation of short mnemonic names that can be
entered in lieu of the full command names. Aliases are a simplified form of the
Bourne shell functions.

• File Name Completion. The C shell can automatically complete a filename after a
few characters of the file’s name have been entered.

• Job Controls. The C shell allows for the execution of multiple background
processes and allows for their control via the jobs command.

The TENEX/TOPS C shell, tcsh, is a newer version of the C shell that features several
usability enhancements. For example, it can scroll through the command history using
the up and down arrow keys and it allows for the editing of commands using right and
left arrow keys. For more information on tcsh, refer to the following URL:

http://www.dubois.ws/software/csh-tcsh-book/

The Korn Shell
For many years, the only shells to choose from were the Bourne shell and the C shell.
This meant that most users had to learn two shells, the Bourne shell for programming
and the C shell for interactive use. To rectify this situation, David Korn of AT&T Bell
Labs wrote the Korn Shell, ksh. It incorporates all the C shell’s interactive features while
preserving the Bourne shell’s ALGOL-like syntax. The Korn Shell is usually installed as
/bin/ksh or /usr/bin/ksh.

Some of the additional features that the Korn Shell adds to the Bourne shell are

• Command history and history substitution

• Command aliases and functions

16 Hour 1

• Filename completion

• Arrays (see Chapter 8)

• Built-in integer arithmetic (see Chapter 9)

In general ksh is fully compatible with sh. Some minor differences exist that can affect
the execution of a script. Where appropriate, such differences are noted in this book.

There are several variants of ksh. The official version is pre-installed on most commer-
cial versions of UNIX, such as Solaris and HP-UX. For other systems, it is available in
binary form from

http://www.kornshell.com

Most non-commercial versions of UNIX, such as Linux and BSD, use the public domain
version of the Korn Shell, pdksh. Eric Gisin created pdksh using Charles Forsyth’s public
domain V7 shell along with parts of the BRL shell. Currently, pdksh is maintained by
Michael Rendell. It is available in both source and binary forms from

http://web.cs.mun.ca/~michael/pdksh/

For the shell programmer, there is no difference between the official and the public
domain versions of ksh—scripts that run in one version will run in the other. For users,
the official version provides a few nice features such as command line completion with
the Tab key rather than the Esc key.

Another variant of ksh is the POSIX shell. The Institute of Electrical and Electronics
Engineers (IEEE) created the POSIX standards in order to help programmers write
portable programs that are compatible with a wide range of systems. One particular stan-
dard, the 1003.2/ISO 9945.2 Shell and Tools specification, specifies the syntax and
behavior of a portable shell, which is essentially the syntax and behavior of ksh. Most
commercial UNIX vendors are slowly adapting the POSIX standards. HP is currently
shipping the POSIX shell as the default shell, /bin/sh, on all of its new HP-UX systems.

Bourne Again Shell
The Bourne Again Shell, bash, was written by Brian Fox of the Free Software
Foundation as a replacement for the Bourne shell. At present bash is maintained by Chet
Ramey. It incorporates most of the features of csh, tcsh, and ksh while retaining com-
patibility with the original Bourne shell and compliance with the POSIX standard.

Most Linux distributions, such as Red Hat, Debian, and Slackware, ship with bash
installed as /bin/bash and /bin/sh. Because of licensing restrictions, the original
Bourne shell cannot be easily distributed with Linux. Since bash is compatible with the
Bourne shell, most Linux distributions have chosen to use a copy of bash in place of a
genuine Bourne shell.

Shell Basics 17

1

For non-Linux systems, bash is available in both source and binary forms from

http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html

Some features that bash includes, in addition to those of the Korn Shell, are

• Name completion for variable names, usernames, hostnames, commands, and file-
names

• Spelling correction for pathnames in the cd command

• Arrays of unlimited size

• Integer arithmetic in any base between 2 and 64

The Z Shell
The Z shell, zsh, was written by Paul Falstad while he was a student at Princeton
University. It is extremely customizable and is mostly compatible with ksh.

On Mac OS X systems, zsh is installed as /bin/zsh and /bin/sh. Because of licensing
issues, Apple has chosen not to distribute the original Bourne shell with Mac OS X.
Apple distributes zsh as its Bourne shell replacement.

For non-Mac OS X systems, zsh is available from

http://zsh.sunsite.dk/

In addition to the features of ksh and bash, some additional features of zsh are

• Highly configurable command-line editing

• Fully programmable filename, username, hostname, and history completion

• Highly customizable keyboard mappings

Summary
This chapter covered shell basics, including the execution of simple commands, complex
commands, and compound commands. The concept of a shell and several different
shells, including ksh, bash, and zsh, were described. The next chapter, “Script Basics,”
explores the function of the shell in greater detail, starting with interactive and non-inter-
active uses of the shell.

18 Hour 1

Questions
1. Classify each of the following as simple, complex, or compound commands:

$ ls
$ date ; uptime
$ ls –l
$ echo “hello world”

If you haven’t seen some of these commands before, try them out on your system.
As you progress through the book, each will be formally introduced.

2. What is the effect of putting a semicolon at the end of a single simple or complex
command?

For example, will the output of the following commands be different?
$ who am i
$ who am i ;

3. What are the two major types of shells? Give an example of a shell that falls into
each type.

Terms
Arguments Arguments are command modifiers that change the behavior of a com-
mand.

Command Separators A command separator indicates where one command ends and
another begins. The most common command separator is the semicolon character (;).

Commands A command is a program that can be executed. To execute a command,
type its name and press Enter or Return.

Complex Commands A complex command is a command that consists of a command
name and a list of arguments.

Compound Commands A compound command consists of a list of simple and com-
plex commands separated by the semicolon character (;).

Default Behavior The default behavior of a command is the output generated by a
command when it is run as a simple command.

Prompt The prompt is displayed by the shell. When the prompt is present, the shell
can be given a command to execute. In this book, the $ character is used to indicate the
prompt.

Shell Basics 19

1

Shell The shell is an interface to the UNIX system. It reads input and executes pro-
grams based on that input. When a program has finished executing, it displays that pro-
gram’s output. The shell is sometimes called a command interpreter.

Simple Commands A simple command is a command that can be executed by giving
just its name at the prompt.

Words Words are sets of characters separated by spaces and tabs.

20 Hour 1

HOUR 2
Script Basics

Chapter 1, “Shell Basics,” introduced the concept of a shell and commands,
and described how the shell reads input and executes the specified com-
mands. This chapter expands on those basic concepts to explain in greater
detail what the shell is and how it works, including the login and logout
process as it relates to the shell.

This chapter also explains how to group commands that are normally exe-
cuted interactively into a file, thus creating a program or script. Scripts are
the power behind the shell because they allow commands to be grouped
together to create new commands.

Specifically, the topics covered in this chapter are

• The UNIX System

• Shell Initialization

• Getting Help

The UNIX System
The UNIX system consists of two main components:

• Utilities

• Kernel

Utilities are programs that can be executed. The programs who and date from the previ-
ous chapter are examples of utilities.

Commands are slightly different from utilities. The term utility refers to the name of a
program, whereas the term command refers to the program and any arguments are speci-
fied to that program in order to change its behavior. For simple commands, the term
command is sometimes used in place of the term utility.

The kernel is the heart of the UNIX system. It provides utilities with a means of access-
ing the computer’s hardware. It also handles scheduling and executing commands.

When a computer is powered off, both the kernel and the utilities are stored on the hard
drives. When the computer boots, the kernel is loaded from disk into memory and
remains in memory until the computer is turned off. Utilities, on the other hand, are
stored in files on disk and loaded into memory only when they are requested for execu-
tion. For example, when the following command is executed,

$ who

the kernel loads the who command from a file on disk, places it in memory, and starts
executing it. When the program finishes executing, it remains in the machine’s memory
for a short period of time before it is removed. This enables frequently used commands
to execute faster. Consider what happens when the date command is executed three
times in quick succession:

$ date
Sun Dec 27 09:42:37 PST 1998
$ date
Sun Dec 27 09:42:38 PST 1998
$ date
Sun Dec 27 09:42:39 PST 1998

The first time the date command might need to be loaded from the computer’s hard disk,
but the second and third time the date command usually remains in the computer’s
memory, allowing it to execute faster. Try it on your system and see if you notice a slight
delay the first time and no delay the second and third times.

22 Hour 2

The following is a sample entry from /etc/passwd on my system:

ranga:x:500:100:Sriranga Veeraraghavan:/home/ranga:/bin/bash

The entry is composed of several fields, each separated from the other fields by a colon,
:. Later chapters will explain the information stored in each field. For now, only the last
two fields are important. The last field stores the shell associated with the account. The
second from the last field stores the home directory for the account. The home directory
is where you first start out after logging in. In some documentation, you will see home
directories denoted by a tilde, ~, or a tilde followed by a slash, ~/. In the previous exam-
ple, the shell is /bin/bash and the home directory is /home/ranga. Your shell and home
directory will most likely be different.

In most cases, the system administrator will assign you the default shell for a particular
version of UNIX. In some cases, there are two defaults and the system administrator can
choose between them based on his personal preferences.

The default shells for some common versions of UNIX are as follows:

• Solaris uses Bourne shell or C Shell.

• HP-UX uses POSIX shell.

• BSD uses Korn Shell or C Shell.

• Mac OS X uses Z Shell or C Shell.

• Linux uses the Bourne Again Shell.

For the sake of brevity, we assume that you have been assigned Bourne shell, Korn Shell
(ksh), Bourne Again Shell (bash), or Z Shell (zsh) as your shell.

Shell Modes and Initialization
In this section, we will first discuss the startup procedure for the various Bourne-type
shells, and then we will examine the different modes of execution for a shell.

Initialization Procedures
After you log in, a shell is executed on your behalf. When this shell starts executing, it is
uninitialized. In this state, several parameters required for its proper operation are not
defined. The shell undergoes a process called initialization that defines these parameters.
The steps and files involved in initialization are different in each shell, so we will exam-
ine the process used by each of the Bourne-type shells individually. In general each of
the shells uses default or system-wide configuration files located in the /etc directory
along with a set of personal configuration files located in your home directory.

24 Hour 2

Bourne Shell
Bourne shell initialization has four steps and involves the initialization files (also called
init files) /etc/profile and .profile. The process is as follows:

1. The shell checks to see whether the file /etc/profile exists.

2. If it exists, the shell reads it; otherwise, the shell skips it.

3. The shell checks to see whether the file .profile exists in your home directory.

4. If it exists, the shell reads it; otherwise, the shell skips it.

After these steps have been performed, the prompt is displayed. The default prompt for
Bourne shell is $ (a dollar sign followed by a space).

Korn Shell
Korn Shell (ksh) closely resembles Bourne shell initialization. It has six steps and
involves the init files /etc/profile, .profile, and .kshrc:

1. ksh checks to see whether the file /etc/profile exists.

2. If it exists, ksh reads it; otherwise, ksh skips it.

3. ksh checks to see whether the file .profile exists in your home directory.

4. If it exists, ksh reads it; otherwise, ksh skips it.

5. ksh checks to see whether the file .kshrc exists in your home directory.

6. If it exists, ksh reads it; otherwise, ksh skips it.

After these steps have been performed, the prompt is displayed. The default prompt for
ksh is $ (a dollar sign followed by a space).

Bourne Again Shell
Bourne Again shell (bash) initialization is a bit longer than Korn shell and Bourne shell
initialization. It has eight steps and involves the init files /etc/profile, .bash_profile,
.bash_login, and .profile:

1. bash checks to see whether the file /etc/profile exists.

2. If it exists, bash reads it; otherwise, bash skips it.

3. bash checks to see whether the file .bash_profile exists in your home directory.

4. If it exists, bash reads it; otherwise, bash skips it.

5. bash checks to see whether the file .bash_login exists in your home directory.

6. If it exists, bash reads it; otherwise, bash skips it.

7. bash checks to see whether the file .profile exists in your home directory.

8. If it exists, bash reads it; otherwise, bash skips it.

Script Basics 25

2

After these steps have been performed, a prompt is displayed. The default prompt for
bash is bash$ (the string bash$ followed by a space).

Z Shell
Z shell (zsh) initialization is quite long and does not resemble the initialization process
of the other shells. It has 16 steps and involves the init files /etc/zshenv, .zshenv,
/etc/zprofile, .zprofile, /etc/zlogin, and .zlogin:

1. zsh checks to see whether the file /etc/zshenv exists.

2. If it exists, zsh reads it; otherwise, zsh skips it.

3. zsh checks to see whether the file .zshenv exists in your home directory.

4. If it exists, zsh reads it; otherwise, zsh skips it.

5. zsh checks to see whether the file /etc/zprofile exists.

6. If it exists, zsh reads it; otherwise, zsh skips it.

7. zsh checks to see whether the file .zprofile exists in your home directory.

8. If it exists, zsh reads it; otherwise, zsh skips it.

9. zsh checks to see whether the file /etc/zshrc exists.

10. If it exists, zsh reads it; otherwise, zsh skips it.

11. zsh checks to see whether the file .zshrc exists in your home directory.

12. If it exists, zsh reads it; otherwise, zsh skips it.

13. zsh checks to see whether the file /etc/zlogin exists.

14. If it exists, zsh reads it; otherwise, zsh skips it.

15. zsh checks to see whether the file .zlogin exists in your home directory.

16. If it exists, zsh reads it; otherwise, zsh skips it.

After these steps have been performed, a prompt is displayed. The default prompt for zsh
is host%. Here host is the hostname of your system. For example, on a system named
mars, the default zsh prompt would be mars%.

Initialization File Contents
Usually a shell’s init files are quite short. The purpose of these files is to provide a com-
plete working environment with as little overhead as possible. In this section, we will
look at the basic settings required for Bourne shell. If you are using a different shell, you
can put these settings into an init file used by that shell.

26 Hour 2

The init file .profile contains all of your shell initialization settings. You can add as
much customization information as you want to this file. The minimum set of informa-
tion that you need to configure includes

• A list of directories in which to locate commands

• A list of directories in which to locate manual pages for commands

Setting PATH

When you type the command,

$ date

the shell has to locate the command date before it can be executed. The PATH variable-
specifies the directories in which the shell should look for commands. The most basic
setting is as follows:

PATH=/bin:/usr/bin

Each of the individual entries separated by the colon character, :, should be directories.
Directories are discussed in Chapter 4.

If you request the shell to execute a command and it cannot find it in any of the directo-
ries given in the PATH variable, a message similar to the following appears:

$ hello
hello: not found

Setting MANPATH

In UNIX, online help has been available since the beginning. The next section, “Getting
Help,” discusses how to access the online help using the man command. In order for this
command to work properly, you have to tell the shell where the help pages are located.
This information is specified using the MANPATH. A common setting is

MANPATH=/usr/man:/usr/share/man

Similar to the path, each of the individual entries separated by the colon character, :, are
directories.

When you use the man command to request online help, it searches every directory given
in the MANPATH for an online help page corresponding to the topic you requested. For
example, the command

$ man who

looks for the online help page corresponding to the who command. If this page is found,
it is displayed.

Script Basics 27

2

Interactive and Non-Interactive Shells
Shell can run in two different modes: interactive and non-interactive. In interactive mode,
the shell expects to read input from you and execute the commands that you specify. This
mode is called interactive because it interacts with the user . In non-interactive mode, the
shell does not interact with the user; instead it reads commands stored in a file and exe-
cutes them. When it reaches the end of the file, it exits.

Most people are familiar with interactive mode: log in, execute some commands in the
shell, and log out.

Starting an Interactive Shell
To start a shell in interactive mode, you can type in its name at the prompt. For example,
the following command starts bash in interactive mode:

$ /bin/bash
bash$

The first prompt, $, that is displayed by the shell started on your behalf when you logged
in; the second prompt, bash$, is displayed by the bash you started.

At this point, we have two interactive shells: The first one is waiting for the other to fin-
ish. At first glance, this does not sound extremely useful, but there are cases in which it
can be quite helpful. For example, if you need to make changes to the shell’s settings, the
easiest way to test your changes is to start another shell, perform and verify the changes,
and then exit back to the original, unaltered shell.

To exit from the second shell, you can use the exit command:

bash$ exit
$

This returns you to the original shell. If you type exit here, the system will log you out.
The exit command works in all Bourne-type shells.

Starting a Non-Interactive Shell
You can start a shell in non-interactive mode as follows:

$ /bin/sh filename

Here filename is the name of a file that contains commands to execute. As an example,
consider the compound command:

$ date ; who

28 Hour 2

Let’s put these commands into a file called logins. First open a file called logins in an
editor and type in this command and save the file. Now you can execute the commands
in this file using the command:

$ /bin/sh logins

This executes the compound command and displays its output. This is the first example
of a shell script or shell program. Basically, a shell script is a file that contains a list of
commands. When the shell executes the commands contained in the file, it does so with-
out interacting with the user. For this reason, when the shell is used to execute a shell
script, it is said to execute in non-interactive mode.

Making a Shell Script Executable
One of the most important tasks in writing shell scripts is making the shell script exe-
cutable and making sure that the correct shell is invoked on the script.

In a previous example, you created the logins script that executes the following com-
pound command:

date ; who ;

If you wanted to run the script by just typing its name, you need to do two things:

• Mark the file as executable.

• Make sure that the right shell is used to execute the script.

To make this script executable, you need to execute a command of the form:

chmod a+x filename

The chmod command, when used in this form, marks the file specified by filename as
executable. For a complete discussion of chmod and its function, see Chapter 6,
“Manipulating File Attributes.” As an example, the following command marks the file
logins executable:

$ chmod a+x $logins

To ensure that the correct shell is used to execute a script, you must add a magic line, of
the following form, as the first line of the script:

#!shell

Here shell is the name of the shell that should be used to execute the script. In most
cases, you will want to use /bin/sh as shell, but if you want to use ksh for your scripts,
you can specify /bin/ksh instead. Without a magic line, the current shell is always used

Script Basics 29

2

to evaluate a script, regardless of which shell the script was written for. If you omit the
magic line from your scripts, csh and tcsh users might not be able to run them correctly.

30 Hour 2

The Magic of #!/bin/sh
The #!/bin/sh must be the first line of a shell script in order for sh to be used to run
the script. If this appears on any other line, it is treated as a comment and ignored by all
shells.

After this addition, the logins script contains two lines:

#/bin/sh
date ; who ;

Now it is possible to execute the script by just typing in its name:

$ logins
Tue Sep 18 18:44:12 PDT 2001
ranga console Sep 12 10:22

Comments
The magic first line for the shell script, #!/bin/sh, introduces the concept of comments.
A comment is a statement embedded in a shell script that is not intended for execution
by the shell. In shell scripts, comments start with the # character. Everything between
the # and end of the line are considered part of the comment and are ignored by the
shell.

Adding comments to a script is quite simple: Open the script using an editor and add
lines that start with the # character. For example, to add the following line to the logins
shell script,

print out the date and who’s logged on

you can open the file logins with an editor and insert this line as the second line in the
file. Now the script has three lines:

#!/bin/sh
print out the date and who’s logged on
date ; who ;

There is no change in the output of the script because comments are ignored. Comments
do not slow down a script because the shell just skips them.

You can also add comments to lines that contain commands by adding the # character
after the commands. For example, you can add a comment to the line date ; who ; as
follows:

date ; who ; # execute the date and who commands

When you are writing a shell script, make sure to use comments to explain what the
script is doing. If someone else has to look at your shell script, it will help him to under-
stand how your script functions. Comments can also help you figure out what your script
is doing, months or years after you wrote it.

Getting Help
As you read through this book, you will want to get more information about the com-
mands and features that are discussed. Much of this information is available by using the
online help features of UNIX. Some other resources include Web sites that cover shell
programming and Usenet newsgroups.

man
Every version of UNIX comes with an extensive collection of online help pages called
man pages (short for manual pages). The man pages are the authoritative source about
your UNIX system. They contain complete information about both the kernel and all the
utilities.

You can access man pages by using the man command:

man cmd

Here, cmd is the name of a command that you want more information about. As an exam-
ple,

$ man uptime

displays the following man page on a Solaris machine:

User Commands uptime(1)

NAME
uptime - show how long the system has been up

SYNOPSIS
uptime

DESCRIPTION
The uptime command prints the current time, the length of
time the system has been up, and the average number of jobs
in the run queue over the last 1, 5 and 15 minutes. It is,
essentially, the first line of a w(1) command.

EXAMPLE
Below is an example of the output uptime provides:

example% uptime

Script Basics 31

2

10:47am up 27 day(s), 50 mins, 1 user,
➥load average: 0.18, 0.26, 0.20

SEE ALSO
w(1), who(1), whodo(1M), attributes(5)

NOTES
who -b gives the time the system was last booted.

Man Page Sections
As you can see from the output in the previous example, a man page is divided into sev-
eral sections that are described in Table 2.1. Almost every man page will include these
sections. The content and style of the material in the sections differs from system to sys-
tem.

TABLE 2.1 Sections in a Man Page

Section Description

NAME This section gives the name of the command along with a short description of it.

SYNOPSIS This section describes all the different modes in which the command can be run.
If a command accepts arguments, they are shown in this section.

DESCRIPTION This section includes a verbose description of the command. If a command
accepts arguments, each argument will be fully explained in this section.

EXAMPLE This section contains an example demonstrating how to execute the command. It
might also contain some sample output. Not all man pages contain this section.

SEE ALSO This section lists other commands that are related to the command.

NOTES This section usually lists some additional information about the command.
Sometimes it lists the known bugs.

Most man pages include all the sections given in Table 2.1 and might include one or two
optional sections described in Table 2.2.

TABLE 2.2 Optional Sections Found in Man Pages

Section Description

AVAILABILITY This section describes the versions of UNIX that include support for a
given command. Sometimes it lists the optional software packages you
need to purchase from the vendor to gain extra functionality from a
command.

KNOWN BUGS This section usually lists one or more known problems with the com-
mand. If you encounter a problem that is not included in this section, it
should be reported to the vendor or author.

32 Hour 2

FILES This section lists the files that are required for the command to func-
tion correctly. It might also list the files that can be used to configure a
command.

AUTHORS or CONTACTS These sections list the commands’ author or authors and provide con-
tact information such as e-mail or postal addresses.

STANDARDS COMPLIANCE If the behavior of a command is specified by a standards organization
such as ISO (International Standards Organization), IEEE (Institute of
Electrical and Electronic Engineers), or ANSI (American National
Standards Institute), this section lists the relevant standard or stan-
dards.

Try using the man command to get more information on some of the commands dis-
cussed in this chapter.

If the man command cannot find a man page corresponding to the command you
requested, it issues an error message. For example, the command

$ man apple

produces an error message similar to the following on my system:

No manual entry for apple

The exact error message depends on your version of UNIX.

UNIX System Manuals
The term manual page comes from the original versions of UNIX, when the online pages
were available as large bound manuals. In all, there were eight different manuals cover-
ing the main topics of the UNIX system. These manuals are described in Table 2.3.

TABLE 2.3 The UNIX System Manuals

Manual Section Description

1 Covers commands.

2 Covers UNIX system calls. System calls are used inside a program, such
as date, to ask the kernel for a service.

3 Covers libraries. Libraries are used to store non–kernel-related functions
used by C programmers.

4 Covers file formats. For example, the format file /etc/passwd is docu-
mented in this section.

Script Basics 33

2

TABLE 2.2 continued

Section Description

5 A secondary section that covers file formats.

6 Includes instructions for playing games on UNIX. (UNIX wasn’t always a
serious academic and business operating system; it started out as a gaming
platform!)

7 Covers device drivers.

8 Covers system maintenance.

In the printed version, you had to know the section where you needed to look for a par-
ticular manual page. The big advantage of man over the printed manual is that man looks
in all the sections of the manual for the information you requested, making it much eas-
ier to get help.

Online Resources
In addition to man, there are several Usenet newsgroups, Web sites, and e-mail lists that
are good sources of information about the different shells and shell programming.

The main Usenet newsgroup for shell programming questions and information is
comp.unix.shell. Before posting a question, you should read the frequently asked ques-
tions (FAQ) for the newsgroup. The FAQ is located at

http://www.faqs.org/faqs/unix-faq/shell/intro/

Often you will find that your question, or something very similar to it, has an answer in
this or one of the other FAQ’s mentioned later.

For questions regarding the Bourne Again shell (bash), you can subscribe to the bash e-
mail list: bug-bash@gnu.org. A subscription form is located at

http://mail.gnu.org/mailman/listinfo/bug-bash

If you prefer reading news to e-mail, the e-mail list is available as the newsgroup
gnu.bash.bug. Before posting to the newsgroup, you should read the bash FAQ located
at

http://www.faqs.org/faqs/unix-faq/shell/bash/

For questions regarding the Z Shell (zsh), you can subscribe to the zsh-users mailing list:
zsh-users@sunsite.dk. Subscription instructions can be found at

http://zsh.sunsite.dk/Arc/mlist.html

34 Hour 2

TABLE 2.3 continued

Manual Section Description

Before posting to the mailing list, you should read the zsh FAQ located at

http://www.faqs.org/faqs/unix-faq/shell/zsh/

The following Web sites are also excellent references for shell programming:

http://www-h.eng.cam.ac.uk/help/tpl/unix/scripts/scripts.html
http://www.shelldorado.com/

The first site contains a tutorial on shell programming written by Tim Love at Cambridge
University. The second site is an archive of shell scripts and shell programming informa-
tion maintained by Heiner Steven of Sun Microsystems.

Summary
This chapter covered what the shell is and how it operates in greater detail. The init
process for the various shells was described along with a brief description of the basic
information required in the init file .profile. The different modes of operation for the
shell, interactive and non-interactive, were also covered. Shell programming relies on the
non-interactive mode because it enables commands specified in a file to be executed.

We also covered man and man pages, the online help system in UNIX. Finally, online
sources for shell programming information, such as Usenet newsgroups, Web sites, and
e-mail lists, were covered.

The next chapter formally introduces the concept of files by showing you how to list
files, view the contents of files, and manipulate files.

Questions
1. What are the two files used by the shell to initialize itself?

2. Why do you need to set PATH and MANPATH?

3. What is the purpose of the following line in a shell script?

#!/bin/sh

4. What command should you use to access the online help?

Terms
Commands A command is comprised of the name of a program along with zero or
more arguments. You might see the term command used instead of the term utility for
simple commands, where only the program name is given.

Script Basics 35

2

Comments A comment is a statement that is embedded in a shell script but is not exe-
cuted by the shell.

Home Directory The home directory is where you first start out after logging in.

Interactive Mode In interactive mode, the shell reads input from the user and executes
the specified commands. This mode is called interactive because the shell is interacting
with a user.

Kernel The kernel is the heart of the UNIX system. It provides utilities with a means
of accessing a machine’s hardware. It also handles scheduling and executing commands.

Man Pages Every version of UNIX comes with an extensive collection of online help
pages called man pages (short for manual pages). The man pages are the authoritative
source about your UNIX system. They contain complete information about both the ker-
nel and all the utilities.

Non-interactive Mode In non-interactive mode, the shell does not interact with the
user; instead it reads commands stored in a file and executes them. When the shell
reaches the end of the file, it exits.

Shell Initialization After a shell is started, it undergoes a phase called initialization in
which important parameters are set up.

Shell Script A shell script is a list of commands stored in a file.

Uninitialized Shell An uninitialized shell is one that has not yet read its init files in
order to set up the parameters required for its proper operation.

Utilities Utilities are programs, such as who and date, that can be executed.

36 Hour 2

HOUR 3
Working with Files

In UNIX there are two basic types of files: ordinary and special. An ordi-
nary file contains data, text, or program instructions. Almost all of the files
on a UNIX system are ordinary files. This chapter covers operations on ordi-
nary files.

Special files are mainly used to provide access to hardware such as hard dri-
ves, CD-ROM drives, modems, and Ethernet adapters. Some special files are
similar to aliases or shortcuts and enable you to access a single file using
different names. Special files are covered in Chapter 6, “Manipulating File
Attributes.”

Both ordinary and special files are stored in directories. Directories are simi-
lar to folders in the Mac OS or Windows, and they are covered in detail in
Chapter 4, “Working with Directories.”

In this chapter, we will examine ordinary files, concentrating on the follow-
ing topics:

• Listing files

• File contents

• Manipulating files

Listing Files
We’ll start by using the ls (short for list) command to list the contents of the current
directory:

$ ls

The output will be similar to the following:

Desktop Icon Music Sites
Documents Library Pictures Temporary Items
Downloads Movies Public

We can tell that several items are in the current directory, but this output does not tell us
whether these items are files or directories. To find out which of the items are files and
which are directories, we can specify the -F option to ls. An option is an argument that
starts with the hyphen or dash character, ‘-’.

The following example illustrates the use of the -F option of ls:

$ ls -F

Now the output for the directory is slightly different:

Desktop/ Icon Music/ Sites/
Documents/ Library/ Pictures/ Temporary Items/
Downloads/ Movies/ Public/

As you can see, some of the items now have a / at the end, incicating each of these items
is a directory. The other items, such as icon, have no character appended to them. This
indicates that they are ordinary files.

When the -F option is specified to ls, it appends a character indicating the file type of
each of the items it lists. The exact character depends on your version of ls. For ordinary
files, no character is appended. For special files, a character such as !, @, or # is
appended to the filename. For more information on the -F options, check the UNIX man-
ual page for the ls command. You can do this as follows:

$ man ls

38 Hour 3

Options Are Case Sensitive
The options that can be specified to a command, such as ls, are case sensitive. When
specifying an option, you need to make sure that you have specified the correct case for
the option. For example, the output from the -F option to ls is different from the out-
put produced when the -f option is specified.

So far, you have seen ls list more than one file on a line. Although this is fine for
humans reading the output, it is hard to manipulate in a shell script. Shell scripts are
geared toward dealing with lines of text, not the individual words on a line. Although
external tools, such as the awk language covered in Chapter 17, “Filtering Text with awk,”
can be used to deal with multiple words on a line, it is much easier to manipulate the
output when each file is listed on a separate line. You can modify the output of ls to this
format by using the -1 option. For example,

$ ls -1

produces the following listing:

Desktop
Documents
Downloads
Icon
Library
Movies
Music
Pictures
Public
Sites
Temporary Items

Hidden Files
In the examples you have seen thus far, the output has listed only the visible files and
directories. You can also use ls to list invisible or hidden files and directories. An invisi-
ble or hidden file is one whose first character is a dot or period (.). Many programs,
including the shell, use such files to store configuration information. Some common
examples of invisible files include

• .profile, the Bourne shell (sh) initialization script

• .kshrc, the Korn Shell (ksh) initialization script

• .cshrc, the C Shell (csh) initialization script

• .rhosts, the remote shell configuration file

All files that do not start with the . character are considered visible.

To list invisible files, specify the -a option to ls:

$ ls -a

The directory listing now resembles this:

. .FBCLockFolder Icon Public

.. .ssh Library Sites

.CFUserTextEncoding Desktop Movies Temporary Items

Working with Files 39

3

.DS_Store Documents Music

.FBCIndex Downloads Pictures

As you can see, this directory contains several invisible files.

Notice that in this output, the file type information is missing. To get the file type infor-
mation, specify the -F and the -a options as follows:

$ ls -a -F

The output changes to the following:

./ .ssh/ Movies/

../ Desktop/ Music/

.CFUserTextEncoding Documents/ Pictures/

.DS_Store Downloads/ Public/

.FBCIndex Icon? Sites/

.FBCLockFolder/ Library/ Temporary Items/

With the file type information, you see that there are two invisible directories (. and ..).
These directories are special entries present in all directories. The first one, ., represents
the current directory, whereas the second one, .., represents the parent directory. These
concepts are discussed in greater detail in Chapter 4.

Option Grouping
In the previous example, you specified the options to ls separately. You could have
grouped the options together, as follows:

$ ls -aF
$ ls -Fa

Both of these commands are equivalent to the following command:

$ ls -a -F

The order of the options does not matter to ls. As an example of option grouping, con-
sider the following equivalent commands:

ls -1 -a -F
ls -1aF
ls -a1F

ls -Fa1

All permutations of the options -1, -a, and -F produce the same output:

./

../

.CFUserTextEncoding

.DS_Store

40 Hour 3

.FBCIndex

.FBCLockFolder/

.ssh/
Desktop/
Documents/
Downloads/
Icon?
Library/
Movies/
Music/
Pictures/
Public/
Sites/
Temporary Items/

File Contents
In the last section we looked at listing files and directories with the ls command. In this
section we will look at the cat and wc commands. The cat command lets you view the
contents of a file. The wc command gives you information about the number of words
and lines in a file.

cat
To view the contents of a file, we can use the cat (short for concatenate) command as
follows:

cat [opts] file1 ... fileN

Here opts are one or more of the options understood by cat, and file1...fileN are the
names of the files whose contents should be printed. The options, opts, are optional and
can be omitted. Two commonly used options are discussed later in this section.

The following example illustrates the use of cat:

$ cat fruits

This command prints the contents of a file called fruits:

Fruit Price/lbs Quantity
Banana $0.89 100
Peach $0.79 65
Kiwi $1.50 22
Pineapple $1.29 35
Apple $0.99 78

Working with Files 41

3

If more than one file is specified, the output includes the contents of both files concate-
nated together. For example, the following command outputs the contents of the files
fruits and users:

$ cat fruits users
Fruit Price/lbs Quantity
Banana $0.89 100
Peach $0.79 65
Kiwi $1.50 22
Pineapple $1.29 35
Apple $0.99 78

ranga
vathsa
amma

Numbering Lines
The -n option of cat will number each line of output. It can be used as follows:

$ cat -n fruits

This produces the output

1 Fruit Price/lbs Quantity
2 Banana $0.89 100
3 Peach $0.79 65
4 Kiwi $1.50 22
5 Pineapple $1.29 35
6 Apple $0.99 78
7

From this output, you can see that the last line in this file is blank. We can ask cat to
skip numbering blank lines using the -b option as follows:

$ cat -b fruits

Now the output resembles the following:

1 Fruit Price/lbs Quantity
2 Banana $0.89 100
3 Peach $0.79 65
4 Kiwi $1.50 22
5 Pineapple $1.29 35
6 Apple $0.99 78

The blank line is still presented in the output, but it is not numbered. If the blank line
occurs in the middle of a file, it is printed but not numbered:

$ cat -b hosts
1 127.0.0.1 localhost loopback

2 128.32.43.52 soda.berkeley.edu soda

42 Hour 3

If multiple files are specified, the contents of the files are concatenated in the output, but
line numbering is restarted at 1 for each file. As an illustration, the following command,

$ cat -b fruits users

produces the output

1 Fruit Price/lbs Quantity
2 Banana $0.89 100
3 Peach $0.79 65
4 Kiwi $1.50 22
5 Pineapple $1.29 35
6 Apple $0.99 78

1 ranga
2 vathsa
3 amma

wc
Now let’s look at getting some information about the contents of a file. Using the wc
command (short for word count), we can get a count of the total number of lines, words,
and characters contained in a file. The basic syntax of this command is:

wc [opts] files

Here opts are one or more of the options given in Table 3.1, and files are the files you
want examined. The options, opts, are optional and can be omitted.

TABLE 3.1 wc Options

Option Description

-l Count of the number of lines.

-w Count of the number of words.

-m Count of the number of characters. This option is available on Mac OS X,
OpenBSD, Solaris, and HP-UX. This option is not available on FreeBSD and Linux
systems.

-c Count of the number of characters. This option is the Linux and FreeBSD equiva-
lents of the -m option.

When no options are specified, the default behavior of wc is to print out a summary
of the number of lines, words, and characters contained in a file. For example,
the command

$ wc fruits

Working with Files 43

3

produces the following output:

8 18 219 fruits

The first number, in this case 8, is the number of lines in the file. The second number, in
this case 18, is the number of words in the file. The third number, in this case 219, is the
number of characters in the file. At the end of the line, the filename is listed. When mul-
tiple files are specified, the filename helps to identify the information associated with a
particular file.

If more than one file is specified, wc gives the counts for each file along with a total. For
example, the command

$ wc fruits users

produces output similar to the following:

8 18 219 fruits
3 3 18 users
11 21 237 total

The output on your system might be slightly different.

Counting Lines
To count the number of lines, the -l (as in lines) option can be used. For example, the
command

$ wc -l fruits

produces the output

8 fruits

The first number, in this case 8, is the number of lines in the file. The name of the file is
listed at the end of the line.

When multiple files are specified, the number of lines in each file is listed along with the
total number of lines in all of the specified files. As an example, the command

$ wc -l fruits users

produces the output

8 fruits
3 users
11 total

44 Hour 3

Counting Words
To count the number of words in a file, the -w (as in words) option can be used. For
example, the command

$ wc -w fruits

produces the output

18 hosts

The first number, in this case 18, is the number of words in the file. The name of the file
is listed at the end of the line.

When multiple files are specified, the number of words in each file is listed along with
the total number of words in all of the specified files. As an example, the command

$ wc -w fruits users

produces the output

18 fruits
3 users
21 total

Counting Characters
To count the number of characters, we need to use either the -m or the -c option. The -m
option is available on Mac OS X, OpenBSD, Solaris, and HP-UX. On FreeBSD and
Linux systems, the -c option should be used instead.

For example, on Solaris the command

$ wc -m fruits

produces the output

219 fruits

The same output is produced on Linux and FreeBSD systems using the command

$ wc -c fruits

The first number, in this case 219, is the number of characters in the file. The name of
the file is listed at the end of the line.

When multiple files are specified, the number of characters in each file is listed along
with the total number of characters in all the specified files. As an example, the com-
mand

$ wc -m fruits users

Working with Files 45

3

produces the output

219 hosts
18 users
237 total

Combining Options
The options to wc can be grouped together and specified in any order. For example, to
obtain a count of the number of lines and words in the file fruits, we can use any of the
following commands:

$ wc -w -l fruits
$ wc -l -w fruits
$ wc -wl fruits
$ wc -lw fruits

The output from each of these commands is identical:

8 18 fruits

The output lists the number of words in the files, followed by the number of lines in the
file. The filename is specified at the end of the line. When multiple files are specified, the
information for each file is listed along with the appropriate total values.

Manipulating Files
In the preceding sections, you looked at listing files and viewing their content. In this
section, you will look at copying, renaming, and removing files using the cp, mv, and rm
commands.

Copying Files (cp)
The cp command (short for copy) is used to make a copy of a file. The basic syntax of
the command is

cp src dest

Here src is the name of the file to be copied (the source) and dest is the name of the
copy (the destination). For example, the following command creates a copy of the file
fruits in a file named fruits.sav:

$ cp fruits fruits.sav

If dest is the name of a directory, a copy with the same name as src is created in dest.
For example, the command

$ cp fruits Documents/

creates a copy of the file fruits in the directory Documents.

46 Hour 3

It is also possible to specify multiple source files to cp, provided that the destination,
dest, is a directory. The syntax for copying multiple files is

$ cp src1 ... srcN dest

Here src1 ... srcN are the source files and dest is the destination directory. As an
example, the following command

$ cp fruits users Documents/

creates a copy the files fruits and users in the directory Documents.

Interactive Mode
The default behavior of cp is to automatically overwrite the destination file if it exists.
This behavior can lead to problems. The -i option (short for interactive) can be used to
prevent such problems. In interactive mode, cp prompts for confirmation before overwrit-
ing any files.

Assuming that the file fruits.sav exists, the following command

$ cp -i fruits fruits.sav

results in a prompt similar to the following:

overwrite fruits.sav? (y/n)

If y (yes) is chosen, the file fruits.sav is overwritten; otherwise the file is untouched.
The actual prompt varies among the different versions of UNIX.

Common Errors
When an error is encountered, cp generates a message. Some common error conditions
follow:

• The source, src, is a directory.

• The source, src, does not exist.

• The destination, dest, is not a directory when multiple sources, src1 ... srcN,
are specified.

• A non-existent destination, dest, is specified along with multiple sources, src1
... srcN.

• One of the sources in src1 ... srcN is not a file.

The first error type is illustrated by the following command:

$ cp Downloads/ fruits

Because src (Downloads in this case) is a directory, an error message similar to the fol-
lowing is generated:

Working with Files 47

3

cp: Downloads: is a directory

In this example, dest was the file fruits; the same error would have been generated if
dest was a directory.

The second error type is illustrated by the following command:

$ cp fritus fruits.sav
cp: cannot access fritus: No such file or directory

Here the filename fruits has been misspelled fritus, resulting in an error. In this
example dest was the file fruits.sav; the same error would have been generated if
dest was a directory.

The third error type is illustrated by the following command:

$ cp fruits users fruits.sav
usage: cp [-R [-H | -L | -P]] [-f | -i] [-p] src target

cp [-R [-H | -L | -P]] [-f | -i] [-p] src1 ... srcN directory

Because dest, in this case fruits.sav, is not a directory, a usage statement that high-
lights the proper syntax for a cp command is presented. The output might be different on
your system because some versions of cp do not display the usage information.

If the file fruits.sav does not exist, the error message is

cp: fruits.sav: No such file or directory

This illustrates the fourth error type.

The fifth error type is illustrated by the following command:

$ cp fruits Downloads/ users Documents/
cp: Downloads is a directory (not copied).

Although cp reports an error for the directory Downloads, the other files are correctly
copied to the directory Documents.

Renaming Files (mv)
The mv command (short for move) can be used to change the name of a file. The basic
syntax is

mv src dest

Here src is the original name of the file and dest is the new name of the file. For exam-
ple, the command

$ mv fruits fruits.sav

48 Hour 3

changes the name of the file fruits to fruits.sav. There is no output from mv if the
name change is successful.

If src does not exist, an error will be generated. For example,

$ mv cp fritus fruits.sav
mv: fritus: cannot access: No such file or directory

Similar to cp, mv does not report an error if dest already exists. The old file is automati-
cally overwritten. This problem can be avoided by specifying the -i option (short for
interactive). In interactive mode, mv prompts for confirmation before overwriting any
files.

Assuming that the file fruits.sav already exists, the command

$ mv -i fruits fruits.sav

results in a confirmation prompt similar to the following:

overwrite fruits.sav?

If y (yes) is chosen, the file fruits.sav is overwritten; otherwise the file is untouched.
The actual prompt varies among the different versions of UNIX.

Removing Files (rm)
The rm command (short for remove) can be used to remove or delete files. Its syntax is

rm file1 ... fileN

Here file1 ... fileN is a list of one or more files to remove. For example, the com-
mand

$ rm fruits users

removes the files fruits and users.

Because there is no way to recover files that have been removed using rm, you should
make sure that you specify only those files you really want removed. One way to ensure
this is by specifying the -i option (short for interactive). In interactive mode, rm prompts
before removing every file. For example, the command

$ rm -i fruits users

produces confirmation prompts similar to the following:

fruits: ? (n/y) y
users: ? (n/y) n

In this case, you answered y (yes) to removing fruits and n (no) to removing users.
Thus, the file fruits was removed, but the file users was untouched.

Working with Files 49

3

Common Errors
The two most common errors when using rm are

• One of the specified files does not exist.

• One of the specified files is a directory.

The first error type is illustrated by the following command:

$ rm users fritus hosts
rm: fritus non-existent

Because the file fruits is misspelled as fritus, it cannot be removed. The other two
files are removed correctly.

The second error type is illustrated by the following command:

$ rm fruits users Documents/
rm: Documents directory

The rm command is unable to remove directories and presents an error message stating
this fact. It removes the two other files correctly.

Summary
In this chapter, the following topics were discussed:

• Listing files using ls

• Viewing the content of a file using cat

• Counting the words, lines, and characters in a file using wc

• Copying files using cp

• Renaming files using mv

• Removing files using rm

Knowing how to perform each of these basic tasks is essential to becoming a good shell
programmer. In the chapters ahead, you will use these basics to create scripts for solving
real-world problems.

50 Hour 3

Questions
1. What are invisible files? How can they be listed with ls?

2. Is there any difference in the output of the following commands?

a. $ ls -a1

b. $ ls -1 -a

c. $ ls -1a

3. Which options should be specified to wc to count just the number of lines and char-
acters in a file?

4. Given that hw1, hw2, ch1, and ch2 are files and book and homework are directories,
which of the following commands generates an error message?

a. $ cp hw1 ch2 homework

b. $ cp hw1 homework hw2 book

c. $ rm hw1 homework ch1

d. $ rm hw2 ch2

Terms
Directories Directories are used to hold ordinary and special files. Directories are simi-
lar to folders in Mac OS or Windows.

Invisible Files An invisible file is one whose first character is a dot or period (.). Many
programs (including the shell) use such files to store configuration information. Invisible
files are also referred to as hidden files.

Option An option is an argument that starts with the hyphen or dash character, ‘-’.

Ordinary File An ordinary file is a file that contains data, text, or program instruc-
tions. Almost all the files on a UNIX system are ordinary files.

Special Files Special files are mainly used to provide access to hardware such as hard
drives, CD-ROM drives, modems, and Ethernet adapters. Some special files are similar
to aliases or shortcuts and enable you to access a single file using different names.

Working with Files 51

3

HOUR 4
Working with Directories

UNIX uses a hierarchical structure for organizing files and directories,
which is referred to as a directory tree. The tree has a single root node, slash
(/); all other directories are contained below it.

Every directory, including /, can store both files and other directories. Every
file is stored in a directory, and every directory, except /, is stored within a
directory.

This is slightly different from the multi-root hierarchical structure used by
Windows and Mac OS. In those operating systems, all devices (floppy disk
drives, CD-ROMs, hard drives, and so on) are located at the same top-most
level. The UNIX model is slightly different, but after you’ve adjusted to it, it
is extremely convenient.

This chapter introduces the directory tree and shows you how to manipulate
its building blocks: directories. Specifically, the topics we will cover are

• The Directory tree

• Switching directories

• Listing files and directories

• Manipulating directories

The Directory Tree
To understand the origin and advantages of the directory tree, let’s consider a project that
requires organization: writing a book. When you start out, it is easiest to put all the docu-
ments related to the book in one location. As you work on the book, you might find it
hard to locate the material related to a particular chapter.

If you are writing the book with pen and paper, the easiest solution to this problem is to
take all the pages related to the first chapter and put them into a folder labeled Chapter 1.
As you write more chapters, you can put the material related to these chapters into sepa-
rate folders. If you stick to this method, you will have many separate folders by the time
you finish the book. You might put all the folders into a box and label that box with the
name of the book. (Then you can stack the boxes in your closet.)

By grouping the material for the different chapters into folders and grouping the folders
into boxes, the multitude of pages required to write a book becomes organized and easily
accessible. When you want to see Chapter 5 from a particular book, you can grab that
box from your closet and look at the folder pertaining to Chapter 5.

You can use this same method for projects on a computer. When you start out, all the
files for the book might be in your home directory, but as you write more chapters, you
can create directories to store the material relating to a particular chapter. Finally, you
can group all of those directories into a directory named after the book.

As you can probably see, this arrangement creates an upside-down tree with a root at the
top and directories branching off from the root. The files stored in the directories can be
thought of as leaves.

This brings up the notion of parent directories and child or subdirectories. For example,
consider two directories A and B, where directory A contains directory B. In this case, A
is called the parent of B, and B is called a child of A.

The only limitation on the depth of the directory tree is that the absolute path to a file
cannot have more than 1,024 characters. Absolute paths are covered later in the chapter.

Filenames
Every file and directory has a name associated with it. This name is referred to as that
file or directory’s filename. Every file and directory is also associated with the name of
its parent. When a filename is combined with the parent directory’s name, the result is
called a pathname. Two examples of pathnames are

/home/ranga/docs/book/ch5.doc
/usr/local/bin/

54 Hour 4

As you can see, a pathname consists of several words separated by slashes, /. The indi-
vidual words in a pathname are the names of files or directories. Taken together, the
words and the slashes make up the pathname. The last word in a pathname is the actual
name of the file or directory being referenced. The rest of the words are the names of its
parent directories. In the first pathname of the previous example, the filename is
ch5.doc.

Strictly speaking, a filename can be up to 255 characters long and can contain any ASCII
character except /. In general, the characters used in pathnames are the alphanumeric
characters (a to z, A to Z, and 0 to 9) along with periods (.), hyphens (-), and under-
scores (_). Other characters, such as space, tab, and the shell’s special characters (!, #, $,
%, &, *, (,), |, \, “, ‘, ?, {, }, [,], `, <, >, ; and :), are usually avoided because many
programs cannot deal with them properly. For example, consider a file with the following
name:

A Farewell To Arms

Most programs will treat this as four separate files named A, Farewell, To, and Arms. A
workaround for this problem is covered in Chapter 10, “Quoting.”

One thing to keep in mind about filenames is that two files in the same directory cannot
have the same name. Both of the following pathnames refer to the same file:

/home/ranga/docs/ch5.doc
/home/ranga/docs/ch5.doc

whereas the following pathnames refer to the different files:

/home/ranga/docs/ch5.doc
/home/ranga/docs/books/ch5.doc

Filenames are also case sensitive: You can have two files in the same directory whose
names differ only by case. For example, the following pathnames refer to different files:

/home/ranga/docs/ch5.doc
/home/ranga/docs/CH5.doc

Pathnames
In order to access a file or directory, its pathname must be specified. As you have seen, a
pathname consists of two parts: the name of the directory and the names of its parents.
UNIX offers two ways to specify the names of the parent directory, leading to two types
of pathnames:

• Absolute

• Relative

Working with Directories 55

4

Absolute Pathnames
An absolute pathname represents the location of a file or directory starting from the root
directory and listing all the directories between the root and the file or directory of inter-
est. Because absolute pathnames list the path from the root directory, they always start
with the slash (/) character. Regardless of what the current directory is, an absolute path
points to an exact location of a file or directory. The following is an example of an
absolute pathname:

/home/ranga/work/bugs.txt

This absolute path tells you that the file bugs.txt is located in the directory work, which
is located in the directory ranga, which in turn is located in the directory home. The slash
at the beginning of the path tells you that the directory home is located in the root direc-
tory.

Relative Pathnames
A relative pathname enables you to access files and directories by specifying a path to
that file or directory within your current directory. When your current directory changes,
the relative pathname to a file can also change.

To find out what the current directory is, use the pwd command (short for print working
directory), which prints the name of the directory in which you are currently located. For
example,

$ pwd
/home/ranga/pub

tells us that the current directory is /home/ranga/pub.

When you’re specifying a relative pathname, the slash character is not present at the
beginning of the pathname. The relative pathname is a list of the directories located
between your current directory and the file or directory you are representing.

56 Hour 4

An Analogy for Pathnames
The following statements illustrate the difference between absolute and relative path-
names:

“I live in San Jose.”

“I live in San Jose, California, USA.”

The first statement gives only the city in which I live. It does not give any more informa-
tion, thus it is a relative location. It could be located in any state or country containing a
city called San Jose. The second statement fully qualifies the location, thus it is an
absolute location.

If you are pointing to a directory in your pathname that is below your current one, you
can access it by specifying its name. For example, the directory name docs/ refers to the
directory docs located in the current directory.

In order to access the current directory’s parent directory or other directories at a higher
level in the tree than the current level, use the special name of two dots (..). The UNIX
filesystem uses two dots (..) to represent the directory above you in the tree, and a sin-
gle dot (.) to represent your current directory.

Let’s look at an example that illustrates how relative pathnames are used. Assuming that
the current directory is

/home/ranga/work

the relative pathname

../docs/ch5.doc

represents the file

/home/ranga/docs/ch5.doc

whereas

./docs/ch5.doc

represents the file

/home/ranga/work/docs/ch5.doc

You can also refer to this file using the following relative path:

docs/ch5.doc

You do not have to append / to the beginning of pathnames referring to files or directo-
ries located within the current directory or its subdirectories.

Switching Directories
Now that we have covered the basics of the directory tree, let’s look at moving around
the tree using the cd (short for change directory) command.

Home Directories
First print the working directory:

$ pwd
/home/ranga

Working with Directories 57

4

The preceding example should indicate to you that I am in my home directory. Your
home directory is the initial directory where you start when you log in to a UNIX
machine. The easiest way to determine the location of your home directory is to do the
following:

$ cd
$ pwd
/home/ranga

When you issue the cd command without arguments, it changes the current directory to
your home directory. After the cd command completes, the pwd command prints the
working directory, which happens to be your home directory.

Changing Directories
You can use the cd command to do more than change to a home directory; it can be used
to change to any directory by specifying a valid absolute or relative path. The syntax is
as follows:

cd dir

Here dir is the name of the directory that you want to change to. For example, the
command

$ cd /usr/local/bin

changes to the directory /usr/local/bin. Regardless of the directory we were in before,
this command always places us in the directory /usr/local/bin. That is the advantage
of using an absolute path. Let’s look at another example. Say that the current directory is

$ pwd
/home/ranga

From this directory, we can cd to the directory /usr/local/bin using the following rela-
tive path:

$ cd ../../usr/local/bin

Changing the current directory means that all your relative path specifications must be
relative to the new directory rather than the old one. For example, consider the following
sequence of commands:

$ pwd
/home/ranga/docs
$ cat names
ranga
vathsa
amma
$ cd /usr/local

58 Hour 4

$ cat names
cat: cannot open names

When the first cat command was issued, the working directory was /home/ranga/docs.
The file, names, was located in this directory, thus the cat command found it and dis-
played its contents.

After the cd command, the working directory became /usr/local. Because there was no
file called names in that directory, cat produced an error message stating that it could not
open the file. To access the file names from the new directory, you need to specify either
the absolute path to the file or a relative path from the current directory.

Common Errors
The most common errors with cd are

• Specifying more than one argument

• Trying to cd to a file

• Trying to cd to a directory that does not exist

An example of specifying more than one argument is seen here:

$ cd /home /tmp /var
$ pwd
/home

As you can see, cd uses only its first argument. The other arguments are ignored.
Sometimes, in shell programming, this becomes an issue. When you issue a cd command
in a shell script, you need make sure that you end up in the correct directory.

Let’s now take a look at trying to cd to a file. An example of this is as follows:

$ pwd
/home/ranga
$ cd docs/ch5.doc
cd: docs/ch5.doc: Not a directory
$ pwd
/home/ranga

Here, we tried to change to a location that was not a directory, and cd reported an error.
If this error occurs, the working directory does not change. The output from pwd illus-
trates this.

Finally, let’s try to cd to a directory that does not exist:

$ pwd
/home/ranga
$ cd final_exam_answers
cd: final_exam_answers: No such file or directory

Working with Directories 59

4

$ pwd
/home/ranga

Here, we tried to change into the directory final_exam_answers, a directory that did not
exist, thus cd reported an error. The final pwd command shows that the working directory
did not change.

Listing Files and Directories
In Chapter 3, “Working with Files,” you looked at using the ls command to list the files
in the current directory. Now let’s look at using the ls command to list the files in any
directory.

Listing Directories
To list the files in a directory, you can use the following syntax:

ls dir

Here, dir is the absolute or relative pathname of the directory whose contents you want
listed.

For example, both of the following commands will list the contents of the directory
/usr/local (assuming that the working directory is /home/ranga):

$ ls /usr/local
$ ls ../../usr/local

On my system, the listing resembles

X11 bin gimp jikes sbin
ace doc include lib share
atalk etc info man turboj-1.1.0

The listing on your system might look quite different.

You can use any of the options you covered in Chapter 3 to change the output. For exam-
ple, the command

$ ls -aF /usr/local

produces the output

./ atalk/ gimp/ lib/ turboj-1.1.0/

../ bin/ include/ man/
X11/ doc/ info/ sbin/
ace/ etc/ jikes/ share/

You can also specify more than one directory as an argument. For example,

$ ls /home /usr/local

60 Hour 4

produces the following output on my system:

/home:
amma ftp httpd ranga vathsa

/usr/local:
X11 bin gimp jikes sbin
ace doc include lib share
atalk etc info man turboj-1.1.0

A blank line separates the contents of each directory.

Listing Files
You can mix files and directories as arguments to ls:

$ ls .profile docs/ /usr/local /bin/sh

This produces a listing of the specified files and the contents of the directories. If you
don’t want the contents of a directory listed, you need to specify the -d option to ls.
This forces ls to display only the name of the directory, not its contents:

$ ls -d /home/ranga
/home/ranga

The -d option can be combined with any of the other ls options. An example of this is

$ ls -aFd /usr/local /home/ranga /bin/sh
/bin/sh* /home/ranga/ /usr/local/

Common Errors
If the file or directory you specify does not exist, ls reports an error. For example,

$ ls tomorrows_stock_prices.txt
tomorrows_stock_prices.txt: No such file or directory

If you specify several arguments instead of one, ls will report errors only for those files
or directories that do not exist. It correctly lists the others. For example,

$ ls tomorrows_stock_prices.txt /usr/local .profile

produces an error message

tomorrows_stock_prices.txt: No such file or directory
/usr/local:
X11 bin gimp jikes sbin
ace doc include lib share
atalk etc info man turboj-1.1.0

.profile

Working with Directories 61

4

Manipulating Directories
The most common ways of manipulating a directory are

• Creating a directory

• Copying a directory

• Moving a directory

• Removing a directory

Creating Directories
You can create directories with the mkdir command (short for make directory). Its syntax
is

mkdir dir

Here, dir is the absolute or relative pathname of the directory you want to create. For
example, the command

$ mkdir hw1

creates the directory hw1 in the current directory. Here is another example:

$ mkdir /tmp/test-dir

This command creates the directory test-dir in the /tmp directory. The mkdir command
produces no output if it successfully creates the requested directory.

If more than one directory is specified, mkdir will try to create each of the directories.
For example,

$ mkdir docs pub

creates the directories docs and pub under the current directory.

Creating Parent Directories
Sometimes when you want to create a directory, one or more of its parent directories
might not exist. If this is the case, mkdir issues an error message. For example,

$ mkdir /tmp/ch4/tst
mkdir: Failed to make directory “/tmp/ch4/tst”; No such file or directory

In order to create the parent directories, you can specify the -p (p as in parent) option to
mkdir. For example,

$ mkdir -p /tmp/ch4/tst

62 Hour 4

will create all the required parent directories. In order to create this directory, mkdir will
use the following procedure:

1. mkdir checks whether the directory /tmp exists. If it does not exist, mkdir creates
it.

2. mkdir checks whether the directory /tmp/ch04 exists. If it does not exist, mkdir
creates it.

3. mkdir checks whether the directory /tmp/ch04/test1 exists. If it does not, mkdir
creates it.

Common Errors
The most common error in using mkdir is trying to create a directory that already exists.
If the directory /tmp/ch04 already exists, the command

$ mkdir /tmp/ch04

generates an error message similar to the following:

mkdir: cannot make directory ‘/tmp/ch04’: File exists

An error also occurs if you try to create a directory with the same name as a file. For
example, the following commands

$ ls -F docs/names.txt
names
$ mkdir docs/names

result in the error message

mkdir: cannot make directory ‘docs/names’: File exists

If you specify more than one argument to mkdir, it creates as many of these directories
as it can. An error message is generated for each directory that could not be created.

Copying Files and Directories
In Chapter 3, you looked at using the cp command to copy files. Now let’s look at using
it to copy directories.

To copy a directory, you need to specify the -r option to cp. The syntax is as follows:

cp -r src dest

Here, src is the pathname of the directory you want to copy, and dest is the pathname
where you want the copy to be placed. When the -r option is specified, all files and
directories located under src are copied to dest. For example,

$ cp -r docs/book /mnt/zip

Working with Directories 63

4

copies the directory book located in the docs directory to the directory /mnt/zip. If the
directory book does not exist under /mnt/book, it will be created.

Copying Multiple Directories
You can copy multiple directories in much the same way as copying multiple files. If cp
encounters more than one source, all the source directories are copied to the destination
directory. The destination directory is assumed to be the last argument. For example, the
command

$ cp -r docs/book docs/school work/src /mnt/zip

copies the directories school and book, located in the directory docs, to /mnt/zip. It
also copies the directory src, located in the directory work, to /mnt/zip. After the copies
finish, /mnt/zip resembles the following:

$ ls -aF /mnt/zip
./ ../ book/ school/ src/

You can also mix files and directories in the argument list. For example,

$ cp -r .profile docs/book .kshrc doc/names work/src /mnt/jaz

copies all the requested files and directories to the directory /mnt/jaz.

If the argument list consists of only files, the -r option has no effect.

Common Errors
The most common problem related to copying directories is using a destination that is
not a directory. An example of this is

$ cp -r docs /mnt/zip/backup
cp: cannot create directory ‘/mnt/zip/backup’: File exists
$ ls -F /mnt/zip/backup
/mnt/zip/backup

As you can see, the cp operation fails because a file called /mnt/zip/backup already
exists.

Moving Files and Directories
In the previous chapter we looked at using mv to rename files, but its real purpose is to
move files and directories between different locations in the directory tree. The basic
syntax is:

mv src dest

64 Hour 4

Here, src is the name of the file or directory you want to move, and dest is the directory
where you want the file or directory to end up. For example,

$ mv /home/ranga/names /tmp

moves the file names located in the directory /home/ranga to the directory /tmp.

Moving a directory is exactly the same:

$ mv docs/ work/

moves the directory docs into the directory work. To move the directory docs back to the
current directory, you can use the command:

$ mv work/docs .

One nice feature of mv is that you can move and rename a file or directory all in one
command. For example,

$ mv docs/names /tmp/names.txt

moves the file names in the directory docs to the directory /tmp and renames it
names.txt.

Moving Multiple Items
Just as you can with cp, you can specify more than one file or directory as the source.
For example,

$ mv work/ docs/ .profile pub/

moves the directories work and docs along with the file .profile into the directory pub.

When you are moving multiple items, you cannot rename them. If you want to rename
an item and move it, you must use a separate mv command for each item.

Common Errors
Two common errors that can occur when using mv are

• Moving multiple files and directories to a directory that does not exist

• Moving files and directories to a file

These cases produce the same error message, so look at one example that illustrates what
happens:

$ mv .profile docs pub /mnt/jaz/backup
mv: when moving multiple files, last argument must be a directory
$ ls -aF /mnt/jaz
./ ../ archive/ lost+found/ old/

Working with Directories 65

4

For example, if the directory bar is empty, the following command

$ ls -A bar

returns nothing. This directory can be removed with rmdir.

Now say that the directory docs is not empty. The following command

$ rmdir docs

produces an error message

rmdir: docs: Directory not empty

To illustrate the second type of error, assume that names is a file. The following
command

$ rmdir names

produces an error message

rmdir: names: Not a directory

rm -r

You can specify the -r option to rm to remove a directory and its contents. The syntax is
as follows:

rm -r dir1 ... dirN

Here dir1 ... dirN are the names of the directories you want removed. For example,
the command

$ rm -r ch01/

removes the directory ch01 and its contents. This command produces no output.

You can specify a combination of files and directories as follows:

$ rm -r ch01/ test1.txt ch01-old.txt ch02/

In order to make rm safer, you can combine the -r and -i options.

Common Errors

The most common error that can occur when using rm is trying to remove a file or direc-
tory that does not exist. In this case, rm reports an error. For example, if the directory
midterm_answers does not exist, trying to remove it will fail as follows:

$ rm -r midterm_answers
rm: midterm_answers: No such file or directory

Working with Directories 67

4

Summary
In this chapter, we have looked at working with directories. Specifically, the following
topics were covered:

• Working with filenames and pathnames

• Switching directories

• Listing files and directories

• Creating directories

• Copying and moving directories

• Removing directories

We reviewed each of these topics because it is important to know how to perform these
functions when writing shell scripts. As you go further into this book, you will begin to
see that directory manipulations occur quite frequently in shell scripts.

Questions
1. Which of the following are absolute pathnames? Which are relative?

a. /usr/local/bin

b. ../../home/ranga

c. docs/book/ch01

d. /

2. What is the output of the pwd command after the following sequence of cd com-
mands have been issued?
$ cd /usr/local
$ cd bin
$ cd ../../tmp
$ cd

3. What command should be used to copy the directory /usr/local to /opt/pgms?

4. What command(s) should be used to move the directory /usr/local to
/opt/pgms?

5. Given the following listing for the directory backup, can the rmdir command be
used to remove this directory? If not, please give a command that can be used.
$ ls -a backup
./ ../ sysbak-980322 sysbak-980112

68 Hour 4

Terms
Absolute Pathname The absolute pathname represents the location of a file or direc-
tory starting from / and listing all the directories between / and the file or directory of
interest. The pathname /etc/hosts is an absolute pathname.

Directory Tree The hierarchical structure used in UNIX for organizing files and direc-
tories.

Filename The name of a file. The name of the file /etc/hosts is hosts.

Parent Directory The directory that contains a given directory. If directory B is con-
tained within directory A, directory A is considered the parent directory of B.

Pathname The filename of a file combined with the filenames of its parent directories.
The pathname of the file hosts located in the directory /etc is /etc/hosts.

Relative Pathname The relative pathname represents the location of a file or directory
relative to the current directory. The pathname ../etc/hosts is a relative pathname.

Root The root directory, /, is the top-most directory in the UNIX directory tree.

Subdirectory A directory that is contained within another directory. If directory A con-
tains directory B, directory B is considered a subdirectory of A.

Working with Directories 69

4

HOUR 5
Input and Output

Until now, you have been looking at commands that output messages. In this
chapter, you will look at the different types of output available to shell
scripts. You will also discover the mechanisms used to obtain input from
users. Specifically, the areas that you will cover are

• Output to the screen

• Output to a file

• Input from a file

• Input from users

Output
As you have seen in previous chapters, most commands produce output. For
example, the command

$ date

produces the current date in the terminal window:

Thu Nov 12 16:32:35 PST 2001

When a command produces output that is written to the terminal, you say that the pro-
gram has printed its output to the Standard Output, or STDOUT. When you run the date
command, it prints the date to STDOUT. You have also seen commands produce error
messages, such as:

$ ln –s ch01.doc ch01-01.doc
ln: cannot create ch01-1.doc: File Exists

Error messages are not written to STDOUT, but instead they are written to a special type
of output called Standard Error or STDERR, which is reserved for error messages. Most
commands use STDERR for error messages and STDOUT for informational messages.
You will look at STDERR later in this chapter. In this section, you will look at how shell
scripts can use STDOUT to output messages to each of the following:

• The terminal (STDOUT)

• A file

• The terminal and a file

Output to the Terminal
Two common commands that can be used to output messages to STDOUT are echo and
printf. The echo command is mostly used for printing strings that require simple for-
matting. The printf command is the shell version of the C language function printf. It
provides a high degree of flexibility in formatting output.

echo

The syntax for echo is as follows

echo str

Here str is the message you want printed. For example, the command

$ echo Hi

produces the following output:

Hi

You can also embed spaces in the output as follows:

$ echo Safeway has fresh fruit
Safeway has fresh fruit

In addition to spaces, you can embed punctuation marks and formatting escape
sequences in the str.

72 Hour 5

The \n escape sequence is normally used when you need to generate more than one line
of output. For example, the command

$ FRUIT_BASKET=”apple orange pear”
$ echo “Your fruit basket contains:\n$FRUIT_BASKET”
Your fruit basket contains:
apple orange pear

generates a list of fruit preceded by a description of the list. This example illustrates two
important aspects of using escape sequences:

• The entire input string, str, is quoted.

• The escape sequence appears in the middle of the string, str, and is not separated
by spaces.

Whenever an escape sequence is used in the input string to echo, the string must be
quoted to prevent the shell from expanding the escape sequence on the command line.
Quoting is explained in detail in Chapter 10, “Quoting”. Furthermore, the input string is
a specification of how the output should look; spaces should not be used to separate the
escape sequences unless that is how the output needs to be formatted.

It is possible to rewrite any echo command that uses the \n escape sequence as several
echo commands. For example, you can generate the same output as in the previous
example using two echo commands:

$ echo “Your fruit basket contains:”
$ echo $FRUIT_BASKET

Another commonly used escape sequence is the \t sequence, which generates a tab in
the output. Usually it is used when you need to make a small table or generate tabular
output that is only a few lines long. As an example, the following command generates a
small table of two users along with their usernames:

$ echo “Name \tUser Name\nSriranga\tranga\nSrivathsa\tvathsa”
Name User Name
Sriranga ranga
Srivathsa vathsa

As you can see from the output, the heading User Name is not centered over its column.
You can fix this by adding another tab:

$ echo “Name\t\tUser Name\nSriranga\tranga\nSrivathsa\tvathsa”
Name User Name
Sriranga ranga
Srivathsa vathsa

For generating large tables, the printf command, covered in the next section, is pre-
ferred because it provides a greater degree of control over the size of each column in the
table.

74 Hour 5

The power of printf comes from its capability to perform complicated formatting by
using format specifications. The basic syntax for this is as follows:

printf format arguments

Here, format is a string that contains one or more of the formatting sequences, and argu-
ments are strings that correspond to the formatting sequences specified in format. For
those who are familiar with the C language printf function, the formatting sequences
supported by the printf command are identical. The formatting sequences have the form:

%[-]m.nx

Here % starts the formatting sequence and x identifies the formatting sequences type.
Table 5.2 gives possible values of x.

TABLE 5.2 Formatting Sequence Types

Letter Description

s String

c Character

d Decimal (integer) number

x Hexadecimal number

o Octal number

e Exponential floating-point number

f Fixed floating-point number

g Compact floating-point number

Depending on the value of x, the integers m and n are interpreted differently. Usually m is
the minimum length of a field, and n is the maximum length of a field. If you specify a
real number format, n is treated as the precision that should be used. The hyphen (-) left
justifies a field. By default, all fields are right justified.

The following commands illustrate the use of printf:

printf “%16s\t%16s\n” “Name” “User Name”
printf “%16s\t%16s\n” “Sriranga” “ranga”
printf “%16s\t%16s\n” “Srivathsa” “vathsa”

The format %16s\t%16s\n specifies that the output string should be separated in two
columns, each 16 characters long and separated by a space. The output of these com-
mands will be similar to the following:

Name User Name
Sriranga ranga
Srivathsa vathsa

76 Hour 5

As you can see, the headings and the columns are not aligned properly. You can fix this
by adding a - to the format specification:

printf “%-16s\t%-16s\n” “Name” “User Name”
printf “%-16s\t%-16s\n” “Sriranga” “ranga”
printf “%-16s\t%-16s\n” “Srivathsa” “vathsa”

The ouput of these commands will be similar to the following:

Name User Name
Sriranga ranga
Srivathsa vathsa

To format numbers, specify a number formatting sequence, such as %f, %e, or %g, instead
of the string formatting sequence, %s. One of the questions at the end of this chapter
familiarizes you with using number formats.

Output Redirection
In the process of developing a shell script, you often need to capture the output of a com-
mand and store it in a file. When the output is in a file, it can be easily edited and modi-
fied. The process of capturing the output of a command and storing it in a file is called
output redirection because it redirects the output of a command into a file instead of the
screen. To redirect the output of a command or a script to a file, instead of STDOUT, use
the output redirection operator, >, as follows:

cmd > file
list > file

The first form redirects the output of the command cmd to the file specified by file,
whereas the second redirects the output of list list to the file specified file. If file
exists, its contents are overwritten; if file does not exist, it is created. For example, the
command

date > now

redirects the output of the date command into the file now. The output does not appear
on the terminal, but it is placed into the file instead. If you view the file now, you find the
output of the date command:

$ cat now
Sat Nov 14 11:14:01 PST 1998

You can also redirect the output of lists as follows:

{ date; uptime; who ; } > mylog

Here the output of the commands date, uptime, and who is redirected into the file mylog.

Input and Output 77

5

To redirect output to a file and the screen, you can use the tee command. The basic syn-
tax is as follows:

cmd | tee file

Here cmd is the name of a command, such as ls, and file is the name of the file where
you want the output written. For example, the command

$ date | tee now

produces the following output on the terminal:

Sat Nov 14 19:50:16 PST 2001

The same output is written to the file now.

Input
Many UNIX programs are interactive and read input from the user. To use such programs
in shell scripts, you need to provide them with input in a non-interactive manner. Also,
scripts often need to ask the user for input in order to execute commands correctly.

To provide input to interactive programs or to read input from the user, you need to use
input redirection. In this section, you will look at the following methods in detail:

• Input redirection from files

• Reading input from a user

• Redirecting the output of one command to the input of another

Input Redirection
When you need to use an interactive command, such as mail in a script, you need to pro-
vide the command with input. One method for doing this is to store the input of the com-
mand in a file and then tell the command to read input from that file. You can accomplish
this using input redirection. The input can be redirected in a manner similar to output
redirection. In general, input redirection is

cmd < file

Here the contents of file become the input for cmd. As an example, the following com-
mand is an excellent use of redirection:

Mail ranga@soda.berkeley.edu < Final_Exam_Answers

Here the input to the Mail command, which becomes the body of the mail message, is
the file Final_Exam_Answers. In this particular example, a professor might perform this
function, and the file might contain the answers to a current final exam.

Input and Output 79

5

Here Documents
An additional use of input redirection is in the creation of here documents. Say you need
to send a list of phone numbers or URLs to the printer. You can enter the information
that you want to send to the printer into the here document and then send that here docu-
ment to the printer. This is much simpler than using a temporary file, which needs to be
created and then should be deleted.

The general form for a here document is as follows:

cmd << delimiter
document
delimiter

Here the shell interprets the << operator as an instruction to read input until it finds a line
containing the specified delimiter. All the input lines up to the line containing the
delimiter are then fed into the standard input of the cmd. The delimiter tells the shell
that the here document has completed. Without it, the shell continues to read input for-
ever. The delimiter must be a single word that does not contain spaces or tabs. For
example, to print a quick list of URLs, you can use the following here document:

lpr << MYURLS
http://www.csua.berkeley.edu/~ranga/
http://www.cisco.com/
http://www.marathon.org/story/
http://www.gnu.org/

MYURLS

To strip the tabs in this example, you can give the << operator a - option.

You can also combine here documents with output redirection as follows:

cmd > file << delimiter
document
delimiter

If used in this form, the output of cmd is redirected to the specified file, and the input of
cmd becomes the here document. For example, you can use the following command to
create a file with the short list of URLs given previously:

cat > urls << MYURLS
http://www.csua.berkeley.edu/~ranga/
http://www.cisco.com/
http://www.marathon.org/story/
http://www.gnu.org/

MYURLS

80 Hour 5

Redirecting STDOUT and STDERR to the Same File
You looked at how to use file descriptors to redirect STDOUT and STDERR to different
files, but sometimes you need to redirect both to the same file. In general, you can do
this as follows

cmd > file 2>&1
list > file 2>&1

Here STDOUT (file description 1) and STDERR (file descriptor 2) of cmd are redirected
into the specified file. Here is a situation where it is necessary to redirect both the stan-
dard output and the standard error:

rm –rf /tmp/my_tmp_dir > /dev/null 2>&1 ; mkdir /tmp/my_tmp_dir

In this case you are not interested in the error message or the informational message
printed by the rm command. You only want to remove the directory, thus its output, or
any error message it prints, is redirected to /dev/null.

If you have a command or list that should append its standard error and standard output
to a file, you can use one of the following forms of output redirection:

cmd >> file 2>&1
list >> file 2>&1

An example of a command that might require this is

rdate –s ntp.nasa.gov >> /var/log/rdate.log 2>&1

Here you are using the rdate command to synchronize the time of the local machine to
an Internet time server and you want to keep a log of all the messages.

Printing a Message to STDOUT

You can also use this form of output redirection to output error messages on STDERR.
The basic syntax is

echo str 1>&2
printf format args 1>&2

You might also see these commands with the STDOUT file descriptor, 1, omitted:

echo string >&2
printf format args >&2

Redirecting Two File Descriptors
You can redirect the output from one file descriptor to another file descriptor using the
general form of output redirection:

n>&m

Input and Output 85

5

Here n and m are file descriptors (integers). When you let n=1 and m=2, STDERR is redi-
rected to STDOUT. The general form of output redirection is often combined with exec
to duplicate an already open output file description:

exec n>&m

Here n is a new file descriptor and m is an open output file descriptor. For example if the
file descriptor 4 is opened as follows:

exec 4>out.txt

then the command:

exec 5>&4

causes file descriptor 5 to become a duplicate of file descriptor 4. Given these two exec
commands, the output of the following command:

date 1>&5

will end up in the file out.txt.

The general form of input redirection is similar to the general form of output redirection:

n<&m

Here, n and m are file descriptors (integers). The general form of output redirection is
often combined with exec to duplicate an already open input file description:

exec n<&m

Here n is a new file descriptor and m is an open input file descriptor. In the following
example, file descriptor 6 becomes a duplicate of STDIN:

exec 6<&0

Closing File Descriptors
The following syntax can be used to close an open file descriptor:

exec n>-

Here n is an open file descriptor. When a file descriptor is closed, trying to read or write
from it results in an error. The following example closes the previously opened file
descriptor 4:

exec 4>-

86 Hour 5

Summary
In this chapter, you learned about the concept of input and output and examined the echo
and printf commands that are used to produce messages from within shell scripts. You
also learned about output redirection, and covered the methods of redirecting and
appending the output of a command to a file. You also learned about the concept of a
file descriptor and saw several aspects of its use, including opening files for reading and
writing, closing files, and redirecting the output of two file descriptors to one source.

In subsequent chapters, you will expand on the material covered here, and you will see
many more applications of both input and output redirection along with the use of file
descriptors.

Questions
1. Which file descriptors are associated with STDOUT, STDERR and STDIN?

2. Use printf to convert the numbers 16, 255, and 65535 into hexadecimal and octal.

3. Given the following script:
exec 4>out.txt
exec 5>&4
exec 1>&5
date

Where does the output from date end up?

Terms
Escape sequence A special sequence of characters that represents another character.

File descriptor An integer that is associated with a file. Enables you to read and write
from a file using the integer instead of the file’s name.

Input redirection In UNIX, the process of sending input to a command from a file.

Output redirection In UNIX, the process of capturing the output of a command and
storing it in a file. It redirects the output of a command into a file instead of the screen.

STDERR Standard Error. A special type of output used for error messages. The file
descriptor for STDERR is 2.

STDIN Standard Input. User input is read from STDIN. The file descriptor for
STDIN is 0.

STDOUT Standard Output. The output of scripts is usually to STDOUT. The file
descriptor for STDOUT is 1.

Input and Output 87

5

HOUR 6
Manipulating File
Attributes

In addition to files and directories, UNIX supports several special file types
along with a set of attributes for each file and directory. Shell scripts are often
called upon to create special files and manipulate file attributes. This chapter
discusses the following topics related to special files and file attributes:

• Creating links

• Modifying file permissions

• Modifying file ownership and group membership

File Types
UNIX files can contain important data and executable programs or they can
represent devices, directories, or pointers to other files. This section looks at
the different types of files available under UNIX.

Determining a File’s Type
You can determine a file’s type by using the -l option of the ls command. When this
option is specified the output of ls contains a file’s type and its attributes in addition to
its name. For example, the command

$ ls –l /home/ranga/.profile

produces the following output:

-rwxr-xr-x 1 ranga users 2368 Jul 11 15:57 .profile*

As you can see, the very first character in the output is a hyphen (-). This indicates that
this is a regular file. For special files, the first character is one of the letters given in
Table 6.1. The subsequent sections describe each of these special files in detail.

TABLE 6.1 Special Characters for Different File Types

Character File Type

- Regular file

l Symbolic link

c Character special

b Block special

p Named pipe

d Directory file

To obtain file type information for a directory, you need to specify the -d option along
with the -l option. For example, in order to obtain file type information for the directory
/home/ranga, you use the following command:

$ ls –ld /home/ranga

This produces the following output:

drwxr-xr-x 27 ranga users 2048 Jul 23 23:49 /home/ranga/

Regular Files
Regular files are the most common type of files on UNIX systems. They can be used to
store any kind of data, including binary data that the system can execute. Often determin-
ing that a file is a regular one tells you very little about the file. Usually you need to
know whether a particular file is a binary program, a shell script, or a C language library.
In these instances, the file command is very useful. Its syntax is as follows:

file filename

90 Hour 6

Here, filename is the name of the file you want more information about. For example,
the command:

$ file /bin/sh

will produce output similar to the following:

/bin/sh: ELF 32-bit MSB executable SPARC Version 1,
➥statically linked, stripped

Based on this output, you can tell that the file, /bin/sh, is an executable program for
SPARC-based system. The output on your system will most likely be different.

Links
A link is a file that points to another file on the system. Links are useful for maintaining
multiple copies of a file in several locations on the system without using up storage for
the copies. Because a link just points to another file, changing the content of the link
alters the content of the original file. Similarly, altering the content of the original file
appears to alter the content of the link.

UNIX supports two types of links, hard links and symbolic links.

Hard Links
A hard link is a special directory entry that points to another file. Hard links have some
limitations:

• A hard link cannot point to a directory; it can only point to a file.

• Hard links are indistinguishable from the file that it points to; there is no way to
tell if a particular file is a hard link or the original file.

Hard links can be created using the ln (short for link) command. Its syntax is as follows:

ln src target

Here src is the pathname that the pathname target should point to. For example, if you
want the hard link banana to point to the file apple, you can create the link as follows:

$ ln apple banana

If there is a problem creating the hard link, ln displays an error message; otherwise, it
displays no output.

When a hard link is moved from one directory to another, it can continue to point to the
original file without any problems. For example, consider the following commands:

$ echo I drink lemonade in the summer > lemonade
$ cat lemonade
I drink lemonade in the summer

Manipulating File Attributes 91

6

Symlinks are created by using the –s option of ln. The syntax is as follows:

ln –s src target

Here src is the pathname that the pathname target should point to. For example, if you
want to create the symlink citrus that points to the file lime, you can use the following
command:

ln –s lime citrus

If there is a problem creating the symlink, ln displays an error message; otherwise, it
displays no output.

If a symlink is created using a relative path, then it may not work properly when moved
from the directory in which it was created to another directory. For example:

$ echo Persimmons are bitter until they ripen > persimmon
$ ln –s persimmon bitter
$ cat bitter
Persimmons are bitter until they ripen
$ mv bitter ..
$ cat ../bitter
cat: ../bitter: No such file or directory
$ ls -l ../bitter
lrwxrwxrwt 1 root wheel 9 Jan 13 00:16 ../bitter@ -> persimmon

As you can see from the output, the link bitter correctly pointed to the file persimmon
while the two files were located in the same directory. When bitter was moved, the link
stopped working because a file named persimmon did not exist in bitter’s new direc-
tory. This problem can be avoided by using absolute paths when creating symlinks.

When a symlink is removed the file it points to is not affected. When the file that a sym-
link points to is removed or moved to a different location the symlink will cease to func-
tion properly. For example:

$ echo Plums were plentiful this year > plums
$ ln –s plums plentiful
$ cat plentiful
Plums were plentiful this year
$ rm plums
$ cat plentiful
cat: plentiful: No such file or directory
$ ls –l plentiful
lrwxr-xr-x 1 ranga wheel 5 Jan 13 00:25 plentiful@ -> plums

As you can see from the output, the link plentiful points to the file plums even after
that file has been removed. This causes the error message from cat.

Manipulating File Attributes 93

6

Common Errors
Two common errors encountered when creating links occur when

• target already exists.

• target is a directory.

If target is a file, ln will not create the requested link. For example, if the file .exrc
exists in the current directory, the following command:

$ ln –s /etc/exrc .exrc

produces the following error message:

ln: cannot create .exrc: File exists

If target is a directory, ln creates the link in that directory with the same filename as src.
For example, if the directory pub exists in the current directory, the following command:

$ ln –s /home/ftp/pub/ranga pub

creates the link pub/ranga rather than complaining that the destination is a directory.
Forgetting about this behavior is a common source of problems in shell scripts.

Device Files
In UNIX, devices, such as hard drives, keyboards, and printers, are accessed via device
files. There are two types of device files: character special files and block special files.

Device files are normally located in the /dev directory.

Character Special Files
Character special files provide a mechanism for communicating with a device one char-
acter at a time. Usually character devices represent a “raw” device. The output of ls –l
on a character special file looks like the following:

crw------- 1 ranga users 4, 0 Feb 7 13:47 /dev/tty0

The first letter in the output, c, indicates that this is a character special file. The two
extra numbers before the date are known as the major and minor device numbers. UNIX
uses these two numbers to identify the device driver that is connected to the character
special file.

Block Special Files
Block special files provide a mechanism for communicating with devices by transferring
large blocks of data rather than single characters. Block special files are typically used to

94 Hour 6

access hard drives and removable media. The output of ls –l on a block special file
looks like the following:

brw-rw---- 1 root disk 8, 0 Feb 7 13:47 /dev/sda

The first letter in the output, b, indicates that this file is a block special file. The major
and minor numbers for the file identify the device driver that is connected to the block
special file.

Named Pipes
An important feature of UNIX is that you can redirect the output of one program to the
input of another program with very little work. For example, the following command:

$ who | grep ranga

takes the output of the who command and makes it the input to the grep command. On
the command line, temporary anonymous pipes are used, but sometimes a program needs
more control over the communication channel. Named pipes are files that act just like
temporary anonymous pipes on the command line.

Named pipes can be created using the mkfifo command. Its syntax is as follows:

mkfifo file

Here file is the filename that you want to give the pipe. For example, the following
command creates a named pipe with the filename mypipe:

$ mkfifo mypipe

The ls –l output for this named pipe will be similar to the following:

prw-r--r-- 1 ranga wheel 0 Nov 22 17:39 mypipe

The first character, p, indicates that this file is a named pipe.

Owners, Groups, and Permissions
File permissions and file ownership are important components of UNIX because they pro-
vide a secure method for storing files. Every file in UNIX has the following attributes:

• Owner permissions

• Group permissions

• Other (world) permissions

The owner’s permissions determine which actions the owner of the file can perform on
the file. The group’s permissions determine which actions a user, who is a member of the

Manipulating File Attributes 95

6

group that a file belongs to, can perform on the file. The permissions for others indicate
which action all other users can perform on the file.

The actions that can be performed on a file are read, write, and execute. If a user has
read permissions, that user can view the contents of a file. A user with write permissions
can change the contents of a file, whereas a user with execute permissions can execute
that file.

Viewing Permissions
The ls –l command displays the permissions of a file. For example, the following
command:

$ ls –l .profile

produces the following output:

-rwxr-xr-x 1 ranga users 2368 Jul 11 15:57 .profile

From the output, you can tell that this is a regular file. The characters that appear after
the first dash (-) indicate the permissions for the file. After the permissions, the owner
and the group are listed. For this file, the owner is ranga and the group is users.

The first three characters indicate the permissions for the owner of the file, the next three
characters indicate the permissions for the group of the file, and the last three characters
indicate the permissions for all other users. The significance of the individual characters
is explained in Table 6.2.

TABLE 6.2 Basic Permissions

Letter Permission Definition

r Read The user can view the contents of the file.

w Write The user can alter the contents of the file.

x Execute The user can run the file, which is likely a program. For
directories, the execute permission must be set in order for
users to access the directory.

The permissions for the file in the previous example indicates that the user has read,
write, and execute permissions, whereas members of the group users and all other users
have only read and execute permissions.

Directory Permissions
The x bit on a directory grants access to the directory. The read and write permissions
have no effect if the access bit is not set. The read permission on a directory enables
users to use the ls command to view files and their attributes that are located in the

96 Hour 6

which shows that the SUID bit is set and that the root owns the command. If a capital
letter S appears instead of the lowercase s it indicates that the execute bit is not set.

The SUID bit or sticky bit imposes extra file removal permissions on a directory. A direc-
tory with write permissions enabled for a user enables that user to add and delete any
files from this directory. If the sticky bit is enabled on the directory, files can be removed
only if you are one of the following users:

• The owner of the sticky directory

• The owner the file being removed

• The super user, root

You should consider enabling the sticky bit for any directories to which non-privileged
users can write. Examples of such directories include temporary directories and public
file upload sites.

Directories can also take advantage of the SGID bit. If a directory has the SGID bit set,
any new files added to the directory automatically inherit that directory’s group, instead
of the group of the user writing the file.

Changing File and Directory Permissions
The chmod command changes the permissions on a file or directory. Its syntax is as
follows:

chmod expression files

Here, expression is a statement that indicates how the permissions are to be changed.
There are two types of expressions: symbolic and octal. The symbolic expression
method uses letters to alter the permissions, and the octal expression method uses num-
bers. The numbers in the octal method are base-8 (octal) numbers ranging from 0 to 7.

Symbolic Method
A symbolic expression uses syntax of the form:

(who)(action)(permissions)

Table 6.3 shows the possible values for who, Table 6.4 shows the possible actions, and
Table 6.5 shows the possible permissions settings. Using these three reference tables,
you can build expressions.

98 Hour 6

TABLE 6.3 who

Letter Represents

u Owner

g Group

o Other

a All

TABLE 6.4 actions

Symbol Represents

+ Adding permissions to the file

- Removing permissions from the file

= Explicitly set the file permissions

TABLE 6.5 permissions

Letter Represents

r Read

w Write

x Execute

t Sticky bit

s SUID or SGID

Now let’s look at a few examples of using chmod. To give the “world” read access to all
files in a directory, you can use one of the following commands:

$ chmod a=r *
$ chmod guo=r *

If the command is successful, there is no output.

To stop anyone except the owner of the file .profile from writing to it, try this:

$ chmod go-w .profile

To deny access to the files in your home directory, you can try one of the following
commands:

$ cd ; chmod go= *
$ cd ; chmod go-rwx *

Manipulating File Attributes 99

6

When specifying the user’s part or the permission’s part, the order in which you give the
letters is irrelevant. Thus these commands are equivalent:

$ chmod guo+rx *
$ chmod uog+xr *

If you need to apply more than one set of permission changes to a file or files, you can
use a comma-separated list. For example:

$ chmod go-w,a+x a.out

removes the groups and “world” write permission on a.out and adds the execute permis-
sion for everyone.

To set the SUID and SGID bits for your home directory, try the following:

$ cd ; chmod ug+s .

So far, the examples you have examined involve changing the permissions for files in a
directory. However, chmod also enables you to change the permissions for every file in a
directory (including the files in subdirectories) by using the -R option.

For example, if the directory pub contains the following directories:

$ ls pub
./ ../ README faqs/ src/

you can change the permission read permissions of the file README along with the files
contained in the directories faqs and src with the following command:

$ chmod -R o+r pub

Octal Method
By changing permissions with an octal expression, you can only explicitly set file per-
missions. This method uses a single number to assign the desired permission to each of
the three categories of users (owner, group, and other). The values of the individual per-
missions are the following:

• Read permission has a value of 4

• Write permission has a value of 2

• Execute permission has a value of 1

Adding the value of the permissions that you want to grant will give you a number
between 0 and 7. This number will be used to specify the permissions for the owner,
group, and finally the other category.

100 Hour 6

Setting SUID and SGID using the octal method places these bits out in front of the standard
permissions. The permissions SUID and SGID take on the values 4 and 2, respectively.

Let’s look at some of the examples to get an idea of how to use the octal method of
changing permissions. In order to set the “world” read access to all files in a directory,
do the following:

chmod 0444 *

To stop anyone except the owner of the file .profile from writing to it, do this:

chmod 0600 .profile

Common Errors
Many new users find the octal specification of file permissions confusing. The most
important point to keep in mind is that the octal method sets or assigns permissions to a
file, but it does not add or delete them. This means that the octal mode does not have an
equivalent to

chmod u+rw .profile

The closest possible octal version is

chmod 0600 .profile

But this removes permissions for everyone except the user. It can also reduce the user’s
permissions by removing that user’s execute permission.

Changing Owners and Groups
The chown (short for change owner) changes the ownership of a file, whereas the chgrp
(short for change group) changes the group membership of a file. The chgrp command is
not available on some older systems, thus the chown command must be used in its place.
This section shows how to use both chown and chgrp to change the group of a file.

Changing Ownership
The chown command changes the ownership of a file. The basic syntax is as follows:

chown user:group files

Here, user is the name of a user on the system or the user ID (uid) of a user on the sys-
tem, group is the name of a group on the system or the group ID (GID) of a group on the
system, and files is a list of files to apply the changes to. If group is omitted, only the
owner of the file is changed. If user is omitted, only the group of the file is changed.

The following example illustrates the use of this command to change the owner of a file:

chown ranga: /home/httpd/html/users/ranga

Manipulating File Attributes 101

6

Terms
Regular files The most common type of files on UNIX systems and can be used to
store any kind of data, including binary data that the system can execute.

Link A file that points to another file on the system.

Hard link A special directory entry that points to another file.

Symbolic link A special file that stores a pathname to another file. A symbolic link is
often referred to as a symlink.

Character special files Provide a mechanism for communicating with a device one
character at a time.

Block special files Provide a mechanism for communicating devices by transferring
large blocks of data.

104 Hour 6

HOUR 7
Processes

In UNIX every program runs as a process. A process is an instance of run-
ning a program. If, for example, three people are running the same program
simultaneously, there are three processes there, not just one. In this chapter
you will learn about processes and jobs and the different modes in which
they can be executed. You will also look at the commands used to list and
terminate processes. Specifically the topics you will examine are:

• Starting processes

• Listing running processes

• Killing processes

• Manipulating parent and child processes

Starting a Process
Whenever you issue a command in UNIX, it creates, or starts, a new process
on your behalf. When you tried out the ls command to list directory con-
tents in Chapter 4, “Working with Directories,” the system started a process,
the ls command, for you.

UNIX tracks processes through a five-digit ID number known as the pid (short for
process identifier). Each process in the system has a unique pid between 1 and 32,767.
Pids eventually repeat when all the possible numbers are used. Two processes with the
same pid cannot be concurrently executed on the system.

Foreground Processes
By default, every process runs in the foreground. It gets its input from the keyboard and
sends its output to the screen. You can see this happen with the ls command. For exam-
ple, when you execute the ls command:

$ ls

It executes and displays the contents of the current directory:

Desktop Downloads Library Music Public
Documents Icon? Movies Pictures Sites

While the command is running, you cannot run any other commands (start any other
processes). You can enter commands, but no prompt appears and nothing happens until
this command completes. For the ls command, which usually runs very quickly, this is
not a problem, but if you have a program that runs for a long time—such as a large com-
pile, database query, program that calculates pi, or a server—the terminal will be tied up.

Fortunately, you do not have to wait for one process to complete before you can start
another. UNIX provides facilities for starting processes in the background, suspending
foreground processes, and moving processes between the foreground and background.

Background Processes
A background process runs without being connected to your keyboard. If the background
process requires any keyboard input, it waits. The advantage of running a process in the
background is that you can run other commands; you do not have to wait until it com-
pletes to start another!

The simplest way to start a background process is to add an ampersand (&) to the end of
the command. For example, if you execute ls in the background:

$ ls &

the output will be similar the following:

[1] 621
$ Desktop Downloads Library Music Public
Documents Icon? Movies Pictures Sites

106 Hour 7

The first line of output, produced by the shell, tells you that the process is running in the
background:

[1] 621

This line contains two pieces of information about the background process—the job ID
(short for job identifier) and the pid. The shell assigns a job ID for every command that
is executed in the background.

If you execute this command, you might notice that you do not get back a prompt after
the last line of the directory listing. That’s because the prompt actually appears immedi-
ately after the job/pid line, next to Desktop. You can enter a command immediately
instead of waiting for ls to finish. If you press the Enter key now, you will see some-
thing similar to the following:

[1] + Done ls &
$

The first line tells you that the background ls job finished successfully. The second is a
prompt for another command.

You will see a different completion message if an error occurs. For example, if you try to
list the file with the name no_such_file, you will get an error:

$ ls no_such_file &
[1] 25389
$ no_such_file: No such file or directory

The first line is the background process information and the second shows the prompt for
the next command and the output from ls—the error message. If you press Enter again,
the following message appears on your screen:

[1] + Done(2) ls no_such_file &
$

This shows that the ls command exited with nonzero status, in this case, 2. The dollar
sign ($) on the next line is the command prompt.

Background Processes That Require Input
If you run a background process that requires input and do not redirect it to read a file
instead of the keyboard, the process will stop. Pressing Enter at an empty command
prompt or starting a command will return a message to that effect. For example consider
the following script:

#!/bin/sh
read LINE
echo $LINE
exit $?

Processes 107

7

When a foreground process is suspended, a command prompt enables you to enter more
commands; the original process is still in memory but is not getting any CPU time. To
resume the foreground process, you have two choices—background and foreground. The
bg command enables you to resume the suspended process in the background while the
fg command returns it to the foreground. This section covers the bg command, whereas
the fg command is covered in the next section.

For example, say you start a long-running process, in this case long_running_process:

$ long_running_process

While it is running, you decide that it should run in the background so your terminal is
not tied up. To do that, you press the Ctrl+Z keys and see the following (the ^Z is your
Ctrl+Z keys being echoed):

^Z[1] + Stopped (SIGTSTP) long_running_process
$

You are told the job number (1) and that the process is Stopped, then you get a prompt.
The actual message might be different depending on the shell you are using. To resume a
job in the background, you enter the bg command as follows:

$ bg
[1] long_running_process &
$

As a result, the process runs in the background. Note the last character on the second
line, the ampersand (&). As a reminder, the shell displays the ampersand there to remind
you that the job is running in the background. It behaves just like a command where you
type the ampersand at the end of the line.

By default, the bg command moves the most recently suspended process to the back-
ground. You can have multiple processes suspended at one time. To differentiate them,
you can use the job number prefixed with a percent sign (%) on the command line.

In the following example, you start two long-running processes, suspend both of them,
and put the first one into the background. The next few lines show starting and suspend-
ing two foreground processes:

$ long_running_process
^Z[1] + Stopped (SIGTSTP) long_running_process
$ long_running_process2
^Z[2] + Stopped (SIGTSTP) long_running_process2
$

To move the first one to the background, you use the following:

$ bg %1
[1] long_running_process &
$

Processes 109

7

just add it before the command you actually want to run. Because nohup is designed to
run when there is no terminal attached, it wants you to redirect output to a file. If you do
not, nohup redirects it automatically to a file known as nohup.out.

Running a process in the background with nohup looks like the following:

$ nohup ls &
[1] 6695
$ Sending output to nohup.out

Because you did not redirect the output from nohup, it is automatically redirected for
you. If you redirected the output, you would not see the second message. After waiting a
few moments and pressing Enter, you would see the following:

[1] + Done nohup ls &
$

Waiting for Background Processes to Finish (wait Command)
There are two ways to wait for a background process to finish before doing something
else. You can press the Enter key every few minutes until you get the completion mes-
sage, or you can use the wait command.

There are three ways to use the wait command—with no options (the default), with a
process ID, or with a job number prefixed with a percent sign. The command will wait
for the completion of the job or process you specify.

If you do not specify a job or process (the default setting), the wait command waits
for all background jobs to finish. Using wait without any options is useful in a shell
script that starts a series of background jobs. When they are all done, it can continue
processing.

With the ls command from the previous example running, you can force a wait with the
following command:

$ wait %1

You cannot enter another command until job number 1 finishes. When you use wait, you
do not get the completion message.

Listing and Terminating Processes
You can start processes in the foreground and background, suspend them, and move them
between the foreground and background, but how do you know which commands are
running? There are two commands to help you find out—jobs and ps.

Processes 111

7

If you are using BSD or older versions of Linux, your output will be similar to the
following:

$ ps
PID TT STAT TIME COMMAND

13049 q0 Ss 0:00.06 -ksh (ksh)
13108 q0 R+ 0:00.01 ps

For each running process, this provides you with five pieces of information: the pid, the
TT (terminal running this process), STAT (the state of the job), the TIME or amount of
CPU consumed by this process, and finally the command name running.

One of the most commonly used flags for ps is the -f (short for full) option, which pro-
vides more information as shown in the following example:

$ ps -f
UID PID PPID C STIME TTY TIME CMD

dhorvath 6738 3662 0 10:23:03 pts/6 0:00 first_one
dhorvath 6739 3662 0 10:22:54 pts/6 0:00 second_one
dhorvath 3662 3657 0 08:10:53 pts/6 0:00 -ksh
dhorvath 6892 3662 4 10:51:50 pts/6 0:00 ps -f
dhorvath 6770 3662 2 10:35:45 pts/6 0:03 third_one

Table 7.1 shows the meaning of each of these columns. The BSD or Linux equivalent
of the –f option is –ux. The column heading in BSD and Linux might be slightly dif-
ferent than those described in Table 7.1.

TABLE 7.1 ps -f Columns

Heading Description

UID User ID that this process belongs to (the person running it).

PID Process ID.

PPID Parent process ID (the ID of the process that started it).

C CPU utilization of process.

unlabeled Nice value—used in calculating process priority.

STIME Process start time (when it began).

CMD The command that started this process. CMD with -f is different from CMD without
it; it shows any command-line options and arguments.

Note that the PPID of all the commands is 3662, which is the pid of the ksh instance that
is executing. Because all of the processes were started in ksh, it is the parent process for
all of these processes.

Processes 113

7

If you examine the output of ps –ef, you see that the parent process of all your com-
mands is 3662, the pid of the login shell (in this ksh):

$ ps -f
UID PID PPID C STIME TTY TIME CMD

dhorvath 6738 3662 0 10:23:03 pts/6 0:00 first_one
dhorvath 6739 3662 0 10:22:54 pts/6 0:00 second_one
dhorvath 3662 3657 0 08:10:53 pts/6 0:00 -ksh
dhorvath 6892 3662 4 10:51:50 pts/6 0:00 ps -f
dhorvath 6770 3662 2 10:35:45 pts/6 0:03 third_one

As you can see, the ppid of ksh is 3657. The output on your system, as well as your shell
and its process ID, will most likely be different. Using ps -ef (or ps -aux on some sys-
tems) and grep to find that number, you see the following:

$ ps -ef | grep 3657
dhorvath 9778 3662 4 10:52:50 pts/6 0:00 ps -f
dhorvath 9779 3662 0 10:52:51 pts/6 0:00 grep 3657

root 3657 711 0 08:10:53 ? 0:00 in.telnetd
dhorvath 3657 3662 0 08:10:53 pts/6 0:00 -ksh

This tells you that the terminal session is being handled by in.telnetd (the telnet dae-
mon), which is the parent of ksh. There is a parent-child relationship between processes.
in.telnetd is the parent of ksh, which is the child of in.telnetd, but also the parent of
ps and grep.

When a child is forked, or created, from its parent, it receives a copy of the parent’s envi-
ronment, including environment variables. The child can change its own environment,
but those changes do not reflect in the parent and go away when the child exits.

Subshells
Whenever you run a shell script, in addition to any commands in the script, another copy
of the shell interpreter is created. This new shell is known as a subshell, just as a direc-
tory contained in or under another is known as a subdirectory.

The best way to show this is with an example. For example, consider the following
script, which runs ps and exits:

#! /bin/ksh
ps -ef | grep dhorvath
exit 0

When run, psit produces the following:

$ psit
dhorvath 9830 3662 0 13:58:42 pts/6 0:00 ksh psit
dhorvath 9831 9830 19 14:05:24 pts/6 0:00 ps -ef
dhorvath 3662 3657 0 08:10:53 pts/6 0:00 -ksh
dhorvath 9832 9830 0 13:58:42 pts/6 0:00 grep dhorvath
$

Processes 115

7

The subshell running as process 9830 is a child of process 3662, the original ksh shell. ps
and grep are the children of process 9830 (ksh psit). When the psit script is done and
exits, the subshell exits, and control is returned to the original shell.

You can also start a subshell by entering the shell name (ksh for Korn, sh for Bourne, and
csh for C Shell). This feature is handy if you have one login (default) shell and want to
use another. Starting out in Korn Shell and starting C Shell would look like the following:

$ csh
% ps -f

UID PID PPID C STIME TTY TIME CMD
dhorvath 3662 3657 0 08:10:53 pts/6 0:00 -ksh
dhorvath 3266 8848 11 10:50:40 pts/6 0:00 ps -f
dhorvath 8848 3662 1 10:50:38 pts/6 0:00 csh
%

The C shell uses the percent sign as a prompt. After the csh command starts the shell, the
prompt becomes the percent sign. The ps command shows csh as a child process and sub-
shell of ksh. To exit csh and return to the parent shell, you can use the exit command.

Process Permissions
By default, a process runs with the permissions of the user running it. In most cases, this
makes sense, enabling you to run a command or utility only on your files. There are
times, however, when users need to access files that they do not own. A good example of
this is the passwd command, which is usually stored as /usr/bin/passwd. It is used to
change passwords and modify /etc/passwd and the shadow password file, if the system
is so equipped.

It does not make sense for general users to have write access to the password files; they
could create users on-the-fly. The program itself has these permissions. If you look at the
file using ls, you see the letter s where x normally appears in the owner and group per-
missions. The owner of /usr/bin/passwd is root, and it belongs to the sys group. No
matter who runs it, it has the permissions of the root user.

Overlaying the Current Process (exec Command)
In addition to creating (forking) child processes, you can overlay the current process with
another. The exec command replaces the current process with the new one. Use this
command only with great caution. If you use exec in your primary (login) shell inter-
preter, that shell interpreter (ksh with pid 3662 in the previous examples) is replaced with
the new process. Using the command exec ls at your login shell prompt gives you a
directory listing and then disconnects you from the system, logging you out. Because
exec overlays your shell (ksh, for example), there are no programs to handle commands
for you when ls finishes and exits.

116 Hour 7

You can use exec to change your shell interpreter completely without creating a subshell.
To convert from ksh to csh, you can use the following:

$ exec csh
% ps -f

UID PID PPID C STIME TTY TIME CMD
dhorvath 3662 3657 0 08:10:53 pts/6 0:00 csh
dhorvath 3266 3662 11 14:50:40 pts/6 0:00 ps -f
%

The prompt changes and ps shows csh instead of ksh but with the original pid and start
time.

Summary
In this chapter, you looked at the four major topics involving processes provided with the
shell:

• Starting a process

• Listing running processes

• Killing a process (kill command)

• Manipulating parent and child processes

As you write scripts and use the shell, knowing how to work with processes improves
your productivity.

Questions
1. How do you run a command in the background?

2. How do you determine which processes you are running?

3. How do you change a foreground process into a background process?

Terms
Background Describes processes usually running at a lower priority and with their
input disconnected from the interactive session. Input and output are usually directed to a
file or other process.

Background processes Autonomous processes that run under UNIX without requiring
user interaction.

Child processes See subprocesses.

Processes 117

7

Child shells See subshells.

Parent process identifier Shown in the heading of the ps command as PPID. This is
the process identifier of the parent process. See also parent processes.

Parent processes These processes control other processes that are often referred to as
child processes or subprocesses. See processes.

Parent shell This shell controls other shells, which are often referred to as child shells
or subshells. The login shell is typically the parent shell.

Process identifier Shown in the heading of the ps command as pid. It is the unique
number assigned to every process running in the system.

Processes Discrete, running programs under UNIX. The user’s interactive session is
a process. A process can invoke (run) and control another program that is then referred
to as a subprocess. Ultimately, everything a user does is a subprocess of the operating
system.

Subprocesses Run under the control of other processes, which are often referred to as
parent processes. See processes.

Subshells Run under the control of another shell, which is often referred to as the par-
ent shell. Typically, the login shell is the parent shell.

118 Hour 7

Hour
8 Variables

9 Substitution

10 Quoting

11 Flow Control

12 Loops

13 Parameters

14 Functions

15 Text Filters

16 Filtering Text with Regular Expressions

17 Filtering Text with awk

18 Other Tools

PART II
Shell Programming

HOUR 8
Variables

Variables are words that hold a value. The value can be any text string. The
shell enables you to create, assign, and delete variables. Although the shell
manages some variables, it is mostly up to the programmer to manage vari-
ables in shell scripts. By using variables, you can make your scripts flexible
and maintainable.

In this chapter, we will examine the following topics:

• Creating variables

• Accessing variables

• Array variables

• Deleting variables

• Environment variables

Working with Variables
Two types of variables can be used in shell programming:

• Scalar variables

• Array variables

The reason you cannot use other characters such as !,*, or - is that these characters have
a special meaning for the shell. If you try to create a variable name with one of these
special characters, it confuses the shell. For example, the variable names

FRUIT-BASKET
_2*2
TRUST_NO_1!

are invalid names. The error message generated for the first variable name will be similar
to the following:

$ FRUIT-BASKET=apple
/bin/sh: FRUIT-BASKET=apple: not found.

Variable Values
You can store or assign any value you want in a variable. For example,

FRUIT=peach
FRUIT=2apples
FRUIT=apple+pear+kiwi

A common error with variables is assigning values that contain spaces. For example, the
following assignment

$ FRUIT=apple orange plum

results in this error message:

sh: orange: not found.

Values that have spaces in them need to be quoted. For example, both of the following
are valid assignments:

$ FRUIT=”apple orange plum”
$ FRUIT=’apple orange plum’

The difference between these two quoting schemes is covered in Chapter 10, “Quoting.”

Accessing Values
You can access the value stored in a variable by prefixing its name with the dollar sign
($). When the shell sees a $, it performs the following actions:

1. Reads the next word to determine the name of the variable.

2. Retrieves the value for the variable. If a value isn’t found, the shell uses the empty
string “” as the value.

3. Replaces the $ and the name of the variable with the value of the variable.

Variables 123

8

This process, known as variable substitution, is covered in greater detail in Chapter 9,
“Substitution.” The following example demonstrates this process:

$ FRUIT=peach
$ echo $FRUIT
peach

In this example, the shell first determines that the variable FRUIT has been referenced.
Next it looks up the value for FRUIT. Finally the string $FRUIT is replaced with peach, the
value of FRUIT, which is what the echo command prints.

If you do not use the dollar sign ($), variable substitution is not performed and the name
of the variable is used directly. For example,

$ echo FRUIT
FRUIT

simply prints out FRUIT, not the value of the variable FRUIT.

The dollar sign ($) is used only when accessing a variable’s value. It should not be used
to define a variable or assign a value to a variable. For example, the assignment

$ $FRUIT=apple

generates the following error message

sh: peach=apple: not found

assuming that the value of FRUIT was peach. If the variable FRUIT did not have a value,
the error would have been

sh: =apple: not found

Array Variables
Arrays are a method for grouping a set of variables together using a single name. Instead
of creating a new name for each variable you need, you can use a single array variable to
stores all the variables.

To understand how arrays work, consider the following example. Say that we are trying
to represent the chapters in this book using a set of scalar variables. We could choose the
following variable names to represent some of the chapters:

CH01
CH02
CH15
CH07

124 Hour 8

set the values of the first three items in the array named FRUIT. You could do the same
thing with scalar variables as follows:

$ FRUIT_0=apple
$ FRUIT_1=banana
$ FRUIT_2=orange

Although this works fine for small numbers of items, the array notation is much more
efficient for large numbers of items. If you have to write a script using the Bourne shell
only, you can use this method for simulating arrays.

In the previous example, the array indices were set in sequence. This is not necessary.
For example, the following command sets the value of the item at index 10 in the FRUIT
array:

$ FRUIT[10]=plum

The shell does not create a bunch of blank array items to fill in the space between index
2 and index 10; it just keeps track of those array indices that contain values.

If an array variable with the same name as a scalar variable is defined, the value of the
scalar variable becomes the value of the element of the array at index 0. For example, if
the following commands are executed

$ FRUIT=apple
$ FRUIT[1]=peach

the zeroth element of FRUIT has the value apple. At this point, any accesses to the scalar
variable FRUIT are treated as an access to the array item FRUIT[0].

The second form of array initialization can be used to set multiple elements at once. The
syntax for this form of initialization differs between ksh and bash. In ksh, the syntax is
as follows:

set –A name value1 value2 ... valueN

In bash, the syntax is

name=(value1 ... valueN)

Either style can be used in zsh. Regardless of the style, name is the name of the array,
and value1 to valueN are the values of the items to be set. When setting multiple ele-
ments at once, consecutive array indices, beginning at 0, are used.

For example the ksh command

$ set –A band derri terry mike gene

or the bash command

$ band=(derri terry mike gene)

126 Hour 8

Assuming that FRUIT is defined as in previous examples, accessing the entire array using
the following command

$ echo ${FRUIT[*]}

results in five items, not four:

apple banana orange passion fruit

Commands accessing FRUIT using this form of array access get five values, with passion
and fruit treated as separate items. To get only four items, you have to use the follow-
ing form:

$ echo ${FRUIT[@]}

The output from this command looks similar to the previous commands:

apple banana orange passion fruit

but commands will see only four items because the shell quotes the last item, passion
fruit, so it is treated as a single item.

Read-Only Variables
A read-only variable is a variable whose value cannot be changed after it is defined.
Once a variable is specified as read-only, there is no way to get rid of it or to modify its
value; it and its value persist until the shell exits.

Variables can be marked read-only using the readonly command. Consider the follow-
ing set of commands:

$ FRUIT=kiwi
$ readonly FRUIT
$ echo $FRUIT
kiwi
$ FRUIT=cantaloupe

The last command results in an error message similar to the following:

/bin/sh: FRUIT: This variable is read only.

As you can see, we can read the value of the variable FRUIT, but we cannot overwrite the
value stored in it.

This feature is often used in scripts to make sure that critical variables are not overwrit-
ten accidentally.

In ksh, bash, and zsh, readonly can be used to mark both array and scalar variables as
read-only:

$ FRUITBASKET=(apple orange pear)
$ readonly FRUITBASKET

128 Hour 8

$ echo ${FRUITBASKET[1]}
orange
$ FRUITBASKET[1]=kiwi

The last command results in an error message similar to the following:

sh: FRUITBASKET[1]: is read only

This example used the bash style array assignment; if you are using ksh you will need to
change the first command to the following:

$ set –A FRUITBASKET apple orange pear

Unsetting Variables
Unsetting a variable tells the shell to remove the variable from the list of variables that it
tracks. This is like asking the shell to forget a piece of information because it is no
longer required.

Both scalar and array variables can be unset using the unset command:

unset name

Here name is the name of the variable to unset. For example, the following command
unsets the variable FRUIT:

unset FRUIT

The unset command cannot be used to unset variables that have been marked read-only
via readonly. There is no way to unset a read-only variable; it persists until the shell
exits.

Environment and Shell Variables
When the shell starts a program, it passes that program a set of variables called the envi-
ronment. The environment is usually a small subset of the variables defined in the shell.
Each variable in the environment is called an environment variable.

The variables we have examined thus far have been local variables. Local variables are
variables whose value is restricted to a single shell. Local variables are not passed to pro-
grams started by the shell.

In addition to local variables and environment variables, there is a third category of vari-
ables called shell variables. These are special variables set by the shell that are required
for proper operation of the shell. Some shell variables are environment variables,
whereas others are local variables.

Table 8.1 compares these three categories of variables.

Variables 129

8

TABLE 8.1 A Comparison of Local, Environment, and Shell Variables

Attribute Local Environment Shell

Accessible by child processes No Yes Yes

Set by users Yes Yes No

Set by the shell No No Yes

User modifiable Yes Yes No

Required by the shell No No Yes

Exporting Environment Variables
Environment variables are just local variables that have been placed into the environment
via the export command:

export name

The variable specified by name is placed in the environment. The process of placing vari-
ables into the environment is often referred to as exporting the variable. The standard
shell idiom for exporting variables is

name=value ; export name

An example of this is

PATH=/sbin:/bin ; export PATH

Here a value is assigned to PATH, and then PATH is exported. Often, the assignment state-
ment of an environment variable and the corresponding export statement are written on
one line to clarify that the variable is an environment variable. This helps the next pro-
grammer, who has to maintain the script, quickly grasp the use of certain variables.

A single export command can be used to export more than one variable. For example,
the command

export PATH HOME UID

exports the variables PATH, HOME, and UID to the environment.

Exporting Variables in ksh, bash, and zsh
An alternative form for exporting variables is available in ksh, bash, and zsh:

export name=value

In this form, the variable specified by name is assigned the specified value and then that
variable is marked for export. In this form command,

export PATH=/sbin:/bin

130 Hour 8

is equivalent to

PATH=/sbin:/bin ; export PATH

In this form, any combination of name or name=value pairs can be given to the export
command. For example, the command

export FMHOME=/usr/frame CLEARHOME=/usr/atria PATH

assigns the specified values to the variables FMHOME and CLEARHOME and then exports the
variables FMHOME, CLEARHOME, and PATH.

Shell Variables
Shell variables are variables that the shell sets during initialization and uses internally.
Table 8.2 gives a list of the most common shell variables. Some other shell variables are
covered in the section “Variable Substitution” in Chapter 9.

TABLE 8.2 Shell Variables

Variable Description

PWD Indicates the current working directory as set by the cd command.

UID Expands to the numeric user ID of the current user, initialized at shell startup.

SHLVL Increments by one each time an instance of bash is started. This variable is useful for
determining whether the built-in exit command ends the current session.

REPLY Expands to the last input line read by the read built-in command when it is given no
arguments. This variable is not available in Bourne shell.

RANDOM Generates a random integer between 0 and 32,767 each time it is referenced. You can
initialize the sequence of random numbers by assigning a value to $RANDOM. If $RAN-
DOM is unset, it loses its special properties, even if it is subsequently reset. This vari-
able is not available in Bourne shell.

SECONDS Each time this parameter is referenced, it returns the number of seconds since shell
invocation. If a value is assigned to $SECONDS, the value returned on subsequent refer-
ences is the number of seconds since the assignment plus the value assigned. If $SEC-
ONDS is unset, it loses its special properties, even if it is subsequently reset. This
variable is not available in Bourne shell.

IFS Indicates the Internal Field Separator that is used by the parser for word splitting after
expansion. $IFS is also used to split lines into words with the read built-in command.
The default value is the string, \t\n, where is the space character, \t is the tab
character, and \n is the new-line character.

Variables 131

8

PATH Indicates the search path for commands. It is a colon-separated list of directories in
which the shell looks for commands. A common value is

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/ucb

HOME Indicates the home directory of the current user: the default argument for the cd built-
in command.

Summary
This chapter covered using variables for shell script programming. You saw how scalar
and array variables were defined, accessed, and unset. We also looked at a special cate-
gory of variables known as environment variables. In subsequent chapters, we will look
at how variables are used to achieve a greater degree of flexibility and clarity in shell
scripts.

Questions
1. Which of the following are valid variable names?

a. _FRUIT_BASKET

b. 1_APPLE_A_DAY

c. FOUR-SCORE&7YEARS_AGO

d. Variable

2. Is the following sequence of array assignments valid in sh, ksh, and bash?
$ adams[0]=hitchhikers_guide
$ adams[1]=restaurant
$ adams[3]=thanks_for_all_the_fish
$ adams[42]=life_universe_everything
$ adams[5]=mostly_harmless

3. Given the preceding array assignments, how would you access the array item at
index 5 in the array adams? How would you access every item in the array?

4. What is the difference between an environment variable and a local variable?

132 Hour 8

TABLE 8.2 continued

Variable Description

Terms
Array Variable An array variable is a variable that groups multiple scalar variables
together using a single name. Each of the individual scalar variables is accessed via an
index.

Environment The environment is a set of variables that the shell passes to every pro-
gram it starts.

Environment Variable An environment variable is a variable that is a member of the
environment.

Exporting The process of placing a variable in the environment is called exporting.

Local Variable A local variable is a variable that is present within the current instance
of the shell. It is not available to programs that are started by the shell.

Read-Only Variable A read-only variable is a variable whose value cannot be
changed.

Scalar Variable A scalar variable can hold only one value at a time.

Shell Variable A shell variable is a variable that is set by the shell and is required by
the shell to function correctly.

Unsetting Unsetting a variable removes it from the list of variables tracked by the
shell.

Variable A variable is a word that holds a value. The value can be any text string.

Variable Substitution Variable substitution is the process by which the shell replaces
the name of a variable with its value.

Variables 133

8

HOUR 9
Substitution

When the shell encounters an expression that contains one or more meta-
characters, it performs substitutions on that expression. Meta-characters
are characters that have a special meaning in the shell. Substitution is the
process by which the shell converts a string containing meta-characters
into a different string that is the result of interpreting the meta-characters.
In the last chapter, you saw how the $ meta-character can be used to
access a variable’s value in a process known as variable substitution. In
addition to variable substitution, the shell can also perform several other
types of substitutions. This chapter looks at each of these types of substitu-
tion and their associated meta-characters in detail. Specifically the topics
covered are

• Filename substitution

• Value-based variable substitution

• Command substitution

• Arithmetic substitution

Filename Substitution (Globbing)
The most common type of substitution is filename substitution or globbing. Globbing is
the method by which the shell expands a string containing globbing meta-characters or
wildcards into a list of filenames. Table 9.1 lists the wildcards used in globbing.

TABLE 9.1 Globbing Meta-Characters (Wildcards)

Wildcard Description

* Matches zero or more occurrences of any character

? Matches one occurrence of any character

[characters] Matches one occurrence of any of the given characters

Any command or script that operates on files can take advantage of globbing. The exam-
ples in this section use the ls command because its output clearly illustrates the results
of globbing.

The * Meta-Character
The simplest form of filename substitution is the asterisk or star, *, meta-character. The *
matches zero or more occurrences of any character in a filename.

When given by itself, the * matches all visible filenames in the current directory. For
example, the command

$ ls *

lists every file and the contents of every directory in the current directory. Invisible files
or directories are not listed.

Although the * is sometimes used by itself, its main use is in matching file prefixes and
suffixes.

Matching a Prefix
To match a file prefix, the * can be used as follows:

cmd prefix*

Here cmd is the name of a command, such as ls, and prefix is the filename prefix you
want to match. For example, the following command lists all the files and directories in
the current directory that start with the letters CGI:

$ ls CGI*
CGI.java CGIGet.java CGIGetTest.java CGIPost.java CGIPostTest.java

136 Hour 9

By varying the prefix slightly, you can alter the list of files that are matched. For exam-
ple, the command

$ ls CGIG*

generates the following list of files:

CGIGet.java CGIGetTest.java

Varying the suffix allows you to manipulate the list of the matched filenames until the
list contains just the filenames you are interested in.

Matching a Suffix
To match a file suffix, the * can be used as follows:

cmd *suffix

Here cmd is the name of a command, such as ls, and suffix is the filename suffix you
want to match. For example, the following command lists all the files and directories in
the current directory that end with the letters java:

$ ls *java
CGI.java CGIGet.java CGIGetTest.java CGIPost.java CGIPostTest.java

By varying the suffix slightly, you can alter the list of files that are matched. To list just
the files that end with Test.java, you can adjust the command as follows:

$ ls *Test.java
CGIGetTest.java CGIPostTest.java

Varying the suffix also allows you to manipulate the list of the matched filenames in
order to obtain a list of the filenames that interest you.

Matching Prefixes and Suffixes
You can match both the prefix and the suffix by using the * character as follows:

cmd prefix*suffix

Here cmd is the name of a command, such as ls, prefix is the filename prefix, and suf-
fix is the filename suffix. For example, the following command lists all the files and
directories in the current directory with the prefix CGIG and the suffix java:

$ ls CGIG*java
CGIGet.java CGIGetTest.java

It is also possible to use multiple * in a filename subsitution expression. For example, if
you needed to list only those files with the prefix CGI, the suffix java, and that contain
the characters st, you could use the following command:

$ ls CGI*st*java

Substitution 137

9

The output is as follows:

CGIGetTest.java CGIPost.java CGIPostTest.java

138 Hour 9

Globbing is Case Sensitive
When using the *, it is important to specify the correct case for the prefix and suffix. For
example, the command ls CGI* produces the following output:

CGI.java CGIGet.java CGIGetTest.java CGIPost.java CGIPostTest.java

whereas the command $ ls cgi* does not produce the same list of files.

The ? Meta-Character
One of the limitations of the * is that it matches zero or more characters. Consider a situ-
ation where you need to list all files that have names of the form ch0X.doc, where X is a
single number or letter. At first glance it seems like the command

$ ls ch0*.doc

would produce the appropriate list, but inspecting the output shows otherwise:

ch01.doc ch01-1.doc ch01-2.doc ch02.doc ch02-1.doc ch02-2.doc
ch03.doc ch03-1.doc ch03-2.doc

In order to match only one character, you need to use the question meta-character. The ?
matches exactly one instance of a character. Rewriting the previous example using the ?
yields:

$ ls ch0?.doc

Now the output contains only those files you were interested in:

ch01.doc ch02.doc ch03.doc

Say that you need to look for all files that have names of the form chXY, where X and Y

are any number or character. You can use two ? meta-characters in order to obtain the
desired list of files:

$ ls ch??.doc
ch01.doc ch02.doc ch03.doc

Common Errors
If the shell cannot find any files that match an expression containing a ?, the shell treats
the ? as a regular character. Because most filenames do not include a ?, this usually pro-
duces an error message. For example, the following command:

$ ls ch?.doc

produces the error message:

ls: ch?.doc: No such file or directory

For this reason, a shell script needs to validate the existence of files that are specified as
arguments. The procedure for performing such checks is discussed in Chapter 11, “Flow
Control.”

Matching Sets of Characters
Two potential problems with the ? and * wildcards are

• Any character, including special characters such as hyphens (-) or underscores (_),
is matched by these characters.

• There is no way to match only letters or only numbers.

Sometimes you need more control over the characters to be matched. Consider the situa-
tion where you need to match filenames of the form ch0X, where X is a number between
0 and 9. Neither the * nor the ? operator is appropriate for this task.

In order to match sets of characters, you need to use the [and] meta-characters. The
syntax for using these meta-characters is as follows:

cmd [chars]

Here cmd is the name of a command, such as ls, and chars is the set of characters to
match. For example, the following command fulfills these requirements:

$ ls ch0[0123456789].doc
ch01.doc ch02.doc ch03.doc

Character Ranges
In the previous example, the set contained an explicit list of all the characters that you
wanted to match. This can be cumbersome if you need to deal with large sets of charac-
ters. You can simplify this by specifying a character range with the – meta-character. A
character range is a method for specifying a set of characters by providing the first and
last character in the set. For example, the character range 0-9 specifies all the numbers
between zero and nine, inclusive.

Using the range 0-9, you can rewrite the previous example as follows:

$ ls ch0[0-9].doc
ch01.doc ch02.doc ch03.doc

Character ranges are most useful when trying to match sets of letters. For example,

$ ls [a-z]*

Substitution 139

9

lists all the files starting with a lowercase letter. To match all the files starting with
uppercase letters, use the following:

$ ls [A-Z]*

You can also combine multiple character ranges in a single set. For example,

$ ls [a-zA-Z]*

matches all files that start with a letter, whereas the command

$ ls *[a-zA-Z0-9]

matches all files ending with a letter or a number.

Coupling sets with other meta-characters gives you the maximum amount of flexibility in
filename substitution.

Negating a Set
Consider a situation where you need a list of all files except those that contain a particu-
lar letter, for example, the letter a. You can solve this problem in two ways:

• Specify all the characters you want a filename to contain.

• Specify that the filename not include the letter a.

If you choose the first approach, you need to construct a set of all the characters that
your filename can contain. You can start with:

[b-zA-Z0-9]

This set does not include the special characters that are allowed in filenames. Attempting
to include all these characters creates a cumbersome set with complicated quoting:

[b-zA-Z0-9\-_\+\=\\\’\”\{\[\}\]

Compared to this, the second approach seems much simpler, because all you need to do
is specify the set of characters to exclude. This is accomplished using the ! operator.
When ! is the first character in a set, the shell matches only those filenames that do not
include the characters in the set that follows the !. The syntax for this operator is:

cmd [!chars]

Here, cmd is the name of a command, such as ls, and chars is the set of characters that
should not be matched.

As an example, you can list all files except those starting with the letter a using the
command

$ ls [!a]*

140 Hour 9

Variable Substitution
In the previous chapter, you learned about a basic form of variable substitution, namely
how to retrieve the value of a variable using the $ meta-character. In addition to this, the
shell provides several other advanced forms of variable substitution that enable shell pro-
grams to manipulate the value of a variable based on its state.

There are two broad categories of advanced variable substitution:

• Actions taken when a variable has a value

• Actions taken when a variable does not have a value

The actions can range from one time value substitution to aborting the script. These cate-
gories are broken into four forms of variable substitution. These forms are summarized in
Table 9.2.

TABLE 9.2 Advanced Variable Substitution

Name Syntax Description

Default Value Substitution ${param:-word} If param is null or unset, word is substituted
for param. The value of param does not
change.

Default Value Assignment ${param:=word} If param is null or unset, param is set to the
value of word.

Null Value Error ${param:?msg} If param is null or unset, msg is printed to
STDERR and the shell exits.

Substitute When Set ${param:+word} If param is set, word is used instead of the
value of param. The value of param does not
change.

Default Value Substitution
The first form of advanced variable substitution allows a default value to be substituted
when the variable’s value is null. The syntax is as follows:

${param:-word}

Here param is the name of the variable and word is the default value. Substitution is per-
formed only when param is unset. Furthermore, word is not assigned to param; the shell
just replaces the expression with word. The following example illustrates the behavior:

$ unset MYFRUIT
$ FRUIT=${MYFRUIT:-APPLE}
$ echo MYFRUIT is $MYFRUIT, FRUIT is $FRUIT
MYFRUIT is , FRUIT is APPLE

Substitution 141

9

Default Value Assignment
The second form of advanced variable substitution assigns a value to a variable when the
variable’s value is null. The syntax is as follows:

${param:=word}

Here param is the name of the variable and word is the value to assign if the variable’s
value is null. The following example illustrates the behavior:

$ unset FRUIT
$ echo FRUIT is $FRUIT
FRUIT is
$ echo FRUIT is ${FRUIT:=APPLE}
FRUIT is APPLE

Null Value Error
Sometimes substituting or assigning default values can hide problems in a shell script. In
order to spot such problems in critical parts of a shell script, you can use the third form
of variable substitution that outputs a message to STDERR when a variable is unset. The
syntax is as follows:

${param:?msg}

Here, param is the name of the variable and msg is the message to be printed to
STDERR.

If a shell script or shell function requires a certain variable to be set for proper execution,
this form of variable substitution can be used. For example, the following expression
causes the shell to exit if the variable $HOME is unset:

: ${HOME:?”Your home directory is undefined.”}

In addition to using the variable substitution form described previously, this example
makes use of the no-op (short for no operation) command, :. This command performs no
work; it just evaluates the arguments passed to it.

Substitute When Set
The final form of variable substitution is used to substitute a value when a variable is set.
The syntax is as follows:

${param:+word}

Here param is the name of the variable and word is the value to substitute if the variable is
set. If param is unset, then nothing is substituted. This form does not alter the value of the
variable. It is commonly used by scripts to indicate that the script is running in debug mode:

echo ${DEBUG:+”Debug is active.”}

142 Hour 9

Precedence Example
The following example illustrates the rules of precedence:

$ echo $((((5 + 3*2) - 4) / 2))
3

If you are having trouble understanding the output, just break down the operations start-
ing with the sub-expression contained in the innermost parenthesis:

1. (5 + 3*2). Because * has higher precedence than +, this sub-expression evaluates to
11.

2. Substituting the result from Step 1 yields the sub-expression (11 – 4). This evalu-
ates to 7.

3. Substituting the result from Step 2 yields the sub-expression 7 / 2. This evaluates to
3.5, which is truncated to 3.

Common Errors
A common error in arithmetic substitution is inserting spaces between the parentheses.
There should be no spaces between the first or last set of parentheses. The correct syntax
is as follows:

$((exp))

If a space is inserted between the parentheses, as follows:

$((exp))
$((exp))
$((exp))

the shell will generate an error message. The exact error message depends on exp. For
example, all the following commands:

$ echo $((5/2))
$ echo $((5/2))
$ echo $((5/2))

will produce an error message similar to the following:

sh: command not found: 5

On some systems the error message is

sh: no such file or directory: 5

Substitution 145

9

Summary
In this chapter, you looked at four forms of substitution available in the shell:

• Filename substitution

• Variable substitution

• Command substitution

• Arithmetic substitution

As you write scripts and use the shell to solve problems, these types of substitution will
be of immense utility.

Questions
1. What combination of wildcards should you use to list all the files in the current

directory that end in the form hwXYZ.ABC?

Here X and Y can be any number; Z is a number between 2 and 6; and A, B, and C
are characters.

2. What action is performed by the following line, if the variable MYPATH is unset:

: ${MYPATH:=/usr/bin:/usr/sbin:/usr/ucb}

3. What is the difference between the actions performed by the command given in the
previous problem and the action performed by the following command:

: ${MYPATH:-/usr/bin:/usr/sbin:/usr/ucb}

4. What is the output of the following command (figure it out by yourself before typ-
ing it into the shell):

echo $((3 * 2 + (4 – 3 / 4)))

Terms
Character range A method for specifying a set of characters by giving the first and
last character in the set.

Globbing The process used by the shell to produce a list of files that match a particular
expression. Also known as filename substitution.

Meta-characters Characters that have a special meaning in the shell.

Substitution The process by which the shell converts a string containing meta-charac-
ters into a different string that is the result of interpreting the meta-characters.

Wildcards Meta-characters used in globbing. The two main wildcards are * and ?.

146 Hour 9

HOUR 10
Quoting

In the preceding chapter, you looked at substitution, which occurs automati-
cally whenever you enter a command containing a meta-character or a $.
The way the shell interprets these and other special characters is generally
useful, but sometimes it is necessary to turn off shell substitution and let
each character stand for itself. Turning off the special meaning of a character
is called quoting, and it can be done in three ways:

• Using the backslash (\)

• Using the single quote (‘)

• Using the double quote (“)

Quoting can be a very complex issue, even for experienced UNIX program-
mers. In this chapter, you look at each of these forms of quoting and learn
how to use them. You learn a series of simple rules to help you understand
when quoting is needed and how to do it correctly.

This seems like a simple echo statement, but notice that the output is not what was
expected because the shell treats the $1 in $1250 as the shell variable $1. The $ meta-
character must be quoted in order to avoid variable substitution:

$ echo You owe \$1250

Now you get the desired output:

You owe $1250

Now let’s say you need to print a message that contains a backslash:

$ echo A:\ is my floppy drive
A: is my floppy drive

As you can see, the backslash is not present in the output. This is because a single back-
slash is always used to quote the next character, in this case a space. In order to obtain a
backslash, you need to quote it with a backslash as follows:

$ echo A:\\ is my floppy drive
A:\ is my floppy drive

Meta-Characters and Escape Sequences
The previous examples covered three of the meta-characters that need to be quoted. The
complete set of meta-characters that need to be quoted follows:

* ? [] ‘ “ \ $; & () | ^ ! # newline tab

Frequently you will see newline and tab expressed as \n and \t respectively. When the
backslash precedes a normal character, such as n or t, the resulting string, called an
escape sequence, takes on a special meaning. As you learned in Chapter 5, “Input and
Output,” escape sequences make it possible to embed special characters such as newlines
and tabs in messages output by scripts.

Using Single Quotes
Here is an echo command that must be modified because it contains many special shell
characters:

$ echo <-$1250.**>; (update?) [y|n]

You could quote the entire string by putting a backslash in front of each special charac-
ter, but this is tedious and makes the resulting command difficult to read and understand:

$ echo \<-\$1250.**\>\; \(update\?\) \[y\|n\]

Quoting 149

10

Because the string is single quoted, the output is easy to predict—what you see is what
you get:

$USER owes <-$1250.**>; [as of (`date +%m/%d`)]

As you can imagine, this is not exactly what you wanted; the single quotes have pre-
vented variable substitution and command substitution from occurring, thus the variable
$USER, which contains the username of the current user, was not replaced with the appro-
priate value and the date command was not executed. So now the problem is to quote
most of the meta-characters, such as * and ;, but to allow some meta-characters, such as
$ and `, to be evaluated.

Double quotes are the solution to this problem. Double quotes disable all of the meta-
characters except for $ and `, thus allowing variable and command substitution to be per-
formed in a quoted string. Watch what happens if you replace the single quotes with
double quotes as follows:

$ echo “$USER owes <-$1250.**>; [as of (`date +%m/%d`)]”
Fred owes <-250.**>; [as of (12/21)]

As you can see, double quotes permit you to display many meta-characters literally while
still enabling variable and command substitutions. However, as you might have noticed,
the amount of money owed is incorrect because $1 is substituted. To correct this, you
need to use a backslash to escape the $:

$ echo “$USER owes <-\$1250.**>; [as of (`date +%m/%d`)]”

The escaped dollar sign is no longer a special character, so the dollar amount appears
correctly in the output now:

ranga owes <-$1250.**>; [as of (12/21)]

If you need to print a double quote inside a double-quoted string, you need to quote it
with a backslash (\”) as follows:

$ echo “He said \”Hello my dear\””
He said “Hello my dear”

Quoting Rules and Situations
Now that you know the basics about quoting, let’s look at some additional rules that will
help you use quoting effectively.

Quoting 151

10

Quoting Ignores Word Boundaries
In English, you are used to quoting whole words or sentences. In shell programming, the
special characters must be quoted, but it does not matter whether the regular characters
are quoted in the same word, as follows:

$ echo “Hello; world”
Hello; world

You can move the quotes off word boundaries as long as any special characters remain
quoted. This command produces the same output as the preceding one:

$ echo Hel”lo; w”orld

Of course, it is easier to read the line if the quotes are on word boundaries. This simple
example illustrates the manner in which quoting can be used. Quoting off of word
boundaries will be useful in some of the more complex quoting situations you will
encounter.

Combining Quoting in Commands
You can freely switch from one type of quoting to another within the same command.
For example, the following command contains single quotes, a backslash, and double
quotes:

$ echo The ‘$USER’ variable contains this value \> “|$USER|”
The $USER variable contains this value > |ranga|

As you can see from the output, you can intermix multiple forms of quoting in the same
command.

Embedding Spaces in a Single Argument
To the shell, one or more spaces or tabs form a single command-line argument separator.
For example, the output from the following command:

$ echo Name Address

does not preserve the spacing:

Name Address

Even though you put multiple spaces between Name and Address, the shell regards them
as special characters forming one separator. The echo command simply displays the
arguments it has received separated by a single space. You can quote the spaces to
achieve the desired result:

$ echo “Name Address”

152 Hour 10

Notice the last character in the first line is a backslash. This backslash quotes the newline
character at the end of the line. The shell recognizes this and displays > (the PS2 prompt)
as confirmation that you are entering a continuation line or multiple-line command. For
this to work properly, you must not have any characters, including spaces, after the final
backslash on the first line.

A quoted newline also acts as an argument separator just like a space or tab. For example:

$ echo ‘Line 1
> Line 2’

The newline at the end of the first line of the command is quoted because it is between a
pair of single quotes. The output from this command is

Line 1
Line 2

Quoting to Access Filenames Containing Special
Characters
In the previous chapter, you saw that any word that contains the characters *, ?, [, and]
is automatically expanded to a list of files that match the specified pattern. For example,
the command:

$ rm ch1*

removes all files in the current directory whose names start with the prefix ch1. In this
case, the * character is a special character. Most of the time, this is exactly what you
want, but there is a case where you need to use quoting to remove this character’s special
meaning. Assume you have these files in a directory:

ch1 ch1* ch1a ch15

Notice that the filename ch1* contains the * character. Although this is certainly not rec-
ommended, sometimes you encounter files whose names contain strange characters (usu-
ally such files are created by accident). If you only want to delete the file ch1*, the
following command is overkill:

$ rm ch1*

because it deletes all of the files that start with ch1. To delete just the file named ch1*
you need to quote the *. You can use the backslash, the single quote, or the double quote
for this purpose:

$ rm ch1*
$ rm ‘ch1*’
$ rm “ch1*”

154 Hour 10

You might be wondering how the quoting rules apply here. If the backslash takes away
the special meaning of its following character, shouldn’t you just see n in the output?

A backslash within double quotes is special only if it precedes one of these four
characters:

• $

• `

• “

• \

The \n within double quotes is treated as two normal characters that are passed to the
echo command as arguments. The printf command enables its own set of special char-
acters, which are indicated by a preceding backslash. The \n passed to printf tells
printf to display a newline. In this example, the \n has to be quoted so that the back-
slash can be passed to printf and not removed before printf can see it. Watch what
happens when you don’t quote the backslash:

$ printf Line 1\nLine 2\n

This displays:

Line 1nLine 2n

The \n is not quoted, so the shell removed the backslash before printf sees the argu-
ments. Because printf sees n, not \n, it simply displays n, not a newline as desired.

Quoting Wildcards for cpio and find
There are other commands like printf that have their own special characters that must
be quoted for the shell to pass them unaltered. The cpio is a command that saves and
restores files. It allows you to use the filename expansion meta-characters to select the
files to restore. In order for cpio to receive these meta-characters in tact, they must be
quoted as in the following example:

$ cpio -icvdum ‘usr2/*’ < /dev/rmt0

-icvdum includes options to cpio to specify how it should restore files from the tape
device /dev/rmt0. The string usr2/* says to restore all files from directory usr2 on tape.
Again, this command sometimes works correctly even if the wildcards aren’t quoted
because shell expansion doesn’t occur if matching files aren’t found in the current path
(in this case, if there is no usr2 subdirectory in the current directory). It is best to quote
these cpio wildcards so you can be sure the command works properly every time.

156 Hour 10

Questions
1. Give an echo command to display this message:

It’s <party> time!

2. Give an echo command to display one line containing the following fields:

• The contents of variable $USER

• A single space

• The word “owes”

• Five spaces

• A dollar sign ($)

• The contents of the variable $DEBT (this variable contains only digits)

• Sample output:
fred owes $25

Terms
Escaping Escaping a character means to put a backslash (\) just before that character.
Escaping can either remove the special meaning of a character in a shell command, or it
can add special meaning as you saw with \n in the echo command. The character follow-
ing the backslash is called an escaped character.

Literal characters These characters have no special meaning and cause no extra action
to be taken. Quoting causes the shell to treat a wildcard as a literal character.

Meta-characters A character that has an extra meaning or causes some action to be
taken by the shell or other UNIX commands.

Newline This is literally the linefeed character whose ASCII value is 10. In general, the
newline character is a special shell character that indicates a complete command line has
been entered and can now be executed.

Quoting Literally encloses selected text within some type of quotation marks. When
applied to shell commands, quoting disables shell interpretation of special characters by
enclosing the characters within single or double quotes or by escaping the characters.

158 Hour 10

HOUR 11
Flow Control

The order in which commands execute in a shell script is called the flow of
the script. In the scripts that you have looked at so far, the flow is always the
same because the same set of commands executes every time. Most scripts,
however, need to change their flow depending on one or more conditions.
Commands that allow the flow of a script to be conditionally changed are
called conditional flow control commands, or just flow control commands.

The two main flow control statements available in the shell are:

• The if statement

• The case statement

The if statement is normally used for the conditional execution of com-
mands, whereas the case statement enables any number of command
sequences to be executed depending on which one of several patterns
matches a variable first.

In this hour, you will learn about flow control and two conditional state-
ments.

The if Statement
The if statement performs actions depending on whether a given condition is true or
false. The if statement uses the return code of a command to determine whether a condi-
tion is true or false. A return code of zero is treated as true, whereas a non-zero return
code is treated as false. The syntax of the if statement is as follows:

if list1
then

list2
elif list3
then

list4
else

list5
fi

Both the elif and the else statements are optional. If you have an elif statement, you
don’t need an else statement and vice versa. An if statement can be written with any
number of elif statements.

Because the if statement is treated as a list, it can be also written on a single line:

if list1 ; then list2 ; elif list3 ; then list4 ; else list5 ; fi ;

Usually this form is used only for short if statements.

The execution of the if statement is as follows:

1. list1 is executed.

2. If the exit code of list1 is 0 (true), list2 is executed and the if statement termi-
nates.

3. Otherwise, list3 is executed.

4. If the exit code of list3 is 0 (true), list4 is executed and the if statement termi-
nates.

5. If the exit code of list3 is non-zero, list5 is executed.

An if Statement Example
The following example illustrates the use of the if statement:

if uuencode cherry.gif cherry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

else
echo “Error encoding cherry.gif”

fi

160 Hour 11

Look at the flow of control through this statement:

1. First, the command

uuencode cherry.gif cherry.gif > cherry.uu

is executed.

2. If this command is successful, the command

echo “Encoded cherry.gif to cherry.uu”

is executed and the if statement exits.

3. Otherwise the command

echo “Error encoding cherry.gif”

is executed, and the if statement exits.

You might have noticed that both the if and then statements appear on the same line in
this example. Most shell programmers prefer to write if statements this way in order to
make the statement more concise and readable.

Common Errors
Four common errors that can occur when using the if statement are

• Omitting the semicolon (;) before the then statement in the single line form.

• Using else if or elsif instead of elif.

• Omitting the then statement when an elif statement is used.

• Writing if instead of fi at the end of an if statement.

The error message generated in each of these cases varies from system to system. In the
following examples, a typical error message is displayed; the actual error message on
your system may use slightly different wording.

The following example illustrates the first type of error:

if uuencode cherry.gif cberry.gif > cherry.uu then
echo “Encoded cherry.gif to cherry.uu”

else
echo “Error encoding cherry.gif”

fi

This example is the same as the previous example, except that the semicolon, ;, preced-
ing the then statement has been omitted. This if statement generates an error message
similar to the following:

sh: syntax error near unexpected token `else’

Flow Control 161

11

If you encounter an error message like this, make sure that a semicolon precedes the
then statement.

The second type of error can be illustrated by modifying the following example:

if uuencode cherry.gif cherry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

elif rm cherry.uu ; then
echo “Encoding failed, temporary files removed.”

else
echo “An error occured.”

fi

Here you have an elif statement that removes the intermediate file cherry.uu, if uuen-
code fails. If elif is changed to an else if as follows

if uuencode cherry.gif cherry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

else if rm cherry.uu ; then
echo “Encoding failed, temporary files removed.”

else
echo “An error occured.”

fi

an error message similar to the following is generated:

sh: syntax error: unexpected end of file

If elif is changed to elsif as follows

if uuencode cherry.gif cherry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

elsif rm cherry.uu ; then
echo “Encoding failed, temporary files removed.”

else
echo “An error occured.”

fi

an error message similar to the following is generated:

sh: syntax error near unexpected token ‘then’

The following example illustrates the third type of error:

if uuencode cherry.gif cherry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

elif rm cherry.uu
echo “Encoding failed, temporary files removed.”

else
echo “An error occured.”

fi

162 Hour 11

Here the then statement following the elif statement has been omitted. This generates
an error message similar to the following:

sh: syntax error near unexpected token ‘else’

The following example illustrates the fourth type of error:

if uuencode cherry.gif cberry.gif > cherry.uu ; then
echo “Encoded cherry.gif to cherry.uu”

else
echo “Error encoding cherry.gif”

if

Here the final fi statement is written as if. This generates an error message similar to
the following:

sh: syntax error: unexpected end of file

This error indicates that the if statement was not closed with a fi statement.

Using test
Usually the list given to an if statement is one or more test commands. A test com-
mand has the following syntax:

test expr

Here expr is constructed using one of the options understood by test. After evaluating
expr, test returns either 0 (true) or 1 (false). The open bracket, [, is often used as a
shorthand for test:

[expression]

Here expr is any valid expression understood by test. The close bracket,], the space
after the open bracket, [, and the space before the close bracket are required. Without the
spaces and the close bracket, the shell cannot tell where expr begins and ends.

There are three main types of expressions understood by test:

• File tests

• String comparisons

• Numerical comparisons

Flow Control 163

11

File Tests
File test expressions test whether a file fits a particular criteria. The general syntax for a
file test is

test option file

or

[option file]

Here option is one of the options given in Table 11.1 and file is the name of a file or
directory.

TABLE 11.1 File Test Options for test

Option Description

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d pathname True if pathname exists and is a directory.

-e pathname True if the file or directory specified by pathname exists.

-f file True if file exists and is a regular file.

-g pathname True if the file or directory specified by pathname exists and has its SGID
bit set.

-h file True if file exists and is a symbolic link. This option is not available on
some older systems.

-k pathname True if the file or directory specified by pathname exists and has its “sticky”
bit set.

-p file True if file exists and is a named pipe.

-r pathname True if the file or directory specified by pathname exists and is readable.

-s file True if file exists and has a size greater than zero.

-u pathname True if the file or directory specified by pathname exists and has its SUID
bit set.

-w pathname True if the file or directory specified by pathname exists and is writeable.

-x pathname True if the file or directory specified by pathname exists and is executable.
A directory must be executable in order for its contents to be accessed.

-O pathname True if the file or directory specified by pathname exists and is owned by
the effective user ID of the current process.

164 Hour 11

String Comparisons
The test and [commands allow for simple string comparisons. They can be used to
determine whether a string is empty and whether two strings are identical or equal. The
options relating to string comparisons are listed in Table 11.2.

TABLE 11.2 String Comparison Options for the test Command

Option Description

-z str True if str has zero length.

-n str True if str has nonzero length.

str1 = str2 True if str1 and str2 are equal.

str1 != str2 True if str1 and str2 are not equal.

Checking Whether a String Is Empty

There are several ways to determine whether a string is empty. The most common
method is to use the -z option as follows:

test -z str

or

[-z str]

Here str is the string you want to check. As an example, consider the following if state-
ment:

if [-z “$FRUIT_BASKET”] ; then
echo “Your fruit basket is empty”

else
echo “Your fruit basket contains: $FRUIT_BASKET”

fi

If the variable $FRUIT_BASKET does not have a value, the message:

Your fruit basket is empty

is produced. Otherwise a message that contains the value of $FRUIT_BASKET is produced.

If you were to use the -n option instead of the -z option, the example would change as
follows:

if [-n “$FRUIT_BASKET”] ; then
echo “Your fruit basket has the following fruit: $FRUIT_BASKET”

else
echo “Your fruit basket is empty”

fi

166 Hour 11

Here str1 and str2 are the two strings being compared. If these two strings are equal,
the test succeeds and returns true (0). If the two strings are not equal, the test fails and
returns false (1).

The following example, slightly modified from OpenBSD’s /etc/rc, illustrates a common
use of string comparisons:

if $portmap == YES, the portmapper is started.
if [“$portmap” = “YES”]; then

echo -n ‘ portmap’; portmap
fi

Here str1 is the value of $portmap and str2 is the string YES. The if statement uses the
= operator to determine whether the value stored in $portmap is equal to YES. If
$portmap is equal to YES, a message is issued and the program portmap is executed.

Note that $portmap is quoted in this example. Just like in previous examples, quoting is
used to prevent problems resulting from variable substitution when $portmap happens to
be is unset or null. If $portmap was not quoted and it happened to be null, an error mes-
sage similar to the following would be produced:

test: argument expected

An alternative technique to quoting is sometimes used to avoid these types of errors.
Basically it involves prefixing str1 and str2 with an extra character, usually X. The
syntax for this technique is

test Xstr1 = Xstr2

or

[Xstr1 = Xstr2]

If either str1 or str2 is null, the string X is used instead of null. Rewriting the previous
example using this technique yields:

if $portmap == YES, the portmapper is started.
if [X$portmap = X”YES”]; then

echo -n ‘ portmap’; portmap
fi

If $portmap is null then the strings X and XYES are compared; because these strings do
not match, the test fails. If $portmap is YES then the strings XYES and XYES are compared;
because these strings match, the test succeeds.

168 Hour 11

Inequality of Strings

You can determine whether two strings are not equal using the != operator. The syntax
for this operator is similar to that of the = operator:

test str1 != str2

or

[str1 != str2]

Here str1 and str2 are the two strings being compared. If these two strings are not
equal, the test succeeds and returns 0 (true). If the two strings are equal, the test fails and
returns 1 (false).

The following example, slightly modified from OpenBSD’s /etc/rc, illustrates the use
of the != operator:

if [“$lpd_flags” != “NO”]; then
echo -n ‘ printer’; lpd $lpd_flags

fi

Here str1 is the value of the variable $lpd_flags and str2 is the string NO. You can
determine whether the value of $lpd_flags is not NO. If the value is something other
than NO, the program issues a message and executes lpd with the value of $lpd_flags as
its argument.

Just as in previous examples, quoting was used in order to handle the case when
$lpd_flags is unset or null. An alternate technique that is sometimes used involves pre-
fixing str1 and str2 with an extra character, usually X. The syntax for this technique is

test Xstr1 != Xstr2

or

[Xstr1 != Xstr2]

If either str1 or str2 is null, the string X is used instead of null. Rewriting the previous
example using this technique yields:

if [X$lpd_flags != X”NO”]; then
echo -n ‘ printer’; lpd $lpd_flags

fi

If $lpd_flags is null, the strings X and XNO are compared; because these strings do not
match, the test succeeds. If $lpd_flags is NO then the strings XNO and XNO are compared;
because these strings match, the test fails.

Flow Control 169

11

Numerical Comparisons
The test and [commands can also be used to compare integers. The basic syntax is

test int1 op int2

or

[int1 op int2]

Here int1 and int2 can be any positive or negative integer and op is one of the operators
listed in Table 11.3. If either int1 or int2 is a string, not an integer, it is treated as 0.

TABLE 11.3 Numerical Comparison Operators for the test Command

Operator Description

int1 -eq int2 True if int1 equals int2.

int1 -ne int2 True if int1 is not equal to int2.

int1 -lt int2 True if int1 is less than int2.

int1 -le int2 True if int1 is less than or equal to int2.

int1 -gt int2 True if int1 is greater than int2.

int1 -ge int2 True if int1 is greater than or equal to int2.

A common task in a shell script is checking the exit code from a program. The numerical
comparison operators allow you to easily check the exit status of a command and per-
form different actions depending on whether a command executed correctly. For exam-
ple, consider the following command:

ln -s /usr/local/bin/bash /usr/bin

If you execute this command on the command line, you can see any error messages and
intervene to fix the problem. In a shell script, error messages are ignored and the script
continues to execute. In most cases it is a mistake to ignore errors.

The exit status of the last command is stored in the variable $?, so you can use this vari-
able to check whether a command was successful as follows:

if [$? -eq 0] ; then
echo “Command was successful.” ;

else
echo “An error was encountered.”
exit

fi

Recall that an exit code of 0 indicates success and a non-zero exit code indicates failure.
If the command exits with an exit code of 0, the “success” message is issued; otherwise,
an error message is issued and exit is called.

170 Hour 11

The syntax for creating compound expressions using the built-in operators is

test expr1 op expr2

or

[expr1 op expr2]

Here expr1 and expr2 are any valid test expressions, and op is -a (short for and) or -o
(short for or). If the -a operator is used, both expr1 and expr2 must be true in order for
the compound expression to be true. If the -o operator is used, either expr1 or expr2
must be true in order for the compound expression to be true.

The syntax for creating compound expressions using the conditional operators is

test expr1 op test expr2

or

[expr1] op [expr2]

Here expr1 and expr2 are any valid test expressions, and op is && (and) or || (or). If the
&& operator is used, both expr1 and expr2 must be true in order for the compound
expression to be true. If the || operator is used, either expr1 or expr2 must be true in
order for the compound expression to be true.

The following if statement, taken from OpenBSD’s /etc/rc, illustrates a compound
expression constructed using the built-in operator -a:

if [-f /sbin/kbd -a -f /etc/kbdtype]; then
kbd `cat /etc/kbdtype`

fi

This if statement is executed as follows:

1. First the test

-f /sbin/kbd

is performed. If the file /sbin/kbd exists then the test returns true (0), otherwise
the test returns false and the if statement performs no actions.

2. If /sbin/kbd exists, the second test

-f /etc/kbdtype

is performed. If the file /etc/kbdtype exists then the test returns true (0), other-
wise the test returns false and the if statement performs no actions. If the first test
failed, this test is not performed.

172 Hour 11

Negating an Expression

Negation reverses the result of a test expression. An expression that would have been true
is treated as false and vice versa. The basic syntax of the negation operator is

test ! expr

or

[! expr]

Here expr is any valid test expression.

The following example, taken from OpenBSD’s /etc/rc startup script, illustrates the use
of the ! operator:

if [! -f /etc/motd]; then
install -c -o root -g wheel -m 664 /dev/null /etc/motd

fi

This example creates the file /etc/motd (the message of the day on UNIX systems)
using the install command if it does not exist or is not a regular file. The execution is
as follows:

1. First the test

-f /etc/motd

is performed.

2. The result of the test is negated because of the ! operator. If the file /etc/motd
exists and is a regular file, the compound expression returns false (1); otherwise, it
returns true.

3. If the result of the previous step is true, the file /etc/motd is created; otherwise,
the if statement performs no actions.

This example can also be written as either of the following commands:

test ! -f /etc/motd && install -c -o root -g wheel -m 664
➥ /dev/null /etc/motd[-f /etc/motd] && install -c -o root -g
➥ wheel -m 664 /dev/null /etc/motd

This achieves the same result because install is executed only if the test or [com-
mands return true.

174 Hour 11

The case Statement
The case statement is the second form of flow control available in the shell. Its syntax is
as follows:

case word in
pattern1)

list1
;;

pattern2)
list2
;;

...
patternN)

listN
;;

esac

Here the string word is compared to each of the patterns from pattern1 to pattern.
When a matching pattern is found, the list following the matching pattern is then exe-
cuted.

When a list finishes executing, the special command ;; indicates that flow should jump
to the end of the case statement. The ;; is similar to the break command in the C pro-
gramming language. If no matches are found, the case statement does not perform any
actions. The minimum number of patterns is one. There is no limit on the maximum
number of patterns.

Some programmers prefer to use a more concise form of the case statement, written as
follows:

case word in
pattern1) list1 ;;

...
patternN) listN ;;

esac

This form should be used only if the list of commands to be executed is short.

A case Statement Example
The following example illustrates the use of the case statement:

FRUIT=kiwi
case “$FRUIT” in

apple) echo “Apple pie is quite tasty.” ;;
banana) echo “I like banana nut bread.” ;;
kiwi) echo “New Zealand is famous for kiwi.” ;;

esac

Flow Control 175

11

The execution of the case statement is as follows:

1. The string contained in the variable FRUIT is expanded to kiwi.

2. The string kiwi is compared against the first pattern, apple. Because they don’t
match, the program goes on to the next pattern.

3. The string kiwi is compared against the next pattern, banana. Because they don’t
match, the program goes on to the next pattern.

4. The string kiwi is compared against the final pattern, kiwi. Because they match,
the following message is produced:

New Zealand is famous for kiwi.

Common Errors
Two common errors that are encountered while using the case statement are as follows:

• Ommitting the ;; at the end of a list.

• Writing case instead of esac at the end of the case statement.

To illustrate the first type of error, the previous example is modified so that the ;; is
missing after the first list:

FRUIT=kiwi
case “$FRUIT” in

apple) echo “Apple pie is quite tasty.”
banana) echo “I like banana nut bread.” ;;
kiwi) echo “New Zealand is famous for kiwi.” ;;

esac

This ommission produces an error message similar to the following:

bash: syntax error near unexpected token `banana)’

What this error message means is that while the shell was trying to execute the list for
the pattern apple, it saw the start of the pattern banana. Because this pattern started
before the shell encountered the end of the list for the pattern apple, an error message
was produced. To illustrate the second type of error, the ending esac is changed to case:

FRUIT=kiwi
case “$FRUIT” in

apple) echo “Apple pie is quite tasty.” ;;
banana) echo “I like banana nut bread.” ;;
kiwi) echo “New Zealand is famous for kiwi.” ;;

case

This change produces an error message similar to the following:

bash: syntax error near unexpected token `case’

176 Hour 11

What this error message means is that the shell did not see the appropriate closing esac
for the case statement.

Using Patterns
In the previous example, you used fixed strings as the pattern. When used in this fashion,
the case statement is basically an if statement. For example, the if statement corre-
sponding to the case statement in previous example is

if [“$FRUIT” = apple] ; then
echo “Apple pie is quite tasty.”

elif [“$FRUIT” = banana] ; then
echo “I like banana nut bread.”

elif [“$FRUIT” = kiwi] ; then
echo “New Zealand is famous for kiwi.”

fi

Although the case statement is more concise and readable, the real power of the case
statement does not lie in enhancing the readability of your scripts; its power lies in the
fact that it uses patterns rather than fixed strings to perform matching. A pattern is a
string that consists of regular characters and special wildcard characters. The pattern
determines whether a match is present. The case statement patterns use the same special
characters as patterns for pathname expansion covered in Chapter 9, “Substitution.” The
patterns can also include the OR operator, |.

An example of a simple case statement that uses patterns is as follows:

case $- in
i) # an interactive shell

PS1=”`uname -n`$ “
PATH=”$PATH:$HOME/bin”
export PS1 PATH ;;

esac

The special variable $- contains a list of the shell options. In this case, you determine
whether that list contains the letter i, which indicates that the shell is interactive.
Checking if $- contains the letter i is the most portable method for determining whether
the shell is running in interactive mode or in non-interactive mode. In this example, you
set up the prompt, PS1, and the command search path, PATH, if the shell is running in
interactive mode; otherwise, no actions are performed.

Flow Control 177

11

Summary
In this chapter, you examined the two main flow control mechanisms available in the
shell: if and case. You also looked at the test command and its use in if statements.
Specifically, the chapter covered the following topics:

• Performing file tests

• Performing string comparisons

• Performing numerical comparisons

• Using compound expressions

In the next chapter, you will examine loops, which are complementary to flow control
statements.

Questions
1. What is the difference between the following commands?

if [-e /usr/local/bin/bash] ; then /usr/local/bin/bash ; fi

if [-x /usr/local/bin/bash] ; then /usr/local/bin/bash ; fi

2. Given the following variable declarations,
HOME=/home/ranga
BINDIR=/home/ranga/bin

what is the output of the following if statement?
if [$HOME/bin = $BINDIR] ; then

echo “Your binaries are stored in your home directory.”
fi

3. Write a test command that can be used to test if /usr/bin is a directory or a sym-
bolic link.

4. Given the following if statement, write an equivalent case statement:
if [“$ANS” = “Yes” -o “$ANS” = “yes” -o “$ANS” = “y” -o “$ANS” = “Y”] ;
then

ANS=”y”
else

ANS=”n”
fi

178 Hour 11

Terms
Conditional flow control commands Commands that allow the flow of a script to be
conditionally changed. Also called flow control commands.

Compound expression When two or more expressions are combined, the result is
called a compound expression.

Flow control commands See conditional flow control commands.

Negating expressions Reverses the result of a test expression. An expression that
would have been true is treated as false and vice versa.

Flow Control 179

11

HOUR 12
Loops

Loops enable you to execute a series of commands multiple times. The two
main types of loops are the while loop and the for loop. In addition to these
two types of loops, ksh, bash, and zsh support an additional type of loop
called the select loop. It can be used to present a menu of choices to a shell
scripts user. In this chapter, you will examine loops in detail. Specifically,
this chapter covers the following topics:

• The while loop

• The for loop

• The select loop

• Loop control

The while Loop
The while loop enables you to execute a set of commands repeatedly until
some condition occurs. It is normally used when you need to manipulate the
value of a variable repeatedly. The basic syntax of the while loop is

while cmd
do

list
done

Here, cmd is a single command, whereas list is a list of one or more commands.
Although command can be any valid UNIX command, it is usually a test expression of
the type covered in Chapter 11, “Flow Control.” The list called list is commonly
referred to as the body of the while loop. The do and done keywords are not considered
part of the body of the loop because the shell uses them only for determining where the
while loop begins and ends.

The execution of a while loop proceeds according to the following steps:

1. Execute cmd.

2. If the exit status of cmd is nonzero, exit from the while loop.

3. If the exit status of cmd is zero, execute list.

4. When list finishes executing, return to Step 1.

If both cmd and list are short, the while loop can be written on a single line as follows:

while cmd ; do list ; done

Here is a simple example that uses the while loop to display the numbers from zero to
nine:

x=0
while [$x -lt 10]
do

echo $x
x=`expr $x + 1`

done

Its output looks like this:

0
1
2
3
4
5
6
7
8
9

Each time this loop executes, the variable x is checked to see whether it has a value that
is less than 10. If the value of x is less than 10, this test expression has an exit status of
0. In this case, the current value of x is displayed and then x is incremented by 1. If x is
equal to 10 or greater than 10, the test expression returns 1, causing the while loop to
exit.

182 Hour 12

The main change introduced is the variable y. It is set to the value of x-1 before loop2

executes. Because of this, each time loop2 executes, it displays all the numbers greater
than 0 and less than x in reverse order. The output looks like the following:

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

Validating User Input with while
Say that you need to write a script that needs to ask the user for the name of a directory.
You could use the following steps to get information from the users:

1. Ask the user a question.

2. Read the user’s response.

3. Determine whether the user responded with the name of a directory.

But what should you do when the user gives you a response that is not a directory?

The simplest choice would be to do nothing, but this is not very user friendly. Your script
can be much more user friendly by informing the user of the error and asking for the
name of a directory again. The while loop is perfect for doing this. In fact, a common
use for the while loop is to determine whether user input has been gathered correctly.
Usually a strategy similar to the following is employed:

1. Set a variable’s value to null.

2. Start a while loop that exits when the variable’s value is not null.

3. In the while loop, ask the user a question and read in the users response.

4. Validate the response.

5. If the response is invalid the variable’s value is set to null. This enables the while
loop to repeat.

6. If the response is valid, the variable’s value is not changed. It continues to hold the
user’s response. Because the variable’s value is not null, the while loop exits.

A while loop that implements this is

RESPONSE=
while [-z “$RESPONSE”] ;
do

184 Hour 12

echo “Enter the name of a directory where your files are
➥located:\c “
read RESPONSE
if [! –d “$RESPONSE”] ; then

echo “ERROR: Please enter a directory pathname.”
RESPONSE=

fi
done

Here, you store the user’s response in the variable RESPONSE. Initially this variable is set
to null, enabling the while loop to begin executing. When the while loop first executes,
the user is prompted as follows:

Enter the name of a directory where your files are located:

The user can type the name of a directory at this prompt. When the user finishes typing
and presses Enter, read stores the input into the variable RESPONSE. You then check to
make sure the input is a directory. If the input is not a directory, you issue an error mes-
sage and repeat. An error message is produced so that the user knows what was wrong
with the input. If the user does not enter any value, the variable RESPONSE is still set to
null. In this case the value stored in the variable RESPONSE is not a directory, thus the
error message is produced.

Input Redirection and while
The while loop can also be combined with input redirection and read in order to read a
file one line at a time. The basic syntax is

while read LINE
do
: # manipulate file here
done < file

In the body of the while loop, you can manipulate each line of the specified file. A
simple example of this is

while read LINE
do

case $LINE in
root) echo $LINE ;;

esac
done < /etc/passwd

Here only the lines that contain the string root in the file /etc/passwd are displayed.
The output will be similar to the following:

root:x:0:1:Super-User:/:/sbin/sh

Loops 185

12

while and Subshells
A problem with the loop used in the previous example is that it is executed in a subshell
in Bourne shell and older versions of ksh. This means that any changes to the script envi-
ronment, such as exporting variables and changing the current working directory, might
not be present after the while loop completes. As an example, consider the following
script:

#!/bin/sh
if [-f “$1”] ; then

i=0
while read LINE
do

i=`expr $i + 1`
done < “$1”
echo $i

fi

This script tries to count the number of lines in the file specified to it as an argument.
Executing this script on the file

$ cat dirs.txt
/tmp
/usr/local
/opt/bin
/var

can produce the following incorrect result:

0

Although you are incrementing the value of $i using the command

i=`expr $i + 1`

when the while loop completes, the value of $i is not preserved. In this case, you need
to change a variable’s value inside the while loop and then use that value outside the
loop. One way to solve this problem is to redirect STDIN prior to entering the loop and
then restore STDIN after the loop completes. The basic syntax is

exec n<&0 < file
while read LINE
do
: # manipulate file here
done
exec 0<&n n<&-

186 Hour 12

Here, n is an integer greater than 2, and file is the name of the file you want to read.
Usually n is chosen as a small number such as 3, 4, or 5. This allows you to construct a
shell version of the cat command as follows:

#!/bin/sh
if [$# -ge 1] ; then

for FILE in $@
do

exec 4<&0 < “$FILE”
while read LINE ; do echo $LINE ; done
exec 0<&4 4<&-

done
fi

The until Loop
The while loop is perfect for a situation where you need to execute a set of commands
while some condition is true, but sometimes you need to execute a set of commands until
a condition is true. The until loop, available in ksh, bash and zsh, provides this func-
tionality. Its syntax is

until cmd
do

list
done

Here cmd is a single command, whereas list is a set of one or more commands.
Although cmd can be any valid UNIX command, it is usually a test expression of the
type covered in Chapter 11, “Flow Control.”

The execution of an until loop is similar to that of the while loop:

1. Execute cmd.

2. If the exit status of cmd is nonzero, exit from the until loop.

3. If the exit status of cmd is zero, execute list.

4. When list finishes executing, return to Step 1.

If both cmd and list are short, the until loop can be written on a single line as follows:

until cmd ; do list ; done

In most cases an until loop is identical to a while loop with cmd negated using the !
operator. For example, the following while loop

x=1
while [! $x -ge 10]
do

echo $x
x=`expr $x + 1`

done

Loops 187

12

is equivalent to the following until loop:

x=1;
until [$x -ge 10]
do

echo $x
x=`expr $x + 1`

done

The until loop offers no advantages over the equivalent while loop. Because it isn’t
supported by the Bourne shell, most programmers do not favor it. It is covered here for
the sake of completeness.

The for and select Loops
Unlike the while loop, which exits when a certain condition is false, the for and select

loops operate on lists of items. This section covers these two loops in detail.

The for Loop
The for loop enables you to execute a set of commands repeatedly for each item in a
list. One of its most common uses is in performing the same set of commands for a large
number of files. The basic syntax is

for name in word1 word2 ... wordN
do

list
done

Here name is the name of a variable and word1 to wordN are sequences of characters sepa-
rated by spaces (words). Each time the for loop executes, the value of the variable name
is set to the next word in the list of words, word1 to wordN. The first time, name is set to
word1; the second time, it’s set to word2; and so on. This means that the number of times
a for loop executes depends on the number of words that are specified. For example, if
the following words were specified to a for loop

there comes a time

the loop would execute four times. In each iteration of the for loop, the commands spec-
ified in list are executed.

A for loop can be written on a single line as follows:

for name in word1 word2 ... wordN ; do list ; done

If list and the number of words are short, the single line form is often chosen; other-
wise, the multiple-line form is preferred.

188 Hour 12

A simple for loop example is

for i in 0 1 2 3 4 5 6 7 8 9
do

echo $i
done

This loop counts to nine as follows:

0
1
2
3
4
5
6
7
8
9

Note that although the output is identical to the while loop, the for loop does something
altogether different. In each iteration, $i is set to the next item in the list. When the list is
finished, the loop exits. In this example, you chose the list to be the numbers from 0 to 9.
In the while loop, the next number to display was being computed, and it was not part of
a predetermined list.

If you change the list slightly, notice how the output changes:

for i in 0 1 2 4 3 5 8 7 9
do

echo $i
done

0
1
2
4
3
5
8
7
9

Manipulating a Set of Files
Say that you need to copy a bunch of files from one directory to another and change the
permissions on the copy. You could do this by copying each file and changing the per-
missions manually.

A better solution is to determine the commands you need to execute in order to copy a
file and change its permissions, and then have the computer do this for every file you

Loops 189

12

were interested in. In fact this is one of the most common uses of the for loop—iterating
over a set of filenames and performing some operations on those files.

The procedure to do this follows:

1. Create a for loop with a variable named file or FILE. Other favored names
include i, j, and k. The name of the variable is usually singular.

2. Create a list of files to manipulate. This is frequently accomplished using the file-
name substitution technique discussed in Chapter 9, “Substitution.”

3. Manipulate the files in the body of the loop.

An example of this is the following for loop:

for FILE in $HOME/.bash*
do

cp $FILE ${HOME}/public_html
chmod a+r ${HOME}/public_html/${FILE}

done

In this loop, you use filename substitution to obtain a list of files in your home directory
that start with .bash*. In the body of the loop, each of these files is copied to the direc-
tory public_html and made readable by everyone.

The select Loop
The select loop provides an easy way to create a numbered menu from which users can
select options. It is useful when you need to ask the user to choose one or more items
from a list of choices. The select loop was introduced in ksh and has been adapted by
bash and zsh. It is not available in the Bourne shell.

The basic syntax of the select loop is

select name in word1 word2 ... wordN
do

list
done

Here name is the name of a variable and word1 to wordN are sequences of characters sepa-
rated by spaces (words). The set of commands to execute after the user has made a selec-
tion is specified by list.

The execution process of a select loop is as follows:

1. Each item in list1 is displayed along with a number.

2. A prompt, usually #?, is displayed.

3. When the user enters a value, $REPLY is set to that value.

190 Hour 12

4. If $REPLY contains a number of a displayed item, the variable specified by name is
set to the item in list1 that was selected. Otherwise, the items in list1 are dis-
played again.

5. When a valid selection is made, list2 executes.

6. If list2 does not exit from the select loop using one of the loop control mecha-
nisms such as break, the process starts over at Step 1.

If the user enters more than one valid value, $REPLY contains all the user’s choices. In
this case, the variable specified by name is not set.

An Example of the select Loop
One common use of the select loop is in scripts that configure software. The following
example is a simplified version of one such script. The actual configuration commands
have been omitted because they are not relevant in this discussion.

select COMPONENT in comp1 comp2 comp3 all none
do

case $COMPONENT in
comp1|comp2|comp3) CompConf $COMPONENT ;;
all) CompConf comp1

CompConf comp2
CompConf comp3
;;

none) break ;;
*) echo “ERROR: Invalid selection, $REPLY.” ;;

esac
done

The menu presented by the select loop looks like the following:

1) comp1
2) comp2
3) comp3
4) all
5) none
#?

As you can see, each of the items in the list

comp1 comp2 comp3 all none

are displayed with a number preceding them. The user can enter one of these numbers to
select a particular component. If a valid selection is made, the select loop executes a
case statement contained in its body. This case statement performs the correct action
based on the user’s input. Here the correct action is either calling a command named
CompConf, exiting the loop, or displaying an error message.

Loops 191

12

the termination condition of a while loop, it can continue forever. For example, say you
forgot to specify the $ before the x in the test expression:

x=0
while [x -lt 10]
do

echo $x
x=`expr $x + 1`

done

This loop would continue to display numbers forever. A loop that executes forever with-
out terminating executes an infinite number of times. For this reason, such loops are
called infinite loops.

In most cases infinite looping is not desired and stems from programming errors, but in
certain instances they can be useful. For example, say that you need to wait for a particu-
lar event, such as someone logging on to a system. You can use an infinite loop to check
every few seconds whether the event has occurred. Because you don’t know how many
times you need to execute the loop, you need to exit the infinite loop using the break
command. The break command terminates or breaks a loop.

You can create infinite loops using the while loop by specifying cmd as either : or
/bin/true. The basic syntax of the infinite while loop is

while :
do

list
done

In most infinite loops, the while loop usually exits from within list via a break
command.

Consider the following interactive script that reads and executes commands:

while :
do

read CMD
case $CMD in

[qQ]|[qQ][uU][iI][tT]) break ;;
*) $CMD ;;

esac
done

In this loop a command is read at the beginning of each iteration. If that command is
either q or Quit, the loop exits; otherwise, the loop tries to process the command.

Loops 193

12

Summary
Loops allow you to execute sets of commands repeatedly. In this chapter, you have
examined the following types of loops:

• while

• until

• for

• select

You have also examined the concept of nested loops, infinite loops, and loop control. The
next chapter introduces the concept of parameters, which require extensive use of loops.

Questions
1. What changes are required to the following while loop

x=0
while [$x -lt 10]
do

echo “$x \c”
y=$(($x-1))
x=$(($x+1))
while [$y –ge 0] ; do

y=$(($y-1))
echo “$y \c”

done
echo

done

so that the output looks like the following:
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5
0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9

2. Write a select loop that lists each file in the current directory and enables the user
to view the file by selecting its number. In addition to listing each file, use the
string Exit Program as the key to exit the loop. If the user selects an item that is
not a regular file, the program should identify the problem. If no input is given, the
menu should be redisplayed.

Loops 195

12

Terms
Body The set of commands executed by a loop.

Infinite loops Loops that execute forever without terminating. See loops.

Iteration A single execution of the body of a loop.

Loops Enable you to execute a series of commands multiple times. Two main types of
loops are the while and for loops.

Nested loops When a loop is located inside the body of another loop, it is said to be
nested within another loop.

196 Hour 12

HOUR 13
Parameters

As you saw in previous chapters, the general format for the invocation of
programs in UNIX is

cmd opts files

Here cmd is the command name, opts is any option that you need to specify,
and files is an optional list of files on which the command should operate.
Consider the following example:

$ ls -l *.doc

Here ls is the command, -l is the only option, and *.doc is the list of files
for ls to operate on.

Because most UNIX users are familiar with this interface, it is best to use
this format in shell scripts. This means that scripts that can have options
must be able to read and interpret them correctly.

This chapter examines the following topics related to the handling of options
passed to a shell script:

• Special variables related to option parsing and command execution

• Handling options manually using a case statement

• Handling options using the getopts command

For scripts that support only one or two options, the first method is easy to implement
and works quite well, but many scripts allow any combination of several options to be
given. For such scripts, the getopts command is very useful because it affords the maxi-
mum flexibility in parsing options.

Special Variables
The shell defines several special variables that are relevant to option parsing and com-
mand execution. Table 13.1 describes all of these special variables.

TABLE 13.1 Special Shell Variables

Variable Description

$0 The name of the command being executed. For shell scripts, this is the path which
invoked it.

$n These variables correspond to the arguments with which a script was invoked.
Here n is a positive decimal number corresponding to the position of an argument
(the first argument is $1, the second argument is $2, and so on).

$# The number of arguments supplied to a script.

$* All the arguments are double quoted. If a script receives two arguments, $* is
equivalent to $1 $2.

$@ All the arguments are individually double quoted. If a script receives two argu-
ments, $@ is equivalent to $1 $2.

$? The exit status of the last command executed.

$$ The process number of the current shell. For shell scripts, this is the process ID
under which they are executing.

$! The process number of the last background command.

Using $0
Let’s start by looking at $0. This variable is commonly used to determine the behavior of
scripts that can be invoked with more than one name. Consider the following script:

#!/bin/sh
case $0 in

*listtar) TARGS=”-tvf $1” ;;
*maketar) TARGS=”-cvf $1.tar $1” ;;

esac
tar $TARGS

198 Hour 13

You can use this script to list the contents of a tar file (short for tape archive, a common
format for distributing files in UNIX) or to create a tar file based on the name with which
the script is invoked. The tar file to read or create is specified as the first argument, $1, to
the script.

Let’s call this script mytar and make two symbolic links to it, called listtar and make-

tar, as follows:

$ ln -s mytar listtar
$ ln -s mytar maketar

If the script is invoked with the name maketar and is given a directory or filename, it
creates a tar file with the contents of that directory or file. Say you have a directory
called fruits with the following contents:

$ ls fruits
apple banana mango peach pear

You can invoke the script as maketar to obtain a tar file called fruit.tar containing
this directory, by issuing the following command:

$./maketar fruits

If you want to list the contents of the tar file this command creates, you can invoke the
script as follows:

$./listtar fruits.tar
rwxr-xr-x 500/100 0 Nov 17 08:48 1998 fruits/
rw-r--r-- 500/100 0 Nov 17 08:48 1998 fruits/apple
rw-r--r-- 500/100 0 Nov 17 08:48 1998 fruits/banana
rw-r--r-- 500/100 0 Nov 17 08:48 1998 fruits/mango
rw-r--r-- 500/100 0 Nov 17 08:48 1998 fruits/pear
rw-r--r-- 500/100 0 Nov 17 08:48 1998 fruits/peach

The exact output depends on the version of tar on your system. Some versions include
more detailed output than is shown here.

Usage Statements
Another common use for $0 is in the usage statement of a script. The usage statement is
a short message that a script outputs in order to inform a user of the proper invocation
syntax for the script. All scripts used by more than one user should include usage
statements.

In general, the usage statement is something like the following:

echo “Usage: $0 [options][files]”

Parameters 199

13

Returning to the mytar script, adding a usage statement would be a helpful, especially if
the script is executed with a name other than listtar or maketar. You can implement
this change as follows:

case $0 in
*listtar) TARGS=”-tvf $1” ;;
*maketar) TARGS=”-cvf $1.tar $1” ;;
*) echo “Usage: $0 [file|directory]”

exit 0
;;

esac

Now if the script is invoked as say, mytar, it will output the following message:

Usage: mytar [file|directory]

Although this message describes the usage of the script correctly, it does not inform you
that the script’s name was given incorrectly. There are two possible methods for
rectifying this:

• Hard coding the valid names in the usage statement

• Changing the script to use its arguments to decide in which mode it should run

To demonstrate the use of options, the next section uses the latter method.

Options and Arguments
Options are given on the command line to change the behavior of a script or program.
For example, the -a option of the ls command changes the behavior of the ls command
from listing all visible files to listing all files (as explained in Chapter 3). This section
shows you how to use options to change the behavior of scripts.

Often you will see or hear options called arguments. The difference between the two is
subtle. A command’s arguments are all of the separate strings or words that appear on the
command line after the command name, whereas options are only those arguments that
change the behavior of the command.

For example, in the following example:

$ ls -aF fruit

the command is ls, and its arguments are -aF and fruit. The options to the ls com-
mand are -aF.

200 Hour 13

Dealing with Arguments
To illustrate the use of options, let’s change the mytar script to use its first argument, $1,
as the mode argument and $2 as the tar file to read or create. You can implement this
change as follows:

USAGE=”Usage: $0 [-c|-t] [file|directory]”
case “$1” in

-t) TARGS=”-tvf $2” ;;
-c) TARGS=”-cvf $2.tar $2” ;;
*) echo “$USAGE”

exit 0
;;

esac

The three main changes are as follows:

• All references to $1 have been changed to $2 because the second argument is now
the filename.

• listtar has been replaced by -t.

• maketar has been replaced by -c.

Now running mytar produces the following output:

Usage: ./mytar [-c|-t] [file|directory]

To create a tar file of the directory fruits with this version, use the command

$./mytar -c fruits

To list the contents of the resulting tar file, fruits.tar, use the command

$./mytar -t fruits

Using basename
Currently, the usage statement of mytar outputs the entire path with which the script was
invoked. What it should really output is just the name of the script. You can correct this
by using the basename command.

The basename command takes an absolute or relative pathname to a file or directory and
returns just the file or directory name from that path. The basic syntax is as follows:

basename file

For example,

$ basename /usr/bin/sh

prints the following:

sh

Parameters 201

13

Using basename, you can change the variable $USAGE in the mytar script as follows:

USAGE=”Usage: `basename $0` [-c|-t] [file|directory]”

so that the usage statement produces the desired output:

Usage: mytar [-c|-t] [file|directory]

You can also use the basename command in the first version of the mytar script to avoid
using the * wildcard character in the case statement:

#!/bin/sh
case `basename $0` in

listtar) TARGS=”-tvf $1” ;;
maketar) TARGS=”-cvf $1.tar $1” ;;
*) echo “Usage: $0 [file|directory]”

exit 0
;;

esac
tar $TARGS

In this version, basename allows you to match the exact names with which scripts can be
called. As an illustration of a potential problem with the original version, you can see
that if the script is called

$./makelisttar

the original version would use the first case statement, even though it was incorrect, but
the new version would fall through and report an error.

202 Hour 13

Emulating basename

Some older Linux and BSD systems do not include the basename command. If you are using
such a system, you can emulate this command by creating a shell script that provides the
equivalent functionality. A shell script version of basename might look like the following:

#!/bin/sh

if [-n “$1”] ; then
echo “$1” | sed -e ‘s/^.*\///’

else
echo “Usage: basename [file]” 1>&2
exit 1

fi

exit 0

Don’t worry if you don’t understand how the sed command works. You’ll read more
about it in Chapter 16, “Filtering Text with Regular Expressions.”

Common Argument Handling Problems
Now that the mytar script uses options to set the mode in which the script will run, you
need to solve another problem. Namely, what should you do if the second argument, $2,
is not provided? You don’t have to worry about what happens if the first argument, $1, is
not provided because the case statement deals with this situation via the default case, *.

The simplest method for checking the necessary number of arguments is to see whether
the number arguments, $#, match the number of required arguments. You can add this
check to the script as follows:

#!/bin/sh

USAGE=”Usage: `basename $0` [-c|-t] [file|directory]”

if [$# -lt 2] ; then
echo “$USAGE”
exit 1

fi

case “$1” in
-t) TARGS=”-tvf $2” ;;
-c) TARGS=”-cvf $2.tar $2” ;;
*) echo “$USAGE”

exit 0
;;

esac

tar $TARGS

Handling Additional Files
The mytar script is mostly finished, but you can still make a few improvements. For
example, it only deals with the first file that is given as an argument, and it does not
determine whether this argument is really a file.

You can add the processing of all file arguments by using the special shell variable $@.
Let’s start by modifying the -t option to work with this variable:

case “$1” in
-t) TARGS=”-tvf”

for i in “$@”
do

if [-f “$i”] ; then
tar $TARGS “$i”

fi
done
;;

-c) TARGS=”-cvf $2.tar $2” ;

Parameters 203

13

tar $TARGS
;;

*) echo “$USAGE” ;
exit 0
;;

esac

The main changes are

• The -t case now includes a for loop that processes the arguments.

• There is an if statement in the for loop that determines whether the argument is a
file. If an argument is a file, tar is executed on that file.

204 Hour 13

$* and $@

The arguments specified to a shell script are stored in two special variables, $* and $@.
The main difference between these two special variables is how they store arguments: $*
stores each argument without preserving quoting, whereas $@ stores each argument by
preserving quoting.

The behavior of $* can sometimes cause a problem. For example, if your script has a file-
name containing spaces as an argument:

mytar -t “my tar file.tar”

using $* instead of $@ would create a problem because the for loop would be executed
three times for files named my, tar, and file.tar, instead of just once for the file you
requested, my tar file.tar. By using $@, you avoid this problem because each argument
is stored as it was quoted on the command line.

A Few Minor Issues
There are two minor issues in mytar that you should deal with:

• mytar treats all its arguments, including the first argument, $1, as files. Because
you are using the first argument to indicate the mode in which the script runs you
should not consider it as a file. This will reduce the number of times the for loop
is executed, and will prevent the script from trying to run tar on a file with the
name -t.

• Another issue involves what the script should do when an operation fails. In the
case of the list operation, if tar cannot list the contents of a file, you should skip
the file and print an error.

You can solve the first issue by using shift to remove the first argument. You can solve
the second issue by using the variable $? to check the exit status of tar. If you imple-
ment these changes, your script becomes:

#!/bin/sh

USAGE=”Usage: `basename $0` [-c|-t] [files|directories]”

if [$# -lt 2] ; then
echo “$USAGE” ;
exit 1 ;

fi

case “$1” in
-t) shift

TARGS=”-tvf” ;
for i in “$@” ;
do

if [-f “$i”] ; then
FILES=`tar $TARGS “$i” 2>/dev/null`
if [$? -eq 0] ; then

echo ; echo “$i” ; echo “$FILES”
else

echo “ERROR: $i not a tar file.”
fi

else
echo “ERROR: $i not a file.”

fi
done
;;

-c) shift
TARGS=”-cvf” ;
tar $TARGS archive.tar “$@”
;;

*) echo “$USAGE”
exit 0
;;

esac
exit $?

Option Parsing in Shell Scripts
In the previous example, you manually handled the options passed to your script. In this
second example, you will explore a second method, using the getopts command. The
syntax of the getopts command is as follows:

getopts option-string var

Parameters 205

13

You’ll first examine the interface of this script, which makes it easier to understand the
implementation. Your script should be able to accept the following options:

• -f to indicate the input filename

• -o to indicate the output filename

• -v to indicate the script should be verbose

The getopts command to implement these requirements is

getopts e:o:v OPTION

This indicates that all the options except for -v require an additional parameter. The sup-
port variables that are required are

• VERBOSE, which stores the value of the verbose flag. By default, the value of this
variable is false.

• INFILE, which stores the name of the input file.

• OUTFILE, which stores the name of the output filename. If this value is unset,
uudecode uses the same name as the input file and appends the .uu extension to it.

The following loop implements these requirements:

VERBOSE=false
while getopts f:o:v OPTION ;
do

case “$OPTION” in
f) INFILE=”$OPTARG” ;;
o) OUTFILE=”$OPTARG” ;;
v) VERBOSE=true ;;
\?) echo “$USAGE” ;

exit 1
;;

esac
done

Now that you have dealt with option parsing, you need to deal with error conditions. For
example, what should your script do if the input file is not specified? The simplest
behavior would be to exit with an error, but with a little more work, you can make the
script much more user friendly.

By using the fact that getopts sets the variable OPTIND to the value of the last option that
was scanned, you can have the script assume that the first argument after this is the input
filename. If no additional arguments remain, you should exit. Your error checking can be
implemented as follows:

shift `echo “$OPTIND - 1” | bc`
if [-z “$1” -a -z “$INFILE”] ; then

Parameters 207

13

echo “ERROR: Input file was not specified.”
exit 1

fi

if [-z “$INFILE”] ; then
INFILE=”$1”

fi

Here you use the shift command to discard the arguments given to the script by one
minus the last argument processed by getopts. The exact number of arguments to shift
is calculated by the bc command, which is a command-line calculator. Its usage is
explained in detail in Chapter 18. Strictly speaking, you do not have to shift the argu-
ments; it just simplifies the if statement.

After shifting the arguments, you need to check whether the new $1 contains a value. If
it does not contain a value, you output an error message and exit; otherwise, you set
INFILE to the filename specified by $1.

You also need to set the output filename, in case the -o option was not specified. You can
use variable substitution to accomplish this

: ${OUTFILE:=${INFILE}.uu}

Here you set the name of the output file to the input file plus the .uu extension, if an out-
put file is not given. You use the : command to prevent the shell from trying to execute
the result of the variable substitution.

After you have made sure that all the inputs are correct, the actual work is quite simple.
The uuencode command that you use is as follows:

uuencode $INFILE $INFILE > $OUTFILE ;

You should also check whether the input file is really a file before doing this command,
so the actual body of your program is:

if [-f “$INFILE”] ; then
uuencode “$INFILE” “$INFILE” > “$OUTFILE” ;

fi

At this point the script is fully functional, but you still need to add support for verbose
reporting. This changes the preceding if statement to the following:

if [-f “$INFILE”] ; then
if [“$VERBOSE” = “true”] ; then

echo “uuencoding $INFILE to $OUTFILE... \c”
fi
uuencode “$INFILE” “$INFILE” > “$OUTFILE”
RET=$?
if [“$VERBOSE” = “true”] ; then

208 Hour 13

MSG=”Failed”
if [$RET -eq 0] ; then

MSG=”Done.”
fi
echo $MSG

fi
fi

You could simplify the verbose reporting to print a statement after the uuencode com-
pletes, but issuing two statements, one before the operation starts and one after the opera-
tion completes, is much more user-friendly. This method clearly indicates that the
operation is being performed.

The complete script is as follows:

#!/bin/sh

USAGE=”Usage: `basename $0` [-v] [-f] [filename] [-o] [filename]”;
VERBOSE=false

while getopts f:o:v OPTION ;
do

case “$OPTION” in
f) INFILE=”$OPTARG” ;;
o) OUTFILE=”$OPTARG” ;;
v) VERBOSE=true ;;
\?) echo “$USAGE”

exit 1
;;

esac
done

shift `echo “$OPTIND - 1” | bc`

if [-z “$1”] && [-z “$INFILE”] ; then
echo “ERROR: Input file was not specified.”
exit 1

fi
if [-z “$INFILE”] ; then

INFILE=”$1”
fi

: ${OUTFILE:=${INFILE}.uu}

if [-f “$INFILE”] ; then
if [“$VERBOSE” = “true”] ; then

echo “uuencoding $INFILE to $OUTFILE... \c”
fi
uuencode $INFILE $INFILE > $OUTFILE
RET=$?

Parameters 209

13

if [“$VERBOSE” = “true”] ; then
MSG=”Failed”
if [$RET -eq 0] ; then

MSG=”Done.”
fi
echo $MSG

fi
fi
exit 0

Assuming this script is called uu, you can use it to uuencode files in all of the following
ways:

uu ch13.doc
uu -f ch13.doc
uu -f ch13.doc -o ch13.uu

In each of the preceding commands, file ch13.doc is uuencoded. The last command
places the result into the file ch13.uu instead of the default ch13.doc.uu; this might be
required if the document needs to be used on a DOS or Windows system.

Because this script uses getopts, any of the commands given previously can run in ver-
bose mode by simply specifying the -v option.

Summary
In this chapter, you examined how to deal with arguments and options in shell script.
Specifically you looked at the following methods:

• Manually handling arguments and options using a case statement

• Handling options using getopts

You worked through two examples that illustrate the implementation and rationale
behind each method. In addition, you saw several special variables that pertain to argu-
ments and command execution.

As you will see in later chapters, using options greatly increases the flexibility and the
reusability of your shell scripts.

Questions
1. Add tar file extraction to the mytar script.

Assume that the -x option indicates that the user wants to extract tar files and that
the correct value of TARGS for extracting tar files is -xvf.

210 Hour 13

2. Add the extract option to the uu script. Assume that the -x option indicates that the
file should be extracted, and that the command

uudecode $INFILE

is used to extract a uuencoded file.

Terms
Usage statement A short message that a script outputs in order to inform a user of the
proper invocation syntax for the script.

Parameters 211

13

HOUR 14
Functions

Shell functions provide a way of mapping a name to a list of commands.
Functions are similar to subroutines and procedures in other programming
languages. You can also think of them as miniature shell scripts, complete
with exit codes and arguments. The main difference between a script and a
function is that a new instance of the shell is started for a shell script,
whereas functions run in the current instance of the shell.

This chapter is divided into the following two sections:

• Using functions

• Understanding scope, recursion, return codes, and data sharing

The first section introduces the syntax for defining functions and illustrates
their use, whereas the second section covers more advanced topics relating
to the interaction of scripts and functions.

Using Functions
Functions are defined as follows:

name () { list ; }

Here, name is the name of the function and list is a list of commands. The list of com-
mands, list, is referred to as the body of the function. The parentheses, (and), that fol-
low name are required.

The job of a function is to bind name to list, so that whenever name is specified list is
executed. When a function is defined, list is not executed; the shell parses list to
ensure that there are no syntax errors and stores name in its list of commands. The fol-
lowing example illustrates a basic function definition:

lsl() { ls –l ; }

Here you define the function lsl and specify list as ls –l.

An alternative form of function definition is available in ksh, bash, and zsh:

function name { list ; }

Here, name is the name of the function and list is the list of commands to be executed.
This form of function definition is not available in the Bourne shell. Scripts that need to
be ported to older systems should not use this form for function definition.

Executing Functions
You can execute or call a function that has been defined by specifying its name. For
example, you can execute the function lsl, defined in the previous example, as follows:

$ lsl

This causes the shell to execute the body of the function, in this case the command ls
–l, and output the result. The output will be similar to the following:

total 6
drwxrwxrwt 3 root wheel 512 Oct 29 08:59 ./
drwxr-xr-x 25 root wheel 512 Oct 29 00:02 ../
drwxrwxrwt 2 root wheel 512 Nov 3 17:49 vi.recover/

Functions are normally defined on the command line or within a script. Once defined,
the function acts as a valid command in all the sub-shells started by that shell or script.
For example, if you enter the command:

$ lsl() { ls –l ; }

The function lsl becomes a valid command name that can be accessed by specifying
lsl. It is accessible in sub-shells as well:

$ (lsl)
total 6
drwxrwxrwt 3 root wheel 512 Oct 29 08:59 ./

214 Hour 14

drwxr-xr-x 25 root wheel 512 Oct 29 00:02 ../
drwxrwxrwt 2 root wheel 512 Nov 3 17:49 vi.recover/

A function defined in a script is accessible within that script and any sub-shells started
by that script. For example, consider the following script:

#!/bin/sh
lsl() { ls –l ; }
cd “$1” && lsl

The function lsl is only available in that script.

Arguments
Just as you can execute commands with arguments, you can also execute functions with
arguments. The general syntax for invoking a function is as follows:

name arg1 … argN

Here, name is the name of the function and arg1 … argN are the arguments to the func-
tion. The arguments specified to a function are accessed in the same way as arguments
specified to a shell script; the individual arguments are available as $1, $2, and so on,
whereas the set of all the arguments is available as $@.

The following function illustrates the use of individual arguments:

printMsg () { echo “$1: $2” ; }

This function uses echo to print a message with a colon, :, which separates the first two
arguments when it’s executed as follows:

printMsg Error Failed

the output is

Error: Failed

As defined, this function can handle only two arguments; it ignores all the others. In
order to make the function a bit more useful, it needs to be able to handle an arbitrary
number of arguments. Because all of the arguments specified to a function are available
in the variable $@, you can use it as follows:

printMsg() {
PREFIX=”$1”
shift
echo “$PREFIX: $@”

}

Here, you have redefined the function printMsg. It saves its first argument in $PREFIX
and then uses echo to print the message in the desired format. You use shift to remove

Functions 215

14

the first argument from $@ before calling echo. Now you can execute the function with
any number of arguments and the message will be printed properly. For example, if
printMsg is executed as follows:

printMsg Info All Quiet on the Western Front

the output is

Info: All Quiet on the Western Front

Function Chaining
Function chaining is the process of calling a function from another function. The
following script illustrates function chaining:

#!/bin/sh

orange () {
echo “Now in orange”
banana # call func2()

}

banana () {
echo “Now in banana”

}

orange

This script defines two functions, orange and banana, and then executes orange. The
first function, orange, outputs a message and then calls the function banana. The second
function, banana, just outputs a message. The output from this script is

Now in orange
Now in banana

Common Errors
Two common errors with declaring and using functions are

• Omitting the parentheses, (), in a function definition.

• Specifying the parentheses, (), in a function invocation.

The following example illustrates the first type of error:

lsl { ls -l ; }

Here, the parentheses are missing after lsl. This is an invalid function definition and will
result in an error message similar to the following:

sh: syntax error: ‘}’ unexpected

216 Hour 14

The following command illustrates the second type of error:

$ lsl()

Here, the function lsl is executed along with the parentheses, (). This will not work
because the shell interprets it as a redefinition of the function with the name lsl. Usually
such an invocation results in a prompt similar to the following:

>

This is a prompt produced by the shell when it expects you to provide more input. The
input it expects is the body of the function lsl.

Aliases Versus Functions
An alias is an abbreviation or an alternative name, usually mnemonic, for a command.
Aliases were first introduced in csh and were later adopted by ksh, bash, and zsh. They
are not supported in the Bourne shell.

Aliases are defined using the alias command:

alias name=”cmd”

Here name is the name of the alias and cmd is the command to execute when name is
specified. Aliases are similar to functions in that they associate a command with a name.
Two key differences are

• In an alias, cmd cannot be a compound command or a list.

• In an alias, there is no way to manipulate the argument list ($@).

Due to their limited capabilities, aliases are not commonly used in shell programs. They
are discussed here for the sake of completeness.

As an example, the following command defines the alias lsl and specifies that the com-
mand ls –l should be executed when the command lsl is specified:

alias lsl=”ls –l”

This alias is equivalent to the function:

lsl () { ls –l “$@” ; }

A common use for aliases is to specify a default set of options to a command. For exam-
ple, say you have the following alias:

alias ls=”ls –a”

When the ls command is given, the shell executes ls –a instead of plain ls without
options. It is possible to mimic this behavior with a function such as:

name () { path “$@” ; }

Functions 217

14

Here, name is the name of the command to be “aliased” and path is the fully qualified
path to the command. For example, the following function is equivalent to the alias given
in the previous example:

ls () { /bin/ls –a “$@” ; }

Unalias
Once an alias has been defined, it can be unset using the unalias command:

unalias name

Here, name is the name of the alias to be unset. For example, the following command unsets
the alias lsl:

unalias lsl

Unsetting Functions
Once a function has been defined, it can be undefined via the unset command:

unset name

Here, name is the name of the function you want to unset. For example, the following
command unsets the previously defined function lsl():

unset lsl

After a function has been unset it cannot be executed.

Understanding Scope, Recursion, Return
Codes, and Data Sharing

Now that you have a basic understanding of the use and operation of functions in shell
scripts, let’s look at more advanced topics such as scope, recursion, return codes, and
data sharing.

Scope
The term scope refers to the region within a program where a variable’s value can be
accessed. There are two types of scope:

• Global scope If a variable has global scope, its value can be accessed from any-
where within a script. Variables with global scope are referred to as global variables.

• Local scope If a variable has local scope, its value can only be accessed within
the function in which it is declared. Variables with local scope are referred to as
local variables.

218 Hour 14

By default all variables, except for the special variables associated with function argu-
ments, have global scope. In ksh, bash, and zsh, variables with local scope can be
declared using the typeset command. The typeset command is discussed later in this
chapter. This command is not supported in the Bourne shell, so it is not possible to have
programmer-defined local variables in scripts that rely strictly on the Bourne shell.

Global Variables
The following script illustrates the behavior of global variables:

#!/bin/sh

pearFunc () {
pear=2; # set $pear
echo “In pearFunc(): pear is $pear” # print out its value

}

pearFunc # call pearFunc
echo “Outside of pearFunc(): pear is $pear” # print out $pear

First the script defines a function, pearFunc, that sets the value of the global variable
$pear (all variables are global by default) and outputs that value. Then the script exe-
cutes pearFunc. Finally, the script prints the value of $pear outside of the function. The
output is

In pearFunc(): pear is 2
Outside of pearFunc(): pear is 2

As you can see from the output, the value assigned to the variable $pear in the function
pearFunc is accessible outside of pearFunc.

A common use for global variables is to communicate information from a function to the
main script, as illustrated in the following script:

#!/bin/sh

readPass () {
PASS=”” # clear password
echo -n “Enter Password: “ # print the prompt
stty –echo # turn off terminal echo to prevent peeping!
read PASS # read the password
stty echo # restore terminal echo
echo # printout a new line to make output nice

}

readPass
echo Password is $PASS

Functions 219

14

This script uses the readPass function to read in a password from the user. The
readPass function reads the password and stores it in the global variable PASS. The
script then accesses the password using the variable PASS.

The readPass function is quite simple. It function starts by undefining PASS. Then it
issues a prompt for the password and deactivates terminal echo using the stty –echo
command. Terminal echo is deactivated because you don’t want someone other than the
user to inadvertently see the password. Next, you read the password and store its value in
PASS by using the read command. Finally, you restore terminal echo using the stty
echo command and echo a new line.

Local Variables
Local variables are defined using typeset command:

typeset var1[=val1] … varN[=valN]

Here, var1 … varN are variable names and val1 … valN are values to assign to the vari-
ables. The values are optional as the following example illustrates:

typeset fruit1 fruit2=banana

This command declares two local variables, fruit1 and fruit2, and assigns the value
banana to the variable fruit2.

The following script illustrates the behavior of local variables:

#!/bin/sh

pearFunc () {
typeset pear=2; # set $pear
echo “In pearFunc(): pear is $pear” # print out its value

}

pearFunc # call pearFunc
echo “Outside of pearFunc(): pear is $pear” # print out $pear

First, the script defines a function, pearFunc, which sets the value of a local variable
$pear and outputs that value. Then the script executes pearFunc. Finally, the script prints
the value of $pear outside of the function. The output is

In pearFunc(): pear is 2
Outside of pearFunc(): pear is

From the output, you can see that when the value of $pear is accessed within the
pearFunc it has the value 2, but when the value of $pear is accessed outside the func-
tion, it has no value.

220 Hour 14

The execution of this script proceeds as follows:

1. The script executes reverse “$@” (effectively it calls reverse a b c).

2. The function reverse determines whether $# (the number of arguments) is greater
than 0. In this case, $# will be equal to 3 (a b c).

3. Because $# is greater than 0, reverse saves the first argument, $1 (in this case a)
in the local variable $arg, and then calls shift to remove it from $@. Now, $@
holds two arguments, b c.

4. The function reverse calls itself with the shortened $@.

5. The function reverse determines whether $# (the number of arguments) is greater
than 0. In this case, $# will be equal to 2 (b c).

6. Because $# is greater than 0, reverse saves the first argument, $1 (in this case b)
in the local variable $arg, and then calls shift to remove it from $@. Now, $@
holds just one argument, c.

7. The function reverse calls itself with the shortened $@.

8. The function reverse determines whether $# (the number of arguments) is greater
than 0. In this case, $# will be equal to 1.

9. Because $# is greater than 0, reverse saves the first argument, $1 (in this case c)
in the local variable $arg, and then calls shift to remove it from $@. Now, $@
holds no arguments.

10. The function reverse calls itself with the shortened $@.

11. The function reverse determines whether $# (the number of arguments) is greater
than 0. Because there are no arguments in $@, this check fails and the function
returns.

12. After the call to reverse returns, you output the value of the local variable $arg, in
this case c, and return.

13. After the call to reverse returns, you output the value of the local variable $arg, in
this case b, and return.

14. After the call to reverse returns, you output the value of the local variable $arg, in
this case a, and return.

222 Hour 14

Divide and Conquer
Recursion is normally used to solve problems using a technique known as divide and con-
quer. Basically, divide and conquer means that a problem is divided into smaller and
smaller instances until an instance that is small enough to solve directly is found. Each
instance that is too big to solve directly is solved recursively, and the solutions are com-
bined to produce a solution to the original problem.

Return Codes
When a shell script completes, it can use the exit command to return exit status via an
exit code. The function analogue to exit is the return command. This command allows
function to return exit status. The exit status from a function is called its return code. The
convention for return codes is the same as for exit codes; a 0 equals success and a
nonzero equals failure.

The syntax of the return command is

return rc

Here rc is the return code. The following function illustrates the use of return:

isInteractive () {
case $- in # $- holds the invocation options

i) return 0;; # if $- contains i, the shell is interactive
esac
return 1

}

You can use this function to detect whether a particular shell is interactive as follows:

if isInteractive ; then
echo “Interactive shell”

else
echo “Non-interactive shell”

fi

Data Sharing
The functions you have seen thus far are mostly independent, but in most shell scripts
functions either depend on or share data with other functions. In this section, you will
look at an example in which three functions work together and share data.

Moving Around the File System
The C shell, csh, introduced three commands for quickly moving around in the UNIX
directory tree:

• popd

• pushd

• dirs

Functions 223

14

You used divide and conquer in the previous example; the function reverse kept calling
itself with smaller and smaller parts of the argument list $@ until all the arguments were
exhausted, and then it just printed each argument.

These commands maintain a stack of directories internally and enable the user to add and
remove directories from the stack and list the contents of the stack.

224 Hour 14

These commands are not available in Bourne shell or ksh. Newer versions of bash and
zsh have introduced these commands. In this section, you will implement each of these
commands as shell functions so that they can be used with any Bourne-like shell.

In csh, the directory stack used by these commands is maintained within the shell; in this
implementation you will maintain the stack as an global exported environment variable,
called _DIR_STACK. The entries in _DIR_STACK are separated by colons, :, just like entries
in PATH or MANPATH. This allows you to handle almost any directory name.

Implementing dirs

First let’s look at the simplest of the three functions, dirs. This function just lists the
entries in the directory stack:

dirs() {

OLDIFS=”$IFS” # save IFS (internal field separator)
IFS=: # set IFS to :, so that we can process

each entry in _DIR_STACK easily

for i in $_DIR_STACK # print out each entry in _DIR_STACK
do

echo “$i \c”
done

echo # print out new line (makes output pretty)

IFS=”$OLDIFS” # restore IFS
}

First, you save the current value of IFS in OLDIFS and then you set IFS to :. Because IFS
is the Internal Field Separator for the shell, modifying it allows you to use the for loop
to cycle through the individual entries in _DIR_STACK. When you are finished with all the
entries, you restore the value of IFS.

Understanding Stacks
For those readers who are not familiar with the programming concept of a stack, you can
think of it as a stack of plates: you can add or remove a plate only at the top of the
stack. You can access only the top plate, not any of the middle plates in the stack. A stack
in programming terms is similar. You can add or remove an item only at the top of the
stack.

obtain this value. Then, the function determines whether the requested directory is really a
directory. If it is not a directory, you print an error and return 1 to indicate failure.
Otherwise, you change to that directory and then update the directory stack with the full
path of the new directory. You have to use the full path rather than value in $REQ, because
the value stored in $REQ might be a relative path. After the directory stack has been
updated, you call dirs to output the directories stored on the stack.

Implementing popd

The popd() function is much more complicated than the other two functions. Let’s look
at the operations it performs:

1. Removes the first entry from the directory stack

2. Updates the directory stack to reflect the removal

3. Changes to the directory indicated by the entry that was removed from the stack

4. Displays the full path of the current directory

To simplify the first and second operations, you can implement a helper function for
popd() called _popd_helper(). This function performs all the work; popd() is simply a
wrapper around it. Often you need to write functions in this manner: one function that
provides a simple interface and another that performs the actual work.

Implementing _popd_helper

Let’s first look at the function _popd_helper to see how the directory stack is
manipulated:

_popd_helper() {

set the directory to pop to the first argument, if
this directory is empty, issue an error and return 1
otherwise get rid of POPD from the arguments

POPD=”$1”
if [-z “$POPD”] ; then

echo “ERROR: The directory stack is empty.” >&2
return 1

fi
shift

if any more arguments remain, reinitalize the directory
stack, and then update it with the remaining items,
otherwise set the directory stack to null

if [-n “$1”] ; then
_DIR_STACK=”$1” ;
shift ;

226 Hour 14

for i in $@ ; do _DIR_STACK=”$_DIR_STACK:$i” ; done
else

_DIR_STACK=
fi

if POPD is a directory cd to it, otherwise issue
an error message

if [-d “$POPD”] ; then
cd “$POPD” > /dev/null 2>&1
if [$? -ne 0] ; then

echo “ERROR: Could not cd to $POPD.” >&2
fi
pwd

else
echo “ERROR: $POPD is not a directory.” >&2

fi

export _DIR_STACK
unset POPD

}

This function expects each of the directories in the directory stack to be given to it as
arguments, so the first thing that it checks is whether $1, the first argument, has any
value. You do this by setting $POPD equal to $1 and then checking if $POPD has a value. If
the directory stack is empty, you issue an error message and return; otherwise, you
shorten the stack using shift. At this point, you have taken care of the first operation.

Next, you determine whether the directory stack became empty after you removed an
entry from it. Because the individual items in the stack are the arguments to this func-
tion, you need to check whether $1, the new first argument, has a value. If it does, you
reinitialize the directory stack with this value and proceed to add all the remaining values
back onto the stack; otherwise, you set the value of the directory stack to null. At this
point, you have taken care of the second operation.

The final if statement takes care of the third and fourth operations. Here, you determine
whether the path stored in $POPD is a directory. This check is required because the path
might have been removed from the system after it was added to the directory stack. If the
path is a directory, you try to cd to that directory. If the change is successful, you print
the full path to the directory, otherwise you print an error message.

The Wrapper Function
Now that you know how the helper function works, you can write an appropriate wrap-
per function to translate the value of _DIR_STACK into separate arguments. This is fairly
easy, thanks to IFS.

Functions 227

14

The popd() function is

popd() {
OLDIFS=”$IFS”
IFS=:

_popd_helper $_DIR_STACK
IFS=”$OLDIFS”

}

In this function, you first save the old value of IFS. Then you set IFS to : and call
_popd_helper with the directory stack specified as arguments. After _popd_helper
returns, you restore the value of IFS.

Summary
In this chapter, you learned how to use functions in shell scripts. Some of the important
topics you learned about are

• Creating functions

• Invoking functions

• Using variable scope

• Function chaining and recursion

• Return codes from functions

• Data sharing between functions

In Chapter 21, “Problem Solving with Functions,” you will revisit functions and learn
how to create a set of functions that can be used in multiple scripts. In the next chapter,
you will explore the topic of text filtering.

Questions
1. Write a function that determines whether a command is located in one of the direc-

tories in $PATH. The command will be supplied as the first argument. If the com-
mand is located in one of the directories in $PATH, your function should print the
full path to the command and return 0. Otherwise your function should return 1
and optionally print an error message.

2. Write a function to make a directory (and all of its parents) change to that directory
and then print the full path of that directory. Please include error checking at all
levels. Make sure that your function generates all of the error messages, rather than
the commands that it executes.

228 Hour 14

3. Rewrite the function you wrote in Question 2 without using mkdir –p.

4. Enhance the readPass function given in this chapter so that it reads the password
twice and confirms that both the passwords are the same.

5. Chapter 5, “Input and Output,” introduced the concept of prompting the user from
a shell script. Write a function that can be used to prompt the user for a response.
This function should take a single argument that is the prompt, and it should place
the user’s response in the variable RESPONSE. Be sure to include error checking at
all levels.

Terms
Alias An abbreviation or an alternative name, usually mnemonic, for a command.

Function chaining The process of calling a function from another function.

Functions Provide a way of mapping a name to a list of commands. Functions are sim-
ilar to subroutines and procedures in other programming languages.

Global scope If a variable has global scope, its value can be accessed from anywhere
within a script.

Global variables Variables with global scope are referred to as global variables.

Local scope If a variable has local scope, its value can only be accessed within the
function in which it is declared.

Local variables Variables with local scope are referred to as local variables.

Recursion A special instance of function chaining in which a function calls itself.

Return code The exit status from a function is called its return code. The convention for
return codes is the same as for exit codes; 0 equals success and nonzero equals failure.

Scope Refers to the region within a program where a variable’s value can be accessed.

Functions 229

14

HOUR 15
Text Filters

Shell scripts are often called on to manipulate and reformat the output from
commands. Sometimes this task is as simple as displaying only part of the
output by filtering out certain lines, but in most instances, the processing
required is much more sophisticated.

In this chapter, you will look at several commands that can be used for fil-
tering text. These commands are

• head

• tail

• grep

• sort

• uniq

• tr

The head and tail Commands
In Chapter 3, “Working with Files,” you looked at viewing the contents of a
file using the cat command. This command enables you to view an entire

The output now changes as follows:

RCS
humor
misc
downloads
images
resume
projects
school
cgi-bin
index.html

To retrieve a list of the five most recently accessed files, you can pipe the output of this
ls command into a head command as follows:

$ ls -1ut /home/ranga/public_html | head -5

This produces the following list:

index.html
RCS
humor
misc
downloads

The tail Command
The tail command is used to display the last few lines of a file. Its basic syntax is simi-
lar to that of the head command:

tail [-n lines] files

Here files is the list of the files the tail command should process. Without the -n
lines option, the tail command shows the last 10 lines of its standard input. When this
option is specified, tail shows the number of lines specified by lines instead.

To illustrate the use of the tail command, consider the problem of generating a list of
the five oldest mail spools located in /var/spool/mail. You can start with ls -1 com-
mand again, but this time you’ll use just the -t (sort by last modified time) option:

$ ls -1t /var/spool/mail

To get the bottom five, you can use tail as follows:

$ ls -1t /var/spool/mail | tail -5

The output will be similar to the following:

anna
root
amma
vathsa
ranga

Text Filters 233

15

Looking for Words
The basic syntax of the grep command is

grep word file

Here file is the name of a file in which you want to search for the word specified by
word. Every line in file that contains word is displayed. When you specify more than
one file, grep precedes each of the output lines with the name of the file that contains
that line.

As an example, the following command locates all the occurrences of the word pipe in
file ch15.doc (this chapter):

$ grep pipe ch15.doc
I’ve broken the command into two lines, with the pipe character
➥as the
the right thing and use the next line as the command to pipe to. It’s
The first few lines look like (ten actually, I piped the output to

If you specify more than one file, the output changes as follows:

$ grep pipe ch15.doc ch15-01.doc
ch15.doc:I’ve broken the command into two lines, with the pipe
➥character as the
ch15.doc:the right thing and use the next line as the command to
➥pipe to. It’s
ch15.doc:The first few lines look like (ten actually, I piped the
➥output to
ch15-01.doc:I’ve broken the command into two lines, with the pipe
➥character as the
ch15-01.doc:the right thing and use the next line as the command to
➥pipe to. It’s
ch15-01.doc:The first few lines look like (ten actually, I piped
➥the output to

As you can see, the name of the file precedes each line that contains the word pipe.

If grep cannot find a line in any of the specified files that contain the requested word, no
output is produced. For example,

$ grep utilities ch15.doc

produces no output because the word utilities does not appear in the file ch15.doc.

Case-Independent Matching
One of the features of grep is that it is case sensitive; grep matches only those words that
are identical to word in terms of content and case. For example, grep treats the words
Apple1’ and apple1 as different words. For example, the command

$ grep unix ch15.doc

Text Filters 235

15

produces the output:

all unix users. The GNU versions of these commands support all the
unix has several additional pieces of information associated with it.
unix counterparts, but implement a few nice options which makes their
unix files names, but they are, and handling them correctly is

On the other hand, the command

$ grep UNIX ch15.doc

produces different output:

GNU stands for GNU’s not UNIX and is the name of a UNIX-compatible
Project utilities are the GNU implementation of familiar UNIX programs

Sometimes you will want to match words regardless of the case that you specify. This is
accomplished using the -i option. You can get a sum of the output from the two previous
examples using the -i option as follows:

$ grep -i unix ch15.doc
GNU stands for GNU’s not UNIX and is the name of a UNIX-compatible
Project utilities are the GNU implementation of familiar UNIX
➥programs
all unix users. The GNU versions of these commands support all the
unix has several additional pieces of information associated with it.
unix counterparts, but implement a few nice options which makes their
unix files names, but they are, and handling them correctly is

Reading From STDIN
When no files are specified, grep looks for matches on the lines that are entered on
STDIN. This makes grep perfect for use with pipes. For example, the following com-
mand looks for all users named ranga in the output of the who command:

$ who | grep ranga
ranga tty1 Aug 26 14:12
ranga ttyp2 Nov 23 14:15 (rishi.bosland.u)

The -v Option
Most of the time you use grep to search through a file looking for a particular word, but
sometimes you want to acquire a list of all the lines that do not match a particular word.
Using grep, this is simple—specify the -v option. For example, the following command
produces a list of all the lines in /etc/hosts that do not contain the # character:

$ grep -v ‘#’ /etc/hosts

The output will be similar to the following:

10.32.43.51 scotch scotch.CSUA scotch.CSUA.Berkeley.EDU
10.32.43.52 internal internal.soda.CSUA.Berkeley.EDU
10.32.43.139 mkv mkv.csua.berkeley.edu

236 Hour 15

One common use of the -v option is to parse the output of the ps command. For exam-
ple, if you were looking for all instances of bash that were running on a system, you
could use the following command:

$ /bin/ps -ef | grep bash

Normally the output contains just the information for bash, but sometimes the output
looks like the following:

ranga 3277 3276 2 13:41:45 pts/t0 0:02 -bash
ranga 3463 3277 4 18:38:26 pts/t0 0:00 grep bash

The second process in this list is the grep command that you just ran. Because it is not
really an instance of bash, you want to remove it from the output. You can do this using
the -v option as follows:

$ /bin/ps -ef | grep bash | grep -v grep

This removes the extraneous output:

ranga 3277 3276 0 13:41:45 pts/t0 0:02 -bash

Line Numbers
As grep looks through a file for a given word, it keeps track of the line numbers that it
has examined. You can have grep list the line numbers along with the matching lines by
specifying the -n option. When this option is specified, grep’s output format is as follows:

file:line number:line

Here file is the name of the file in which the match occurs, line number is the line
number in the file on which the matching line occurs, and line is the complete line that
contains the specified word. For example, the command

$ grep -n pipe ch15.doc ch15-01.doc

produces the following output:

ch15.doc:969:I’ve broken the command into two lines, with the pipe
➥character as the
ch15.doc:971:the right thing and use the next line as the command
➥to pipe to. It’s
ch15.doc:1014:The first few lines look like (ten actually, I piped
➥the output to
ch15-01.doc:964:I’ve broken the command into two lines, with the
➥pipe character as the
ch15-01.doc:966:the right thing and use the next line as the command
➥to pipe to. It’s
ch15-01.doc:1009:The first few lines look like (ten actually, I
➥piped the output to

As you can see, the lines might be the same in both files, but the line numbers are different.

Text Filters 237

15

Listing Filenames Only
Sometimes you don’t really care about the actual lines in a file that match a particular
word. You just want a list of all the files that contain that word. For example, the follow-
ing command looks for the word delete in all the files in the projects directory:

$ grep delete projects/*

In this case, it produces the following output:

pqops.c:/* Function to delete a node from the heap. Adapted from
➥Introduction
pqops.c:void heap_delete(binary_heap *a,int i) {
pqops.c: node deleted;
pqops.c: /* return with an error if the input is invalid, ie trying
➥to delete
pqops.c: sprintf(messages,”heap_delete(): %d, no such element.”,i);
pqops.c: /* switch the item to be deleted with the last item, and
➥then
pqops.c: deleted = a->elements[i];
pqops.c: /* (compare_priority(a->elements[i],deleted)) ? heap_
➥up(a,i) : heap_down(a,i); */
pqops.h:extern void heap_delete(binary_heap *a,int i);
scheduler.c: /* if the requested id is in the heap, delete it */
scheduler.c: heap_delete(&my_heap,node_num);

As you look at the output, you see that only three files—pqops.c, pqops.h, and sched-

uler.c—contain the word delete. Here you had to generate a list of matching lines and
then manually look at the filenames in which those lines were contained. By using the -l
option of the grep command, you can reach this conclusion much faster. For example,
the following command

$ grep -l delete projects/*
pqops.c
pqops.h
scheduler.c

produces the list you wanted.

Counting Words
Counting words is an essential capability in shell scripts. There are many ways to do it,
with the easiest being the wc command. Unfortunately, it displays only the number of
characters, words, or lines. What about when you need to count the number of occur-
rences of a particular word in a file? The wc command falls short. In this section, you
will solve this problem using the following commands:

• tr

238 Hour 15

The next step is to transliterate all capitalized versions of words to the lowercase version
because words such as To and to and The and the are really the same word. You can do
this by using tr to change all the capital characters ‘A-Z’ into lowercase characters
‘a-z’ as follows:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’

Here you pipe the output of the first tr command into a second tr command. The input
to the first tr command is the file ch15.doc, whereas the input to the second tr com-
mand is the output of the first tr command.

240 Hour 15

Differences Between tr Versions
In this example, you are using a single space for set2. Most versions of tr interpret this
to mean transliterating all the characters in set1 to a space. Some versions of tr do not
do this.

You can determine whether your version of tr works correctly using the following test:

$ echo ‘Hello, my dear!’ | tr ‘,!’ ‘ ‘

Most versions of tr produce the following output:

Hello my dear’

Some versions produce the following output instead:

Hello my dear!

To obtain the desired behavior from these versions of tr, make sure that set1 and set2

have the same number of characters. In this case, set2 needs to contain two spaces:

$ echo ‘Hello, my dear!’ | tr ‘,!’ ‘ ‘

In the case of the example, set2 would need to contain 15 spaces.

Squeezing Out Spaces
At this point, several of the lines have multiple spaces separating the words. You need to
reduce or squeeze these multiple spaces into single spaces to avoid problems generating
counts later. To do this, you need to use the -s (short for squeeze) option of the tr com-
mand. The basic syntax is

tr -s ‘set1’

When tr encounters multiple consecutive occurrences of a character in set1, it replaces
these with only one occurrence of the character. For example,

$ echo “feed me” | tr -s ‘e’

produces the output

fed me

The two e’s in feed were reduced to a single e.

If you specify more than one character in set1, the replacement is character specific. For
example:

$ echo “Shell Programming” | tr -s ‘lm’

produces the following output:

Shel Programing

As you can see the two l’s in Shell were reduced to a single l. Also, the two m’s in
Programming were reduced to a single m.

Using this option you can squeeze multiple spaces in the output of the second tr com-
mand into a single space:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘

The sort Command
To get a count of how many times each word is used, you need to sort the file using the
sort command. In its simplest form, the sort command sorts each of its input lines. In
this example, you need to modify the output of tr so that it lists one word per line. You
can do this changing all the spaces into new lines as follows:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘ |
tr ‘ ‘ ‘\n’

Now you can sort the output, by adding the sort command as follows:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘ |
tr ‘ ‘ ‘\n’ | sort

The uniq Command
At this point you have all the information required to determine the number of times a
particular word occurs in the file. You just need a command that will compute this infor-
mation for you. This command is uniq.

By default, the uniq command discards all but one of the repeated lines. For example,
the commands

$ echo ‘
peach
peach
peach
apple

Text Filters 241

15

apple
orange
‘ > ./fruits.txt
$ uniq fruits.txt

produce the output

peach
apple
orange

As you can see, uniq discarded all but one of the repeated lines.

The uniq command produces a list of the uniq items in a file by comparing consecutive
lines. To function properly, its input needs to be sorted. For example, if you change
fruits.txt as follows

$ echo ‘
peach
peach
orange
apple
apple
peach
‘ > ./fruits.txt
$ uniq fruits.txt

the output from uniq will be incorrect for your purposes:

peach
orange
apple
peach

Returning to the original problem, you need uniq to print not only a list of the unique
words, but also the number of times a word occurs. You can do this by specifying the -c
(short for count) option of the uniq command:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘ |
tr ‘ ‘ ‘\n’ | sort | uniq -c

Sorting Numbers
At this point the output is sorted alphabetically. Although this is useful, it is much easier
to determine the most frequently used words if the list is sorted by the number of times a
word occurs. To obtain such a list, you need sort to sort by numeric value instead of
string comparison. It would also be nice if the largest values were printed first. By default,
sort prints the largest values last. To satisfy both of these requirements, you need to use
the -n (short for numeric) and -r (short for reverse) options of the sort command:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘ |
tr ‘ ‘ ‘\n’ | sort | uniq -c | sort -rn

242 Hour 15

By piping the output to head, you can get an idea of the ten most repeated words:

$ tr ‘!?”:;\[\]{}(),.\t\n’ ‘ ‘ < ch15.doc | tr ‘A-Z’ ‘a-z’ | tr -s ‘ ‘ |
tr ‘ ‘ ‘\n’ | sort | uniq -c | sort -rn | head
389 the
164 to
127 of
115 is
115 and
111 a
80 files
70 file
69 in
65 ‘

Sorting Numbers in a Different Column
In the preceding output, you used the sort -rn command to sort the output by numbers
because the numbers occurred in the first column instead of the second. If the numbers
occurred in any other column, this would not be possible. Suppose the output looked like
the following:

$ cat switched.txt
files 80
file 70
is 115
and 115
a 111
in 69
‘ 65
the 389
to 164
of 127

Now you need to tell sort to sort on the second column; you cannot simply use the -r
and -n options. You need to use the -k (short for key) option.

The sort command constructs a “key” for each line in the file, and then it arranges these
keys into sorted order. By default, the key spans the entire line. The -k option gives you
the flexibility of telling sort where the key should begin and where it should end, in
terms of columns. The number of columns in a line is the number of individual words
(alphanumeric strings separated by a tab or space) on that line. For example, the follow-
ing line contains three columns:

files 80 100

The basic syntax of the -k option is

sort -k start,end files

Text Filters 243

15

Here start is the starting column for the key, and end is the ending column for the key.
The first column is 1, the second column is 2, and so on. For switched.txt, start and
end are both 2 because there are only two columns and you want to sort on the second
one. The command you could use is

$ sort -rn -k 2,2 switched.txt
403 the
121 command
120 to
120 of
88 ‘
84 tr
84 in
79 a
78 grep
73 is

Using Character Classes with tr
If you look at the output of the previous command you might have noticed that the fifth
most common word in this chapter is the single quote character. You are correct in won-
dering what’s going on because we said the very first tr command took care of dealing
with punctuation. Well, the problem is that you took care of all the characters that would
fit between single quotes, and a single quote won’t fit. You can’t backslash escape the
single quote because some versions of the shell can’t handle an escaped single quote.

So what is the solution?

The solution is to use the predefined character sets in tr. The tr command knows sev-
eral character classes, and the punctuation class is one of them. Table 15.1 gives a com-
plete list of the character class names.

TABLE 15.1 Character Classes Understood by the tr Command

Class Description

alnum Letters and digits

alpha Letters

blank Horizontal whitespace

cntrl Control characters

digit Digits

graph Printable characters, not including spaces

lower Lowercase letters

print Printable characters, including spaces

244 Hour 15

TABLE 15.1 Continued

Class Description

punct Punctuation

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

The syntax to invoke tr with one of these character classes is as follows:

tr ‘[:classname:]’ ‘set2’

Here classname is the name of one of the classes given in Table 15.1, and set2 is the set
of characters you want the characters in classname to be transliterated to. For example,
you can get rid of punctuation and spaces in the problem by using the punct and space

classes as follows:

$ tr ‘[:punct:]’ ‘ ‘ < ch15.doc | tr ‘[:space:]’ ‘ ‘ | tr ‘A-Z’ ‘a-z’ |
tr -s ‘ ‘ | tr ‘ ‘ ‘\n’ | sort | uniq -c | sort -rn | head

The output now becomes:

411 the
182 command
159 i
123 to
122 of
105 a
93 tr
90 grep
89 in
73 is

You could also have replaced ‘A-Z’ and ‘a-z’ with the upper and lower classes, but
there is no real advantage to using the classes in this case.

Summary
In this chapter you looked at some of the commands that are heavily used for filtering
text in scripts. These commands include:

• head

• tail

• grep

Text Filters 245

15

• sort

• uniq

• tr

You also learned how to combine these commands to solve problems such as counting
the number of times a word is repeated in a text file. In Chapter 16, you will learn about
two more text filtering commands, awk and sed, that provide much more control over
editing lines and printing specific lines and columns of output.

Questions
1. Given the following shell function

lspids() { /bin/ps -ef | grep “$1”| grep -v grep ; }

make the necessary changes so that when the function is executed as follows

$ lspid -h ssh

the output looks like this:
UID PID PPID C STIME TTY TIME COMMAND
root 2121 1 0 Nov 16 ? 0:14 /opt/bin/sshd

Also, when the function executes as

$ lspid ssh

the output looks like this:

root 2121 1 0 Nov 16 ? 0:14 /opt/bin/sshd

Here you are using ssh as the word specified to grep, but your function should be
able to use any word as an argument.

Also, validate that you have enough arguments before executing the ps command.

If you are using a Linux or BSD-based system, please use the following version of
the function lspids as a starting point instead of the version given previously:

lspids() { /bin/ps -auwx 2> /dev/null | grep “$1”| grep -v

➥grep ; }

(HINT: The header that is the first line in the output from the /bin/ps command.)

2. Take the function you wrote in question 1 and add an -s option that sorts the out-
put of the ps command by process ID. The process IDs, or pids, do not have to be
arranged from largest to smallest.

If you are using a Linux or BSD system, you need to sort on column 1. On other
systems you need to sort on column 2.

246 Hour 15

Terms
grep A command that lets you locate the lines in a file that contain a particular word or
a phrase. The term grep is short for globally regular expression print.

head A command used to display the first few lines of a file.

tail A command used to display the last few lines of a file.

Text Filters 247

15

HOUR 16
Filtering Text with
Regular Expressions

The most powerful text filtering tools in UNIX are a pair of oddly named
programs, awk and sed. These programs allow shell programmers to easily
edit text files and filter the output of commands using regular expressions. A
regular expression is compact notation for describing sets of strings.

The stream editor, sed, was created as an editor for use with shell programs.
As its name implies, sed is stream oriented; input is read, modified inter-
nally, and the modified version is printed out. The input file is not changed.
This chapter covers the use of sed in shell scripts. Specifically we will
examine the following topics:

• Regular expressions

• Using sed

Chapter 17, “Filtering Text with awk,” covers the details of awk program-
ming; however, some of similarities between awk and sed are discussed at
the beginning of this chapter.

The Basics of awk and sed
Many similarities exist between awk and sed:

• Both have similar invocation syntax.

• Both execute a set of programmer specified instructions on every line in their
input files.

• Both use regular expressions to find string and matching lines.

For those of you who are not familiar with regular expressions, they will be explained
shortly.

Invocation Syntax
The invocation syntax for awk and sed is as follows:

cmd ‘script’ files

Here cmd is either awk or sed, script is a list of commands understood by awk or sed,
and files is a list of files that cmd acts on.

The single quotes around script are required to prevent the shell from accidentally per-
forming substitutions. The actual contents of script differ greatly between awk and sed.
The command set for sed is covered later in this chapter, whereas awk’s command set is
covered in the next chapter.

If filenames are not given, both awk and sed read input from STDIN. This enables them
to be used as output filters on other commands.

Basic Operation
When an awk or sed command runs, it performs the following operations:

1. Reads a line from an input file

2. Makes a copy of the line

3. Executes script on the line

4. Goes to the next line and repeats step 1

These operations illustrate the main feature of awk and sed—they provide a method of
acting on every record or line in a file using a single script. When every record has been
read, the input file is closed. If the input file is the last file specified in filenames, the
command exits.

250 Hour 16

Script Structure and Execution
The script usually consists of one or more lines of the following form:

/pattern/ action

Here pattern is a regular expression, and action is the action that either awk or sed
should take when pattern is encountered. The slash characters (/) that surround pat-
tern act as delimiters and indicate where pattern starts and ends. Multiple pattern and
action pairs can be specified.

When script is executing, it uses the following procedure on each record:

1. Each pattern is sequentially searched until a match is found.

2. When a match is found, the corresponding action is performed on the record.

3. When the action is complete, the next pattern is selected and step 1 is repeated.

4. When all the patterns have been exhausted, the next line is read and step 1 is
repeated.

Just before step 4 is performed, sed automatically outputs the modified record. In order
to obtain this behavior with awk, the modified record must be manually output.

The actions taken in awk and sed are quite different. In sed, the actions consist of com-
mands that edit single letters, whereas in awk the action is usually a set of programming
statements.

Regular Expressions
A regular expression is a compact notation for describing sets of strings. Regular expres-
sions are constructed similar to arithmetic expressions; various operators are used to
combine smaller expressions. The basic building blocks of a regular expression are

• Ordinary characters

• Meta-characters

Ordinary characters are

• Uppercase and lowercase letters such as A or b

• Numerals such as 1 or 2

• Characters such as a space or an underscore

Meta-characters are characters that have a special meaning inside a regular expression;
they are expanded to match ordinary characters. By using meta-characters, you need not
explicitly specify all the different combinations of ordinary characters that you want to

Filtering Text with Regular Expressions 251

16

matches those same strings along with strings such as ace, yacc, and arctic. It also
matches the following line

close the window

although the letter a does not appear in this sentence. This is because of the *: It matches
zero or more occurrences of the character immediately preceding it.

Another important thing to note about the * is that it tries to make the longest possible
match. For example, consider the expression

/a*a/

and the following line

able was I, ere I saw elba

Here you have asked to match lines that contain a string that starts and ends with the let-
ter a. In the sample line, there are several possibilities:

able wa
able was I, ere I sa
able was I, ere I saw elba

The * always matches the longest possible match; in this case, the last one is selected.

The . and the * can be combined to obtain behavior equivalent to the * filename expan-
sion wildcard covered in Chapter 8, “Variables.” For example, the following expression

/ch.*doc/

matches the strings ch01.doc, ch02.doc, and chdoc. The shell’s * wildcard matches files
of the same names.

Sets of Characters

One of the major limitations with the . operator is that it does not enable you to specify
which characters you want to match; it matches all characters. To specify a particular set
of characters in a regular expression, we need to use the bracket characters, ([and]), as
follows:

/[chars]/

Here a single character in the set given by chars is matched. The use of sets in a regular
expression is almost identical to the use of sets in filename substitution. Table 16.2
shows some frequently used sets of characters.

As an example of using sets, the following expression matches the string The and the:

/[tT]he/

Filtering Text with Regular Expressions 253

16

TABLE 16.2 Common Sets

Set Description

[a-z] Matches a single lowercase letter

[A-Z] Matches a single uppercase letter

[a-zA-Z] Matches a single letter

[0-9] Matches a single number

[a-zA-Z0-9] Matches a single letter or number

Sometimes it is hard to determine the exact set of characters that you need to match. Say
that you needed to match every character except the letter T. Constructing a set of char-
acters that includes every character except the letter T is error prone; you might forget a
space or a punctuation character. To solve this problem, you can use the negation opera-
tor, ^. For example, the set that matches all characters except T is

[^T]

When ^ is the first character in the set, any character not given in the set is matched. This
is called reversing. Any set, including those given in Table 16.2, can be reversed or
negated by specifying ^ as the first character. For example, the following expression

/ch[^0-9]/

matches the beginnings of the strings chapter and chocolate, but not the strings ch01 or
ch02.

You can combine sets with the * character to extend their functionality. For example, the
following expression

/ch0[0-9]*doc/

matches the strings ch01.doc and ch02.doc but not the strings chdoc or changedoc.

Anchoring Expressions

Let’s say that we need to find lines that start with the word the. For example,

the plains were rich with crops

We might be tempted to use the following simple expression:

/the/

Although this expression will match lines that start with the, it also matches the follow-
ing lines:

there were many orchards of fruit tree
in the dark it was like summer lightning

254 Hour 16

The two main problems with the simple expression are

• Only the word the should be matched. Lines starting with words such as there
should not be matched.

• The word the should be at the beginning of the line.

To solve the first problem, we can add a space as follows:

/the /

To solve the second problem, you need the ^ meta-character, which matches the begin-
ning of a line. In regular expressions, ^ anchors the expression to the beginning of the
line: Only lines that start with the expression are matched. Normally, any line that con-
tains an expression is matched.

By adding the ^ as follows,

/^the /

you have an expression that matches only those lines that start with the word the.

Expressions can also be anchored to the end of the line using the $. For example, the fol-
lowing expression

/friend$/

matches the line

I have been and always will be your friend

But it doesn’t match the line

What are friends for

You can combine ^ and $ along with sets and other meta-characters to match lines
according to an expression. For example, the following expression

/^Chapter [1-9]*[0-9]$/

matches lines such as

Chapter 1
Chapter 20

but it does not match lines such as

Chapter 00 Introduction
Chapter 101

Filtering Text with Regular Expressions 255

16

Printing Lines
Let’s start with the simplest feature available in sed—printing a line that matches an
expression.

The following is a price list for a small fruit market:

$ cat fruit_prices.txt
Fruit Price/lbs
Banana 0.89
Paech 0.79
Kiwi 1.50
Pineapple 1.29
Apple 0.99
Mango 2.20

This file lists the name of a fruit and its price per pound. Most of the following examples
assume that this list is stored in the file fruit_prices.txt.

To start with, let’s print out a list of those fruits that cost less than $1 per pound. We will
need to use the sed command p:

/pattern/p

Here pattern is a regular expression.

Let’s try the following sed command:

$ sed ‘/ 0\.[0-9][0-9]$/p’ fruit_prices.txt

This will print all the lines that match the expression:

/ 0\.[0-9][0-9]$/

This expression specifies that only lines ending in prices such as 0.89 and 0.99 should be
printed. The leading 0 ensures that lines ending in prices such as 2.20 or 10.10 are not
printed.

Looking at the output,

Fruit Price/lbs
Banana 0.89
Banana 0.89
Paech 0.79
Paech 0.79
Kiwi 1.50
Pineapple 1.29
Apple 0.99
Apple 0.99
Mango 2.20

258 Hour 16

we find that the lines for fruit with prices less than a dollar are printed twice, whereas
lines for fruit with prices greater than a dollar are printed only once. This demonstrates
the default behavior of sed—it prints every input line to the output. To avoid this behav-
ior, we can specify the -n option to sed as follows:

$ sed -n ‘/ 0\.[0-9][0-9]$/p’ fruit_prices.txt

This changes the output as follows:

Banana 0.89
Paech 0.79
Apple 0.99

Deleting Lines
Say that we run out of mangos and thus need to delete them from the list. To accomplish
this task, we can use the sed command d:

/pattern/d

Here pattern is a regular expression.

We can use the following sed command:

$ sed ‘/^[Mm]ango/d’ fruit_prices.txt

This command deletes lines that start with the words mango or Mango. The output is as
follows:

Fruit Price/lbs
Banana 0.89
Paech 0.79
Kiwi 1.50
Pineapple 1.29
Apple 0.99

Notice that you did not have to specify the -n option to sed to get the correct output. The
p command tells sed to produce additional output, whereas the d command tells sed to
modify the regular output.

Although you have modified the output and have verified that it is correct, the file still
needs to be updated. You can do this with the help of the shell:

$ mv fruit_prices.txt fruit_prices.txt.$$
$ sed ‘/^[Mm]ango/d’ fruit_prices.txt.$$ > fruit_prices.txt
$ cat fruit_prices.txt

First, we rename the file fruit_prices.txt to fruit_prices.txt.$$. Recall that the
value of the variable $$ is the process ID of the current shell. Appending the value of $$
to the end of a file is a commonly used method for creating temporary files with unique
names.

Filtering Text with Regular Expressions 259

16

Next, we use sed to delete the lines starting with Mango or mango from the temporary file.
Then the output of the sed command is redirected into the file fruit_prices.txt.

We used cat to show us that the update was successful:

Fruit Price/lbs
Banana 0.89
Paech 0.79
Kiwi 1.50
Pineapple 1.29
Apple 0.99

Now that we know that the update happened correctly, we can remove the temporary file
as follows:

$ rm fruit_prices.txt.$$

Performing Substitutions
By now you might have noticed that Peach is misspelled as Paech in our file. We can fix
this by substituting Paech with the correct spelling using the sed command s:

/pattern1/s/pattern2/pattern3/

Here pattern1, pattern2, and pattern3 are regular expressions. The s command
replaces pattern2 with pattern3 on any line that matches pattern1.

Frequently pattern1 is omitted, so you see the s command used as follows:

s/pattern2/pattern3/

If pattern1 is omitted, the s command is executed for every input line.

To fix the spelling of Paech, you can use the following sed command:

$ sed ‘s/Paech/Peach/’ fruit_prices.txt

Now the output resembles the following:

Fruit Price/lbs
Banana 0.89
Peach 0.79
Kiwi 1.50
Pineapple 1.29
Apple 0.99

You did not have to specify the -n option to sed to obtain the desired output. The s com-
mand is similar to the d command in that it tells sed to modify its normal output.

260 Hour 16

Common Errors
A common error with the s command is forgetting one or more of the / characters. For
example, say that you were to issue the following command:

$ sed ‘s/Paech/Peach’ fruit_prices.txt

An error message similar to the following is produced:

sed: command garbled: s/Paech/Peach

This error message illustrates the standard style for sed error messages:

sed: command garbled: command

sed just repeats the command and states that it could not understand it. No additional error
messages or information are produced, so you have to determine what went wrong your-
self.

Performing Global Substitutions
In the last example, you just needed to fix a single misspelling on a single line.
Sometime you might need to perform multiple corrections. As an example, take a look at
the following file:

$ cat nash.txt
things that are eqal to the same thing are eqal to each other

In this file, the word equal is misspelled as eqal. You can try to fix this using the s com-
mand as follows:

$ sed ‘s/eqal/equal/’ nash.txt
things that are equal to the same thing are eqal to each other

As you can see, the first misspelling was fixed, but the second one was not. This is the
default behavior of the s command: It only performs one substitution on a line. To per-
form more than one substitution, we need to use the g (g as in global) operator:

/pattern1/s/pattern1/pattern2/g

The g operator tells the s command to substitute every occurrence of pattern2 with pat-

tern3 on lines matching pattern1. If pattern1 is omitted, every line of input is oper-
ated on.

In this case, we need to use the g operator as follows:

$ sed ‘s/eqal/equal/g’ nash.txt
things that are equal to the same thing are equal to each other

Filtering Text with Regular Expressions 261

16

Reusing an Expressions Value
Returning to the price list of fruits, say that we want to change the list to reflect that the
prices are in dollars by appending the $ character in front of each of the prices. By using
the following expression, we can match all the lines that end with a price:

/ *[0-9][0-9]*\.[0-9][0-9]$/

The problem is replacing the existing price with a price that is preceded by the $ charac-
ter. It seems as though we would need to write a separate s command for each line in the
file. Fortunately, the s command provides the & operator, which enables us to reuse the
matched string from pattern2 in pattern3.

We can reuse the price that was matched as follows:

$ sed ‘s/ *[0-9][0-9]*\.[0-9][0-9]$/\$&/’ fruit_prices.txt
Fruit Price/lbs
Banana $0.89
Paech $0.79
Kiwi $1.50
Pineapple $1.29
Apple $0.99

Using Multiple sed Commands
As you can see from the last example, we were able to update the prices, but Peach
remains misspelled as Paech. In order to perform both changes, you will have to perform
more than one sed command on the file. This can be accomplished in one of two ways:

• Perform the first change and then update the file. Perform the second change com-
mand and then update the file.

• Perform both changes using a single sed command and then update the file.

As you can guess, the second method is much more efficient and less prone to error
because the file is updated only once. You can perform both changes using a single sed
command as follows:

sed -e ‘cmd1’... -e ‘cmdN’ files

Here cmd1 ... cmdN are sed commands of the type discussed previously. Each com-
mand is applied to every line in each of the files specified by files.

We can perform both updates using either of the following commands:

$ sed -e ‘s/Paech/Peach/’ -e ‘s/ *[0-9][0-9]*\.[0-9][0-9]$/\$&/’
➥fruit_prices.txt
$ sed -e ‘s/ *[0-9][0-9]*\.[0-9][0-9]$/\$&/’ -e ‘s/Paech/Peach/’
➥fruit_prices.txt

262 Hour 16

Both commands produce the same output:

Fruit Price/lbs
Banana $0.89
Peach $0.79
Kiwi $1.50
Pineapple $1.29
Apple $0.99

To update the file, we can use the following procedure:

$ mv fruit_pieces.txt fruit_pieces.txt.$$
$ sed -e ‘s/Paech/Peach/’ -e ‘s/ *[0-9][0-9]*\.[0-9][0-9]$/\$&/’
➥fruit_prices.txt.$$ > fruit_pieces.txt
$ cat fruit_pieces.txt
Fruit Price/lbs
Banana $0.89
Peach $0.79
Kiwi $1.50
Pineapple $1.29
Apple $0.99

Using sed in a Pipeline
If a list of files is not specified, sed reads lines from STDIN, making it useful in
pipelines.

As an example of using sed in a pipeline, we will use it to determine a user’s numeric
user ID (uid). On most systems, the /usr/bin/id command prints out the current user’s
uid and gid information. The output of id resembles the following:

$ /usr/bin/id
uid=500(ranga) gid=100(users)

As you can see from the output, the numeric uid for the user ranga is 500. Let’s modify
this output so that only the numeric value is printed. First we need to eliminate every-
thing following the first parenthesis. We can do that as follows:

$ /usr/bin/id | sed ‘s/(.*$//’

Now the output looks like the following:

uid=500

If we eliminate the uid= portion at the beginning of the line, we are finished. This can be
accomplished as follows:

$ /usr/bin/id | sed -e ‘s/(.*$//’ -e ‘s/^uid=//’

Now the output is

500

Filtering Text with Regular Expressions 263

16

which is what we want. Notice that when we added the second s command, we changed
from the single command form for sed to the multiple command form that uses the -e
option.

Summary
In this chapter, we looked at filtering text using regular expressions. Some of the major
topics covered were

• Matching characters

• Specifying sets of characters

• Anchoring expressions

• Escaping meta-characters

We also looked at the similarities between awk and sed and covered the use of sed in
detail.

In the next chapter, I will introduce the awk command and its programming language.
Using the material covered in this chapter, you will be able to use awk to perform diffi-
cult text manipulations.

Questions
1. Using sed, write a shell function that searches for a word or simple expression in a

list of files, printing out a list of matches.

You do not have to support all possible sed expressions. Your function should take
the word to look for as its first argument. It should treat its other arguments as a
list of files.

HINT: Use double quotes (“) instead of single quotes (‘) to surround your sed
script.

2. Write a sed command that takes as its input the output of the uptime command
and prints only the load averages. The uptime command’s output resembles the
following:
$ uptime
6:34pm up 2 day(s), 49 min(s), 1 user, load average:
➥0.00, 0.00, 0.02

Your output should resemble the following:

load average: 0.05, 0.01, 0.03

264 Hour 16

3. Write a sed command that takes as its input the output of the command df -k and
prints only those lines that start with a /. The output of the df -k command resem-
bles the following:
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t3d0s0 739262 455143 224979 67% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t3d0s1 123455 4813 106297 5% /var
/dev/dsk/c0t3d0s5 842150 133819 649381 18% /opt
swap 366052 15708 350344 5% /tmp
kanchi:/home 1190014 660165 468363 59% /users

On HP-UX, use the command df -b instead of df -k.

4. Write a sed command that takes as its input the output of the ls -l command and
prints the permissions and the filename for regular files. Directories, links, and spe-
cial files should not appear in the output. The output of ls -l will be similar to the
following:
-rw-r--r-- 1 ranga users 85 Nov 27 15:34 fruit_prices.txt
-rw-r--r-- 1 ranga users 80 Nov 27 13:53 fruit_prices.txt.7880
lrwxrwxrwx 1 ranga users 8 Nov 27 19:01 nash -> nash.txt
-rw-r--r-- 1 ranga users 62 Nov 27 16:06 nash.txt
lrwxrwxrwx 1 ranga users 8 Nov 27 19:01 urls -> urls.txt
-rw-r--r-- 1 ranga users 180 Nov 27 12:34 urls.txt

Your output should resemble the following:

-rw-r--r-- fruit_prices.txt
-rw-r--r-- fruit_prices.txt.7880
-rw-r--r-- nash.txt
-rw-r--r-- urls.txt

Terms
Anchoring Anchoring a regular expression limits matches to lines that begin or end
with the expression.

Escaping Preceding a meta-character with a \ is called escaping. An escaped meta-
character is treated literally.

Meta-Characters Meta-characters are characters that have a special meaning inside a
regular expression; they are expanded to match ordinary characters.

Regular Expression A regular expression is compact notation for describing sets of
strings.

Filtering Text with Regular Expressions 265

16

HOUR 17
Filtering Text with awk

In Chapter 16, “Filtering Text with Regular Expressions,” you learned how
to use regular expressions with sed to filter text. In this chapter, you will
look at another powerful text filtering program called awk.

awk is a program and a complete programming language that enables you to
search many files for patterns and to conditionally modify files without hav-
ing to worry about opening files, reading lines, or closing files. It’s found on
all UNIX systems and is quite fast, easy to learn, and extremely flexible.
This chapter concentrates on the awk elements that are most commonly used
in shell scripts, specifically:

• Field editing

• Variables

• Flow control statements

What Is awk?
awk is a program and a programming language that enable you to search
through files and modify records in these files based on patterns. The name

awk comes from the last names of its creators Alfred Aho, Peter Weinberger, and Brian
Kernighan. awk was added to UNIX Version 7 in 1978 and has been an indispensable
part of it ever since.

There are three versions of awk:

• Original awk

• New nawk

• The POSIX/GNU version gawk

Original awk has remained almost the same since its first introduction to UNIX in 1978.
It was intended to be a small programming language for filtering text and producing
reports. By the mid-1980s, people were using awk for large programs, so its authors
decided to extend it. This version, called nawk (short for new awk), was released to the
public in 1987 and became a part of SunOS 4.1.x. nawk was supposed to replace awk, but
this has not yet happened. Most commercial UNIX versions such as HP-UX and Solaris
still ship with both awk and nawk. BSD systems also ship with awk rather than nawk.

In 1992 the Institute of Electrical and Electronics Engineers (IEEE) standardized awk as
part of its Portable Operating Systems Interface standard (POSIX). gawk, the GNU ver-
sion of awk, is based on the POSIX standard. All Linux systems ship with gawk.

The examples in this chapter work with any version of awk.

Basic Syntax
The basic syntax of an awk command is

awk ‘script’ files

Here, files is a list of one or more files, and script is one or more commands of the
form:

/pattern/ { actions }

Here pattern is a regular expression, and actions are one or more of the commands
covered later in this chapter. If pattern is omitted, awk performs the actions for each
input line.

Let’s get started by looking at a simple task: printing the lines in a file. In order to print
the file fruit_prices.txt (from the previous chapter), you can use the following
command:

$ awk ‘{ print ; }’ fruit_prices.txt
Fruit Price/lbs Quantity
Banana $0.89 100

268 Hour 17

Here you have two patterns: The first one looks for fruit priced higher than a dollar, and
the second one looks for fruit priced lower than a dollar. When a fruit priced higher than
a dollar is encountered, the three fields are output with a * at the end of the line. For all
other fruit, the line is printed exactly as it was read.

Assuming that this script is called fruit_prices.sh and is located in the current direc-
tory, it can be invoked as follows:

$./fruit_prices.sh

The output looks like the following:

Banana $0.89 100
Peach $0.79 65
Kiwi $1.50 22 *
Pineapple $1.29 35 *
Apple $0.99 78

One problem here is that the lines you wanted to flag with the * in are no longer format-
ted in the same manner as the other lines. You could solve this problem using printf,
but a much simpler solution is to use the $0 field. The variable 0 is used by awk to store
the entire input line as it was read.

Let’s change the script as follows:

#!/bin/sh
awk ‘

/ *\$[1-9][0-9]*\.[0-9][0-9] */ { print $0,”*”; }
/ *\$0\.[0-9][0-9] */ { print ; }

‘ fruit_prices.txt

This changes the output so that all the lines are formatted correctly:

$./fruit_prices.sh
Banana $0.89 100
Peach $0.79 65
Kiwi $1.50 22 *
Pineapple $1.29 35 *
Apple $0.99 78

Comparison Operators
Now say that you have to flag all the fruit whose quantity is less than 75 for reorder by
appending the string REORDER. In this case you have to check whether the third field,
which holds the quantity, is less than or equal to 75.

To solve this problem, you need to use a comparison operator. In awk, comparison opera-
tors compare the values of numbers and strings. Their behavior is similar to operators

Filtering Text with awk 271

17

found in the C language or the shell. When a comparison operator is used, the syntax of
an awk command changes to the following:

expression { actions; }

Here expression is constructed using one of the comparison operators given in Table 17.1.

TABLE 17.1 Comparison Operators in awk

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

value ~ /pattern/ True if value matches pattern

value !~ /pattern/ True if value does not match pattern

You can solve your problem using the following script:

#!/bin/sh
awk ‘

$3 <= 75 { printf “%s\t%s\n”,$0,”REORDER” ; }
$3 > 75 { print $0 ; }

‘ fruit_prices.txt

Here you determine whether the third field contains a value less than or equal to 75. If it
does, you print the input line followed by the string REORDER. Next, you determine
whether the third field contains a value greater than 75 and, if it does, you print the input
line unchanged.

Assuming that this script is called reorder.sh and is located in the current directory, it
can be invoked as follows:

$./reorder.sh

The output from this scripts looks like the following:

Fruit Price/lbs Quantity
Banana $0.89 100
Peach $0.79 65 REORDER
Kiwi $1.50 22 REORDER
Pineapple $1.29 35 REORDER
Apple $0.99 78

272 Hour 17

Compound Expressions
Often, you need to combine two or more expressions to check for a particular condition.
When you combine two or more expressions, the result is called a compound expression.
Compound expressions are constructed by using either the && (and) or the || (or) com-
pound operators. The syntax is

(expr1) && (expr2)
(expr2) || (expr2)

Here expr1 and expr2 are expressions constructed using the conditional operators given
in Table 17.1. The parentheses surrounding expr1 and expr2 are required. When the &&
operator is used, both expr1 and expr2 must be true for the compound expression to be
true. When the || operator is used, the compound expression is true if either expr1 or
expr2 is true.

As an example of using a compound expression, you can use the compound operators to
obtain a list of all the fruits that cost more than a dollar and of which there are less than 75:

#!/bin/sh

awk ‘
($2 ~ /^\$[1-9][0-9]*\.[0-9][0-9]$/) && ($3 < 75) {

printf “%s\t%s\t%s\n”,$0,”*”,”REORDER” ;
}

‘ fruit_prices.txt ;

If this script is called reorder_expensive.sh and is located in the current directory, it
can be invoked as follows:

$./ reorder_expensive.sh

The output looks like the following

Kiwi $1.50 22 * REORDER
Pineapple $1.29 35 * REORDER

Filtering Text with awk 273

17

The Compound Expression Operators
The && operator is often called the and–and operator because it consists of two amper-
sands (and characters). Similarly, the || operator is referred to as the or-or operator.

The next Command
Let’s reconsider the “reorder” script:

#!/bin/sh
awk ‘

$3 <= 75 { printf “%s\t%s\n”,$0,”REORDER” ; }

$3 > 75 { print $0 ; }
‘ fruit_prices.txt

Clearly it is performing more work than it needs to. For example, when the input line is

Kiwi $1.50 22

the execution of the script is as follows:

1. Checks whether the value of the third column, 22, is less than 75. Because the
value is less than 75, the script proceeds to step 2.

2. Prints the input line followed by REORDER.

3. Checks whether the value of the third column, 22, is greater than 75. Because the
value is not greater than 75, the script reads the next line.

There is no real need to execute step 3 because step 2 has already printed a line. To pre-
vent step 3 from executing, you can use the next command. The next command tells awk
to skip all the remaining patterns and expressions and instead read the next input line and
start from the first pattern or expression.

Let’s change the script to use the next command:

#!/bin/sh
awk ‘

$3 <= 75 { printf “%s\t%s\n”,$0,”REORDER” ; next ; }
$3 > 75 { print $0 ; }

‘ fruit_prices.txt ;

Now when the line:

Kiwi $1.50 22

is encountered, the execution of the script is as follows:

1. Checks whether the value of the third column, 22, is less than 75. Because the
value is less than 75, the script proceeds to step 2.

2. Prints the input line followed by REORDER.

3. Reads the next input line and starts over with the first pattern.

As you can see, the second comparison ($3 > 75) is never performed for this input line.

Using STDIN as Input
Recall that the basic form of an awk command is

awk ‘script’ files

274 Hour 17

If the list of files (files) is omitted, awk reads its input from STDIN. This enables you to
use awk to filter the output of other commands. For example, the command

$ ls -l

produces output formatted similar to the following:

total 64
-rw-r--r-- 1 ranga users 635 Nov 29 11:10 awkfruit.sh
-rw-r--r-- 1 ranga users 115 Nov 28 14:07 fruit_prices.txt
-rw-r--r-- 1 ranga users 80 Nov 27 13:53 fruit_prices.txt.7880
lrwxrwxrwx 1 ranga users 8 Nov 27 19:01 nash -> nash.txt
-rw-r--r-- 1 ranga users 62 Nov 27 16:06 nash.txt
-rw-r--r-- 1 ranga users 11 Nov 29 10:38 nums.txt
lrwxrwxrwx 1 ranga users 8 Nov 27 19:01 urls -> urls.txt
-rw-r--r-- 1 ranga users 180 Nov 27 12:34 urls.txt

Let’s use awk to manipulate the output of the ls -l command so that only the name of a
file and its size are printed. The values you are interested in are stored in fields 9 and 5:
the name of the file is in field 9 and its size is in field 5. The following command prints
the name of each file along with its size:

$ ls -l | awk ‘$1 !~ /total/ { printf “%-32s %s\n”,$9,$5 ; }’

The output looks like the following:

awkfruit.sh 635
fruit_prices.txt 115
fruit_prices.txt.7880 80
nash 8
nash.txt 62
nums.txt 11
urls 8
urls.txt 180

Using awk Features
So far you have learned about the basics of using awk, now you will look at some of its
more powerful features:

• Variables

• Flow control

• Loops

Filtering Text with awk 275

17

Variables
Variables in awk are similar to variables in the shell; they are words that hold a value.
The basic syntax of defining a variable is

name=value

Here name is the name of the variable and value is the value of that variable. For exam-
ple, the following awk command

fruit=”peach”

creates the variable fruit and assigns it the value peach. There is no need to initialize a
variable; the first time you use it, it is automatically initialized.

Like the shell, the name of a variable can contain only letters, numbers, and underscores.
A variable’s name cannot start with a number.

You can assign both numeric and string values to a variable in the same script. For exam-
ple, consider the following awk commands:

fruit=”peach”
fruit=100

The first command assigns the value peach to the variable fruit. The second command
assigns the value 100 to the variable fruit.

The value that you assign a variable can also be the value of another variable or a field.
For example, the following awk commands

fruit=peach
fruity=fruit

set the value of the variables fruit and fruity to peach. First the value of the variable
fruit is set to peach, next the value of fruity is set to the value of the variable fruit,
which is peach.

In order to set the value of a variable to one of the fields parsed by awk, you need to use
the standard field access operator. For example, the following awk command

fruit=$1

sets the value of the variable fruit to the first field of the input line.

Using Numeric Expressions
You can also assign a variable the value of a numeric expression. Numeric expressions
are commands that add, subtract, multiply, and divide two numbers and are of the form

num1 operator num2

276 Hour 17

Consider the file urls.txt, which contains four blank lines:

$ cat urls.txt
http://www.cusa.berkeley.edu/~ranga

http://www.cisco.com

ftp://prep.ai.mit.edu/pub/gnu/
ftp://ftp.redhat.com/

http://www.yahoo.com/index.html
ranga@kanchi:/home/ranga/pub

ranga@soda:/home/ranga/docs/book/ch01.doc

If the script is named urls.sh and is located in the current directory, it can be used to
count the blank lines in the file urls.txt by invoking it as follows:

$./urls.sh urls.txt

The output looks like the following:

urls.txt
1
2
3
4

The Assignment Operators

In the previous example, the awk command:

awk ‘ /^ *$/ { x=x+1 ; print x ; }’ $i

Uses the assignment:

x=x+1

In awk this can be written in a more concise fashion using the addition assignment
operator:

x += 1

Here, the assignment operator += takes the value of x, adds 1 to it, and then assigns the
result to x.

In general the assignment operators have the syntax

name operator num

Here name is the name of a variable, operator is one of the operators specified in
Table 17.3, and num is either the name of a variable or a numeric constant such as 1 or 2.

278 Hour 17

TABLE 17.3 Assignment Operators in awk

Operator Description

+= Add

-= Subtract

*= Multiply

/= Divide

%= Modulo (Remainder)

^= Exponentiation

Using an assignment operator is shorthand for writing a numeric expression of the form:

name=name operator num

Many programmers prefer using the assignment operators because they are slightly more
concise than a regular numeric expression.

The Special Patterns: BEGIN and END

In the previous example, the awk command

awk ‘ /^ *$/ { x=x+1 ; print x ; }’ $i

prints the value of x each time it is incremented. It would be much nicer if you could
print the total number of empty lines. In order to accomplish this, you need to use the
special patterns BEGIN and END.

Recall that the general syntax of a command in an awk script is

/pattern/ { actions }

Usually pattern is a regular expression, but you can also use two special patterns, BEGIN
and END. Taking these patterns into account, the general form of an awk command is

awk ‘
BEGIN { actions }
/pattern/ { actions }
/pattern/ { actions }
END { actions }

‘ files

When the BEGIN pattern is specified, awk executes its actions before reading any input.
When the END pattern is specified, awk executes its actions before it exits. When these
patterns are given the execution of an awk, the script is as follows:

1. If a BEGIN pattern is present, it executes the actions it specifies.

2. Reads an input line and parses it into fields.

Filtering Text with awk 279

17

3. Compares each of the specified patterns against the input line, until it finds a
match. When it does find a match, the script executes the actions specified for that
pattern. This step is repeated for all available patterns.

4. Repeats steps 2 and 3 while input lines are present.

5. After the script reads all the input lines, if the END pattern is present, it executes the
actions that the pattern specifies.

The BEGIN pattern must be the first pattern that is specified, and the END pattern must be
the last pattern that is specified. Between the BEGIN and END patterns you can have any
number of awk commands of the form:

/pattern/ { action ; }

Both BEGIN and END are optional. If a program consists of only a BEGIN pattern, awk does
not read files.

To solve this problem, you can use the END pattern to print the value of x. The modified
urls.sh script is as follows:

#!/bin/sh
for i in $@ ;
do

if [-f “$i”] ; then
echo “$i\c”
awk ‘

/^ *$/ { x+=1 ; next; }
END { printf “ %s\n”,x; }

‘ “$i”
else

echo “ERROR: $i not a file.” >&2
fi

done

Now the output looks like

$./urls.sh urls.txt
urls.txt 4

If the output on your system looks like the following:

urls.txt\c
4

instead of as shown, you will need to replace the following line in the script:

echo “$i\c”

with the line:

echo –n “$1”

280 Hour 17

Built-in Variables
In addition to the variables that you can define, awk predefines several variables. The
complete list of these variables is given in Table 17.4.

TABLE 17.4 Built-in Variables in awk

Variables Description

FILENAME The name of the current input file. You should not change the value of this
variable.

NR The number of the current input line or record in the input file. You should not
change the value of this variable.

NF The number of fields in the current line or record. You should not change the
value of this variable.

OFS The output field separator (default is space).

FS The input field separator (default is space and tab).

OFMT The output format for numbers (default is %.6g).

ORS The output record separator (default is newline).

RS The input record separator (default is newline) .

Using FILENAME and NR

In the previous example, you used the shell to print the name of the input file. By using
the variable FILENAME in conjunction with the BEGIN statement, you can do this all in
awk. While you are at it, you can change the previous script to print the percentage of
lines in the file that were blank using the following expression in the END pattern:

100*(x/NR)

Here you are using the variable NR, which stores the current record or line number. In the
END pattern, the value of NR is the line number of the last line that was processed, which
is the same as the total number of lines processed.

With these changes, the script is

#!/bin/sh
for i in $@ ;
do

if [-f “$i”] ; then
awk ‘

/^ *$/ {file=FILENAME; x+=1 ; next ; }
END { printf “%s %s %3.1f\n”,file,x,(100*(x/NR)); }

‘ “$i”
else

Filtering Text with awk 281

17

echo “ERROR: $i not a file.” >&2
fi

done

The new output looks like

$./urls.sh urls.txt
urls.txt 4 36.4

Notice that the percentage is given as a decimal or floating point value. awk treats all
numbers as floating point values and returns floating point values from all of its compu-
tations.

Changing the Input Field Separator

The input field separator, FS, controls how awk breaks up fields in an input line. The
default value for FS is the string “ \t” (a space followed by a tab). Because most com-
mands, such as ls or ps, use spaces or tabs to separate columns, this default value
enables you to easily manipulate their output using awk.

You can manually set FS to any other characters in order to influence how awk breaks up
an input line. Usually, this character is changed when you look through system data-
bases, such as /etc/passwd. The two methods available for changing FS are

• Manually resetting FS in a BEGIN pattern

• Specifying the -F option to awk

As an example, let’s set FS to a colon (:) using the following BEGIN pattern:

BEGIN { FS=”:” ; }

The following awk invocation is equivalent to the BEGIN pattern:

awk -F: ‘{ ... }’

The major difference between these two methods is that the -F option enables you to use
a shell variable to specify the field separator dynamically as follows:

$ MYFS=: ; export MYFS ; awk -F${MYFS} ‘{ ... }’

whereas the BEGIN block forces you to hard code the value of the field separator.

A simple example that demonstrates the use of changing FS is the following:

$ awk ‘BEGIN { FS=”:” ; } { print $1 , $6 ; }’ /etc/passwd

This command prints each user’s username and home directory. It can also be written as
follows:

$ awk -F: ‘{ print $1, $6 ; }’ /etc/passwd

282 Hour 17

The output is similar to the following:

root /
daemon /
bin /usr/bin
sys /
adm /var/adm
ranga /home/ranga

Allowing awk to Use Shell Variables
Most versions of awk have no direct way of accessing the values of environment vari-
ables set by the shell. In order for awk to use these variables, you have to convert them to
awk variables on the command line as follows:

awk ‘script’ awkvar1=value awkvar2=value ... files

Here, script is the awk script that you want to execute. The variables awkvar1, awkvar2, and
so on are the names of awk variables that you want to set. As usual, files is a list of files.

Let’s say that you want to generate a list of all the fruits in fruit_prices.txt that are
less than or equal to some number x, where x is supplied by the user. In order to make
this possible, you need to forward the value of x given by the user to awk. Assuming that
the user-supplied value of x is available in the shell variable $1, the script is

#!/bin/sh
NUMFRUIT=”$1”
if [-z “$NUMFRUIT”] ; then NUMFRUIT=75 ; fi

awk ‘
$3 <= numfruit { print ; }

‘ numfruit=”$NUMFRUIT” fruit_prices.txt

Only those lines that have less than the specified number of fruit are printed.

Assuming this script is called reorder_user.sh and is located in the current directory, it
can be executed as follows:

$./reorder_user.sh 25

This produces the output

Kiwi $1.50 22

Flow Control
There are three main forms for flow control in awk:

• The if statement

• The while statement

• The for statement

Filtering Text with awk 283

17

The if and while statements are similar to those found in the shell; whereas the for
statement is much closer to the version found in the C programming language.

The if Statement
The if statement enables you to make tests before executing some awk command. The
pattern matching and expressions that you have used in the previous examples are essen-
tially if statements that affect the overall execution of the awk program.

The basic syntax of the if statement is

if (expr1) {
action1

} else if (expr2) {
action2

} else {
action3

}

Here expr1 and expr2 are expressions created using the conditional operators. The
parentheses surrounding expr1 and expr2 are required. The actions—action1, action2,
and action3—can be any sequence of valid awk commands. The braces surrounding
these actions are required only when an action contains more than one statement, but
most programmers always include them for the sake of clarity and maintainability.

Both the else if and the else statements are optional. There is no limit on the number
of else if statements that can be given.

The execution is as follows:

1. Evaluate expr1 (if).

2. If expr1 is true, execute action1 and exit the if statement.

3. If expr1 is false, evaluate expr2 (else if).

4. If expr2 is true, execute action2 and exit the if statement.

5. If expr2 is false, execute action3 and exit the if statement (else).

As a simple example, let’s write a script that prints a list of fruits in fruit_prices.txt
highlighting the following conditions:

• Whether an item costs more than a dollar

• Whether you need to reorder the item

As you did in previous examples, you will use the * character and the string REORDER for
highlighting these conditions.

284 Hour 17

Using the if statement, the script is

#!/bin/sh

awk ‘{
printf “%s\t”,$0;

if ($2 ~ /\$[1-9][0-9]*\.[0-9][0-9]/) {

printf “ * “;
if ($3 <= 75) {

printf “REORDER\n” ;
} else {

printf “\n” ;
}

} else {

if ($3 < 75) {
printf “ REORDER\n” ;

} else {
printf “\n” ;

}

}
}’ fruit_prices.txt ;

If the script is called reorder_expensive.sh and is located in the current directory, it
can be invoked as follows:

$./reorder_expensive.sh

The output looks like the following

Fruit Price/lbs Quantity
Banana $0.89 100
Peach $0.79 65 REORDER
Kiwi $1.50 22 * REORDER
Pineapple $1.29 35 * REORDER
Apple $0.99 78

The while Statement
The while statement executes awk commands while an expression is true. The basic
syntax is

while (expr) {
actions

}

Filtering Text with awk 285

17

Here expr is an expression created using the conditional operators. The parentheses sur-
rounding expr are required. The actions that should be performed, actions, are any
sequence of valid awk commands. The braces surrounding the actions are required only
for actions that contain more than one statement, but most programmers always include
them for the sake of clarity and maintainability.

The following example uses a while loop to print the fields of the file
fruit_prices.txt in reverse order:

#!/bin/sh
awk ‘{ x=NF ;

while (x>0) {
printf(“%16s “,$x);
x-=1;

}
print “” ;

}’ fruit_prices.txt

Here, you use NF to access the number of fields in the current record. You also use the
field access operator, $, in conjunction with the variable x to access the value of a partic-
ular field.

If this script is called reverse_fruit.sh and is located in the current directory, it can be
invoked as follows:

$./reverse_fruit.sh

The output is similar to the following:

Quantity Price/lbs Fruit
100 $0.89 Banana
65 $0.79 Peach
22 $1.50 Kiwi
35 $1.29 Pineapple
78 $0.99 Apple

The do Statement

A variation on the while statement is the do statement. It also performs some actions
while an expression is true. The main difference between while and do is that the do
statement executes at least once. The basic syntax is

do {
actions

} while (expr)

Here expr is an expression created using the conditional operators. The parentheses sur-
rounding expression are required. The actions that should be performed, actions, are
any sequence of valid awk commands. The braces surrounding the actions are required

286 Hour 17

A common use of the for loop is to iterate through the fields in a record and output
them, possibly modifying each record in the process. The following for loop prints each
field in a record separated by two spaces:

#!/bin/sh
awk ‘{

for (x=1;x<=NF;x+=1) {
printf “%s “,$x ;

}
printf “\n” ;

}’ fruit_prices.txt

Summary
This chapter introduced awk programming. awk is one of the most powerful text-filtering
tools available in UNIX. By using awk, it is possible to modify and transform text in
ways that are difficult or impossible using only the shell.

Some of the important topics covered in this chapter include:

• Field editing

• Pattern specific actions

• Using STDIN as input

• Variables

• Numeric and assignment expressions

• Using flow control

In addition to these topics, awk offers features such as multiple–line editing, arrays, and
functions. If you are interested in learning more about these topics, consult one of the
following sources:

The UNIX Programming Environment by Brian Kernighan and Rob Pike (Prentice-
Hall, 1984)

The AWK Programming Language by Alfred Aho, Peter Weinberger, and Brian
Kernighan (Addison-Wesley, 1984)

Effective AWK Programming by Arnold Robbins and Michael Brennan (O’Reilly &
Associates, 2001)

sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly & Associates, 1997)

The GNU awk User’s Guide by Arnold Robbins (SCC, 1996)

288 Hour 17

Questions
1. Using the for statement, write an awk script that prints each of the fields in a

record in reverse order.

2. Write an awk script that balances a checking account. Your program needs to print
the balance in the account every time the user makes a transaction.

The transactions are stored in a file. Each line or record in the file has the
following format:

command:date:comment:amount

Here date is the date on which the transaction was made, comment is a string
(including embedded spaces) describing the transaction, and amount is the amount
of the transaction. The command determines what should be done to the balance
with amount. The valid commands are

• B indicates balance. When this command is encountered, the balance in the
account should be set to the transaction amount.

• D indicates a deposit. When this command is encountered, the transaction
amount should be added to the balance.

• C indicates a check. When this command is encountered, the transaction
amount should be subtracted from the balance.

• W indicates a withdrawal. When this command is encountered, the transaction
amount should be subtracted from the balance.

The main difference between the C (check) and the W (withdrawal) commands is
that the C (check) command adds an extra field to its records:

command:date:comment:check number:amount

In addition, the B (balance) command uses only two fields:

B:amount

Here amount is the balance amount in the account.

For the purposes of this problem, you need to be concerned with the first field,
which contains the command; the second field, which contains the transaction date;
and the last field, which contains the transaction amount.

The sample input file looks like the following:
$ cat account.txt
account.txt
B:0
D:10/24/97:inital deposit:1000
C:10/25/97:credit card:101:100
W:10/30/97:gas:21.43

Filtering Text with awk 289

17

W:10/30/97:lunch:11.34
C:11/02/97:toner:41.45
C:11/04/97:car payment:347.23
D:11/06/97:dividend:687.34
W:11/10/97:emergency cash:200

Your output should look like the following:
10/24/97 1000.00
10/25/97 900.00
10/30/97 878.57
10/30/97 867.23
11/02/97 825.78
11/04/97 478.55
11/06/97 1165.89
11/10/97 965.89

3. Modify the program you wrote for question 2, to print the ending (total) balance
after all input records have been considered. Your output should now look like the
following:
10/24/97 1000.00
10/25/97 900.00
10/30/97 878.57
10/30/97 867.23
11/02/97 825.78
11/04/97 478.55
11/06/97 1165.89
11/10/97 965.89
-
Total 965.89

(HINT: Use the END pattern)

4. Modify the program you wrote in question 3 to support a new command:

• M indicates the minimum balance. When the balance drops below this mini-
mum balance, a warning should be printed at the end of the output line.

The M (minimum balance) command uses only two fields:

M:amount

Here amount is the balance amount in the account.

The input file changes as follows:
$ cat account.txt h
B:0
M:500
D:10/24/97:inital deposit:1000
C:10/25/97:credit card:101:100
W:10/30/97:gas:21.43
W:10/30/97:lunch:11.34

290 Hour 17

C:11/02/97:toner:41.45
C:11/04/97:car payment:347.23
D:11/06/97:dividend:687.34
W:11/10/97:emergency cash:200

Your output should be similar to the following:
10/24/97 1000.00
10/25/97 900.00
10/30/97 878.57
10/30/97 867.23
11/02/97 825.78
11/04/97 478.55 * Below Min. Balance
11/06/97 1165.89
11/10/97 965.89
-
Total 965.89

Terms
Field A set of characters that are separated by one or more field separator characters.
The default field separator characters are tab and space.

Field Separator Controls the manner in which an input line is broken into fields. In
the shell, the field separator is stored in the variable IFS. In awk, the field separator is
stored in the awk variable FS. Both the shell and awk use the default value of space and
tab for the field separator.

Filtering Text with awk 291

17

HOUR 18
Other Tools

In this chapter, you will look at several useful UNIX commands that are
often encountered in shell scripts and that you can use in your own pro-
grams. The specific set of commands covered in this chapter includes:

• eval

• :

• type

• sleep

• find

• xargs

• bc

• expr

The Built-In Commands
The first set of commands examined in this chapter are built-in commands.
A built-in command is part of the shell itself; it is not stored in a separate
file on disk. Built-in commands are slightly more efficient than external

programs because there is no overhead associated with reading and loading them from a
file on disk. Unless you are looping thousands of times, it usually does not matter
whether the command you use is built in or external. The built-in commands you will
examine are eval, :, and type.

The eval Command
The eval command is used when you want the shell to execute a command after per-
forming substitution. The basic syntax is

eval cmd

Here cmd is any valid shell command. The eval command is normally used when shell
special characters are inserted via variable substitution or command substitution (refer to
Chapter 9, “Substitution”). For example,

$ OUTPUT=”> out.txt”
$ echo hello $OUTPUT

The variable OUTPUT contains the > sign to redirect standard output to a file called
out.file. However, if you try to use the OUTPUT variable in the echo statement, you’ll
find that the output goes to the screen rather than the file out.txt:

hello > out.txt

The output went to the screen rather than the file because the output redirection operator,
>, was not present when the shell first looked for redirection operators. You can solve this
problem by inserting eval at the start of the command as follows:

$ eval echo hello $OUTPUT

When this command is executed, the prompt is returned and no text is displayed on the
screen. The output is correctly redirected to the file out.txt. If you were to change the
value of OUTPUT as follows:

OUTPUT=” >> out.txt”

The output will be appended to out.txt instead of overwriting it.

The : Command
The : command, referred to as the no-op (short for no-operation) command, does noth-
ing other than exit with an exit code of zero. Three common uses for the : command are
as follows:

• if statements

• while loops

• Variable substitution

294 Hour 18

: and if

The : command is sometimes used as the command following the then in the if state-
ment. For example:

if [-x $CMD] ; then
:

else
echo Error: $CMD is not executable >&2

fi

The shell flags a syntax error if a command does not follow the then, so you can insert
the : command as a temporary no-op command that can be replaced by other code later.

: and while

Because the : always returns a successful result, it is used to create an infinite loop as
follows:

while :
do

list
done

This type of loop will continue forever or until a break is executed within the loop.
Infinite loops are useful for eliciting valid input from users. For example:

while :
do

echo -n “Do you want to play a game (y/n)? “
read RESPONSE
case “$RESPONSE” in

[nN]|no|No|NO)
RESPONSE=”n” ; break ;;

[yY]|yes|Yes|YES)
RESPONSE=”y” ; break ;;

esac
echo “Error: Invalid response: ‘$RESPONSE’”

done

This loop prompts the users for a response to the question:

Do you want to play a game (y/n)?

It then reads the users’ responses, stores them in the variable RESPONSE, and validates the
responses to make sure that they are in some form of yes or no. If an incorrect response
was given, an error message is displayed and the loop executes again. Otherwise the loop
breaks and the user’s response is stored in the variable RESPONSE.

Other Tools 295

18

case is a keyword
ulimit is a shell builtin
history is an exported alias for fc -l

If a single command is specified, type’s exit code can be used to determine if that com-
mand can be found in the search path $PATH. If a command can be found, type exits with
an exit code of 0 indicating success or 1 indicating failure. For example, the following
function allows you to determine whether particular commands exist on the system:

haveCMD () {
type “$1” > /dev/null 2>&1
return $?

}

The sleep Command
The sleep command pauses for a given number of seconds. The basic syntax is

sleep n

where n is the number of seconds to sleep or pause. Some types of UNIX enable other
time units to be specified. It is usually recommended that n not exceed 65,534.

The sleep command can be used to give a user time to read an output message before
clearing the screen. It can also be used when you want to give a series of beeps:

echo -e “A value must be input!\a”
sleep 1
echo -ne “\a”
sleep 1
echo -ne “\a”

\a causes echo to output an audible beep. The -e option is required on some UNIX sys-
tems for \a to sound a beep. The -n option suppresses the newline that echo normally
prints. The sleep command is used in the previous example to give a sequence of beeps,
spaced one second apart.

sleep can be used in a loop to repeat a job periodically:

while :
do

date
who
sleep 300

done >> logfile

This code enables a list of users logged into the system to be appended to logfile every
five minutes (300 seconds). If you want to leave this code running all the time, you must
clear logfile periodically so that it does not eat up all your disk space.

Other Tools 297

18

TABLE 18.1 Continued

Command Element Description

-type f An option that says you are looking only for files of type f, which
means regular or normal files, and not directories, device files, and so
on. Any files selected must match both conditions: they must have the
name alpha and must be regular files.

-print An action that says to display to standard output the pathname for any
files that match the criteria given by the options.

-exec lp {} \; An action that says to use the lp command to print a hard copy of any
files that match the criteria. Multiple actions can be specified.

find: Starting Directory
Because most systems contain a huge number of files, find can take several minutes or
more to complete. For this reason, find enables you to specify a starting directory to nar-
row down the number of files it has to search. Only files in this directory and all its sub-
directories are checked. The starting directory can be either an absolute or relative
pathname. If you specify an absolute pathname such as /reports,

$ find /reports -name alpha -print

then all the files found are specified as absolute pathnames, as in this sample output:

/reports/1998/alpha
/reports/1998/region2/alpha

If you specify a relative pathname to find,

$ cd /reports
$ find ./1998 -name alpha -print

all the files are displayed relative to the starting directory. For example,

./1998/alpha

./1998/region2/alpha

To search the whole system, you can specify / as the starting directory. For example, the
following find command displays all files on the system that have the file alpha:

find / -name alpha -print

To search the entire system and still display the filenames as relative pathnames, you can
do the following:

$ cd / && find . -name alpha -print

Other Tools 299

18

In this case, you first cd to / and then tell find to search all the directories, starting with
the current directory (/) for files with the name alpha.

Sample output:

./reports/1998/alpha

./reports/1998/region2/alpha

This point about relative versus absolute pathnames is important if you are using find to
generate a list of files to be backed up. It is better to back up using relative pathnames
that enable the files to be restored to a temporary directory.

find: -name Option
The -name option enables you to specify either an exact or partial filename for find to
match. You have already seen examples of how to specify a full filename. In order to
specify a partial pathname, you need to use the filename substitution meta-characters
from Chapter 9. For instance,

find / -name ‘*alpha*’ -print

This displays all files that contain alpha anywhere within the filename. Here is some
sample output:

/reports/1998/alpha
/reports/1998/alpha2
/reports/1998/old-alpha
/reports/1998/region2/alpha
/tmp/alpha
/usr/fredp/ralphadams

All the wildcards covered in Chapter 9 can be used:

* ? [characters] [!characters]

You must enclose the filename containing these wildcards within single quotes (see
Chapter 9); otherwise, your find command will not always give you the desired results.

find: -type Option
The -type option enables you to specify the type of file to search for, as in this example:

find / -type d -print

-type d indicates directories, so only files that are directories are displayed. In this
example, all directories in the whole system are displayed. Notice that no -name option
has been given, so you display all directories regardless of their names. Table 18.2 lists
other types.

300 Hour 18

TABLE 18.2 Types Available for the find Command

Type Description

f Regular or normal file

d Directory

b Block special device file

c Character special device file (raw)

l Symbolic link

p Named pipe

find: -mtime, -atime, -ctime
The find command has three options that allow you to find files based on their last mod-
ified, accessed, or changed times:

-mtime Finds files last modified more than, exactly, or fewer than n days ago.

-atime Finds files last accessed more than, exactly, or fewer than n days ago.

-ctime Finds files that were last changed more than, exactly, or fewer than n
days ago.

A file is considered to have changed when it is first created and also later if the owner,
group, or permissions are changed.

Each of these options must be specified with an additional integer argument, n, which is
measured in days:

+n Finds files last modified, accessed, or changed more than n days ago.

n Finds files last modified, accessed, or changed exactly n days ago.

-n Finds files last modified, accessed, or changed fewer than n days ago.

Let’s look at a few examples that illustrate how these options work. The following find
command locates files that were last modified fewer than five days ago:

find / -mtime -5 -print

A command of this sort is useful when you are sure you modified a file recently but can’t
remember its name or directory. To find files that have not been modified in the last n
days, you need to look for files that were last modified more than n days ago:

find / -mtime +90 -print

This shows all files that were last modified more than 90 days ago—that is, files that
have not been modified in the last 90 days.

Other Tools 301

18

find: -size Option
The -size option enables you to locate files based on the size of a file. It is useful when
you want to find the largest files that are consuming disk space. Following -size, you
must specify an integer number:

+n Finds files that contain more than n blocks.

n Finds files that contain exactly n blocks.

-n Finds files that contain fewer than n blocks.

For example, the following command prints the name of all the files that are larger than
2,000 blocks:

find / -size +2000 -print

It is a very rare occasion when you need to search for files that contain an exact number
of blocks. Usually you look for files that contain more than n blocks or fewer than n
blocks. A common error is to forget the plus or minus sign for these types of find
options and then wonder why find did not locate the expected files.

302 Hour 18

-atime Is Often Defeated by Nightly Backups
In theory, find’s -atime option is useful if you are short of disk space and want to find
files that have not been accessed in a long time so that you can archive and delete them.
However some backup programs, such as tar, prevent -atime from being useful because
all files are accessed nightly during the system backup.

What Is a Block?
A block is the smallest unit of the disk that can be allocated to a file. Although the size
of the data in the file might be much less than the size of the block, it still takes up
exactly one block on the disk.

The size of a block varies between systems. On BSD and Solaris systems the block size is
usually 512 bytes. On Linux it is usually 1024 bytes.

find: Combining Options
If you specify more than one option, the file must match all options to be displayed:

find / -name alpha -size +50 -mtime -3 -print

Here find displays files only when all the following are true:

• The name is alpha

• The size is greater than 50 blocks

• The file was last modified fewer than three days ago

You can specify a logical “or” condition using -o:

find / \(-size +50 -o -mtime -3 \) -print

Notice the use of the escaped parentheses to group the “either” and “or” options. This
finds files that either have size greater than 50 blocks or were last modified fewer than
three days ago.

find: Negating Options
You can use the ! sign to select files that do not match the given option:

find /dev ! \(-type b -o -type c -o type d \) -print

This locates all files in the /dev directory and its subdirectories that are not blocked spe-
cial device files, character special device files, or directories. This is a useful command
to locate device names that users have misspelled, which leaves a regular file in /dev that
can waste a large amount of disk space. The parentheses in this example are escaped so
that the shell does not try to interpret them.

find: -print Action
The -print action tells find to display the pathnames of all files that match the options
given before -print. If you put the -print action before other options in the command
line, those options are not used in the selection process:

find / -size -20 -print -mtime +30

This command prints all files that contain fewer than 20 blocks. The -mtime option is
ignored because it comes after the -print action on the command line.

If no action is specified on the command line, -print is performed by default on Linux
and BSD systems. On other versions of UNIX, you must include -print specifically;
otherwise output will not be generated.

find: -exec Action
The -exec action allows you to specify a command to execute on each of the files that
match the options given. The syntax for the -exec option is

-exec cmd \;

Other Tools 303

18

Here cmd is the name of the command you want to execute. The string \; must terminate
the command, otherwise find will display a syntax error similar to the following:

find: -exec: no terminating “;”

If you need to access the filename in cmd, you can use the string {}. For example, the
following command:

$ find / -name alpha -exec chmod a+r {} \;

executes chmod on every file named alpha so that everyone can read the file. Another
example,

$ find / -name core -exec rm -f {} \;

finds all files on the system named core and executes the rm command to delete them.
The -f option to rm is specified so that rm does not ask for confirmation if you don’t own
the file and don’t have write permission to the file. This is a useful command for root to
run periodically because, if a process aborts, it might leave a debugging file named core
in the current directory. After a while, these core files, which are not small, can collec-
tively consume an unreasonable amount of disk space. This find command restores that
disk space by finding and deleting those core files.

xargs
xargs is a command that accepts a list of words from standard input and provides those
words as arguments to a given command:

cat filelist | xargs rm

You cannot pipe the output of cat directly to rm because rm does not look for filenames
on standard input. xargs reads the files being passed by cat and builds up a command
line beginning with rm and ending with the filenames. If there are a large number of files,
xargs runs the rm command multiple times, deleting some of the files each time. You can
specify how many arguments from standard input to build up on the command line with
the -n option:

cat filelist | xargs -n 20 rm

-n 20 says to put only 20 arguments on each command line, so you delete only 20 files
at a time. Here is a different example to give you more insight into how xargs works:

$ ls
acme
report16
report3
report34

304 Hour 18

The expr Command
The expr command can be used to perform simple integer arithmetic. The general syntax
of an expr command is

expr int1 op int2

Here, int1 and int2 are integers and op is one of the operators given in Table 18.3. The
spaces separating op from int1 and int2 are required.

TABLE 18.3 expr Operands

Operand Description

+ Addition

- Subtraction

* Multiplication

/ Integer division (any fraction in the result is dropped)

% Remainder from a division operation (also called the modulus function)

Let’s look at a few examples that illustrate the use of expr. The first example illustrates
multiplication:

$ expr 3 * 5
15

Notice that the * sign must be escaped in order to prevent the shell from viewing it as a
filename expansion meta-character. The second example illustrates integer division:

$ expr 8 / 3
2

Notice that the fractional result is ignored and only the integer part is returned. The third
example illustrates the remainder or modulus function:

$ expr 19 % 7
5

The remainder or modulus is what remains after a division operation. The modulus func-
tion is often called mod for short. In this example, 7 goes into 19 two times with a
remainder of 5. You can say that 19 mod 7 equals 5.

Frequently expr is used within backquotes in shell programming to increment a variable:

CNT=`expr $CNT + 1`

In this example, expr adds 1 to the current value in variable CNT. Command substitution
allows you to assign the new value back to the variable CNT.

306 Hour 18

expr and Regular Expressions
The expr command—in ksh, zsh and newer versions of bash (2.x and later)—can also
return the number of characters matched by a regular expression. The syntax for this is

expr str : regex

Here, str is the string and regex is a regular expression of the characters to count. For
example:

$ ABC=1234abc
$ expr $ABC : ‘.*’
7

Here, .* is a regular expression pattern indicating all characters, so all characters of vari-
able $ABC are counted. In this case, expr shows that it contains seven characters. In the
following example

$ expr $ABC : ‘[0-9]*’
4

the regular expression [0-9]* matches any group of digits. In this example, expr counts
the number of digits that occur at the start of the string.

If part of the regular expression, regex, is grouped in escaped parentheses, expr returns
the portion of the pattern indicated by the parentheses:

$ expr abcdef : ‘..\(..\)..’
cd
$

Each period is a regular expression wildcard that represents one character of the given
string. The middle two periods are enclosed in escaped parentheses, so those two charac-
ters, cd, are output. This example also illustrates that the string following expr can be a
literal string of characters, but it is more common in scripts for the string to be generated
by variable or command substitution.

The bc Command
The bc command is an arithmetic utility not limited to integers:

$ bc
scale=4
8/3
2.6666
2.5 * 4.1/6.9
1.4855
quit
$

Other Tools 307

18

In this example, you invoke bc and set scale to 4, meaning that you want it to calculate
any fraction to four decimal places. You ask it to calculate 8/3, which gives 2.6666 and
then a more complex calculation. Note that spaces are optional. Finally you enter quit to
return to the shell prompt. bc can handle addition (+), subtraction (-), multiplication (*),
division (/), remainder or modulo (%), and integer exponentiation (^). It can accurately
compute numbers of any size

9238472938742937 * 29384729347298472
271470026887302339647844620892264

and can be used in shell variable assignment to assign calculated values to variables:

AVERAGE=`echo “scale=4; $PRICE/$UNITS” | bc`

The echo command is used here to print directives that are piped to bc. The first directive
sets the scale to 4; the second directive is a division operation. These directives are piped
to bc, which does the calculations and returns the result. The backquotes allow the result
from bc to be stored in the variable AVERAGE.

You can also convert between different number bases using bc:

$ bc
obase=16
ibase=8
400
100
77
3f
10*3
18
quit
$

obase=16 sets the output base to hexadecimal; ibase=8 sets the input base to octal. It is
important to set the output base first. First you enter 400. It shows an octal 400 is a hex
100. Next you enter 77. It shows an octal 77 is a hex 3f. Then you multiply 10 and 3,
which equals 24 because 10 octal is 8 in decimal and 8*3 is 24. However, because the out-
put base is hex, bc converts 24 in decimal to hex, which gives 18 as the reported result.

Summary
In this chapter, you learned about several miscellaneous tools:

• eval

• :

• type

308 Hour 18

• sleep

• find

• xargs

• expr

• bc

• remsh/rsh/rcmd/remote

A large part of this chapter discussed the basics of the find command. Peruse the man
page on find, and you can see other useful find options for your scripts that were not
covered here.

Questions
1. You are about to run a custom command called process2, but you would first like

to determine where that command resides. Give a UNIX command to do this.

2. How can you determine all directories under /data that contain a file called
process2, allowing any possible prefix or suffix to also be displayed (for example,
you want to find names such as process2-doc)?

3. How can you increase the numeric value in variable PRICE to be 3.5 times its cur-
rent amount? Allow two digits to the right of the decimal point.

Terms
Built-in Command A command whose code is part of the shell as opposed to a utility
that exists in a separate disk file and which must be read into memory before it is executed.

Modulus See remainder.

no-op A command that does nothing and thus can be used as a dummy command or
placeholder where syntax requires a command.

Remainder The remainder of a division operation, which is the amount that is left over
when the amounts are not evenly divisible.

Other Tools 309

18

Hour
19 Signals

20 Debugging

21 Problem Solving with Functions

22 Problem Solving with Shell Scripts

23 Scripting for Portability

24 Shell Programming FAQs

PART III
Advanced Topics

HOUR 19
Signals

Signals are software interrupts sent to a program indicating that an important
event has occurred. The events can vary from user requests to illegal mem-
ory access errors. Some signals, such as the interrupt signal, indicate that a
user has asked the program to do something that is not in the usual flow of
control.

Because signals can arrive at any time during the execution of a script, they
add an extra level of complexity to shell scripts. Scripts must account for
this and include extra code that can determine the appropriate response to a
signal, regardless of what the script was doing when the signal was received.

This chapter looks at the following signal-related topics:

• The different types of signals encountered in shell programming

• How to deliver signals using the kill command

• Handling signals

• How to use signals within your script

How Are Signals Represented?
In UNIX, every type of event that can occur is represented by a separate signal. Every
signal is a small positive integer. The signals most commonly encountered in shell script
programming are given in Table 19.1. The signals are available on all versions of UNIX.

TABLE 19.1 Important Signals for Shell Scripts

Name Value Description

SIGHUP 1 Hangup detected on controlling terminal or death of controlling process

SIGINT 2 Interrupt from keyboard

SIGQUIT 3 Quit from keyboard

SIGKILL 9 Kill signal

SIGALRM 14 Alarm Clock signal (used for timers)

SIGTERM 15 Termination signal

In addition to the signals listed in Table 19.1, you might see a reference to signal 0. This
signal is more of a shell convention than a real signal. When a shell script exits either by
using the exit command or by executing the last command in the script, the shell sends
itself a signal 0 to indicate that the script is complete and should terminate.

Getting a List of Signals
All the signals understood by your system are listed in the C language header file
/usr/include/sys/signal.h. Some vendors provide a man page for this file, which you
can view as follows:

$ man signal

Another way to obtain a list of signals supported by your system is to use the -l option
of the kill command. On a Solaris system, the output is

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGUSR1
17) SIGUSR2 18) SIGCHLD 19) SIGPWR 20) SIGWINCH
21) SIGURG 22) SIGIO 23) SIGSTOP 24) SIGTSTP
25) SIGCONT 26) SIGTTIN 27) SIGTTOU 28) SIGVTALRM
29) SIGPROF 30) SIGXCPU 31) SIGXFSZ 32) SIGWAITING
33) SIGLWP 34) SIGFREEZE 35) SIGTHAW 36) SIGCANCEL
37) SIGLOST

The actual set of signals depends on your version of UNIX.

314 Hour 19

Default Actions
Every signal, including those listed in Table 19.1, has a default action associated with it.
A default action is the action that the system takes on behalf of the program in the
absence of a signal handler. A signal handler is a function provided by a program that
defines the actions to take when a signal is received. Signal handlers are covered later in
this chapter.

Some common default actions are

• Terminate the process.

• Ignore the signal.

• Dump core. This creates a file called core containing the memory image of the
process when it received the signal.

• Stop the process.

• Continue a stopped process.

The signals that are of interest to us all have the same default action: Terminate the
process.

Delivering Signals
There are several methods of delivering signals to programs. The most common method
is for a user to press Ctrl+C while a program is executing, causing a SIGINT to be sent to
the program. Upon receipt of SIGINT, the default behavior of a program is to terminate.

Another method for delivering signals is the kill command:

kill -signal pid

Here signal is either the number or name of the signal to deliver, and pid is the PID that
the signal should be delivered to. Recall from Chapter 7, “Processes,” that a PID (Process
ID) is a number assigned to a program by the kernel while it is executing.

SIGTERM

In previous chapters, we looked at using kill without specifying a signal. When sig-
nal is omitted, kill sends a SIGTERM (terminate) to the process specified by pid. Thus
both of the following commands are equivalent:

kill pid
kill -s SIGTERM pid

SIGHUP

The following command

$ kill -s SIGHUP 1001

Signals 315

19

sends the HUP (hang-up) signal to the program that is running with PID 1001. You can
also use the numeric value of the signal as follows:

$ kill -1 1001

This command also sends the hang-up signal to the program that is running with PID
1001. Although the default action for this signal is to terminate the process, many UNIX
programs use this signal as an indication that they should reinitialize themselves. For this
reason, you should use a different signal if you are trying to terminate or kill a process.

SIGQUIT and SIGINT

In some cases, SIGTERM will not be sufficient to terminate a process. In such cases, you
can try to send the process either a SIGQUIT (quit) or a SIGINT (interrupt):

$ kill -s SIGQUIT 1001

or

$ kill -s SIGINT 1001

One of these signals should terminate a process, either by asking it to quit (the QUIT sig-
nal) or by asking it to interrupt its processing (the INT signal).

SIGKILL

To terminate a truly pernicious program that refuses to die, you can resort to using
SIGKILL. This signal is usually referred to by its integer value, 9. SIGKILL has the special
property that it cannot be caught; any process receiving it terminates immediately.

The following command sends a SIGKILL to the program running with PID 1001:

$ kill -9 1001

The downside to using SIGKILL is that the process receiving it is never given a chance to
properly clean up and therefore might leave data files it was using in a corrupted state.
For this reason, you should only use this signal when all other signals fail to terminate a
process.

Dealing with Signals
A program can deal with a signal in three ways:

• Do nothing and let the default action occur. This is the simplest method for a pro-
gram to deal with a signal because it requires no extra code.

• Ignore the signal and continue executing. This method is not the same as doing
nothing because ignoring a signal requires the program to have some code that
explicitly ignores the signal.

316 Hour 19

• Catch the signal and perform some signal-specific commands. This method
requires the program to define a function that is executed when a signal is received.
This is the most complex and powerful method of dealing with a signal.

The first method is the default behavior for all shell scripts. All the scripts that you have
looked at thus far handle signals using this method. This section illustrates scripts that
use the second and third methods.

The trap Command
The trap command sets and unsets the action taken when a signal is received. Its
syntax is

trap name sigs

Here name is either a list of commands or the name of a shell function to execute and
sigs is a list of signals. When a signal listed in sigs is received by the script, the com-
mands specified by name are executed. If name is omitted, trap resets the action for the
given sigs to the default action.

Some common uses for trap are

• Clean up temporary files

• Always ignore signals

• Ignore signals only during critical operations

We will look at a fourth use, setting up a timer, later in this chapter.

Cleaning Up Temporary Files
If a script creates temporary files, it is common practice to remove these files before the
script exits. Most scripts perform this type of cleanup correctly during normal execution,
but few scripts perform the appropriate cleanup actions when signals occur. Consider the
following script:

#!/bin/sh
TMPF=”.arch”
uname –m > “$TMPF”
read ARCH < “$TMPF”
rm –f “$TMPF”
echo $ARCH
exit 0

This script creates a temporary file, .arch, which is removed before exiting. Under nor-
mal circumstances, the temporary file will not be present after the script exits. However,

Signals 317

19

if a signal is received, the temporary file might not be deleted. In order to solve this
problem, we can use trap as follows:

trap “rm -f $TMPF; exit 2” 1 2 3 15

When SIGHUP, SIGINT, SIGQUIT, or SIGTERM signal is received, the temporary file is
removed and exit is called with a return code of 2, indicating that the script exited under
abnormal circumstances. Usually when a script exits normally, its exit code is 0. If any-
thing abnormal happens, the exit code should be a nonzero.

Sometimes more complicated cleanup is required. In such cases, a shell function, or sig-
nal handler, should be used. For example, we can modify the uu script (described in
Chapter 13, “Parameters”) signal safe, we could add something similar to the following:

CleanUp() {
if [-f “$OUTFILE”] ; then

printf “Cleaning Up… “;
rm -f “$OUTFILE” 2> /dev/null ;
echo “Done.” ;

fi
}

trap CleanUp 1 2 3 15

The function CleanUp will be invoked whenever the script receives a SIGHUP, SIGINT,
SIGQUIT, or SIGTERM signal. This function removes the output file of the script, if that file
exists. By cleaning up when a signal is received, partially encoded files are not left
around to confuse users.

Multiple Signal Handlers
In the previous example, a single signal handler was used for all the signals. This is not a
strict requirement and frequently different signals have different handlers. For example,
the following trap commands are completely valid:

trap CleanUp 2 15
trap Init 1

Here the script calls a cleanup routine when a SIGINT or SIGTERM is received, and it calls
its initialization routine when a SIGHUP is received. Declarations such as these are com-
mon in scripts that run as daemons.

The following script, which can be used to keep a process “alive,” behaves differently
depending on the signal that it receives:

#!/bin/sh

PROG=”$1”
if [“$PROG” = “”] ; then

318 Hour 19

echo “Usage: $0 cmd.”
exit 1

fi

Init() {
if [“$!” != “” -a “$!” != “0”] ; then

if kill -0 “$!” > /dev/null 2>&1 ; then
kill “$!” > /dev/null 2>&1 || return

fi
fi
$PROG &

}

CleanUp() {
if [“$!” != “” -a “$!” != “0”] ; then

kill -9 “$!” > /dev/null 2>&1
fi
exit 2

}

trap CleanUp 2 3 15
trap Init 1

while : ;
do

if [“$!” != “” -a “$!” != “0”] ; then
wait “$!”

fi
$PROG &

done

exit 0

This script launches a program, specified as the first argument, in the background and
waits for that program to terminate. If the program terminates, it is launched again. The
script exits when it receives a SIGINT, SIGQUIT or SIGTERM. If the script receives a
SIGHUP, it attempts to restart the program.

Ignoring Signals
In some instances, there is no easy way to clean up if a signal is received. In such cases,
it is better to ignore signals than to deal with them. There are two methods of ignoring
signals:

trap ‘’ sigs
trap : sigs

Here, sigs is the list of signals to ignore. The first form passes a null (‘’) argument to
trap, which interprets this as ignore. The second form specifies the command to execute

Signals 319

19

as :, which is the no-op command as you might recall. Because both forms produce the
same result, feel free to use either one.

As an example, we can update the uu script from Chapter 12 to ignore all signals by
adding the following line at the beginning of the script:

trap ‘’ 1 2 3 15

Ignoring Signals During Critical Operations
If you specify a trap command such as

trap ‘’ 1 2 3 15

at the beginning of your script, the script will ignore all signals until it completes. From a
programmer’s perspective, this seems like a good idea, but from the user’s perspective, it
is not. The ideal method is to ignore signals during only the most critical sections of the
script. This allows users to terminate the script while ensuring that critical operations are
performed without interruption by signals.

Let’s say we have a shell script with a shell function called DoImportantStuff() that should
not be interrupted by a signal. In order to ensure that this function isn’t interrupted, you can
install the signal handler before the function is called and reset it after the call finishes:

trap ‘’ 1 2 3 15
DoImportantStuff
trap 1 2 3 15

The second call to trap has only signal arguments. This causes trap to reset the handler
for each of the signals to the default handler.

Setting Up a Timer
In many scripts, there are critical sections where commands that require a large amount
of time to complete are executed. On rare occasions, these commands might not finish
processing. In order to deal with this situation, you need to set up a timer within the
script. When the timer expires, the script should terminate and inform the user about the
problem. In this section, you will look at a simple script that demonstrates the major
aspects of setting up a timer using SIGALARM in conjunction with a signal handler.

The main body of our script performs the following actions:

1. Sets a handler for SIGALARM.

2. Sets the timer.

3. Executes the program.

4. Waits for the program to finish executing.

5. Unsets the timer.

320 Hour 19

If the timer expires before the program finishes executing, the handler for SIGALARM
should terminate the program.

The main body resembles the following:

main()

trap AlarmHandler 14

SetTimer 15

$PROG &
CHPROCIDS=”$CHPROCIDS $!”
wait $!

UnsetTimer

echo “All Done.”
exit 0

The only thing in the main body that was not mentioned previously is the CHPROCIDS
variable. This variable maintains a list of the PIDs of the processes started by the script
so that the signal handler for SIGALARM can terminate these processes.

AlarmHandler

Now let’s look at the signal handler for SIGALARM, AlarmHandler:

AlarmHandler() {
echo “Got SIGALARM, cmd took too long.”
KillSubProcs
exit 14

}

This is a simple function that prints a message to the screen, calls the function
KillSubProcs, and exits with an exit code of 14. This exit code is used to indicate that
the alarm was triggered.

The KillSubProcs function kills all the child processes of the script, which are stored in
the variable CHPROCIDS:

KillSubProcs() {
kill ${CHPROCIDS:-$!}
if [$? -eq 0] ; then

echo “Sub-processes killed.” ;
fi

}

This is a simple function that prints a message to the screen, calls the function
KillSubProcs, and exits with an exit code of 14. This exit code is used to indicate that
the alarm was triggered.

Signals 321

19

The KillSubProcs function kills all the child processes of the script, which are stored in
the variable CHPROCIDS:

KillSubProcs() {
kill ${CHPROCIDS:-$!}
if [$? -eq 0] ; then

echo “Sub-processes killed.” ;
fi

}

SetTimer

Once the signal handler for SIGALARM is in place, we need a function that sets up the
timer. The function we are using is SetTimer:

SetTimer() {
DEF_TOUT=${1:-10};
if [$DEF_TOUT -ne 0] ; then

sleep $DEF_TOUT && kill -s 14 $$ &
CHPROCIDS=”$CHPROCIDS $!”
TIMERPROC=$!

fi
}

This function takes a single argument that indicates the number of seconds the timer
should be set. The default is 10 seconds.

The timer itself is fairly trivial; it is just the command

sleep $DEF_TOUT && kill -s 14 $$

executing in the background. This command uses sleep to wait for some period of time
(stored in $DEF_TOUT); after which, it uses kill to send the script SIGALARM (recall that
the PID of the script is stored in $$).

Because the timer runs in the background, we need to update the list of child processes,
$CHPROCIDS, with its PID. We also save the PID of the timer in $TIMERPROC so that we
can use it later when we need to unset the timer.

UnsetTimer

Finally, we need a function to unset the timer started by SetTimer. The UnsetTimer
function does this by using kill to terminate the timer (SetTimer saved the PID of the
timer in $TIMERPROC):

UnsetTimer() {
kill $TIMERPROC

}

322 Hour 19

The Complete Timer Script
The complete timer script follows:

#! /bin/sh

AlarmHandler() {
echo “Got SIGALARM, cmd took too long.”
KillSubProcs
exit 14

}

KillSubProcs() {
kill ${CHPROCIDS:-$!}
if [$? -eq 0] ; then

echo “Sub-processes killed.” ;
fi

}

SetTimer() {
DEF_TOUT=${1:-10};
if [$DEF_TOUT -ne 0] ; then

sleep $DEF_TOUT && kill -s 14 $$ &
CHPROCIDS=”$CHPROCIDS $!”
TIMERPROC=$!

fi
}

UnsetTimer() {
kill $TIMERPROC

}

main()

trap AlarmHandler 14

SetTimer 15
$PROG &
CHPROCIDS=”$CHPROCIDS $!”
wait $!
UnsetTimer
echo “All Done.”
exit 0

Signals 323

19

Summary
This chapter covered the concept of signals. Signals inform a program that an important
event has occurred.

First we examined the most common signals encountered in shell programming. This
was followed by a discussion of the methods for obtaining a list of the signals supported
on your system. This section also covered the concept of delivering signals and the
default actions associated with a signal.

The second section demonstrated two methods of signal handling. The first method is to
catch signals and handle them using a signal handler. The second method is to ignore
signals. Finally, we explored the use of signals to set up a timer.

Questions
1. The following is the main body of the “live” script presented earlier in this chapter.

Change the script such that SIGQUIT causes it to exit after the wait command
returns.
main()

trap CleanUp 2 3 15
trap Init 1

PROG=$1
Init

while : ;
do

wait $!
$PROG &

done

2. Add a signal handler to the timer script to handle SIGINT.

Terms
Signal A signal is a software interrupt sent to a program to indicate that an important
event has occurred.

Default Action The default action is the action that the system takes on behalf of the
program in the absence of a signal handler.

Signal Handler A signal handler is a function provided by a program that defines the
actions to take when a signal is received.

324 Hour 19

HOUR 20
Debugging

Most of the scripts you have looked at have been quite short, thus the issue
of debugging has boiled down to examining the output to ensure it is correct.
For larger shell scripts, especially scripts used to change system configura-
tions, trying to deduce the source of a problem based on just output is insuf-
ficient. By the time you get the output it might be too late—the script could
have made incorrect and possibly destructive modifications.

Fortunately, the shell provides several built-in commands for enabling differ-
ent modes of debugging support. The built-in debugging support can be very
helpful when you need to add features to a large script that someone else
developed; it can help you ensure that your changes don’t affect the rest of
the script.

This chapter covers several techniques for debugging shell scripts, with a
concentration on the following:

• Syntax checking

• Shell tracing

Enabling Debugging
By now, you are quite familiar with the basic syntax for executing a shell script:

$ script arg1 arg2 ... argN

Here script is the name of the script and arg1 through argN are the arguments to the script.

An alternative method to execute a shell script is

$ /bin/sh opt script arg1 arg2 ... argN

This invokes the shell, in this case /bin/sh, with the debugging option specified by opt
and instructs the shell to execute script. Table 20.1 lists the various debugging options.

A second way to enable debugging is to change the first line of script. Usually, the first
line of a script is

#!/bin/sh

UNIX uses this line to determine the shell you can use to execute a script. This indicates
that the shell /bin/sh should be used to execute the script. You can modify this line, as
follows, in order to specify a debugging option:

#!/bin/sh opt

These methods for enabling debugging modes take effect when a script is invoked, so
they are sometimes referred to as invocation activated debugging modes.

TABLE 20.1 Debugging Options for Shell Scripts

Name Option Description

No Exec -n Reads all commands, but does not execute them.

Verbose -v Displays all lines as they are read.

Execution Trace -x Displays commands and their arguments as they are exe-
cuted. Often referred to as shell tracing.

326 Hour 20

Debugging and $-
When one of the debugging options is activated, a letter corresponding to that option is
added to the variable $-. For example, if the -v (verbose) option is used, the letter v is
added to $-. Similarly when the -x is used, the letter x is added to $-.

You can detect if one of these options is active by using a case statement similar to the
following:

case $- in
v) : # verbose mode

Using the set command
In the invocation activated debugging modes, the debugging mode takes effect at the start
of the script and remains in effect until the script exits. Most of the time you need to
debug just one function or a small section of your script. In these cases, enabling debug-
ging for the entire script is overkill.

As you will see later in this chapter, the debugging output is quite extensive, and it is
often hard to sort out the real errors from the noise. You can address this problem by
using the set command to enable the debugging modes just in the parts of the script
where you need debugging information.

Enabling Debugging Using set
The basic syntax of the set command is

set opt

Here opt is one of the options listed in Table 20.1.

The set command can be used anywhere in a shell script, and many scripts use it to
change the debugging flags as part of the normal execution of the script. Because these
debugging modes are activated only when the shell script programmer uses the set com-
mand, they are sometimes referred to as programmer activated modes.

Consider the following excerpt from a shell script (the line numbers are provided for
your reference):

1 #!/bin/sh
2 set -x
3 if [-z “$1”] ; then
4 echo “ERROR: Insufficient Args.”
5 exit 1
6 fi

This script enables shell tracing (the -x option) on line 2:

set -x

Because this command occurs before the if statement (lines 3 through 6), shell tracing
will be active while the if statement executes. Unless explicitly disabled later in the
script, shell tracing will remain in effect until the script exits. You will look at the effect
of shell tracing on the output of a script in the “Shell Tracing” section of this chapter.

Debugging 327

20

;;
x) : # shell tracing mode

;;
esacdebugging modes

Disabling Debugging Using set
You can use the set command to disable a debugging mode as follows:

set +opt

Here opt is a letter corresponding to one of the options given in Table 20.1. For example,
the following command disables shell tracing:

$ set +x

To deactivate any and all the debugging modes that have been enabled, you can use the
command:

$ set -

Enabling Debugging for a Single Function
One of the most common uses of the set command is to enable a particular debugging
mode before a function executes and then disable debugging when the function finishes.

For example, say you have a problematic function named BuggyFunction() and you
want to enable shell tracing only while that function executes. You could use the follow-
ing command:

set -x ; BuggyFunction; set +x ;

Here the debugging mode is enabled just before the function is called and is disabled
after the function completes. This method is favored over explicitly using the set com-
mand inside a function to enable debugging because it enables the implementation of the
function to remain unchanged.

Using Syntax Checking
When dealing with any shell script, it is a good idea to check the syntax of the script
before trying to execute it. This will help you find and fix most problems.

To enable syntax checking, use the -n option as follows:

/bin/sh -n script arg1 arg2 ... argN

Here script is the name of a script and arg1 through argN are the arguments for that
script. If there are syntax errors in script, the shell generates an error message that indi-
cates the source of the error.

328 Hour 20

Check the syntax of the following script (the line numbers are included for your refer-
ence) and see if you can spot the error:

1 #!/bin/sh
2
3 YN=y
4 if [$YN = “yes”]
5 echo “yes”
6 fi

If this script is stored in the file buggy1.sh, you can check its syntax as follows:

$ /bin/sh -n ./buggy1.sh

The output looks like the following:

./buggy1.sh: syntax error at line 7: ‘fi’ unexpected

This tells you that when the shell tried to read line 7, it found that the fi statement on
line 6 was unexpected. By now you have probably figured out that the reason the shell
was trying to read line 7 is that the if statement on line 4 is not properly terminated with
a then statement:

if [$YN = “y”]

This line should read as:

if [$YN = “y”] ; then

By making this change, you will find that the command

$ /bin/sh -n buggy1.sh

produces no output, indicating that there are no syntax errors in the script.

Why Syntax Checking Is Important
After looking at the shell script in the previous example, you might be wondering why
you couldn’t just execute the shell script to determine the problem. After all, the output
of the command:

$ /bin/sh ./buggy1.sh
buggy1.sh: syntax error at line 7: ‘fi’ unexpected

is identical to the output of the command:

$ /bin/sh -n ./buggy1.sh

Debugging 329

20

like it does on the command line. In this case the shell reads and executes lines until it
encounters a problem.

When the -n option is specified, the shell does not execute the script. It just checks the
syntax of each line. In the previous example using this option would have avoided the
situation encountered by running the script.

Using Verbose Mode
Now that you know why syntax checking should be employed, let’s track down the
source of the problem by looking at line 21 of buggy2.sh:

21 [nN]|[Nn][Oo])

does not provide sufficient context to determine the source of the problem. Sometimes
knowing where a syntax error occurs is not enough—you have to know the context in
which the error occurs. In order to determine the context of the problem, you can use the
-v (v as in verbose) debugging mode. When this option is specified, the shell prints each
line of a script as it is read.

If the -v option is specified by itself, the shell executes every line in the script. Because
you want to just check the syntax, you need to combine the -n and -v options as follows:

$ /bin/sh -nv script arg1 arg2 ... argN

If you execute buggy2.sh with these debugging options

$ /bin/sh -nv ./buggy2.sh

the output looks like the following (the line numbers are provided for your reference):

1 #!/bin/sh
2
3 Failed() {
4 if [$1 -ne 0] ; then
5 echo “Failed. Exiting.” ; exit 1 ;
6 fi
7 echo “Done.”
8 }
9
10 echo “Deleting old backups, please wait... \c”
11 rm -r backup > /dev/null 2>&1
12 Failed $?
13
14 echo “Make backup (y/n)? \c”
15 read RESPONSE
16 case $RESPONSE in
17 [yY]|[Yy][Ee][Ss])
18 echo “Making backup, please wait... \c”

Debugging 331

20

19 cp -r docs backup
20 Failed
21 [nN]|[Nn][Oo])

➥./buggy2.sh: syntax error at line 21: ‘)’ unexpected

Based on this output, the problem is apparent: Line 20 does not terminate the first pattern of
the case statement with ;;. You can make either of the following changes to fix the script:

Failed ;;

or

Failed
;;

After making either of these change, you find that the command

$ /bin/sh -n buggy2.sh

does not produce an error message. As you will see in the next section, this does not nec-
essarily mean that the script is bug free.

Shell Tracing
There are many instances when syntax checking will give your script a clean bill of
health, even though bugs are still lurking within it. Running syntax checking on a shell
script is similar to running a spelling checker on a text document—it might find most of
the misspellings, but it can’t fix problems like read spelled red. In order to find and fix
these types of errors in a text document, you need to proofread it. Shell tracing is proof-
reading your shell script.

In shell tracing mode each command is printed in the exact form that it is executed.
For this reason, shell tracing mode is often referred to as execution tracing mode.
Shell tracing is enabled by the -x option (x as in execution). The following command
enables tracing for an entire script:

$ /bin/sh -x script arg1 arg2 ... argN

Tracing can also be enabled using the set command:

set -x

To get an idea of what the output of shell tracing looks like, try the following command:

$ set -x ; ls *.sh ; set +x

The output will be similar to the following:

+ ls buggy.sh buggy1.sh buggy2.sh buggy3.sh buggy4.sh
buggy.sh buggy1.sh buggy2.sh buggy3.sh buggy4.sh
+ set +x

332 Hour 20

In the output, the lines preceded by the plus (+) character are the commands that the shell
executes. The other lines are output from those commands. As you can see from the out-
put, the shell prints the exact ls command it executes. This is extremely useful in debug-
ging because it enables you to determine whether all the substitutions were performed
correctly.

Finding Syntax Bugs Using Shell Tracing
In the preceding example, you used the script buggy2.sh. One of the problems with this
script is that it deleted the old backup before asking whether you wanted to make a new
backup. To solve this problem, the script is rewritten as follows:

#!/bin/sh

Failed() {
if [$1 -ne 0] ; then

echo “Failed. Exiting.” ; exit 1 ;
fi
echo “Done.”

}

YesNo() {
echo “$1 (y/n)? \c”
read RESPONSE
case $RESPONSE in

[yY]|[Yy][Ee][Ss]) RESPONSE=y ;;
[nN]|[Nn][Oo]) RESPONSE=n ;;

esac
}

YesNo “Make backup”
if [$RESPONSE = “y”] ; then

echo “Deleting old backups, please wait... \c”
rm -fr backup > /dev/null 2>&1
Failed $?

echo “Making new backups, please wait... \c”
cp -r docs backup
Failed

fi

There are at least three syntax bugs in this script and at least one logical oversight. See if
you can find them.

Assuming that the script is called buggy3.sh, first check its syntax as follows:

$ /bin/sh -n ./buggy3.sh

Debugging 333

20

Because there is no output, you can execute it:

$ /bin/sh ./buggy3.sh

The script first prompts you as follows:

Make backup (y/n)?

Answering y to this prompt produces output similar to the following:

Deleting old backups, please wait... Done.
Making new backups, please wait... buggy3.sh: test: argument expected

Now you know there is a problem with the script, but the error message doesn’t tell you
where it is, so you need to track it down manually. From the output you know that the
old backup was deleted successfully; therefore, the error is probably in the following part
of the script:

echo “Making new backups, please wait... \c”
cp -r docs backup
Failed

Let’s just enable shell tracing for this section:

set -x
echo “Making new backups, please wait... \c”
cp -r docs backup
Failed
set +x

The output changes as follows (assuming you answer y to the question):

Make backup (y/n)? y
Deleting old backups, please wait... Done.
+ echo Making new backups, please wait... \c
Making new backups, please wait... + cp -r docs backup
+ Failed
+ [-ne 0]
buggy3.sh: test: argument expected

From this output you can see that the problem occurred in the following statement:

[-ne 0]

From Chapter 11, “Flow Control,” you know that the form of a numerical test command is

[num1 operator num2]

Here it looks like num1 does not exist. Also from the trace you can tell that this error
occurred after executing the Failed function:

Failed() {
if [$1 -ne 0] ; then

echo “Failed. Exiting.” ; exit 1 ;

334 Hour 20

fi
echo “Done.”

}

There is only one numerical test in this function; the test that compares $1, the first argu-
ment to the function, to see whether it is equal to 0. The problem should be obvious now.
When Failed was invoked, you forgot to give it an argument:

echo “Making new backups, please wait... \c”
cp -r docs backup
Failed

Therefore, the numeric test failed. There are two possible fixes for this bug. The first is
to fix the code that calls the function:

echo “Making new backups, please wait... \c”
cp -r docs backup
Failed $?

The second is to fix the function itself by quoting the first argument, “$1”:

Failed() {
if [“$1” -ne 0] ; then

echo “Failed. Exiting.” ; exit 1 ;
fi
echo “Done.”

}

By quoting the first argument, “$1”, the shell uses the null or empty string when the
function is called without any arguments. In this case the numeric test will not fail
because both num1 and num2 have a value.

The best idea is to perform both fixes. After these fixes are applied, the shell tracing out-
put is similar to the following:

Make backup (y/n)? y
Deleting old backups, please wait... Done.
+ echo Making new backups, please wait... \c
Making new backups, please wait... + cp -r docs backup
+ Failed
+ [-ne 0]
+ echo Done.
Done.
+ set +x

Finding Logical Bugs Using Shell Tracing
As mentioned before, there is at least one logical bug in this script. With the help of shell
tracing, you can locate and fix this bug.

Consider the prompt produced by this script:

Make backup (y/n)?

Debugging 335

20

If you do not type a response but simply press Enter or Return, the script reports an error
similar to the following:

./buggy3.sh: [: =: unary operator expected

To determine where this error occurs, it is probably best to run the entire script in shell
tracing mode:

$ /bin/sh -x ./buggy3.sh

The output is similar to the following:

+ YesNo Make backup
+ echo Make backup (y/n)? \c
+ /bin/echo Make backup (y/n)? \c
Make backup (y/n)? + read RESPONSE

+ [= y]
./buggy3.sh: [: =: unary operator expected

The blank line is the result of pressing Enter or Return without typing a response to the
prompt. The next line that the shell executes is the source of the error message:

[= y]

Which is part of the if statement:

if [$RESPONSE = “y”] ; then

Although this problem can be fixed by just quoting $RESPONSE,

if [“$RESPONSE” = “y”] ; then

the better fix is to determine why it is not set and change that code so that it always sets
$RESPONSE. Looking at the script, you find that this variable is set by the function YesNo:

YesNo() {
echo “$1 (y/n)? \c”
read RESPONSE
case $RESPONSE in

[yY]|[Yy][Ee][Ss]) RESPONSE=y ;;
[nN]|[Nn][Oo]) RESPONSE=n ;;

esac
}

There are two problems here. The first one is that the read command

read RESPONSE

will not set a value for $RESPONSE if the user just presses Enter or Return. Because you
can’t change the read command, you need to find a different method to solving the

336 Hour 20

problem. Basically you have a logical problem—the case statement needs to validate
the user input, which it is currently not doing. A simple fix for the problem is to change
YesNo as follows:

YesNo() {
echo “$1 (y/n)? \c”
read RESPONSE
case “$RESPONSE” in

[yY]|[Yy][Ee][Ss]) RESPONSE=y ;;
*) RESPONSE=n ;;

esac
}

Now you treat all responses other than “yes” as negative responses. This includes null
responses generated when the user simply types Enter or Return.

Using Debugging Hooks
In the previous examples, you were able to deduce the location of a bug using shell trac-
ing. In order to enable tracing for a particular part of the script, you have to edit the
script and insert the debug command:

set -x

For larger scripts, a better practice is to embed debugging hooks. Debugging hooks are
functions that enable shell tracing in critical code sections. Debugging hooks are nor-
mally activated in one of two ways:

• The script is run with a command-line option (commonly -d or -x).

• The script is run with an environment variable set to true (commonly DEBUG=true
or TRACE=true).

The following function enables you to activate and deactivate debugging by setting
$DEBUG to true:

Debug() {
if [“$DEBUG” = “true”] ; then

if [“$1” = “on” -o “$1” = “ON”] ; then
set -x

else
set +x

fi
fi

}

To activate debugging, you can use the following:

Debug on

Debugging 337

20

echo “Deleting old backups, please wait... \c”
rm -r backup > /dev/null 2>&1
Failed $?

echo “Making new backups, please wait... \c”
cp -r docs backup
Failed $?

fi

There is no change in the output if the script is executed in either of the following ways:

$ /bin/sh ./buggy3.sh
$./buggy3.sh

The output includes shell tracing if the same script is executed in either of the following
ways:

$ DEBUG=true /bin/sh ./buggy3.sh
$ DEBUG=true ./buggy3.sh

Summary
In the process of developing or maintaining large shell scripts, you will need to find and
fix bugs in them. This chapter looked at how to use the shell to facilitate this task. Some
of the topics covered include:

• Enabling debugging

• Syntax checking using sh -n and sh -nv

• Using shell tracing to find syntax and logic bugs

• Embedding debugging hooks in your shell scripts

By learning the techniques used in debugging shell scripts, you can fix your own scripts
as well as maintain scripts written by other programmers.

Questions
1. What are the three main forms of enabling debugging in a shell script?

2. Enhance the Debug() function given in this chapter so that the programmer has to
press Enter or Return after debugging is deactivated.

When you debug scripts that have several dozen functions, this feature enables you
to study the debugging output from a particular function before executing the next
function.

Debugging 339

20

Terms
Debugging Hooks Functions that enable shell tracing in critical code sections.

Execution Tracing See shell tracing.

Invocation Activated Methods for enabling debugging modes that take effect when a
script is invoked.

Programmer Activated Debugging modes activated only when the shell script pro-
grammer uses the set command.

Shell Tracing Each command is printed in the exact form that it is executed.

Syntax Checking The process of verifying a script’s syntax without executing it.

340 Hour 20

HOUR 21
Problem Solving with
Functions

In previous chapters, you wrote short shell scripts that performed specific
tasks. Many of these scripts performed common operations such as display-
ing error and warning messages and prompting the users for input. To easily
repeat these tasks, you created reusable functions for your scripts.

In this chapter, you take this a step farther and create a library of functions
that can be readily reused in shell scripts. A library is a repository of func-
tions that can be accessed by shell scripts. The specific topics related to
libraries that you will examine are

• Library basics

• Creating a library

Library Basics
In many of the scripts in this book, you created utility functions that display
error message and prompt the users for input. When two scripts needed the

same function, you just copied the function from one script to the other. This method
works fine when you are dealing with one or two scripts, but it breaks down with many
scripts. Say you have a dozen scripts that share a function and you located a bug in that
function. You can image how hard it would be to fix every one of those scripts. A reposi-
tory or library of common functions would reduce the complexity of developing and
maintaining these shell scripts.

What Is a Library?
Creating a library of functions is exactly like creating a shell script. The only difference
between a script and a library is that a library contains only function definitions, whereas
a script can contain both function definitions and executable code. The executable code
in a script consists of all the commands in the script outside of the function definitions.
In the following shell script, lines 1, 2, and 4 are executable code:

1 #!/bin/sh
2 MSG=”hello”
3 echo_error() { echo “ERROR:” $@ 1>&2 ; }
4 echo_error $MSG

Line 3, which contains a function definition, is not executable code.

A library does not contain any executable code; it contains only function definitions. For
example, the following is a library:

#!/bin/sh
echo_error() { echo “ERROR:” $@ 1>&2 ; }
echo_warning() { echo “WARNING:” $@ 1>&2 ; }

Strictly speaking, nothing prevents a library from containing executable code; the distinc-
tion between a script and a library is purely a conceptual one.

Using a Library
You can access the functions defined as a library in your scripts using the . command. Its
syntax is

. file

Here, file is the pathname to the library. When a library is accessed via the . command,
it is referred to as sourced or loaded. If file is not a valid pathname or not a script, the
shell will display an error message and then exit. For this reason, most scripts load all of
their libraries before executing any commands.

For example, if the functions given in the previous example are stored in a file called
messages.sh, the following command can be used to load them:

. messages.sh

342 Hour 21

when an unexpected event that is difficult to recover from, such as a command failure,
occurs. A warning message is normally displayed when an unexpected but recoverable
event occurs.

Name: printError
Desc: prints an message to STDERR
Args: $@ -> message to print

printError () {
echo “ERROR: $@” 1>&2

}

Name: printWarning
Desc: prints an message to STDERR
Args: $@ -> message to print

printWarning () {
echo “WARNING: $@” 1>&2

}

Because both of these functions display messages indicating that an erroneous condition
was encountered, they use output redirection to display their messages on STDERR,
which is reserved for error reporting.

Asking Questions
In interactive shell scripts, you often need to obtain input from the users. The input might
be a simple yes or no response to a question, or it might be much more complicated. The
next two functions in this library are designed to aid in the process of obtaining user
input in response to questions.

Asking a Yes or No Question
One of the most common questions asked by scripts elicits a yes or no response. The
function, promptYESNO, provides a reusable method of asking yes or no questions and
gathering responses. This implementation stores the user’s response—y indicating yes or
n indicating no—in the global variable YESNO after the function completes.

Name: promptYESNO
Desc: Asks a yes/no question
Args: $1 -> The prompt
$2 -> The default answer (optional)
Globals: YESNO -> set to the users response y for yes, n for no

promptYESNO () {

YESNO=””

Problem Solving with Functions 345

21

if [$# -lt 1] ; then
return 1

fi

_YNPROMPT=”$1 (y/n)? “
_YNDEFANS=””

case “$2” in
[yY]|[yY][eE][sS]) _YNDEFANS=”y” ;;
[nN]|[nN][oO]) _YNDEFANS=”n” ;;

esac

_YNPROMPT=”$_YNPROMPT${_YNDEFANS:+[$_YNDEFANS] }”

while :
do

printf “$_YNPROMPT”
read YESNO
case “${YESNO:-$_YNDEFANS}” in

[yY]|[yY][eE][sS])
YESNO=”y”
break
;;

[nN]|[nN][oO])
YESNO=”n”
break
;;

*) YESNO=”” ;;
esac

done

unset _YNPROMPT _YNDEFANS
export YESNO
return 0

}

This function can handle two arguments:

• $1 is treated as the base from which to construct the yes/no question. It is required.

• $2 is the default answer and is optional.

First the function clears the value of YESNO. Then the function determines whether at
least one argument was supplied, because you need at least one argument. If no argu-
ments are supplied the function returns 1, indicating improper usage:

if [$# -lt 1] ; then
return 1

fi

346 Hour 21

Next, the function creates two internal variables, _YNPROMPT and _YNDEFANS:

_YNPROMPT=”$1 (y/n)? “
_YNDEFANS=””

The variable _YNPROMPT holds the question, whereas _YNDEFANS holds the default answer.
Initially, _YNDEFANS is set to null, and then a case statement is used to set its value:

case “$2” in
[yY]|[yY][eE][sS]) _YNDEFANS=”y” ;;
[nN]|[nN][oO]) _YNDEFANS=”n” ;;

esac

This case statement determines whether the second argument is in the form of y, n, yes,
or no (regardless of case). If it is, _YNDEFANS is set appropriately and the prompt,
_YNPROMPT, is updated to reflect this:

_YNPROMPT=”$_YNPROMPT${_YNDEFANS:+[$_YNDEFANS] }”

After updating the prompt, the function enters an infinite while loop that exits when the
user provides a valid response to the question stored in _YNPROMPT. The while loop first
prints the prompt and then reads the response into the variable YESNO:

printf “$_YNPROMPT”
read YESNO

Once a response has been read, a case statement evaluates the response:

case “${YESNO:-$_YNDEFANS}” in
[yY]|[yY][eE][sS])

YESNO=”y”
break
;;

[nN]|[nN][oO])
YESNO=”n”
break
;;

*) YESNO=”” ;;
esac

If some form of y, n, yes or no was entered, YESNO is set appropriately and the loop ter-
minates by calling break; otherwise, the value of YESNO is set to null and the loop exe-
cutes again. This allows the function to keep prompting the user for a response until a
valid response is specified.

Finally, the function unsets the variables that store the prompt and the default answer.
The function then exports the variable YESNO to the environment in order to ensure that

Problem Solving with Functions 347

21

this variable is available to commands executed after the function completes. Finally, the
function returns 0:

unset _YNPROMPT _YNDEFANS
export YESNO
return 0

Using promptYESNO

Now that you know how this function works, take a look at an example of its use:

#!/bin/sh

. $HOME/lib/sh/libTYSP2.sh

promptYESNO “Do you want to play a game”
if [“$YESNO” = “y”] ; then

/usr/games/tictactoe
else

echo “Maybe later.”
fi

This generates the following prompt:

Do you want to play a game (y/n)?

If the response is some form of y or yes, the variable YESNO is set to y and the if state-
ment executes the command /usr/games/tictactoe. If the response is some form of n
or no, the variable YESNO is set to n and the if statement prints the message:

Maybe later.

If any other response is specified, the prompt will be repeated.

The following example illustrates the use of a default argument as follows:

#!/bin/sh

. $HOME/lib/sh/libTYSP2.sh

promptYESNO “Do you want to play a game” “y”
if [“$YESNO” = “y”] ; then

/usr/games/thermonuclearwar
else

echo “Maybe later.”
fi

This generates a prompt similar to the following:

Do you want to play a game (y/n)? [y]

348 Hour 21

When the default answer is specified, the users can simply press Enter or Return or they
can manually specify a response. If the users specify y or yes or choose the default
answer, the system will execute a game on the user’s behalf.

Prompting for a Response
In some shell scripts, you need to gather more information from the users than a simple yes
or no response. For example, an installation script might have to ask for the name of a
directory or the location of a file. The promptRESPONSE function can elicit this type of infor-
mation from the user. The function in this example stores the user’s response in the global
variable RESPONSE. Validation of the response should be handled outside the function.

Name: promptRESPONSE
Desc: Asks a question
Args: $1 -> The prompt
$2 -> The default answer (optional)
Globals: RESPONSE -> set to the users response

promptRESPONSE () {

RESPONSE=””

if [$# -lt 1] ; then
return 1

fi

_RDEFANS=”${2:+$2}”
_RPROMPT=”$1? ${_RDEFANS:+[$_RDEFANS] }”

while :
do

printf “$_RPROMPT”
read RESPONSE
RESPONSE=”${RESPONSE:-$_RDEFANS}”
if [-n “$RESPONSE”] ; then

break
fi
RESPONSE=””

done

unset _RDEFANS _RPROMPT
export RESPONSE
return 0

}

This function can handle two arguments:

• $1 is treated as the base from which to construct the question. It is required.

• $2 is the default answer and is optional.

Problem Solving with Functions 349

21

First the function clears the value of RESPONSE. Then the function determines whether at
least one argument was supplied, because you need at least one argument. If no argu-
ments are supplied, the function returns 1, indicating improper use:

if [$# -lt 1] ; then
return 1

fi

Next, the function creates two internal variables, _RDEFANS and _RPROMPT:

_RDEFANS=”${2:+$2}”
_RPROMPT=”$1? ${_RDEFANS:+[$_RDEFANS] }”

The variable _RDEFANS holds the default answer and is set to the value of $2, but only if a
second argument was specified. The variable _RPROMPT holds the question and is based
on the value of $1 and _RDEFANS.

Next, the function enters an infinite while loop that exits when the user provides a valid
response to the question stored in _RPROMPT. The while loop first prints the prompt and
then reads the response into the variable RESPONSE:

printf “$_RPROMPT”
read RESPONSE

Variable substitution then ensures that RESPONSE contains a value or a default value:

RESPONSE=”${RESPONSE:-$_RDEFANS}”

If RESPONSE contains a value, the loop terminates by issuing break; otherwise the loop
sets RESPONSE to null and repeats:

if [-n “$RESPONSE”] ; then
break

fi
RESPONSE=””

The function then unsets the variables that store the prompt and the default answer and ex-
ports the variable RESPONSE to the environment in order to ensure that this variable is avail-
able to commands executed after the function completes. Finally, the function returns 0:

unset _RDEFANS _RPROMPT
export RESPONSE
return 0

Using promptRESPONSE

Now that you know how this function works, take a look at an example of its use:

#!/bin/sh

. $HOME/lib/sh/libTYSP2.sh

promptRESPONSE “What is your favorite fruit”
echo “Your favorite fruit is $RESPONSE.”

350 Hour 21

This generates the following prompt:

What is your favorite fruit?

The echo statement then displays the response:

Your favorite fruit is apple.

Checking Disk Space
System administrators often use scripts to keep apprised of the disk usage in certain
essential directories. For example, if the incoming mail or news directories were to fill
up, users would not be able to obtain new e-mail or news articles. The next two functions
in this library ease the process of monitoring disk usage.

Determining Free Space
The free space in a directory can be determined using the df -k (k as in kilobytes) com-
mand. The output of this command is similar to the following:

$ df -k
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda1 1190014 664661 463867 59% /
/dev/hdd1 4128240 1578837 2335788 40% /internal
/dev/hdb1 1521567 682186 760759 47% /store
/dev/hda3 320086 72521 231034 24% /tmp

When a directory or file is specified as an additional argument, the output just contains
information about the partition where that directory or file is located:

$ df -k /home/ranga
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda1 1190014 664661 463867 59% /

As you can see, the output consists of a header followed by information about the parti-
tions on your system. The amount of free space in a given partition is stored in the fourth
column. This function uses awk to retrieve this value.

Name: getSpaceFree
Desc: Outputs the space avail for a directory
Args: $1 -> The directory to check

getSpaceFree () {
if [$# -ge 1] ; then

df -k “$1” 2> /dev/null | awk ‘NR != 1 { print $4; }’
return $?

fi
return 1

}

Problem Solving with Functions 351

21

You can use the du (short for disk usage) command to determine the amount of disk
space used by a directory. Because you are interested in the disk usage for the entire
directory in kilobytes, you need to use the -s (short for sum) and -k (short for kilobytes)
options. The output of the du -sk command looks like the following:

$ du -sk /home/ranga/pub
4922 /home/ranga/pub

The size of the directory in kilobytes is listed in the first column. This function uses awk
to retrieve this number.

Name: getSpaceUsed
Desc: output the space used for a directory
Args: $1 -> The directory to check

getSpaceUsed () {
if [-d “$1”] ; then

du -sk “$1” | awk ‘{ print $1; }’
return $?

fi
return 1

}

This function is almost as simple as getSpaceFree. It first determines whether it was
given an argument. If no argument was given, it displays an error message and returns.
Otherwise, it determines whether the first argument is a directory. If it is not, an error
message is displayed and the function returns.

This function is quite simple; if the first argument, $1, is a directory, it executes du to
determine the disk usage and then retrieves that value using awk:

du -sk “$1” | awk ‘{ print $1; }’

If the first argument is not a directory; the function returns 1, indicating failure.

The following example illustrates the use of this function:

getSpaceUsed /usr/local

The output is similar to the following (provided the directory /usr/local exists on your
system):

15164

The number returned is in kilobytes, which in this case translates to about 15.1MB.

Problem Solving with Functions 353

21

Often, you will want to compare the output of this function to some value. For example,
the following example determines whether more than 10,000KB is used by the directory
/var/tmp:

#!/bin/sh

. $HOME/lib/sh/libTYSP2.sh

if [“`getSpaceUsed /var/tmp`” -gt 10000] ; then
printWARNING “You’re using to much space!”

fi

Obtaining a Process ID by its Process Name
One of the difficulties with the ps command is that it is difficult to obtain the process ID
(PID) of a command by specifying its process name. This capability is essential in scripts
that start and stop processes. The next function in the library provides this capability.

Name: getPID
Desc: Outputs a list of process id matching $1
Args: $1 -> the command name to look for

getPID() {

if [$# -lt 1] ; then
return 1

fi

PSOPTS=”-ef”

/bin/ps $PSOPTS | grep “$1” | grep -v grep | awk ‘{ print $2; }’
}

As you can see, this function is a set of filters for the output of the command /bin/ps -
ef. The first grep command looks for all lines that match the first argument. As an exam-
ple, executing this on the command line produces output similar to the following:

$ /bin/ps -ef | grep sshd

Here you are looking for all the lines that contain the word sshd. The output might be
similar to the following:

root 1449 1 8 12:23:06 ? 0:02 /opt/bin/sshd
ranga 1451 944 5 12:23:08 pts/t0 0:00 grep sshd

As you can see, the output contains two lines. The first one contains the process ID of
the command that you are looking for, but the second contains the process ID of the grep
command that you executed. In order to ignore such lines, the command grep -v grep
is used in the pipeline. Finally, awk extracts the process ID, which is stored in the second

354 Hour 21

column of the output of ps. If more than one process has the requested name, this func-
tion displays each process ID.

Readers who are using Linux or BSD systems have to change this function in order for it
to run properly. The value of the variable PSOPTS should be set to -auwx instead of -ef
on these systems. In Chapter 23, you will see how to incorporate these changes into the
function so that it runs without modification under any version of UNIX.

The following command illustrates the use of getPID:

getPID httpd

The output of this command is a list of process IDs, similar to the following:

330
331
332
333
334

Getting a User’s Numeric User ID
Some shell scripts need to determine whether a user has sufficient permissions to execute
commands. For example, a startup script might need to run as root (UID 0) to modify
system files correctly.

A user’s ID can be checked by using the id command. The default for this command is
to output information about the current user:

$ id
uid=500(ranga) gid=100(users) groups=100(users),101(ftpadmin)

If a username is supplied as an argument, the id command outputs information for that
user:

$ id vathsa
uid=501(vathsa) gid=100(users) groups=100(users)

This chapter’s function supports both modes.

Name: getUID
Desc: outputs a numeric user id
Args: $1 -> a user name (optional)

getUID() {
id $1 | sed -e ‘s/(.*$//’ -e ‘s/^uid=//’

}

This function executes the id command and then uses sed to filter all the unimportant
information.

Problem Solving with Functions 355

21

When getUID is executed by itself

getUID

the output is similar to the following:

500

When the function is called with a username

getUID vathsa

the output is similar the following:

500

Usually you need to compare this output to some known UID as follows:

#!/bin/sh

. $HOME/lib/sh/libTYSP2.sh

if [“`getUID`” -gt 100] ; then
printERROR “You do not have sufficient privileges.”
exit 1

fi

Here the output of the getUID function is checked to see whether it is greater than 100.

Summary
In this chapter you examined libraries of functions. Libraries can simplify your scripts by
providing a shared interface for common scripting tasks. You also examined several func-
tions in a library. By using and improving these implementations, you can avoid having
to reinvent the wheel when faced with a particular problem.

Questions
1. Write a function named toLower that converts its arguments to all lowercase and

outputs the converted string to STDOUT. (HINT: Use tr.)

2. Write a function named toUpper that converts its arguments to all uppercase and
outputs the converted string to STDOUT. (HINT: Use tr.)

3. Write a function called isSpaceAvailable to check whether a directory contains a
certain amount of disk space.

The function should accept two arguments. The first one indicates the directory to
check, and the second one indicates the amount of space to check. The function

356 Hour 21

should return 1 if both arguments are not supplied or if the first argument is not a
directory.

If sufficient space is present, your function should return 0. This enables you to use
it as follows:
if isSpaceAvailable /usr/local 20000 ; then

: # perform some action
fi

(HINT: Use the function getSpaceFree.)

4. Modify your isSpaceAvailable function to accept an optional third argument that
specifies the units of the amount space to check.

The default should remain in kilobytes, but you should support m or mb indicating
megabytes and g or gb indicating gigabytes. If some other units are given, assume
that the user meant kilobytes.

(The following conversion factors apply to this problem: 1 megabyte equals 1024
kilobytes, and 1 gigabyte equals to 1024 megabytes.)

(HINT: Use the bc command.)

5. Write a function called isUserRoot that determines whether the ID of a user is
equal to 0. If no user is given, it should determine whether the ID of the current
user is root. (HINT: Use getUID.)

Terms
Executable Code The part of the script that consists of all the commands in the script
outside of the function definitions.

Library A repository of functions that can be accessed by shell scripts.

Problem Solving with Functions 357

21

HOUR 22
Problem Solving with
Shell Scripts

In Chapter 21, “Problem Solving with Functions,” you examined several
useful functions that can be used in shell scripts. In this chapter, you will
learn about two shell scripts that demonstrate how you can use shell scripts
to solve everyday problems.

These scripts illustrate how the tools covered in previous chapters can be
used to create new re-usable tools. For each script, the chapter first describes
the motivations for its development, followed by some design issues. Then it
presents the script along with a discussion of the script’s flow.

This chapter examines two scripts related to the following topics:

• Startup scripts

• Maintaining an address book

Startup Scripts
A common task for many shell programmers is writing system startup scripts. In this sec-
tion, you will develop a basic system startup script that can be reused (after a little edit-
ing). Before you begin, let’s look at a little background into the UNIX system startup and
initialization.

System Startup
When a UNIX system starts, the first program to be executed is init (usually located in
/sbin). This program is responsible for system startup and initialization. In early ver-
sions of UNIX, init was aided in this by the script /etc/rc. This script handled all of
the nitty-gritty details of system initialization such as checking the disks, starting the net-
working layers, and enabling console and remote login programs.

When a system administrator wanted to enable additional services at system startup, he
or she had to edit /etc/rc to include the commands required to start the system. This
method had two problems:

• A typo or mistake in /etc/rc could render the system unbootable and might
require many hours or days to recover.

• An upgrade of the system software might overwrite /etc/rc, causing the system
administrator to lose all the modifications.

In order to solve these two problems, BSD introduced a secondary startup script,
/etc/rc.local, that contained all of the system-specific startup commands. This script
was never upgraded by updates to the system software and the system would boot cor-
rectly even if this script contained errors. Although rc.local solved these two problems,
there were still other problems:

• There was no easy way to stop all the running programs in a clean way during
system shutdown.

• Software vendors could not easily integrate their programs into the system startup
or shutdown. If a software vendor provided a program that needed to start up at
boot time, they were stuck having to edit the rc.local script in their software
installation scripts, an error-prone operation.

• There was no way to enforce startup and shutdown dependencies; if program B
depended on program A starting up first, the system administrator had to manually
sequence the commands in rc.local so that this dependency was enforced.

• There was no way to limit the number of programs that were started when the sys-
tem booted; there was no way to boot the system into a limited maintenance mode.

360 Hour 22

AT&T System V System Initialization
When AT&T released System V UNIX, they fixed these problems by introducing a new
system initialization infrastructure based on init scripts and run-levels.

Init scripts were simple scripts, originally stored in /sbin/init.d, that were responsible
for starting and stopping a single program. Every program that was to be started at boot
time had an init script, which made it easy for system administrators to maintain along
with providing an easy method for software vendors to integrate their programs into a
system’s startup process. Because the init scripts were also responsible for stopping pro-
grams, they could be used to stop processes cleanly during system shutdown. Later in
this section you will be developing an init script.

Run-levels partitioned the system startup into seven levels (zero through six) and pro-
vided a method for enforcing startup dependencies and partitioning the startup of system
services into the different levels. Each of the run-levels had a specific purpose and made
it possible to implement a limited maintenance mode along with a shutdown mode. The
different run-levels are described in Table 22.1.

TABLE 22.1 Run-Levels

Run-level Name Description

0 Halt Used for shutting down a system and powering it off (if
supported by the hardware).

1 Single-User A limited maintenance mode for performing backups,
upgrades, and other maintenance activities. Run-level 1 can
only be used by the super-user root (uid 0).

2 Multi-User The system starts all the programs necessary for supporting
multiple users along with basic network services.

3 Networked

Multi-User The system starts any additional network programs such as
Web servers, FTP servers, and mail servers. Most systems
are usually used at this run-level.

4 Unused This run-level is currently unused except on HP-UX where
it is used to launch the windowing environment HP VUE.

5 Graphical On Linux systems this run-level is used to automatically
Multi-User start the X11 windowing environment. On Solaris and
or Halt other systems, it is used to halt the system and power it off

(if supported by the hardware).

6 Reboot Used to reboot the system.

Problem Solving with Shell Scripts 361

22

How Init Scripts Work
Each run-level has a corresponding directory. The run-level directories are located in
/sbin and have names of the form rclvl.d, where lvl is an integer (0-6) corresponding
to a particular run-level. Each directory contains specially named links to the init scripts
from /sbin/init.d appropriate for that run-level. The links are named as follows:

• SXXname—Corresponds to a startup script. Known as start scripts.

• KYYname—Corresponds to a shutdown script. Known as stop scripts.

In both cases, XX and YY are numbers from 00 to 99 and name is the name of the init
script that this link corresponds to. The number, XX, allows startup and shutdown depen-
dencies to be enforced via script names, because scripts with smaller numbers will be
executed before scripts with larger numbers. In general, YY should be equal to 100 – XX.
This allows for programs to be shut down in the reverse order of the startup sequence,
thus enforcing shutdown dependencies.

As an example, the start script link in rc3.d for the secure shell daemon (SSH) might
look like the following:

$ ls –l /sbin/rc3.d/S99sshd
lrwxr-xr-x 1 root wheel 14 Jun 5 18:47 /sbin/rc3.d/S99sshd ->
/sbin/init.d/sshd

The corresponding shutdown script in rc5.d and rc6.d might look like the following:

$ ls -l /sbin/rc5.d/K01sshd /sbin/rc6.d/K01sshd
lrwxr-xr-x 1 root wheel 14 Jun 5 18:47 /sbin/rc5.d/K01sshd ->
/sbin/init.d/sshd
lrwxr-xr-x 1 root wheel 14 Jun 5 18:47 /sbin/rc6.d/K01sshd ->
/sbin/init.d/sshd

When a particular run-level is reached, all of the scripts that start with K (stop scripts) are
executed with the argument stop. Then all of the scripts that start with S (start scripts)
are executed with the argument start. This defines the basic interface for every init
script; it must accept and understand the arguments start and stop:

script [start | stop]

362 Hour 22

Run-Level S on Solaris
In addition to the run-levels covered in Table 22.1, Solaris includes an extra run-level
known as run-level S. Run-level S is the Solaris equivalent of run-level 1 and is used to put
the system into single-user mode.

When the system first starts, it is at run-level 1. It starts by executing all of the stop
scripts in the /sbin/rc1.d directory followed by all of the start scripts in that directory.
Once all of the scripts in the directory corresponding to run-level 1 have been executed,
the scripts in the directory corresponding to run-level 2 are executed with the argument
start followed by the scripts in run-level 3. When all of the scripts in run-level 3 finish
executing, the system is ready for general use.

When the system is shut down and powered off or halted, the scripts in the
directory /sbin/rc5.d are executed. When the system is rebooted, the scripts in
the directory /sbin/rc6.d are executed.

Platform Variations
With the exception of BSD, UNIX vendors readily adopted AT&T’s initialization infra-
structure. BSD still continues to use the system based on the files /etc/rc and
/etc/rc.local.

Hewlett-Packard adopted it in HP-UX 10.0 and uses it with a slight modification. In
HP-UX init scripts are still stored in the directory /sbin/init.d and the run-level direc-
tories are stilled named /sbin/rclvl.d, but the start and stop scripts have three digits,
XXX or YYY, as opposed to just two digits, XX or YY. Thus on HP-UX YYY should be equal
to 1000 – XXX.

Sun Microsystems adopted it in Solaris 2.0 (SunOS 5.0) and modified it to suit its needs.
In Solaris the init scripts are stored in the directory /etc/init.d and the run-level direc-
tories are named /etc/rclvl.d.

Linux also adopted a modified AT&T style initialization. In Linux the init scripts are
stored in /etc/rc.d/init.d and the run-level directories are named /etc/rc.d/rclvl.d.
Linux has also changed the meaning associated with run-level 5; rather than use this run-
level for halting and powering down the system, it is used to start the processes required
for the graphical windowing environment (X11). Linux also retains some vestiges of
BSD, as it still uses the file rc.local (relocated to the directory /etc/rc.d).

Problem Solving with Shell Scripts 363

22

BSD Might Eventually Adopt System V Initialization
Although BSD has avoided adopting System V style initialization for more than a decade,
there are rumblings of a change. An initiative known as the NetBSD rc.d System was
introduced by the NetBSD foundation during the summer of 2001. More information on
this initiative can be found in the following paper:

http://www.cs.rmit.edu.au/~lukem/papers/rc.d.pdf

Developing an Init Script
As discussed previously, the basic interface for an init script is

script [start | stop]

You will start by creating a script for the secure shell daemon (SSH) that implements this
interface and then adds several improvements to enhance the functionality of the script.
Once you have the completed script, this section highlights the changes necessary to
adapt the script for a different program.

For the purposes of this section, assume that your init script is named sshd and is stored
in /sbin/init.d. The actual location for startup scripts is system-dependent, as dis-
cussed previously.

The Basic Script
The following script implements the basic start and stop interface:

#!/bin/sh

PGM=/usr/local/sbin/sshd
PGM_OPTS=

case “$1” in
start) “$PGM” $PGM_OPTS ;;
stop) /bin/ps -ef | grep “$PGM” | grep -v grep | \

awk ‘{ print $2; }’ | xargs kill 2> /dev/null
;;

esac

exit 0

At the beginning of the script, you define two variables, $PGM and $PGM_OPTS. The vari-
able $PGM contains the full path to the program to start (in this case
/usr/local/sbin/sshd); whereas the variable $PGM_OPTS contains any additional
options or arguments that might need to be specified to the program.

The case statement that follows the variable definitions evaluates the argument supplied
to the script. If the argument starts, the program stored in $PGM is executed as follows:

“$PGM” $PGM_OPTS

If the argument stops, the program stops using the following compound command:

/bin/ps -ef | grep “$PGM” | grep –v grep | \
awk ‘{ print $2; }’ | xargs kill 2> /dev/null

Basically this command uses grep to look through the output of ps for all the entries that
match the string stored in $PGM. It then ignores any entries that contain both $PGM and

364 Hour 22

grep. Then it extracts the process IDs for these processes using awk and uses kill to ter-
minate these processes.

Although the basic script is serviceable, there are a few problems that you need to solve
in order to make it much more useable:

• The script has no error reporting when the program stored in $PGM does not exist or
is not executable.

• The script has no error reporting when the program stored in $PGM is already running.

• No usage information is supplied if an invalid argument (or no arguments) is sup-
plied to the script.

To solve the first and second problems, you can change the start clause of the case
statement to the following:

start)
if [! -x “$PGM”] ; then

echo “Error: Not Executable: $PGM” 1>&2
exit 1

fi

RUNNING=`/bin/ps -ef | grep “$PGM” | \
grep -v grep | head`

if [-n “$RUNNING”] ; then
echo “Error: Already running: $PGM” 1>&2
exit 1

fi

“$PGM” $PGM_OPTS
;;

As you can see, the start clause now includes two if statements that perform the neces-
sary error checking. First, you verify if the program is executable using the –x file test
option. If it is not executable (or does not exist), an error message is reported and the
script exits. Otherwise, the script proceeds to the next step in the error checking.

In order to check if the program is already running, you use the following compound
command:

RUNNING=`/bin/ps -ef | grep “$PGM” | grep -v grep | head`

If the program is already running, the value of the variable RUNNING will contain the out-
put of ps for at least one instance of the program. Otherwise RUNNING will be null. You
use the –z option to check the variable RUNNING; if it is not null an error message is
reported.

Problem Solving with Shell Scripts 365

22

The final part of the start clause is unchanged; you simply execute the program as
follows:

“$PGM” $PGM_OPTS

To solve the third problem, you can simply add a default clause to the case statement:

*) echo “Usage: $0 [start | stop]” ;;

By incorporating these changes, the script now looks like the following:

#!/bin/sh

PGM=/usr/local/sbin/sshd
PGM_OPTS=

case “$1” in
start)

if [! -x “$PGM”] ; then
echo “Error: Not Executable: $PGM” 1>&2
exit 1

fi

RUNNING=`/bin/ps -ef | grep “$PGM” | \
grep -v grep | head`

if [-n “$RUNNING”] ; then
echo “Error: Already running: $PGM” 1>&2
exit 1

fi

“$PGM” $PGM_OPTS
;;

stop) /bin/ps -ef | grep “$PGM” | grep -v grep | \
awk ‘{ print $2 ; }’ | xargs kill 2> /dev/null
;;

*) echo “Usage: $0 [start | stop]”
exit 1
;;

esac

exit 0

Problems with ps
One issue with this script resides in the use of the ps command. As you might recall
from Chapter 7, “Processes,” the options understood by ps differ among systems. This
script used the Solaris style –ef options. Linux and BSD systems do not always support
these options, so on those systems you need to use the auwxx options instead. This
script should be able to detect the type of system it is being executed on and adapt
appropriately.

366 Hour 22

case “`uname -s`” in
Linux|Darwin|*BSD) PS=”/bin/ps auwxx” ;;
*) PS=”/bin/ps -ef” ;;

esac

case “$1” in
start)

if [! -x “$PGM”] ; then
echo “Error: Not Executable: $PGM” 1>&2
exit 1

fi

RUNNING=`$PS | grep “$PGM” | grep -v grep | head`
if [-n “$RUNNING”] ; then

echo “Error: Already running: $PGM” 1>&2
exit 1

fi

“$PGM” $PGM_OPTS
;;

stop) $PS | grep “$PGM” | grep -v grep | \
awk ‘{ print $2 ; }’ | xargs kill 2> /dev/null
;;

*) echo “Usage: $0 [start | stop]”
exit 1
;;

esac

exit 0

Improvements
As it stands, the init script is quite complete and performs all of the necessary actions for
starting and stopping the program it controls. There are two usability and functionality
improvements you can make:

• Support for multiple arguments. Currently, only the first argument is evaluated.
This means that if you want to restart the program you must do the following:

/sbin/init.d/sshd stop ; /sbin/init.d/sshd start ;

If the script handled multiple arguments, you can stop and start the program in one
command rather than two:

/sbin/init.d/sshd stop start

UNIX programmers and administrators regard any modification that reduces typing
as a usability improvement.

• Support for enabling and disabling the init script without having to remove its links
from the run-level directories or the init file directory.

• Verification that the user invoking the script is root.

368 Hour 22

In this section, you will implement the first two improvements, and you will be asked to
implement the last one as one of the questions at the end of the chapter.

In order to support multiple arguments, you can simply embed the main case statement
within a for loop as follows:

for ARG in “$@”
do

case “$ARG” in
start)

if [! -x “$PGM”] ; then
echo “Error: Not Executable: $PGM” 1>&2
exit 1

fi

RUNNING=`$PS | grep “$PGM” | grep -v grep | head`
if [-n “$RUNNING”] ; then

echo “Error: Already running: $PGM” 1>&2
exit 1

fi

“$PGM” $PGM_OPTS
;;

stop) $PS | grep “$PGM” | grep -v grep | \
awk ‘{ print $2 ; }’ | xargs kill
;;

*) echo “Usage: $0 [start | stop]”
exit 1
;;

esac
done

The for loop loops through all of the arguments stored in $@, and the case statement
evaluates each of these arguments, instead of just evaluating $1. There is one problem
with this modification: If no arguments are given, the usage message is no longer output.
This is because the for loop is not executed if $@ does not contain a value, as is the case
when no arguments are given. To rectify this you can simply check for this and output
the usage message earlier in the script by using the following if statement:

USAGE=”Usage: $0 [start | stop]”
if [-z “$@”] ; then

echo $USAGE
exit 1

fi

The usage message is now stored in a variable because you now need to output it in two
places within the script, and it is easier to maintain and update if it is located in a single
place within the script.

Problem Solving with Shell Scripts 369

22

In order to complete the second task, you need to come up with a method of enabling
and disabling the init script without having to deal with the hassle of removing its links
from the various run-level directories. A method you can use is as follows:

• If a file named /etc/.no-pgm is present, where pgm is the name of the program, the
init script considers itself disabled for the purposes of starting the program. If this
file is not present, the init script considers itself enabled.

• Add support in the init script for two additional parameters, enable and disable,
that control the creation and deletion of the file /etc/.no-pgm.

You can extract pgm, the name of program, from the variable $PGM by using the sed com-
mand as follows:

echo $PGM | sed –e ‘s/^.*\///’

This sed command removes all of the directory information from the path stored in $PGM
and just gives you the name of the program. You can store that in a variable as follows:

PGM_NAME=”`echo $PGM | sed -e ‘s/^.*\///’`”

To enable the program you just need to remove the file /etc/.no-pgm using rm:

rm –f “/etc/.no-$PGM_NAME”

Thus the enable clause in the case statement is

enable) rm –f “/etc/.no-$PGM_NAME” ;;

Disabling the script is almost as easy. You just need to create the file /etc/.no-
$PGM_NAME using the touch command:

touch “/etc/.no-$PGM_NAME”

Thus, the disable clause in the case statement is

disable) touch “/etc/.no-$PGM_NAME” ;;

The final modification to support enabling and disabling the program is in the start
clause; you need to modify this clause to check if the program is disabled and refuse to
start it if it is. This can be accomplished using the following if statement:

if [-e “/etc/.no-$PGM_NAME”] ; then
echo “Error: Program disabled: $PGM” 1>&2
exit 1

fi

The final script that incorporates all of these improvements is given in Listing 22.1 The
line numbers are provided for your reference.

370 Hour 22

LISTING 22.1 Complete Listing of the sshd Init Script

1 #!/bin/sh
2
3 USAGE=”Usage: $0 [start | stop | enable | disable] “
4
5 # print out an usage message if no arguments are specified
6
7 if [-z “$@”] ; then
8 echo “$USAGE”
9 exit 1
10 fi
11
12 # variables that hold the location of the program, any options
13 # that might be required and the name of the program itself
14
15 PGM=/usr/local/sbin/sshd
16 PGM_OPTS=
17 PGM_NAME=”`echo $PGM | sed -e ‘s/^.*\///’`”
18
19 # determine the correct options for ps
20
21 case “`uname -s`” in
22 Linux|Darwin|*BSD) PS=”/bin/ps auwxx” ;;
23 *) PS=”/bin/ps -ef” ;;
24 esac
25
26 # evaluate each argument
27
28 for ARG in “$@”
29 do
30 case “$ARG” in
31 start)
32
33 # check if the program is disabled
34
35 if [-e “/etc/.no-$PGM_NAME”] ; then
36 echo “Error: Program disabled: $PGM” 1>&2
37 exit 1
38 fi
39
40 # verify that the program is executable
41
42 if [! -x “$PGM”] ; then
43 echo “Error: Not Executable: $PGM” 1>&2
44 exit 1
45 fi
46
47 # check if the program is running
48
49 RUNNING=`$PS | grep “$PGM” | grep -v grep | head`
50 if [-n “$RUNNING”] ; then

Problem Solving with Shell Scripts 371

22

LISTING 22.1 Continued

51 echo “Error: Already running: $PGM” 1>&2
52 exit 1
53 fi
54
55 # start the program
56
57 “$PGM” $PGM_OPTS
58 ;;
59
60 stop)
61
62 # stop the program
63
64 $PS | grep “$PGM” | grep -v grep | \
65 awk ‘{ print $2 ; }’ | xargs kill
66 ;;
67
68 enable)
69
70 # remove the .no file to enable this program
71
72 rm -f “/etc/.no-$PGM_NAME”
73 ;;
74
75 disable)
76
77 # create the .no file to disable this program
78
79 touch “/etc/.no-$PGM_NAME”
80 ;;
81
82 *) echo “$USAGE”
83 exit 1
84 ;;
85 esac
86 done
87
88 exit 0

Adapting the Script
This script is fairly adaptable and can be modified to start, stop, enable, and disable
almost any program by just modifying two variables, $PGM and $PGM_OPTS. Currently
these are set as follows:

PGM=/usr/local/bin/sshd
PGM_OPTS=

372 Hour 22

If you need to reuse the script for a different program, for example a Web server, you
could simply make a copy of the script as follows:

cd /sbin/init.d
cp sshd httpd

This assumes that the script is stored in the directory /sbin/init.d and that the name
you want to give the Web servers startup script is httpd. The actual location of startup
scripts differs from system to system as discussed previously. Once you have a copy, you
can modify just the variable definitions for $PGM and $PGM_OPTS as follows:

PGM=/usr/local/bin/httpd
PGM_OPTS=-DSSL

This assumes that the Web server named httpd is located in /usr/local/bin and that it
needs to be started with the –DSSL option. After making this modification, you can start
the Web server as follows:

/sbin/init.d/httpd start

To stop it, you can do the following:

/sbin/init.d/httpd stop

All that would remain is to make the start and stop links in the appropriate run-level
directories. Usually the start link is in the rc3.d directory, whereas the stop link is in the
rc5.d and rc6.d directories (except on Linux where it is only in the rc6.d directory).
You can create these links as follows:

cd /sbin/rc3.d && ln –s ../init.d/httpd S98httpd
cd /sbin/rc5.d && ln –s ../init.d/httpd K02httpd
cd /sbin/rc6.d && ln –s ../init.d/httpd K02httpd

The actual directories where the links need to be created are system-dependent as dis-
cussed previously. As an example, the commands that might be used on Solaris are

cd /etc/rc3.d && ln –s ../init.d/httpd S98httpd
cd /etc/rc5.d && ln –s ../init.d/httpd K02httpd
cd /etc/rc6.d && ln –s ../init.d/httpd K02httpd

On Linux you need something like the following:

cd /etc/rc.d/rc3.d && ln –s ../init.d/httpd S98httpd
cd /etc/rc.d/rc6.d && ln –s ../init.d/httpd K02httpd

Maintaining an Address Book
In this section, you will look at solving a common problem for many people: tracking
addresses and phone numbers. Many people, myself included, often get business cards
or e-mail messages from people they need to keep in touch with. E-mail messages and

Problem Solving with Shell Scripts 373

22

business cards have a tendency to get lost, leading to problems when you need to contact
someone. A nice solution to this problem is to store all the contact information on the
computer so that you can access and manipulate it easily.

In this section, you will develop a set of scripts that work together to maintain a simple
address book. The address book will store the following information:

• Name

• E-mail address

• Postal address

• Phone number

Each of these pieces of information can contain almost any character including spaces or
other special characters such as the dash (-), period, (.), or single quote (‘). Thus you
need to hold the information in a format that allows for such a wide range of characters.
A commonly used format is to separate each piece of information using the colon (:)
character. For example, the following information:

Sriranga Veeraraghavan
ranga@soda.berkeley.edu
1136 Wunderlich Dr. San Jose CA 95129
408-444-4444

can be stored as:

Sriranga Veeraraghavan:ranga@soda.berkeley.edu:1136 Wunderlich Dr.
➥San Jose CA 95129:408-444-4444

Here any special character, except the colon, can be used. Also this format enables you to
make any field optional. For example,

:vathsa@kanchi.bosland.us::408-444-4444

can indicate that only the e-mail address and phone number were known for a particular
person.

To maintain your address book, you need a few scripts:

• showperson to show information about one or more people in the address book

• addperson to add a person to the address book

• delperson to delete a person from the address book

The following examples assume that the address book is stored in the file
$HOME/addressbook.

374 Hour 22

Showing People
One of the main tasks any address book must perform is looking up information about
a person and then displaying it. You will develop a script called showperson to handle
this task.

To find information about a person, you can use grep. For example,

$ grep vathsa addressbook

lists all the lines that contain the word vathsa in the file addressbook. For your address
book, the output might look like the following:

:vathsa@kanchi.bosland.us::408-444-4444

As you imagine, your script should format the results of the grep command. A nice for-
mat would be to list the name, e-mail address, postal address, and phone number on sep-
arate lines. You can do this using an awk command:

awk -F: ‘{ printf “Name: %s\nEmail: %s\nAddress: %s\nPhone:

➥%s\n\n”,$1,$2,$3,$4 ; }’

By putting these commands together, you can construct the showperson script as given in
Listing 22.2 (the line numbers are provided for your reference).

LISTING 22.2 Listing of the showperson Script

1 #!/bin/sh
2 # Name: showperson
3 # Desc: show matching records in addressbook
4 # Args: $1 -> string to look for in addressbook
5
6 PATH=/bin:/usr/bin
7
8 # check that a string is given
9
10 if [$# -lt 1] ; then
11 echo “USAGE: `basename $0` name”
12 exit 1
13 fi
14
15 # check that the address book exists
16
17 MYADDRESSBOOK=”$HOME/addressbook”
18 if [! -f “$MYADDRESSBOOK”] ; then
19 echo “ERROR: $MYADDESSBOOK does not exist, or is not a

➥file.” >&2
20 exit 1
21 fi
22

Problem Solving with Shell Scripts 375

22

LISTING 22.2 Continued

23 # get all matches and format them
24
25 grep “$1” “$MYADDRESSBOOK” |
26 awk -F: ‘{
27 printf “%-10s %s\n%-10s %s\n%-10s %s\n%-10s %s\n\n”,\
28 “Name:”,$1,”Email:”,$2,”Address:”,$3,

➥”Phone:”,$4 ;
29 }’
30
31 exit $?

There are three main actions in the script:

1. Verify the number of arguments.

2. Check to see whether the address book exists.

3. Find all matches and print them.

In the first part (lines 10–13), the script checks to see whether at least one argument is
given. If so, the script continues; otherwise, it prints a usage message and exits. In the
second part, the script checks to see whether the address book exits. If it does not, the
script prints an error and then exits; otherwise, it continues. In the last part of the script,
grep obtains a list of matches and awk formats this list. To ensure even spacing of the
output, the awk command uses formatting for both the information and its description.
As an example,

$./showperson ranga

produces output similar to the following:

Name: Sriranga Veeraraghavan
Email: ranga@soda.berkeley.edu
Address: 1136 Wunderlich Dr. San Jose CA
Phone: 408-444-4444

Notice how all the information in the second column is correctly aligned.

You can also use showperson to look for matches of a particular string. For example,

$./showperson va

produces two matches:

Name: Sriranga Veeraraghavan
Email: ranga@soda.berkeley.edu
Address: 1136 Wunderlich Dr. San Jose CA
Phone: 408-444-4444

376 Hour 22

Name:
Email: vathsa@bosland.us
Address:
Phone: 408-444-4444

Adding a Person
One of the most important things about any address book is the capability to easily add
information to it. If you need to edit the address book manually to add information, you
are bound to make errors such as forgetting to add a colon to separate fields. By using a
script, you can avoid such errors.

In this section you will look at the addperson script. It enables you to add entries into
the address book by either providing information interactively or by providing informa-
tion on the command line via command-line options. The script enters interactive mode
when no options are given. In non-interactive mode it tries to obtain the necessary infor-
mation from the command-line options.

Regardless of the mode, the script stores the user-provided information into the following
variables:

• NAME stores the name given by the user.

• EMAIL stores the e-mail address given by the user.

• ADDR stores the postal address given by the user.

• PHONE stores the phone number given by the user.

In interactive mode, you prompt for the information in each record as follows:

printf “%-10s “ “Name:” ; read NAME
printf “%-10s “ “Email:” ; read EMAIL
printf “%-10s “ “Address:” ; read ADDR
printf “%-10s “ “Phone:” ; read PHONE

After each prompt, you read and store the user’s input, including spaces and special char-
acters, inside the appropriate variable. In non-interactive mode, you use getopts to scan
the options:

while getopts n:e:a:p: OPTION
do

case $OPTION in
n) NAME=”$OPTARG” ;;
e) EMAIL=”$OPTARG” ;;
a) ADDR=”$OPTARG” ;;
p) PHONE=”$OPTARG” ;;
\?) echo “USAGE: $USAGE” >&2 ; exit 1 ;;

esac
done

Problem Solving with Shell Scripts 377

22

As you can see, the options understood by the script in non-interactive mode are

• -n for the name (sets NAME)

• -e for the e-mail address (sets EMAIL)

• -a for the postal address (sets ADDR)

• -p for the phone number (sets PHONE)

After you have obtained the required information, you can update the file by appending a
formatted record to the end of the addressbook file as follows:

echo “$NAME:$EMAIL:$ADDR:$PHONE” >> “$MYADDRESSBOOK”

Here you are assuming that the variable MYADDRESSBOOK contains the pathname to the
address book file.

The complete addperson script is given in Listing 22.3 (the line numbers are provided
for your reference).

LISTING 22.3 Complete Listing of the addperson Script

1 #!/bin/sh
2 # Name: addperson
3 # Desc: add a person addressbook
4 # Args: -n <name>
5 # -e <email>
6 # -a <postal address>
7 # -p <phone number>
8
9 # initialize the variables
10
11 PATH=/bin:/usr/bin
12 MYADDRESSBOOK=$HOME/addressbook
13 NAME=””
14 EMAIL=””
15 ADDR=””
16 PHONE=””
17
18 # create a function to remove the : from user input
19
20 remove_colon() { echo “$@” | tr ‘:’ ‘ ‘ ; }
21
22 if [$# -lt 1] ; then
23
24 # this is interactive mode
25
26 # enable erasing input
27
28 stty erase ‘^?’

378 Hour 22

LISTING 22.3 Continued

29
30 # prompt for the info
31
32 printf “%-10s “ “Name:” ; read NAME
33 printf “%-10s “ “Email:” ; read EMAIL
34 printf “%-10s “ “Address:” ; read ADDR
35 printf “%-10s “ “Phone:” ; read PHONE
36
37 else
38
39 # this is noninteractive mode
40
41 # initialize a variable for the usage statement
42
43 USAGE=”`basename $0` [-n name] [-e email] [-a address]

➥[-p phone]”
44
45 # scan the arguments to get the info
46
47 while getopts n:e:a:p:h OPTION
48 do
49 case $OPTION in
50 n) NAME=”$OPTARG” ;;
51 e) EMAIL=”$OPTARG” ;;
52 a) ADDR=”$OPTARG” ;;
53 p) PHONE=”$OPTARG” ;;
54 \?|h) echo “USAGE: $USAGE” >&2 ; exit 1 ;;
55 esac
56 done
57 fi
58
59 NAME=”`remove_colon $NAME`”
60 EMAIL=”`remove_colon $EMAIL`”
61 ADDR=”`remove_colon $ADDR`”
62 PHONE=”`remove_colon $PHONE`”
63
64 echo “$NAME:$EMAIL:$ADDR:$PHONE” >> “$MYADDRESSBOOK”
65
66 exit $?

This script first initializes its variables (lines 11–16). Then you set the internal variables
that store the user information to null in order to avoid conflicts with exported variables
from the user’s environment.

The next step is to create the following function (line 20):

remove_colon() { echo “$@” | tr ‘:’ ‘ ‘ ; }

Problem Solving with Shell Scripts 379

22

You use this function to make sure that the user’s input doesn’t contain any colons.

Then you check to see whether any arguments are given (line 22). If no arguments are
given, you enter interactive mode (lines 23–36); otherwise, you enter non-interactive
mode (lines 38–56).

In interactive mode, you prompt for each piece of information and read it in. Before you
produce the first prompt, you issue a stty command (line 28) to make sure the user can
erase any mistakes made during input.

In non-interactive mode, you use getopts to obtain the information provided on the
command line. In this section you also initialize the variable USAGE that contains the
usage statement for this command.

After you have obtained the necessary information, you call the remove_colon function
for each variable (lines 59–62). Because the user can potentially specify information that
contains colons, skipping this step could corrupt the address book and confuse the show-
person script. Finally you update the address book and exit.

An example of using the script in interactive mode is

$./addperson
Name: James Kirk
Email: jim@enterprise-a.starfleet.mil
Address: 1701 Main Street James Town Iowa UFP
Phone:

Here you provided only the name, e-mail address, and postal address for Jim Kirk. Thus
when you look up James Kirk in the address book, you find that his phone number is
empty:

$./showperson
Name: James Kirk
Email: jim@enterprise-a.starfleet.mil
Address: 1701 Main Street James Town Iowa UFP
Phone:

You can do the same operation using the non-interactive form of the command as
follows:

$./addperson -n “James Kirk” -e jim@enterprise-a.starfleet.mil \
-a “1701 Main Street James Town Iowa UPF”

Notice that on the command line you need to quote the entries that contain spaces.

Deleting a Person
Occasionally, you will need to delete a person from the address book. In this section, you
will look at a script called delperson that deletes people from the address book.

380 Hour 22

Deleting a person from the address book is a harder task because you have to confirm
each record selected for deletion. The two main tasks you need to perform are

1. Make a list of the lines in the address book that match the specified name.

2. Based on user feedback, delete the appropriate entries from the address book.

Because the delete operation can potentially remove information from the address book,
you have to be extra careful about making backups and working on a copy of the address
book rather than on the original address book.

To simplify prompting and printing error messages, this script uses the shell function
library libTYSP2.sh that was introduced in Chapter 21.

The basic flow of the script is as follows:

1. Make a copy of the address book and use the copy for all modifications.

2. Get a list of all matching lines from this copy and store them in a deletion file.

3. For each record in the deletion file, print out the record and ask the user whether
that line should be deleted.

4. If the user wants the record deleted, remove that record from the copy of the
address book.

5. After the deletions are complete, make a backup of the original address book.

6. Make the edited copy the address book.

7. Clean up temporary files and exit.

For each of these steps, you use a function to make sure that the operations performed
succeeded.

The complete delperson script is given in Listing 22.4 (the line numbers are provided
for your reference).

LISTING 22.4 Complete Listing of the delperson Script

1 #!/bin/sh
2 # Name: delperson
3 # Desc: del a person addressbook
4 # Args: $1 -> name of person to delete
5
6 # get the helper functions
7
8 . $HOME/lib/sh/libTYSP2.sh
9
10 PATH=/bin:/usr/bin
11

Problem Solving with Shell Scripts 381

22

LISTING 22.4 Continued

12 # check that a name is given
13
14 if [$# -lt 1] ; then
15 printUSAGE “`basename $0` name”
16 exit 1
17 fi
18
19 # check that the address book exists
20
21 MYADDRESSBOOK=”$HOME/addressbook”
22 if [! -f “$MYADDRESSBOOK”] ; then
23 printERROR “$MYADDESSBOOK does not exists, or is

➥not a file.”
24 exit 1
25 fi
26
27 # initialize the variables holding the location of the
28 # temporary files
29 TMPF1=/tmp/apupdate.$$
30 TMPF2=/tmp/abdelets.$$
31
32 # function to clean up temporary files
33
34 doCleanUp() { rm “$TMPF1” “$TMPF1.new” “$TMPF2” 2>

➥/dev/null ; }
35
36 # function to exit if update failed
37 Failed() {
38 if [“$1” -ne 0] ; then
39 shift
40 printERROR $@
41 doCleanUp
42 exit 1
43 fi
44 }
45
46 # make a copy of the address book for updating,
47 # proceed only if sucessful
48
49 cp “$MYADDRESSBOOK” “$TMPF1” 2> /dev/null
50 Failed $? “Could not make a backup of the address book.”
51
52 # get a list of all matching lines from the address book copy
53 # continue if one or more matches were found
54
55 grep “$1” “$TMPF1” > “$TMPF2” 2> /dev/null
56 Failed $? “No matches found.”
57
58 # prompt the user for each entry that was found

382 Hour 22

LISTING 22.4 Continued

59
60 exec 5< “$TMPF2”
61 while read LINE <&5
62 do
63
64 # display each line formatted
65
66 echo “$LINE” | awk -F: ‘{
67 printf “%-10s %s\n%-10s %s\n%-10s %s\n%-10s %s\n\n”,\
68 “Name:”,$1,”Email:”,$2,”Address:”,$3,

➥”Phone:”,$4 ;
69 }’
70
71 # prompt for each line, if yes try to remove the line
72
73 promptYESNO “Delete this entry” “n”
74 if [“$YESNO” = “y”] ; then
75
76 # try to remove the line, store the updated version
77 # in a new file
78
79 grep -v “$LINE” “$TMPF1” > “$TMPF1.new” 2> /dev/null
80 Failed $? “Unable to update the address book”
81
82 # replace the old version with the updated version
83
84 mv “$TMPF1.new” “$TMPF1” 2> /dev/null
85 Failed $? “Unable to update the address book”
86
87 fi
88 done
89 exec 5<&-
90
91 # save the original version
92
93 mv “$MYADDRESSBOOK” “$MYADDRESSBOOK”.bak 2> /dev/null
94 Failed $? “Unable to update the address book”
95
96 # replace the original with the edited version
97
98 mv “$TMPF1” “$MYADDRESSBOOK” 2> /dev/null
99 Failed $? “Unable to update the address book”
100
101 # clean up
102
103 doCleanUp
104
105 exit $?

Problem Solving with Shell Scripts 383

22

In the first part of the script (lines 8–30), you perform some initialization steps:

1. Retrieve the helper functions from libTYSP2.sh (line 8).

2. Check to make sure a name to delete is given (lines 14–17).

3. Check to make sure that the address book exits (lines 21–25).

4. Initialize the variables for the temporary files (lines 29 and 30) and the PATH
(line 10).

After initialization, you create a few additional helper functions:

• doCleanUp to remove the temporary files (line 34)

• Failed to issue an error message, remove the temporary files, and exit if a critical
command fails (lines 37–44)

The first step in the script is to make a copy of the address book (line 49). If this step
fails, you exit (line 50). If this step is successful, you make a list of all the lines in the
address book that match the name specified by the user (line 55). If you cannot success-
fully make this file, you exit (line 56).

Next you enter the delete loop (lines 60–89). For each line that matches the name pro-
vided by the user, you print a formatted version of the line (lines 66–69). Notice that you
are using the same awk statement used in the showperson script.

For each matching line, ask the user whether the entry should be deleted (line 73). If the
user agrees (line 74), you do the following:

1. Try to delete the line from the copy of the address book. Store the modified version
in a different file (line 79).

2. Replace the copy of the address book with the modified copy (line 84).

If either of these operations fails, you exit (lines 80 and 85).

After the deletions are finished, you make a backup of the original address book (line
93). Then you replace the address book with the edited version (line 98). Again you exit
if either operation fails (lines 94 and 99).

Finally you clean up and exit.

Here is an example of this script in action:

$./delperson Sriranga
Name: Sriranga Veeraraghavan
Email: ranga@soda.berkeley.edu
Address: 1136 Wunderlich Dr. San Jose CA
Phone: 408-444-4444

Delete this entry (y/n)? [n] y

384 Hour 22

Here you replied yes to the question. You can confirm that the delete worked as follows:

$./showperson Sriranga
$

Because there is no output from showperson, you know that this entry has been deleted.

Summary
This chapter covered using shell scripts to solve two problems:

• Creating init or startup scripts

• Maintaining an address book

In the first example, you learned how the system boots and how scripts are used to
streamline this process. In the second example, you developed three scripts that modify
and view the contents of an address book. Some of the highlights of these scripts are

• The showperson script showed you how the grep and awk commands can be used
to format input.

• The addperson script showed you how a single script can be used in both interac-
tive and non-interactive modes.

• The delperson script showed you how to use the grep command and file descrip-
tors to update a file accurately.

The examples in this chapter demonstrate how you can apply the tools covered in previ-
ous chapters to solve real problems. Using these scripts as examples, you can see some
of the techniques used to solve everyday problems.

The next chapter explores several methods of writing scripts to ensure that they are
portable between different versions of UNIX.

Questions
1. Add a check to the sshd init script that verifies if the user is root. (Init scripts

should only be executed by root).

HINT: Use the id and sed commands.

2. The showperson script lists all matching entries in the address book based on a
name provided by the user. The matches produced are case sensitive. How can you
change the script matches so they aren’t case sensitive?

Problem Solving with Shell Scripts 385

22

3. Both the showperson and delperson scripts reproduce the following code
PATH=/bin:/usr/bin

check that a name is given

if [$# -lt 1] ; then
printUSAGE “`basename $0` name”
exit 1

fi

check that the address book exists

MYADDRESSBOOK=”$HOME/addressbook”
if [! -f “$MYADDRESSBOOK”] ; then

printERROR “$MYADDESSBOOK does not exists, or is
➥not a file.”
exit 1

fi

and
awk -F: ‘{

printf “%-10s %s\n%-10s %s\n%-10s %s\n%-10s
➥%s\n\n”,\

“Name:”,$1,”Email:”,$2,”Address:”,$3,
➥”Phone:”,$4 ;

}’

How might you rewrite these scripts so that this code can be shared between the
two scripts instead of being replicated in both?

4. The delperson script uses the grep command to generate a list of matching
entries. This might confuse the user in the following instance:
$./delperson to
Name: James T. Kirk
Email: jim@enterprise.mil
Address: 1701 Main Street Anytown Iowa
Phone: 555-555-5555

Delete this entry (y/n)? [n]

Here the to in Anytown was matched.

What changes should be made to the delperson script so that only those entries
whose names match the user-specified name are selected for deletion?

(HINT: Use the sed command instead of grep.)

5. If delperson gets a signal while it is processing deletes, all the intermediate files
are left behind. What can be done to prevent this?

386 Hour 22

Terms
Init Scripts Simple scripts, originally stored in /sbin/init.d, that are responsible for
starting and stopping a program.

Run-levels Partition the system startup into seven levels (zero through six) and provide
a method for enforcing startup dependencies and partitioning the startup of system ser-
vices into the different levels.

Problem Solving with Shell Scripts 387

22

HOUR 23
Scripting for Portability

Shell programming is an important part of UNIX because shell scripts
are easily portable to many different versions of UNIX. In many cases,
shell scripts will function correctly on multiple systems without modifi-
cation.

The easiest way to ensure that a shell script is completely portable is to
restrict the script to using only those commands and features that are avail-
able on all versions of UNIX. Sometimes this means that the script must
implement workarounds to deal with the limitations of a particular version
of UNIX.

In this chapter, we will examine the following topics that relate to shell
script portability:

• Determining the version of UNIX a system is running

• Adapting shell scripts to different versions of UNIX

Determining UNIX Versions
Before you can begin adjusting shell scripts to be portable, you need to know what the dif-
ferent types of UNIX are and how to tell them apart. The three major types of UNIX are

• BSD (Berkeley Software Distribution)

• System V

• Linux

The locations of commands and the options supported by certain commands are different
among these three types of UNIX. This chapter highlights some of the major differences
pertaining to commands in particular.

BSD
UNIX was first developed in the 1970s at AT&T’s Bell Labs. For many years it remained
restricted to AT&T and a few universities. In the early 1980s, the University of California
at Berkeley acquired the source code to UNIX from AT&T Bell Labs. Throughout the
1980s and into the early 1990s, the Berkeley Systems Research Group made significant
improvements and advancements to UNIX. These improvements were periodically dis-
tributed under the name Berkeley Software Distribution or BSD.

In the early 1990s, the Berkeley team disbanded and released the source code to the pub-
lic. Several groups and companies adopted the BSD source and provided their own ver-
sions of BSD. The three major groups currently developing freely available versions
BSD are

• The FreeBSD Project: http://www.freebsd.org

• The NetBSD Foundation: http://www.netbsd.org

• OpenBSD: http://www.openbsd.org

Currently the two major companies involved in BSD development and distribution are
Apple Computer and Wind River Systems. Apple’s MacOS X is based on FreeBSD.
Wind River’s BSD/OS is also based on FreeBSD. Another commercial version of BSD is
Sun Microsystems’ SunOS4. Sun has not supported or developed SunOS4 since the early
1990s, but it is still quite popular at some universities.

System V
System V (sometimes abbreviated as SysV) is the latest version of UNIX released by
AT&T Bell Labs. System V UNIX is the standard for most commercial versions of
UNIX. Both Sun Microsystems’ Solaris and Hewlett-Packard’s HP-UX are based on
System V UNIX.

390 Hour 23

Some of the new features added to UNIX in System V are

• A new boot system

• A networking subsystem known as STREAMS

• A process-to-process communication and memory sharing system

• Standardized system administration tools

• A prepackaged software installation and removal system

System V UNIX also changed the layout of the file system. Table 23.1 lists the BSD
directories and their System V equivalents.

TABLE 23.1 System V Equivalents of BSD Directories

BSD System V

/bin /usr/bin

/sbin /usr/sbin

/usr/adm /var/adm

/usr/mail /var/mail or /var/spool/mail

/usr/tmp /var/tmp

The directories /bin and /sbin still exist on some System V–based UNIX versions.
On Solaris, these directories are links to /usr/bin and /usr/sbin, respectively. On
HP-UX, these directories still contain some commands essential at boot time. The com-
mands stored in these directories are not the same commands as in BSD. Most vendors
who have switched from BSD to System V still provide BSD versions in the directory
/usr/ucb.

In addition to these changes, many System V–based UNIX versions have introduced the
directory /opt in an attempt to standardize the installation locations of prepackaged soft-
ware products. On older systems, many different locations, including /usr, /usr/con-
trib, and /usr/local, were used to install optional software packages.

Linux
Linux can be considered as a third version of UNIX. It was developed independent of
either the BSD or the System V source code. Linux was written by Linus Torvalds at the
University of Helsinki in the early 1990s. It incorporates the best features found in both
System V and BSD. The commands and the networking layer in Linux are similar to
BSD, whereas the standardized tools for system configuration and installation of
prepackaged software are similar to System V. Some of the major vendors of Linux are
Caldera, Debian, Mandrake, Red Hat, Slackware, and SuSE.

Scripting for Portability 391

23

Dealing with SunOS
SunOS is the name of the UNIX operating system developed by Sun Microsystems.
SunOS was originally based on BSD UNIX but has since changed to be based on System
V UNIX. Although the marketing name has been changed to Solaris, uname still produces
the output SunOS. Shell scripts that have to run on both Solaris and earlier BSD-based
versions of SunOS, such as SunOS4, need to differentiate between these two versions.

To determine whether a system is running Solaris or SunOS, you can check the version
of the operating system. SunOS versions 5 and higher are Solaris (System V–based);
SunOS versions 4 and lower are SunOS (BSD-based).

To determine the version of the operating system, you can use the -r option of uname:

$ uname -r
5.5.1

This indicates that the version of the operating system is 5.5.1. If you want to add the
operating system’s name to this output, use the -r and the -s options:

$ uname -rs
SunOS 5.5.1

This indicates the machine is running Solaris. The output on a machine running BSD-
based SunOS4 might be

SunOS 4.1.3

Determining the Hardware Type
Sometimes a shell script is written as a wrapper around a hardware-specific program. For
example, install scripts are usually the same for different hardware platforms supported
by a particular operating system. Although the install script might be the same for every
hardware platform, the files that are installed are usually different.

To determine the hardware type, you can use the -m option:

$ uname -m
sun4m

Some common return values and their hardware types are listed in Table 23.4.

TABLE 23.4 Hardware Types Returned by the uname Command

Hardware Description

9000/xxx Hewlett-Packard 9000 series workstation. Some common values of xxx are
700, 712, 715, and 750.

i386 Intel 386-, 486-, Pentium-, or Pentium II–based workstation.

Scripting for Portability 393

23

TABLE 23.4 Continued

Hardware Description

i586 A system using an Intel Pentium II, III, or newer processor.

sun4x A Sun Microsystems workstation. Some common values of x are c

(SparcStation 1 and 2), m (SparcStation 5, 10, and 20), and u (UltraSparc).

Power Macintosh An Apple Macintosh running MacOS X.

Determining the hostname of a System
Many shell scripts need to check the hostname of a system. The traditional method of
doing this on BSD systems is to use the hostname command, as in the following
example:

$ hostname
soda.CSUA.Berkeley.EDU

In System V and Linux, the hostname command is not always available. The uname -n
command should be used instead:

$ uname -n
kashi

Because the uname -n command is available on both System V and BSD UNIX, it is
preferred for use in portable shell scripts.

Determining the UNIX Version Using a Function
You have just looked at using the uname command to gather information about the version
of UNIX that a particular system is running. Now you need a method for using this infor-
mation in a shell script. As you saw in Chapter 21, “Problem Solving with Functions,”
creating a shell function to perform this task will give you the greatest flexibility:

getOSName() {
case “`uname -s`” in

*BSD)
echo bsd ;;

Darwin)
echo darwin ;;

SunOS)
case “`uname -r`” in

5.*) echo solaris ;;
*) echo sunos ;;

esac
;;

Linux)
echo linux ;;

HP-UX)

394 Hour 23

Techniques for Increasing Portability
There are two common techniques to increase the portability of a shell script between
different versions of UNIX:

• Conditional execution

• Abstraction

Conditional execution alters the execution of a script based on the system type, whereas
abstraction retains the same basic flow of the script by placing the conditional statements
within functions.

Conditional Execution
A script that uses conditional execution for portability contains an if statement at the
beginning that sets several variables indicating the set of commands to use on a particular
platform. This section looks at two common cases in which conditional execution is used:

• Determining the remote shell command

• Determining the proper method of using the echo command in prompts

The first case illustrates setting a variable based on the operating system type. The sec-
ond case illustrates setting variables based on the behavior of a command (echo) on a
particular system.

Executing Remote Commands
A common use of conditional execution is found in scripts that need to execute com-
mands on remote systems. On most versions of UNIX, you can use the rsh (remote
shell) command to execute commands on a remote system. Unfortunately, this command
is not available on all versions of UNIX. On HP-UX, for example, rsh is available but it
is not the remote shell program—it is the restricted shell program. On HP-UX, you need
to use the command remsh to execute commands on a remote system.

A script that needs to execute commands on a remote system might have an if statement
of the following form at its beginning:

if SystemIS HPUX ; then
RCMD=remsh

else
RCMD=rsh

fi

After the variable $RCMD is set, remote commands can execute as follows:

“$RCMD” host command

Here, host is the hostname of the remote system, and command is the command to execute.

396 Hour 23

Problems with the echo Command in Prompts
Most programs that need to prompt the users need to be able to print a prompt that is not
terminated by a newline. In Chapter 5, “Input and Output,” there were several problems
with using the \c escape sequence of the echo command to do this. The workaround was
to use the /bin/echo command.

Although this works for UNIX versions based on System V, on some BSD-based systems
this does not work. You need to specify the -n option to echo instead. By using the fol-
lowing shell script, you can create a shell function, echo_prompt, to display a prompt
reliably across all versions of echo:

_ECHO=/bin/echo
_N=
_C=”\c”
ECHOOUT=`$_ECHO “hello $_C”`
if [“$ECHOOUT” = “hello \c”] ; then

_N=”-n”
_C=

fi
export _ECHO _N _C

echo_prompt() { $_ECHO $_N $@ $_C ; }

This script fragment uses the /bin/echo workaround as the base from which to construct
the correct echo command. It checks the output of an echo command to determine
whether the \c sequence is handled correctly. If it is not, the -n option is enabled.

After the appropriate values have been determined, the function echo_prompt is created
using these values. This function enables you to reliably output prompts on every system.

Abstraction
Abstraction is a technique used to hide the differences between the versions of UNIX
inside shell functions. By doing this, the overall flow of a shell script is not affected.
When a function is called, it makes a decision as to what commands to execute.

You will learn about two different examples of abstraction:

• Adapting the getSpaceFree function to run on HP-UX

• Adapting the getPID function to run on both BSD and System V

This section uses the functions getOSName and isOS, given earlier in this chapter.

Adapting getSpaceFree for HP-UX
Recall the getSpaceFree function introduced in Chapter 21:

getSpaceFree() {
if [$# -lt 1] ; then

Scripting for Portability 397

23

echo “ERROR: Insufficient Arguments.” >&2
return 1

fi

DIR=”$1”
if [! -d “$DIR”] ; then

DIR=`/usr/bin/dirname $DIR`
fi

df -k “$DIR” | awk ‘NR != 1 { print $4 ; }’
}

This function prints the amount of free space in a directory in kilobytes. Its output is
used in the isSpaceAvailable function to determine whether there is enough space in a
particular directory. Although this works for most systems (Solaris, Linux, BSD), it does
not work on HP-UX systems because the output of df -k on HP-UX systems is quite
different from other versions of UNIX:

$ df -k /usr/sbin
/usr (/dev/vg00/lvol8) : 737344 total allocated Kb

368296 free allocated Kb
369048 used allocated Kb

50 % allocation used

To get the output in a format that is easier to parse, you need to use the command df -b
instead:

$ df -b /usr/sbin
/usr (/dev/vg00/lvol8) : 392808 Kbytes free

In order to use isSpaceAvailable on all systems, including HP-UX, you need to change
the function getSpaceFree to take this into account. The modified version looks like the
following:

getSpaceFree() {
if [$# -lt 1] ; then

echo “ERROR: Insufficient Arguments.” >&2
return 1

fi

DIR=”$1”
if [! -d “$DIR”] ; then

DIR=`/usr/bin/dirname $DIR`
fi

if isOS HPUX ; then
df -b “$DIR” | awk ‘{ print $5 ; }’

else
df -k “$DIR” | awk ‘NR != 1 { print $4 ; }’

fi
}

Here, the isOS function is called in order to determine the command to execute.

398 Hour 23

Adapting getPID for BSD
Recall the getPID function introduced in Chapter 21:

getPID() {

if [$# -lt 1] ; then
echo “ERROR: Insufficient Arguments.” >&2
return 1

fi

PSOPTS=”-ef”

/bin/ps $PSOPTS | grep “$1” | awk ‘/grep/ { next; } { print $2; }’
}

This function works correctly only on systems where the ps -ef command produces a
listing of all running processes. On BSD systems and older Linux systems, you need to
use the command

ps -auwx

to get the correct output. This command works correctly on BSD system but older Linux
systems produce the following warning message:

warning: ‘-’ deprecated; use ‘ps auwx’, not ‘ps -auwx’

By using the getOSName function given earlier in this chapter, you can adapt the getPID
function to work with the BSD, Linux, and System V versions of ps. The modified ver-
sion of getPID is as follows:

getPID() {

if [$# -lt 1] ; then
echo “ERROR: Insufficient Arguments.” >&2
return 1

fi

case `getOSName` in
bsd|sunos|linux|darwin)

PSOPTS=”-auwx” ;;
*)

PSOPTS=”-ef” ;;
esac

/bin/ps $PSOPTS 2>/dev/null | grep “$1” | \
awk ‘/grep/ { next; } { print $2; }’

}

Scripting for Portability 399

23

The two main changes to the function are

• A case statement sets the variable PSOPTS based on the operating system name.

• The STDERR of ps is redirected to /dev/null in order to discard the warning
message generated on older versions of Linux.

400 Hour 23

Linux ps

In Linux the ps command varies between different versions. In older versions of Linux
(2.0), the hyphen in the -auwx command is not properly supported, whereas in current
versions the hyphen is supported, as are the System V style -ef options. Taking this into
account, you could modify the getPID() functions as follows:

getPID() {

if [$# -lt 1] ; then
echo “ERROR: Insufficient Arguments.” >&2
return 1

fi

PSOPTSPTS=”-ef”
case `getOSName` in

bsd|sunos|darwin)
PSOPTSPTS=”-auwx” ;;

linux)
case `uname -r` in

[01].*) PSOPTS=”-auwx” ;;
2.0*) PSOPTS=”auwx” ;;

esac
;;

esac

/bin/ps $PSOPTS | grep “$1” | \
awk ‘/grep/ { next; } { print $2; }’

}

This version avoids having to redirect STDERR to /dev/null and allows you to detect any
problems that might be reported by the ps command.

Summary
In this chapter, you learned how to determine which version of UNIX is running using
uname. In addition, you developed the getOSName and isOS functions to help adapt shell
scripts to multiple versions of UNIX. You also looked at the following techniques for
improving the portability of shell scripts:

• Conditional execution

• Abstraction

In conditional execution, the flow of a script was modified depending on the version of
UNIX being used. In abstraction, function implementations were altered to account for
the differences between versions of UNIX; the overall flow of the script remained the
same.

Using the techniques and tips in this chapter, you can port shell scripts across different
versions of UNIX.

Question
1. Write a function called getCharCount that prints the number of characters in a file.

Use wc to obtain the character count.

Linux, FreeBSD, and SunOS (not Solaris), use the -c option for wc, whereas other
versions of UNIX use the -m option. Feel free to use the function getOSName.

Terms
Abstraction Scripts that use abstraction retain the same basic flow by placing the con-
ditional execution statements within functions. When a function is called, it decides
which commands to execute on a given platform.

Conditional Execution Alters the execution of a script based on the system type. A
script that uses conditional execution usually contains an if statement at the beginning of
the script that sets variables to indicate the commands to use on a particular platform.

Scripting for Portability 401

23

HOUR 24
Shell Programming FAQs

Each of the previous chapters has focused on an individual topic in shell
programming, such as variables, loops, or debugging. As you progressed
through the book, you worked on problems that required knowledge from
previous chapters. This chapter takes a slightly different approach by trying
to answer some frequently asked shell programming questions. Specifically,
this chapter covers questions from three main areas of shell programming:

• The shell and commands

• Variables and arguments

• Files and directories

Each section includes several common shell programming questions (and
answers!). These questions are designed to help you solve or avoid com-
mon problems. Some of the questions provide deeper background informa-
tion about UNIX, whereas others illustrate concepts covered in previous
chapters.

Shell and Command Questions
This section covers some of the common questions about the shell itself and how the
shell executes commands.

Why does #!/bin/sh have to be the first line of my scripts?
Chapter 2, “Script Basics,” stated that #!/bin/sh must be the first line in your script to
ensure that the correct shell is used to execute your script. This line must be the first
line in your shell script because of the underlying mechanism used by a shell to execute
commands.

When you ask a shell to execute a command as follows

$ date

The shell uses the exec system call to ask the UNIX kernel to execute the command you
requested. System calls are C language functions built in to the UNIX kernel that enable
you to access features of the kernel. The shell passes the name of the command that
should be executed to the exec system call. This system call reads the first two characters
in a file to determine how to execute the command. In the case of shell scripts, the first
two characters are #!, indicating that the script needs to be interpreted by another pro-
gram instead of executed directly. The rest of the line is treated as the name of the inter-
preter to use.

Usually the interpreter is /bin/sh, but you can also specify options to the shell on this
line. Sometimes options such as -x or -nv are specified to enable debugging. This also
enables you to write scripts tuned for a particular shell such as ksh, bash, or zsh by
using /bin/ksh, /bin/bash, or /bin/zsh instead of /bin/sh. (The exact path to the
shell may vary from system to system.)

How can I access the name of the current shell in my
initialization scripts?
In your shell initialization scripts, the name of the current shell is stored in the variable $0.

Users who have a single .profile that is shared by sh, ksh, and bash use this variable in
conjunction with a case statement near the end of this file to execute additional
shell–specific startups. For example, you can use the following case statement in your
.profile to set up the prompt, PS1, differently depending on the shell:

case “$0” in
*bash) PS1=”\t \h \#$ “ ;;
*ksh) PS1=”`uname -n` !$ “ ;;
*sh) PS1=”`uname -n`$ “ ;;

esac
export PS1

404 Hour 24

Here, you have specified the shells as *bash, *ksh, and *sh, because some versions of
UNIX place the - character in front of login shells, but not in front of other shells.

How do I tell whether the current shell is interactive or non-
interactive?
Some scripts need the capability to determine whether they are running in an interactive
shell or a non-interactive shell. Usually this is restricted to your shell initialization scripts
because you don’t want to perform a full-blown initialization every time these scripts exe-
cute. Some other examples include scripts that can run from the at or cron commands.

You can tell whether a shell is interactive by checking the value of the variable $-. If the
value contains the letter i, the shell is interactive. Otherwise, it is non-interactive. The
following case statement illustrates one method for checking the value of $-:

case $- in
i) : # interactive

commands for interactive shells go here
;;

*) : # non interactive
commands for non-interactive shells go here

;;
esac

The following example illustrates the use of this case statement:

isInteractive () {
case $- in

i) echo Interactive ; ec=0 ;;
*) echo Non-Interactive ; ec=1 ;;

esac
return $ec

}

This function can be used to determine whether the current shell is interactive.

How do I discard the output of a command?
Sometimes you will need to execute a command, but you don’t want the output displayed to
the screen. In these cases you can discard the output by redirecting it to the file /dev/null:

cmd > /dev/null

Here cmd is the name of the command you want to execute. The file is a special file
(called the bit bucket) that automatically discards all its input. For example, the following
command discards the output of the grep command:

if grep soda /etc/hosts > /dev/null ; then
echo ‘Soda found!’

fi

Shell Programming FAQs 405

24

Because commands also output error messages, you will often have to redirect STDERR
to /dev/null. If you do not redirect STDERR, when a command fails your script will
display that error message, which can be confusing to a user. To discard both output of a
command and its error output, you can redirect STDERR (file descriptor 2) to STDOUT
(file descriptor 1) and redirect STDOUT to /dev/null as follows:

cmd > /dev/null 2>&1

The following example illustrates redirecting both STDERR and STDOUT to
/dev/null:

if grep soda /etc/hosts > /dev/null 2>&1 ; then
echo ‘Soda found!’

fi

How can I display messages on STDERR?
You can display a message on to STDERR by redirecting STDIN into STDERR as
follows:

echo msg 1>&2

Here msg is the message you want to display. For example, the output of the following
command is displayed on STDERR instead of STDOUT:

$ echo ‘This is an error message’ 1>&2

If you are interested in shell functions that perform additional formatting, please consult
Chapter 21, “Problem Solving with Functions,” which covers several shell functions that
display messages on to STDERR.

How can I determine whether a command executed
successfully?
You can determine whether a command executed successful by checking the command’s
exit code, which the shell stores in the variable $?. By convention, the exit code of a suc-
cessful command is 0. A nonzero exit code indicates a failure.

An if statement of the following form is often used to check whether a command exe-
cuted successfully:

cmd
if [$? -eq 0] ; then

: # cmd successful
else

: # cmd failed
fi

406 Hour 24

Here cmd is a command whose exit status needs to be checked. The following example
illustrates this:

grep soda /etc/hosts > /dev/null 2>&1
if [$? -ne 0] ; then

echo “Soda Found!”
else

echo “No entry in /etc/hosts for soda.”
fi

Here you execute a grep command and then check the exit status of that command using
the value stored in $?.

How do I determine whether the shell can find a particular
command?
You can check to make sure that the shell can find a command or shell function by using
the type command covered in Chapter 18, “Other Tools”:

type cmd > /dev/null 2>&1
if [$? -eq 0] ; then

: # we have cmd, execute commands that require cmd
else

: # we don’t have cmd, execute alternate commands (if any)
fi

Here cmd is the name of the command you want check for. The type command is a built-
in in sh, bash, and zsh. In ksh, type is usually an alias, whence -v.

An alternate form omits the explicit checking of the exit status stored in $?:

if type cmd > /dev/null 2>&1 ; then
: # we have cmd, execute commands that require cmd

else
: # we don’t have cmd, execute alternate commands (if any)

fi

This form relies on the fact that if interprets an exit code of 0 as true.

The following example illustrate a possible use of the type command:

if type basename > /dev/null 2>&1 ; then
: # we have basename, nothing to do

else
we don’t have basename, define a function that
implements the same functionality
basename () {

if [-n “$1”] ; then
echo “$1” | sed -e ‘s/^.*\///’

else
echo “Usage: basename [file]” 1>&2
return 1

Shell Programming FAQs 407

24

fi
return 0

}
fi

This if statement checks to see if basename exists; if it does not, a function implementa-
tion is defined.

Can I use the && and || operators to conditionally execute
commands?
The && and || operators are often used to conditionally execute commands. The basic
syntax for using these operators is

cmd1 op cmd2

Here cmd1 and cmd2 are two commands and op is the && or || operator. If op is && then
cmd2 is executed only when cmd1 is successful. If op is || then cmd2 is executed only
when cmd1 fails.

The following example illustrates the use of &&:

type bash > /dev/null 2>&1 &&
{ HAVE_BASH=1 ; echo “bash found” ; }

This command is equivalent to the following if statement:

type bash > /dev/null 2>&1
if [$? -eq 0] ; then

HAVE_BASH=1
echo “bash found”

fi

The following example illustrates the use of ||:

grep soda /etc/hosts > /dev/null 2>&1 || echo ‘Soda not found!’

This command is equivalent to the following if statement:

grep soda /etc/hosts > /dev/null 2>&1
if [$? -ne 0] ; then

echo ‘Soda not found!’
fi

How do I execute some commands in a separate shell?
The easiest way to execute a set of commands in a separate shell is to use the parentheses,
(), as follows:

(list ;)

408 Hour 24

Here the variable arg will be set to each argument in turn. The specified list of com-
mands, list, will be executed for each argument. The following function illustrates the
use of this for loop:

echoargs () {
for arg in “$@”
do

echo $arg
done
return 0

}

How can I forward all the arguments given to my script to
another command?
A common task of shell programmers is writing a wrapper script for a command. A
wrapper script might need to define a set of variables or change the environment in some
way before a particular command starts executing.

When writing wrapper scripts, you need to forward all the arguments given to your script
to a command. Usually the following is sufficient:

cmd “$@”

Here cmd is the name of the command you want to execute.

The one problem with this is that if no arguments were specified to your script, some
versions of the shell will expand “$@” to “”. If no arguments were specified, you want to
execute cmd, not cmd “”. To avoid this problem, you can use the following:

command ${@:+”$@”}

Here you are using one of the forms of variable substitution discussed in Chapter 9,
“Substitution.” In this case you check to see whether the variable $@ has a value. If it
does, you substitute the value “$@” for it. If your script was not given any command-line
arguments, $@ will be null; thus no value will be substituted.

How do I use the value of a shell variable in a sed command?
The simplest method to use variables in a sed command is to enclose your sed command
in double quotes (“) instead of single quotes (‘). Because the shell performs variable
substitution on double-quoted strings, the shell will substitute the value of any variables
you specify before sed executes.

For example, the command

sed “/$DEL/d” file1 > file2

deletes all the lines in file1 that contain the value stored in the variable $DEL.

410 Hour 24

How can I store the output of a command in a variable?
You can store the output of a command in a variable by combining the assignment opera-
tor, =, and the backquotes, ‘’:

var=`cmd`

Here var is the name of a variable and cmd is the command whose output you want
to store. For example, the following command stores the current date in the variable
THEDATE:

THEDATE=`date`

How do I check to see whether a variable has a value?
There are several methods for determining this. The simplest is the if statement:

if [-z “$VAR”] ; then
list ;

fi

Here VAR is the name of the variable, and list is the list of commands to execute if VAR
does not have a value. Usually list initializes VAR to some default value. For example,
the following command initializes the variable THDATE if it does not have a value:

if [-z “$THEDATE”] ; then
THEDATE=`date`

fi

If you are just interested in variable initialization, this can be accomplished in a much
more succinct fashion using variable substitution. For example, the previous if statement
can be written as

: ${VAR:=default}

Here default is the default that should be assigned to VAR, if VAR does not have a value.
If you need to execute a set of commands to obtain a default value, the backquotes (``)
can be used to obtain the value to be substituted:

: ${VAR:=`default`}

Here default is a list of commands to execute. If VAR does not have a value, the output
of these commands will be assigned to it. The following command also initializes the
variable THEDATE:

: ${THEDATE:=`date`}

Shell Programming FAQs 411

24

File and Directory Questions
This section looks at some questions about files and directories. These questions include
issues with specific commands and examples that illustrate the use of commands to solve
particular problems.

How do I determine the absolute pathname of a directory?
Shell scripts that work with directories often need to determine the absolute pathname of
a directory to perform the correct operations on these directories.

You can determine the absolute pathname of a directory by using the cd and pwd com-
mands as follows:

ABSPATH=`(cd dir 2> /dev/null && pwd ;)`

Here dir is the name of a directory. This command changes directories to the specified
directory, dir, and then displays the full pathname of the directory using the pwd com-
mand. Then you assign the output of pwd, which is the full path to dir, to the variable
ABSPATH. Because the cd command changes the working directory of the current shell,
you execute it in a sub-shell. Thus the working directory of the shell script is unchanged.

The following function also provides this functionality:

abspath () { [-n “$1”] && (cd “$1” 2> /dev/null && pwd ;) }

Here, you determine whether the first argument is given and if it is, you cd to that direc-
tory and print its absolute path.

How do I determine the absolute pathname of a file?
Determining the absolute pathname of a file is slightly harder than determining the ab-
solute pathname of a directory. You need to use the dirname and basename commands in
conjunction with the cd and pwd commands to determine the absolute pathname of a file:

CURDIR=`pwd`
cd `dirname file`
ABSPATH=”`pwd`/`basename file`”
cd $CURDIR

Here file is the name of a file whose absolute pathname you want to determine. First
you save the current path of the current directory in the variable CURDIR. Next you move
to the directory containing the specified file, file.

Then you join the output of the pwd command and the name of the file determined
using the basename command to get the absolute pathname. At this point the absolute
pathname of the file is stored in the variable ABSPATH. Finally you change back to the
original directory.

412 Hour 24

As an example, the following function implements this functionality:

absfpath () {
if [-z “$1”] ; then

return 1
fi
CURDIR=”`pwd`”
cd “`dirname $1`”
ABSPATH=”`pwd`/`basename $1`”
cd “$CURDIR”

}

How can I locate a particular file?
The structure of the UNIX directory tree sometimes makes locating files and commands
difficult. To locate a file, often you need to search through a directory and all its subdi-
rectories. The easiest way to do this is with the find command:

find dir -name file -print

Here dir is the name of a directory where find should start its search, and file is the
name of the file it should look for.

The name option of the find command also works with the standard filename substitu-
tion operators covered in Chapter 9. For example, the command

find /home/ranga -name “*.txt” -print

displays a list of all the files in the directory /home/ranga and all its subdirectories that
end with the string .txt.

How can I grep for a string in every file in a directory?
When you work on a large project involving many files, remembering the contents of the
individual files becomes difficult. It is much easier to look through all the files for a par-
ticular piece of information.

You can use the find command in conjunction with the xargs command to look for a
particular string in every file contained within a directory and all its subdirectories:

find dir -type f -print | xargs grep “string”

Here dir is the name of a directory in which to start searching, and string is the string
to look for. Here you specify the -type option to the find command so that only regular
files are searched for the string. As an example, the following command searches all of
the C language include files in /usr/include for the string pid_t:

$ find /usr/include -type f -print | xargs grep pid_t

Shell Programming FAQs 413

24

How do I remove all the files in a directory matching a
particular name?
Some editors and programs create large numbers of temporary files. Often you need to
clean up after these programs, to prevent your hard drive from filling up. The simplest
method to remove a set of files that matches a particular name is to use the find and
xargs commands as follows:

find dir -type f -name “name” -print | xargs rm

Here dir is the pathname of a directory and name is the filename that you want to
remove. For example, the following command removes all of the files that end with ~
from the directory /home/cvs:

find /home/cvs -type f -name “*~” -print | xargs rm

The only limitation in using find and xargs is that xargs cannot properly deal with
pathnames that contain spaces. If you need to delete files whose pathnames contain
spaces you will need to use the -exec option of find rather than xargs:

find dir -type f -name “name” -exec rm ‘{}’ \; -print

What command can I use to rename all the *.aaa files to *.bbb
files?
In DOS and Windows, you can rename all the *.aaa files in a directory to *.bbb by
using the rename command as follows:

rename *.aaa *.bbb

In UNIX you can use the mv command to rename files, but you cannot use it to rename
more than one file at the same time. To do this, you need to use a for loop:

OLDSUFFIX=aaa
NEWSUFFIX=bbb
for FILE in *.”$OLDSUFFIX”
do

NEWNAME=`echo “$FILE” | sed -e “s/${OLDSUFFIX}\$/$NEWSUFFIX/”`
mv “$FILE” “$NEWNAME”

done

Here you generate a list of all the files in the current directory that end with the value of
the variable OLDSUFFIX. Then you use sed to modify the name of each file by removing
the value of OLDSUFFIX from the filename and replacing it with the value of NEWSUFFIX.
You use the $ character in our sed expression to anchor the suffix in OLDSUFFIX to the
end of the line; this ensures that the pattern is really a filename suffix. After you have the
new name, you rename the file from its original name, stored in FILE, to the new name
stored in NEWNAME.

414 Hour 24

To prevent a potential loss of data, you might consider modifying this loop to specify the
-i option to the mv command. For example, if the files 1.aaa and 1.bbb exist prior to
executing this loop, after the loops exits, the original version of 1.aaa will be overwrit-
ten when 1.bbb is renamed as 1.aaa. If mv -i is used, you will be prompted before
1.bbb is renamed:

mv: overwrite 1.aaa (yes/no)?

You can answer no to avoid losing the information in this file. The actual prompt pro-
duced by mv might be different on your system.

What command can I use to rename all the aaa* files to bbb*
files?
The technique used in the last question can be used to solve this problem as well. In this
case, you can use the variables OLDPREFIX to hold the prefix a file currently has and NEW-
PREFIX to hold the prefix you want the file to have. As an example, you can use the fol-
lowing for loop to rename all files that start with aaa to start with bbb instead:

OLDPREFIX=aaa
NEWPREFIX=bbb
for FILE in “$OLDPREFIX”*
do

NEWNAME=`echo “$FILE” | sed -e “s/^${OLDPREFIX}/$NEWPREFIX/”`
mv “$FILE” “$NEWNAME”

done

How can I set my filenames to lowercase?
When you transfer a file from a Windows or DOS system to a UNIX system, the file-
name can end up in all capital letters. You can rename these files to lowercase using the
following command:

for FILE in *
do

mv -i “$FILE” `echo “$FILE” | tr ‘[A-Z]’ ‘[a-z]’` 2> /dev/null
done

Here, you are using the mv -i command in order to avoid overwriting files. For example,
if the files APPLE and apple both exist in a directory, you might not want to rename the
file APPLE.

How do I eliminate carriage returns (^M) in my files?
If you transfer text files from a DOS machine to a UNIX machine, you might see a ^M
(Ctrl-M) before the end of each line. This character corresponds to a carriage return. In
DOS, a newline is represented by the character sequence \r\n, where \r is the carriage
return and \n is newline. In UNIX a newline is represented by just \n. When text files

Shell Programming FAQs 415

24

created on a DOS system are viewed in UNIX, the \r is displayed as ^M. The ^M can be
removed from a file by using the tr command as follows:

tr -d ‘\015’ < file > newfile

Here file is the name of the file that contains the carriage returns, and newfile is the
name you want to give the file after the carriage returns have been deleted. You are using
the octal representation \015 for carriage return, because the escape sequence \r is not
correctly interpreted by some versions of tr.

Summary
This chapter has looked at some common questions encountered in shell programming.
These questions and their answers will help you write bigger and better scripts.

Now that you have finished all 24 chapters, you have learned about using both the basics
of the shell and its advanced features. As you continue to program, use this book as a ref-
erence to help you remember the intricacies of shell programming.

I hope that you learned not only to program efficiently using the shell but also to enjoy
shell programming. Thanks for reading!

416 Hour 24

A Command Quick Reference

B Glossary

C Answers to Questions

D Shell Function Library

PART IV
Appendixes

APPENDIX A
Command Quick
Reference

This appendix summarizes and reviews the following script elements:

• Reserved words and built-in shell commands

• Conditional expressions

• Arithmetic expressions (ksh, bash, and zsh only)

• Parameters and variables

• Parameter substitution

• Pattern matching

• I/O

• Miscellaneous command summaries

• Regular expression wildcards

Reserved Words and Built-in
Shell Commands

Most of the following commands are built-in commands; they are present within the
shell and are not external programs. Some of the shells discussed in this book do not
contain all of these commands, so those commands that are restricted to a particular shell
or shells are noted as so in the description of that command.

Although most of these commands functions the same under the shells covered in this
book, some do not. This appendix describes the commands in general, for the specific
information for your system you should consult the man page for the command of inter-
est using the man command.

. (period) executes a script in the current shell rather than as a child process.

: (colon) no-op command. It does nothing, but the shell still processes the arguments
of this command for variable and command substitution.

alias (ksh, bash and zsh only) creates a short name for the command.

bg (Korn/Bash) starts a suspended job running in background.

break exits from the current for, while, or until loop.

case executes the commands corresponding to the pattern that matches expr. Patterns
can contain filename expansion wildcards.

case expr in
pattern1) list1 ;;
...
patternN) listN ;;

esac

cd changes the directory. If an argument is specified, cd changes the current directory to
that directory (if possible). Otherwise cd changes the directory to the user’s home directory.

continue skips the rest of the commands in a loop and starts the next iteration of a loop.

do indicates the start of the body of a loop.

done indicates the end of the body of a loop.

echo displays its arguments to standard output. In ksh, bash, and zsh echo is a built-in
command. In the Bourne shell it is an external command located in /bin/echo.

esac denotes the end of a case statement.

eval causes the shell to reinterpret the command that follows.

420 Appendix A

exec executes the following command, which replaces the current process instead of run-
ning it as a child process.

exit n ends the shell script with status code n.

export marks variables as environment variables, allowing them to be passed to any
child processes and called programs.

false (ksh, bash, and zsh only) always returns an unsuccessful or logical false result.

fg (Korn/Bash) brings a background or suspended job to the foreground.

fi denotes the end of an if statement.

for executes a block of code multiple times.

for var in list1
do

list2
done

function (Korn/Bash) keyword to define a function.

getopts a function called repeatedly in a loop to process the command-line arguments.

if allows conditional execution.

if list1 ; then
list2 ;

elif list3 ; then
list4 ;

...
else

listN ;
fi

integer (ksh, bash and zsh only) specifies an integer variable.

jobs (ksh, bash, and zsh only) list the background and suspended jobs.

kill sends a signal to a process; often used to terminate a process or to reinitialize a dae-
mon background process.

let (ksh, bash, and zsh only) performs integer arithmetic.

pwd prints the present working or current directory.

read waits for one line of standard input and saves each word in the variables specified
to it as arguments. If there are more words than variables, it saves the remaining words in
the last variable.

Command Quick Reference 421

A

readonly marks variables as read-only, so that their values cannot be changed.

return n returns from a function with the return code n.

select (ksh, bash, and zsh only) presents a menu and enables user selection.

set displays or changes shell options.

shift discards $1 and shifts all the positional parameters up one to take its place.

test provides many options to check files, strings, and numeric values. Often denoted
by [(left bracket). This command is a built-in command in ksh, bash, and zsh. Bourne
Shell uses the external version located at /bin/test.

trap designates code to execute if a specific signal is received.

type displays the pathname of the following command or indicates whether it is built-in
or an alias.

typeset (ksh, bash, and zsh only) sets the type of variable and optionally its initial
value.

ulimit displays or sets the largest file or resource limit.

umask displays or sets a mask to affect permissions of any new file or directory you
create.

unalias (ksh, bash, and zsh only) removes an alias.

unset undefines the variables that follow.

until (ksh, bash, and zsh only) loops until the test command is true (successful).

until test
do

list
done

wait pauses until all background jobs are complete.

whence (ksh and zsh only) similar to the type command.

while loops while a test command is true (successful).

while list1
do

list2
done

422 Appendix A

Conditional Expressions
This section summarizes conditional expressions or tests. Conditional expressions are
mainly used with the test command in conjunction with if statements and while and
until loops.

File Tests
The following conditional expressions are used to perform file and directory related tests.

-a file true if file exists (ksh, bash, and zsh only)

-b file true if file is a block special device

-c file true if file is a character special device

-d dir true if dir is a directory

-e file true if file exists

-f file true if file is a regular file

-g file true if file has the SGID permission bit set

-G path true if path exists and its group matches the user’s current group
ID (Linux and BSD systems only)

-h file true if file is a symbolic link

-k path true if path has the sticky bit set

-L file true if file is a symbolic link (ksh, bash, and zsh only)

-O file true if the user running this command owns file (ksh, bash, and
zsh only)

-p file true if file is a named pipe or fifo

-r path true if path is readable

-s file true if file has a size greater than zero

-S file true if file is a socket

-t des true if des is a file descriptor associated with a terminal device

-u file true if file has its SUID permission bit set

-w path true if path is writable

-x path true if path is executable

Command Quick Reference 423

A

String Tests
The following conditional expressions are used to evaluate strings and their contents.

-z string true if string is empty

-n string true if string has nonzero size

string true if string is not null (“”)

s1 = s2 true if string s1 equals s2

s1 != s2 true if the strings are not equal

Integer Comparisons
The following conditional expressions are used to evaluate integers. Comparisons stop on
first non-digit.

n1 -eq n2 true if n1 is equal in value to n2.

n1 -ne n2 true if n1 is not equal to n2

n1 -gt n2 true if n1 is greater than n2

n1 -ge n2 true if n1 is greater than or equal to n2

n1 -lt n2 true if n1 is less than n2

n1 -le n2 true if n1 is less than or equal to n2

Compound Expressions
The following conditional operators are used to construct compound conditional expres-
sions.

[! expr] true if expr is false (logical NOT)

[expr1 –a expr2] true if expr1 and expr2 are true (logical AND)

[expr1] && [expr2] true if expr1 and expr2 are true (logical AND)

[expr1 –o expr2] true if either expr1 or expr2 is true (logical OR)

[expr1] || [expr2] true if either expr1 or expr2 is true (logical OR)

Arithmetic Expressions (ksh, bash, and
zsh Only)

The general format for integer variable assignment is as follows:

let “VARIABLE=integer_expresson”

424 Appendix A

To embed integer calculations within a command, you can use the following syntax:

$((integer_expression))

Integer Expression Operators
The integer operators are used to perform simple arithmetic operations on integer values.
The following list (order from highest to lowest operator precedence) describes the inte-
ger operators supported in ksh, bash and zsh. The logical operators described in this list
return 1 for true and 0 for false.

- unary minus (negates the following value)

! ~ logical NOT, binary one’s complement

* / % multiply, divide, modulus (remainder operation)

+ - add, subtract

>> << right, left shift, for example: $((32 >> 2))

gives 8 (right shift 32 by 2 bits is the same as division by 4)

<= >= less than or equal to, greater than or equal to

> < greater than, less than

== != equal to, not equal to

& bitwise AND operation, for example: $((5 & 3))

converts 5 to binary 101 and 3 to binary 011 and ANDs the bits to give
1 as the result

^ bitwise exclusive OR operation

| bitwise regular OR operation

&& logical AND

|| logical OR

*= /= %= C programming type assignment, for example, $((A *= 2))

means multiply variable A by 2, save result in A, and substitute result

= += -= more C programming type assignments

>>= <<= more C programming type assignments using shift right, shift left

&= ^= |= more C programming type assignments using AND, exclusive OR, and
regular OR

Command Quick Reference 425

A

Parameters and Variables
This section describes parameters and variables.

User-Defined Variables
Any variable defined by a programmer is a user defined variable. User-defined variable
names

• Must start with letters

• Can contain only letters or digits

• Are often in capital letters to differentiate them from UNIX commands

Variables are assigned values using the assignment operator, =, as follows:

VAR=value

Here, VAR is the name of the variable and value is the value you want to assign to it.

Variables are unset using the unset command as follows:

unset var1 … varN

Here var1 … varN are the names of the variables to unset.

Variable Substitution
The value stored in a variable can be accessed using the $ operator as follows:

$VAR

Here VAR is the name of the variable whose value you want to access. Other forms of
variable substitution include the following:

${var} substitutes the contents of var, which can be a variable name or
digit indicating a positional parameter

${var:-word} substitutes the contents of var but if it is empty or undefined, it sub-
stitutes word, which might contain unquoted spaces

${var:=word} substitutes the contents of var but if it is empty or undefined, it sets
var equal to word and substitutes word

${var:?var} substitutes the contents of var, but if it is empty or undefined, aborts
the script and gives the message as a final error. Message might con-
tain unquoted spaces.

${var:+word} if var is not empty, it substitutes word; otherwise it substitutes
nothing

426 Appendix A

Array Variables (ksh, bash, and zsh Only)
Arrays provide a method for grouping variables using a single variable name coupled
with an index. The index must always be a positive integer. In ksh the maximum value
for index is 1024. No such limit exists in bash or zsh.

In ksh and zsh array variables are initialized using the set command as follows:

set –A ARRAY val1 … valN

In bash, array variables are initialized as follows:

ARRAY=(val1 … valN)

In either case ARRAY is the name of the array and val1 … valN are the values for the first
N elements in the array.

Arrays are not available in the Bourne shell and 1.x and earlier versions of bash.

ARRAY[index] sets the value of the element denoted by index in ARRAY to value

=value

${ARRAY[index]} substitutes the value of the element index in ARRAY.

${ARRAY[*]} substitutes all elements in ARRAY

${ARRAY[@]} substitutes all array elements in ARRAY and treats each element as
if individually double-quoted

Special Variables
The following are special variables that are created and modified by the shell itself.
These variables cannot be changed by scripts.

$0 name of the command or script being executed

$n positional parameters—that is, arguments given on the command
line numbered 1 through 9

$# number of positional parameters given on command line

$* a list of all the command-line arguments

$@ a list of all command-line arguments individually double-quoted

$? The numeric exit status (that is, return code) of last command
executed

$$ PID (process ID) number of current shell

$! PID (process ID) number of last background command

Command Quick Reference 427

A

Shell Variables
The following variables are used by the shell, but can be modified by scripts.

CDPATH contains a colon-separated list of directories to facilitate the cd command.

HOME is your home directory.

IFS contains internal field separator characters.

OPTARG is the last cmd line arg processed by getopts (Korn/Bash).

OPTIND is the index of the last cmd line arg processed by getopts (Korn/Bash).

PATH contains a colon-separated list of directories to search for commands that are given
without any slash.

PS1 is the primary shell prompt string.

PS2 is the secondary shell prompt string for continuation lines.

PWD returns the current directory.

RANDOM returns a different random number (from 0 to 32,767) each time it is invoked
(ksh, bash, and zsh only).

REPLY is the last input line from read via the select command (ksh, bash, and zsh only).

SECONDS returns the numbers of seconds since shell invocation (ksh, bash, and zsh only).

SHLVL returns the number of shells currently nested.

UID is the numeric user ID number.

Input/Output
This section discusses I/O. Table A.1 describes the standard UNIX file descriptors,
whereas other sections describe input and output redirections and “here” documents.

TABLE A.1 Summary of Standard UNIX I/O

Abbreviation I/O description File Descriptor

STDIN Standard input 0

STDOUT Standard output 1

STDERR Standard error 2

428 Appendix A

Input and Output Redirection
Input and output redirection can be performed as follows:

cmd > file save STDOUT from UNIX command in file

cmd 1> file same as above

cmd >> file append STDOUT from UNIX command to file

cmd 1>> file same as above

cmd 2> file save STDERR from UNIX command in file

cmd 2>> file append STDERR from UNIX command in filecmd < file

provide STDIN to UNIX command from file instead of key-
board

cmd 0< file same as above

cmd1 | cmd2 pipe STDOUT of cmd1 as STDIN to cmd2

cmd | tee file save STDOUT of UNIX command in file but also pass same
text as STDOUT

exec n> file redirect output of file descriptor n to (overwrite) file. This
applies to subsequent UNIX commands.

exec n>> file same as above but append to file instead of overwriting

cmd 2>&1 redirect STDERR from UNIX command to wherever STDOUT
is currently going

cmd 1>&2

cmd >&2 redirect STDOUT as STDERR. This should be done when echo
displays an error message.

cmd n>&m redirect file descriptor n to wherever file descriptor m is cur-
rently going. This is a generalization of the previous examples.

exec n>&- close file descriptor n

Here Document
Here documents provide STDIN to UNIX commands from lines that follow until
delimiter is found at the start of line:

cmd << delimiter
line1
...
lineN
delimiter

Command Quick Reference 429

A

Pattern Matching and Regular Expressions
This section describes the meta-characters and rules for filename expansion, pattern
matching for the case statement, and regular expressions.

Filename Expansion and Pattern Matching
The rules for filename expansion are as follows:

• Any word on the command line that contains a meta-character is expanded to a list
of files that match the pattern word.

• If no filename matches are found, the pattern word is not substituted.

• Meta-characters cannot match a leading period or a slash.

The filename expansion meta-characters are

* matches 0 or more of any character

? matches exactly 1 of any character

[list] matches exactly 1 of any character in list

[!list] matches exactly 1 of any character not in list

Limited Regular Expression Wildcards
All regular expression patterns can include these wildcards:

^pattern only matches if pattern is at the start of a line

pattern$ only matches if pattern is at the end of a line

. matches exactly 1 of any character

[list] matches exactly 1 of any character in list

[^list] matches exactly 1 of any character not in list

* matches 0 or more repetitions of the previous element (char or
expression)

.* matches 0 or more of any characters

Extended Regular Expression Wildcards
These are additional regular expression wildcards that are only supported in some com-
mands:

\{n\} matches n repetitions of the previous element

\{n,\} matches n or more repetitions of the previous element

430 Appendix A

\{n,m\} matches at least n but not more than m reps of the previous element

? matches 0 or 1 occurrences of the previous element

+ matches 1 or more occurrences of the previous element

Command Quick Reference 431

A

APPENDIX B
Glossary

Absolute Pathname Represents the location of a file or directory starting
from / and listing all the directories between / and the file or directory of
interest. The pathname /etc/hosts is an absolute pathname.

Abstraction Scripts that use abstraction retain the same basic flow by
placing the conditional execution statements within functions. When a func-
tion is called, it makes a decision as to which commands execute on a given
platform.

Alias An abbreviation or an alternative name, usually mnemonic, for a
command.

Anchoring Anchoring a regular expression limits matches to lines that
begin or end with the expression.

Arguments Command modifiers that change the behavior of a command.

Array Variable A variable that groups multiple scalar variables together
using a single name. Each of the individual scalar variables is accessed
through an index.

Background Describes processes usually running at a lower priority and with their
input disconnected from the interactive session. Input and output are usually directed to a
file or other process.

Background Processes Autonomous processes that run under UNIX without requiring
user interaction.

Bash See Bourne-Again Shell.

Block Special Files Provide a mechanism for communicating devices by transferring
large blocks of data.

Body The set of commands executed by a loop.

Bourne Shell The original UNIX shell was written at AT&T Bell Labs in New Jersey
during the mid-1970s by Steve Bourne. Because the Bourne shell was the first to appear
on UNIX systems, it is often referred to as “the shell.”

Bourne-Again Shell A shell written by Brian Fox of the Free Software Foundation as
a replacement for the Bourne shell. At present bash is maintained by Chet Ramey. It
incorporates most of the features of csh, tcsh, and ksh while retaining compatibility
with the original Bourne shell and compliance with the POSIX standard.

Character Range A method for specifying a set of characters by just giving the first
and last character in the set.

Character Special Files Provide a mechanism for communicating with a device one
character at a time.

Child Processes See Subprocesses.

Child Shells See Subshells.

Command Separators Indicate where one command ends and another begins. The
most common command separator is the semicolon character (;).

Command Comprised of the name of a program along with zero or more arguments.
You might see the term command used instead of the term utility for simple commands,
when only the program name is given.

Comment A statement that is embedded in a shell script but is not executed by the
shell. Comments are intended to be internal human-readable documentation that cover
the inner workings of the script.

Complex Command A command that consists of a command name and a list of
arguments.

434 Appendix B

Compound Command A command that consists of a list of simple and complex com-
mands separated by the semicolon character (;).

Conditional Execution Alters the execution of a script based on the system type. A
script that uses conditional execution usually contains an if statement at the beginning of
the script that sets variables to indicate the commands to use on a particular platform.

Conditional Flow Control Commands Commands that allow the flow of a script to
be conditionally changed; also called flow control commands.

csh See C-Shell.

C-Shell A shell written at the University of California at Berkeley in the early 1980s
by Bill Joy. C-Shell was designed to make the shell easier to use interactively. It first
appeared in BSD UNIX and was later incorporated into AT&T’s version of UNIX. C
shell is usually installed as /bin/csh.

Default Action The action that the system takes on behalf of the program in the
absence of a signal handler.

Default Behavior The default behavior of a command is the output generated by a
command when it is run as a simple command.

Directories Used to hold ordinary and special files. Directories are similar to folders in
MacOS or Windows.

Directory Tree The hierarchical structure used in UNIX for organizing files and
directories.

Environment A set of variables that the shell passes to every program it starts. The envi-
ronment provides useful information to commands about the current user and the system.
The command search path, the online help search path, the time zone and the local lan-
guage settings are examples of the type of information typically stored in the environment.

Environment Variable A variable that is a member of the environment.

Escape Sequence A special sequence of characters that represents another character.

Escaping Placing a backslash (\) just before a character. Escaping can either remove
the special meaning of a character in a shell command, or it can add special meaning as
with \n in the echo command. The character following the backslash is called an escaped
character.

Executable Code All the commands in a script outside of the function definitions.

Exporting The process of placing a variable in the environment.

Glossary 435

B

Field A set of characters that are separated by one or more field separator characters.
The default field separator characters are tab and space.

Field Separator Controls the manner in which an input line is broken into fields. In
the shell, the field separator is stored in the variable IFS. In awk, the field separator is
stored in the awk variable FS. Both the shell and awk use the default value of space and
tab for the field separator.

File Descriptor An integer that is associated with a file. Enables you to read and write
from a file using the integer instead of the file’s name.

Filename The name of a file. The name of the file /etc/hosts is hosts.

Function chaining The process of calling a function from another function.

Functions Provide a way of mapping a name to a list of commands. Functions are sim-
ilar to subroutines and procedures in other programming languages.

Global Scope If a variable has global scope, its value can be accessed from anywhere
within a script.

Global Variables Variables with global scope.

Globbing The process used by the shell to produce a list of files that match a particular
expression. Globbing is also known as filename substitution.

Hard Link A special directory entry that points to another file. A hard link cannot
point to a directory; it can only point to a file. A hard link is also indistinguishable from
the file that it points to; there is no way to tell whether a particular file is a hard link or
the original file.

Home Directory The directory where you start after logging in.

Infinite Loops Loops that execute forever without terminating.

Input Redirection In UNIX, the process of sending input to a command from a file.

Interactive Mode A mode in which the shell reads input from the user and executes
the specified commands. This mode is called interactive because the shell is interacting
with a user.

Invisible Files Files whose first characters are dots or periods (.). Many programs
(including the shell) use such files to store configuration information. Invisible files are
also referred to as hidden files.

Iteration A single execution of the body of a loop.

436 Appendix B

Kernel The heart of the UNIX system. It provides utilities with a means of accessing a
machine’s hardware. It also handles scheduling and executing commands.

Korn Shell David Korn of AT&T Bell Labs wrote the Korn shell, ksh. It incorporates
all the C shell’s interactive features while preserving the Bourne shell’s ALGOL-like
syntax. The Korn shell is usually installed as /bin/ksh or /usr/bin/ksh.

ksh See Korn Shell.

Library A repository of functions that can be accessed by your shell scripts.

Link A file that points to another file on the system.

Literal Characters These characters have no special meaning and cause no extra
action to be taken. Quoting causes the shell to treat a wildcard as a literal character.

Local Scope If a variable has local scope, its value can only be accessed within the
function where it is declared.

Local Variable A variable that is present within the current instance of the shell. It is
not available to programs that are started by the shell. Local variables are also variables
that have local scope.

Loops Enable you to execute a series of commands multiple times. Two main types of
loops are the while and for loops.

Man Pages Every version of UNIX comes with an extensive collection of online help
pages called man pages (short for manual pages). The man pages are the authoritative
source about your UNIX system. They contain complete information about both the ker-
nel and most of the utilities.

Meta-characters Characters that have a special meaning in the shell.

Newline This is literally the linefeed character whose ASCII value is 10. In general, the
newline character is a special shell character that indicates a complete command line has
been entered and can now be executed.

Nested Loops When a loop is located inside the body of another loop it is said to be
nested within another loop.

Non-interactive Mode A mode in which the shell does not interact with the user;
instead it reads commands stored in a file and executes them. When the shell reaches the
end of the file, it exits.

Option An argument that starts with the hyphen or dash character, -.

Ordinary File A file that contains data, text, or program instructions. Almost all the
files on a UNIX system are ordinary files.

Glossary 437

B

Output Redirection In UNIX, the process of capturing the output of a command and
storing it in a file is called output redirection because it redirects the output of a com-
mand into a file instead of the screen.

Parent Directory The directory that contains a given directory. If directory B is con-
tained within directory A, directory A is considered the parent directory of B.

Parent Process Identifier Shown in the heading of the ps command as PPID. This is
the process identifier of the parent process. See also Parent Processes.

Parent Processes These processes control other processes that are often referred to as
child processes or subprocesses. See Processes.

Parent Shell This shell controls other shells, which are often referred to as child shells
or subshells. The login shell is typically the parent shell. See Shell.

Pathname The filename of a file combined with the filenames of its parent directories.
The pathname of the file hosts located in the directory /etc is /etc/hosts.

Pipe Used to connect the standard output of a command to the standard input another
command.

Process Identifier (PID) Shown in the heading of the ps command as PID. It is the
unique number assigned to every process running in the system.

Processes Discrete, running programs under UNIX. The user’s interactive session is a
process. A process can invoke (run) and control another program that is then referred to as
a subprocess. Ultimately, everything a user does is a subprocess of the operating system.

Prompt Displayed by the shell. When the prompt is present, the shell can be given a
command to execute. In this book, the $ character is used to indicate the prompt.

Quoting The process that literally encloses selected text within some type of quotation
marks. When applied to shell commands, quoting disables shell interpretation of special
characters by enclosing the characters within single or double quotes or by escaping the
characters.

Read-only Variable A variable whose value cannot be changed.

Recursion A special instance of function chaining in which a function calls itself.

Regular files The most common type of files on UNIX systems and can be used to
store any kind of data, including binary data that the system can execute.

Relative Pathname Represents the location of a file or directory relative to the current
directory. The pathname ../etc/hosts is a relative pathname.

438 Appendix B

Return code The exit status from a function. The convention for return codes is the
same as for exit codes; 0 equals success and nonzero equals failure.

Root Directory The topmost directory in the UNIX directory tree, /, is called the root
directory.

Scalar Variable A variable that can hold only one value at a time.

Scope Refers to the region within a program where a variable’s value can be accessed.

Shell An interface to the UNIX system. It reads input and executes programs based on
that input. When a program has finished executing, it displays that program’s output. The
shell is sometimes called a command interpreter.

Shell Initialization After a shell is started, it undergoes a phase called initialization in
which important parameters are set up.

Shell Script A list of commands stored in a file.

Shell Variable A variable that is set by the shell and is required by the shell in order to
function correctly.

Signal A software interrupt sent to a program to indicate that an important event has
occurred.

Signal Handler A function provided by a program that defines the actions to take
when a signal is received.

Simple Command A command that can be executed by giving just its name at the
prompt.

Special Files Files mainly used to provide access to hardware such as hard drives, CD-
ROM drives, modems, and Ethernet adapters. Some special files are similar to aliases or
shortcuts and enable you to access a single file using different names.

STDERR Standard Error. A special type of output used for error messages. The file
descriptor for STDERR is 2.

STDIN Standard Input. User input is read from STDIN. The file descriptor for
STDIN is 0.

STDOUT Standard Output. The output of commands and scripts is normally written to
STDOUT, which is connected to the terminal. The file descriptor for STDOUT is 1.

Subdirectory A directory that is contained within another directory. If directory A con-
tains directory B, directory B is considered a subdirectory of A.

Glossary 439

B

Subprocesses Run under the control of other processes, which are often referred to as
parent processes. See Processes.

Subshells Run under the control of another shell, which is often referred to as the par-
ent shell. Typically, the login shell is the parent shell. See Shells.

Symbolic Link A special file that stores a pathname to another file. A symbolic link is
often referred to as a symlink.

Uninitialized Shell A shell that has not yet read its init files in order to set up the para-
meters required for its proper operation.

Unsetting Removing a variable from the list of variables tracked by the shell.

Usage Statement A short message that a script outputs in order to inform a user of the
proper invocation syntax for the script.

Utilities Programs, such as who and date, that can be executed.

Variable A word that holds a value. The value can be any text string.

Variable Substitution The process by which the shell replaces the name of a variable
with its value.

Wildcards Meta-characters used in globbing. The two main wildcards are * and ?.

Words Sets of characters separated by spaces and tabs.

zsh See Z-Shell.

Z-Shell A shell written by Paul Falstad while he was a student at Princeton University.
It is extremely customizable and is mostly compatible with ksh.

440 Appendix B

APPENDIX C
Answers to Questions

This appendix presents the answers to the questions at the end of each hour.

Hour 1
1. The first is a simple command. The second is a compound command

constructed from two simple commands. The last two are complex
commands.

2. There is no effect. The output will be the same for both commands.

3. The two types are Bourne (includes ksh, bash, and zsh) and C (csh
or tcsh).

Hour 2
1. The files are /etc/profile and .profile.

2. If PATH is not set, the shell cannot find the commands you want to exe-
cute. If MANPATH is not set, the shell cannot locate the online help.

3. It specifies that the shell /bin/sh should be used to execute the script.

4. The man command.

Hour 3
1. Invisible files are files with names that start with the . character. You can list them

by specifying the -a option to ls.

2. No. Each of these commands will produce the same results.

3. On Solaris, HPUX and BSD (including MacOS X), use the command

$ wc -lm

On Linux use the command

$ wc -lc

4. (b) and (c) will generate error messages indicating that homework is a directory.

Hour 4
1. (a) and (d) are absolute pathnames. (b) and (c) are relative pathnames.

2. The pwd command will output the full path to your home directory.

3. The following command will work:

cp -r /usr/local /opt/pgms

4. The following commands will work:

cp -r /usr/local /opt/pgms ; rm -r /usr/local

5. No, you cannot use the rmdir command, because the directory is not empty. You
can use the following command:

$ rm -r backup

Hour 5
1. The file descriptors associated with STDOUT, STDERR, and STDIN are 0, 2, and

1 respectively.

2. You can use the following printf statements:
printf “0%o 0%o 0%o \n” 16 255 65535
printf “0x%x 0x%x 0x%x\n” 16 255 65535

3. The output ends up in the file out.txt.

Hour 6
1. The file types of these files are

/dev/rdsk/c0t1d0 character special file

/etc/passwd regular file

442 Appendix C

/usr/local directory

/usr/sbin/ping regular file

2. The owner and groups of these files are

/dev/rdsk/c0t1d0 owner bin group sys

/etc/passwd owner root group sys

/usr/local owner bin group bin

/usr/sbin/ping owner root group bin

3. The permissions of these files are

/dev/rdsk/c0t1d0 owner read and write

group read

other none

/etc/passwd owner read

group read

other read

/usr/local owner read, write, and execute

group read, write, and execute

other read, write, and execute

/usr/sbin/ping owner read and SUID execute

group read and execute

other read and execute

Hour 7
1. By putting an ampersand (&) at the end of the command line.

2. With the ps command.

3. Use the suspend key (usually Ctrl+Z) to stop the foreground process, and then use
the bg command to resume it in the background.

Hour 8
1. (a) and (d) are valid variable names. (b) starts with a number thus it is invalid. (c)

contains the & character, which is not a valid character for variable names.

2. These assignments are valid in ksh, bash, and zsh, but not in Bourne shell. Bourne
shell only supports scalar variables.

Answers to Questions 443

C

3. To access the array item at index 5 use the following:

${adams[5]}

To access every item in the array use the following:

${adams[@]}

4. An environment variable is one whose value can be accessed by child processes of
the shell. A local variable is restricted to a particular shell; its value cannot be
accessed by child processes.

Hour 9
1. The following command will accomplish this task:

$ ls *hw[0-9][0-9][2-6].???

2. If MYPATH is unset, it is set to the given value, which is then substituted.

3. If MYPATH is unset, the given value is substituted for it. MYPATH remains unset.

4. 10.

Hour 10
1. You can use double quotes as follows:

$ echo “It’s <party> time!”

2. The following command will accomplish this task:

$ echo “$USER owes \$$DEBT”

Hour 11
1. The difference is that the first command will try to run the command without

checking if it is executable. Thus if the file exists but is not executable, the com-
mand will fail. The second command takes this into account and attempts to run
the command only if it is executable.

2. The output is

Your binaries are stored in your home directory.

3. Any of the following commands are valid:
$ test -d /usr/bin || test -h /usr/bin
$ [-d /usr/bin] || [-h /usr/bin]
$ test -d /usr/bin -o -h /usr/bin
$ [-d /usr/bin -o -h /usr/bin]

444 Appendix C

4. The following case statement covers the given combinations and several more:
case “$ANS” in

[Yy]|[Yy][Ee][Ss]) ANS=”y” ;;
*) ANS=”n” ;;

esac

Hour 12
1. Here is one possible implementation:

x=0
while [$x -lt 10]
do

x=$(($x+1))
y=0
while [$y -lt $x] ; do

echo “$y \c”
y=$(($y+1))

done
echo

done

2. Here is one possible implementation:
#!/bin/bash

select FILE in * “Exit Program”
do

if [-z “$FILE”] ; then continue ; fi

if [“$FILE” = “Exit Program”] ; then break ; fi

if [! -f “$FILE”] ; then
echo “$FILE is not a regular file.”
continue

fi

echo $FILE
cat $FILE

done

Hour 13
1. One correct implementation is as follows:

#!/bin/sh

USAGE=”Usage: `basename $0` [-c|-t] [files|directories]”

Answers to Questions 445

C

if [$# -lt 2] ; then
echo “$USAGE” ;
exit 1 ;

fi

case “$1” in
-t|-x) TARGS=${1}vf ; shift

for i in “$@” ; do
if [-f “$i”] ; then

FILES=`tar $TARGS “$i” 2>/dev/null`
if [$? -eq 0] ; then

echo ; echo “$i” ; echo “$FILES”
else

echo “ERROR: $i not a tar file.”
fi

else
echo “ERROR: $i not a file.”

fi
done
;;

-c) shift ; TARGS=”-cvf” ;
tar $TARGS archive.tar “$@”
;;

*) echo “$USAGE”
exit 0
;;

esac
exit $?

2. One possible implementation is as follows:
#!/bin/sh

USAGE=”Usage: `basename $0` [-v] [-x] [-f] [filename] [-o] [filename]”;

VERBOSE=false
EXTRACT=false

while getopts f:o:x:v OPTION ; do
case “$OPTION” in

f) INFILE=”$OPTARG” ;;
o) OUTFILE=”$OPTARG” ;;
v) VERBOSE=true ;;
x) EXTRACT=true ;;
\?) echo “$USAGE” ;

exit 1
;;

esac
done

shift `echo “$OPTIND - 1” | bc`

446 Appendix C

if [-z “$1” -a -z “$INFILE”] ; then
echo “ERROR: Input file was not specified.”
exit 1

fi
if [-z “$INFILE”] ; then INFILE=”$1” ; fi

: ${OUTFILE:=${INFILE}.uu}

if [-f “$INFILE”] ; then
if [“$EXTRACT” = “true”] ; then

if [“$VERBOSE” = “true”] ; then
echo “uudecoding $INFILE... \c”

fi
uudecode “$INFILE” ; RET=$?

else
if [“$VERBOSE” = “true”] ; then

echo “uuencoding $INFILE to $OUTFILE... \c”
fi
uuencode “$INFILE” “$INFILE” > “$OUTFILE” ; RET=$?

fi

if [“$VERBOSE” = “true”] ; then
MSG=”Failed” ; if [$RET -eq 0] ; then MSG=”Done.” ; fi
echo $MSG

fi
else

echo “ERROR: $INFILE is not a file.”
fi
exit $RET

Hour 14
1. A possible implementation is

inPath () {
OLDIFS=”$IFS”
IFS=:
RC=1
for i in $PATH
do

if [-x “$i/$1”] ; then
echo “$i/$1”
RC=0
break

fi
done
IFS=”$OLDIFS”
return $RC

}

Answers to Questions 447

C

2. A possible implementation is
mymkdir() {

if [$# -lt 1] ; then
echo “ERROR: Insufficient arguments.” >&2
return 1

fi

mkdir -p “$1” > /dev/null 2>&1
if [$? -eq 0] ; then

cd “$1” > /dev/null 2>&1
if [$? -eq 0] ; then

pwd ;
else

echo “ERROR: Could not cd to $1.” >&2
fi

else
echo “ERROR: Could not mkdir $1.” >&2

fi
}

3. You can replace mkdir –p in Question 2 with a call to the following function:
mkdirp () {

OLDIFS=”$IFS”
IFS=/
for i in $@
do

if [-z “$i”] ; then i=”/” ; fi

if [-z “$parent”] ; then
parent=”$i”

elif [“$parent” = “/”] ; then
parent=”$parent$i”

else
parent=”$parent/$i”

fi

if [! -d “$parent”] ; then

if [! -e “$parent”] ; then
mkdir “$parent”
if [$? -ne 0] ; then

echo “mkdir $parent failed.”
IFS=”$OLDIFS”
return 1

fi
else

echo “$parent exists, but is not a dir.”
IFS=”$OLDIFS”
return 1

fi

448 Appendix C

fi

done
IFS=”$OLDIFS”
return 0

}

4. A possible solution is
readPass () {

stty -echo
while : ;
do

PASS1=””
PASS2=””
echo -n “Enter Password: “
read PASS1
if [-z “$PASS1”] ; then

echo
echo “Error: Password must not be blank. Try again.” 1>&2
continue

fi
echo
echo -n “Enter Password (confirm): “
read PASS2
if [“$PASS1” != “$PASS2”] ; then

echo
echo “Error: Passwords do not match. Try again.” 1>&2
continue;

fi
PASS=”$PASS1”
break;

done
stty echo
echo

}

5. A possible implementation is
Prompt_RESPONSE() {

if [$# -lt 1] ; then
echo “ERROR: Insufficient arguments.” >&2
return 1

fi

RESPONSE=
while [-z “$RESPONSE”]
do

echo “$1 \c “
read RESPONSE

done

export RESPONSE
}

Answers to Questions 449

C

Hour 15
1. A sample implementation is

lspids() {

USAGE=”Usage: lspids [-h] process”
HEADER=false
PSCMD=”/bin/ps -ef”

case “$1” in
-h) HEADER=true ; shift ;;

esac

if [-z “$1”] ; then
echo $USAGE ;
return 1 ;

fi

if [“$HEADER” = “true”] ; then
$PSCMD 2> /dev/null | head -n 1 ;

fi

$PSCMD 2> /dev/null | grep “$1”| grep -v grep
}

For Linux or FreeBSD, change the variable PSCMD from

PSCMD=”/bin/ps -ef”

to

PSCMD=”/bin/ps -auwx”

2. The following is one possible implementation:
lspids ()
{

USAGE=”Usage: lspids [-h|-s] process”;
HEADER=false;
SORT=false;
PSCMD=”/bin/ps -ef”;
SORTCMD=”sort -rn -k 2,2”;
for OPT in $@;
do

case “$OPT” in
-h)

HEADER=true;
shift

;;
-s)

SORT=true;
shift

;;

450 Appendix C

-*)
echo $USAGE;
return 1

;;
esac;

done;
if [-z “$1”]; then

echo $USAGE;
return 1;

fi;
if [“$HEADER” = “true”]; then

$PSCMD | head -1;
fi;
if [“$SORT” = “true”]; then

$PSCMD 2> /dev/null | grep “$1” | grep -v grep | $SORTCMD;
else

$PSCMD 2> /dev/null | grep “$1” | grep -v grep;
fi

}

For Linux and FreeBSD, change the variable SORTCMD to

SORTCMD=”sort -rn”

instead of

SORTCMD=”sort -rn -k 2,2”

You will also need to change the variable PSCMD from

PSCMD=”/bin/ps -ef”

to

PSCMD=”/bin/ps -auwx”

Hour 16
1. One possible implementation is

sgrep() {
if [$# -lt 2] ; then

echo “USAGE: sgrep pattern files” >&2
exit 1

fi

PAT=”$1” ; shift ;

for i in $@ ;
do

if [-f “$i”] ; then
sed -n “/$PAT/p” $i

else
echo “ERROR: $i not a file.” >&2

Answers to Questions 451

C

fi
done

return 0
}

2. The following command does the job:

$ uptime | sed ‘s/.* load/load/’

3. There are two possible solutions:
$ df -k | sed -n ‘/^\//p’
$ df -k | sed ‘/^[^\/]/d’

4. The following command will solve this problem:

/bin/ls -al | sed -e ‘/^[^\-]/d’ -e ‘s/ *[0-9].* / /’

Hour 17
1. A possible implementation is as follows:

#!/bin/sh

if [$# -lt 1] ; then
echo “USAGE: `basename $0` files”
exit 1

fi

awk ‘{
for (i=NF;i>=1;i--) {

printf(“%s “,$i) ;
}
printf(“\n”) ;

}’ $@

2. A possible solution is
#!/bin/sh
awk ‘BEGIN { FS=”:” ; }

$1 == “B” {
BAL=$NF ; next ;

}
$1 == “D” {

BAL += $NF ;
}
($1 == “C”) || ($1 == “W”) {

BAL-=$NF ;
}
($1 == “C”) || ($1 == “W”) || ($1 == “D”) {

printf “%10-s %8.2f\n”,$2,BAL ;
}

‘ account.txt ;

452 Appendix C

Alternatively, you can use the -F option:
#!/bin/sh
awk -F: ‘

$1 == “B” {
BAL=$NF ; next ;

}
$1 == “D” {

BAL += $NF ;
}
($1 == “C”) || ($1 == “W”) {

BAL-=$NF ;
}
($1 == “C”) || ($1 == “W”) || ($1 == “D”) {

printf “%10-s %8.2f\n”,$2,BAL ;
}

‘ account.txt ;

3. The following is a possible implementation:
#!/bin/sh
awk -F: ‘

$1 == “B” {
BAL=$NF ;
next ;

}
$1 == “D” {

BAL += $NF ;
}
($1 == “C”) || ($1 == “W”) {

BAL-=$NF ;
}
($1 == “C”) || ($1 == “W”) || ($1 == “D”) {

printf “%10-s %8.2f\n”,$2,BAL ;
}
END {

printf “-\n%10-s %8.2f\n”,”Total”,BAL ;
}

‘ account.txt ;

4. A possible implementation is
#!/bin/sh
awk -F: ‘

$1 == “B” {
BAL=$NF ;
next ;

}
$1 == “M” {

MIN=$NF ;
next ;

}
$1 == “D” {

BAL += $NF ;

Answers to Questions 453

C

}
($1 == “C”) || ($1 == “W”) {

BAL-=$NF ;
}
($1 == “C”) || ($1 == “W”) || ($1 == “D”) {

printf “%10-s %8.2f”,$2,BAL ;
if (BAL < MIN) { printf “ * Below Min. Balance” }
printf “\n” ;

}
END {

printf “-\n%10-s %8.2f\n”,”Total”,BAL ;
}

‘ account.txt ;

Hour 18
1. The following command will accomplish this task:

$ type process2

2. The following command will accomplish this task:

$ find /data -name ‘*process2*’ -print

3. The following command will accomplish this task:

PRICE=`echo “scale=2; 3.5 * $PRICE” | bc`

Hour 19
1. Here is a possible implementation:

trap CleanUp 2 15
trap Init 1
trap “quit=true” 3
PROG=”$1”
Init

while : ;
do

wait $!
if [“$quit” = true] ; then exit 0 ; fi
$PROG &

done

2. Here is a possible implementation:
#! /bin/sh

AlarmHandler() {
echo “Got SIGALARM, cmd took too long.”
KillSubProcs
exit 14

454 Appendix C

}

IntHandler() {
echo “Got SIGINT, user interrupt.”
KillSubProcs
exit 2

}

KillSubProcs() {
kill ${CHPROCIDS:-$!}
if [$? -eq 0] ; then echo “Sub-processes killed.” ; fi

}

SetTimer() {
DEF_TOUT=${1:-10};
if [$DEF_TOUT -ne 0] ; then

sleep $DEF_TOUT && kill -s 14 $$ &
CHPROCIDS=”$CHPROCIDS $!”
TIMERPROC=$!

fi
}

UnsetTimer() {
kill $TIMERPROC

}

main()

trap AlarmHandler 14
trap IntHandler 2

SetTimer 15
$PROG &
CHPROCIDS=”$CHPROCIDS $!”
wait $!
UnsetTimer
echo “All Done.”
exit 0

Hour 20
1. The three main methods are

• Issue the script in the following fashion:

$ /bin/sh option script arg1 arg2 arg3

• Change the first line of the script to

#!/bin/sh option

• Use the set command as follows:

set option

Answers to Questions 455

C

Here option is the debugging option you want to enable.

2. Here is one possible implementation:
Debug() {

if [“$DEBUG” = “true”] ; then
if [“$1” = “on” -o “$1” = “ON”] ; then

set -x
else

set +x
echo “ >Press Enter To Continue< \c”
read press_enter_to_continue

fi
fi

}

Hour 21
1. One possible implementation is

##
Name: toLower
Desc: changes an input string to lower case
Args: $@ -> string to change
##

toLower() {
echo $@ | tr ‘[A-Z]’ ‘[a-z]’ ;

}

2. One possible implementation is
##
Name: toUpper
Desc: changes an input string to upper case
Args: $@ -> string to change
##

toUpper() {
echo $@ | tr ‘[a-z]’ ‘[A-Z]’

}

3. One possible solution is
##
Name: isSpaceAvailable
Desc: returns true (0) if space available
Args: $1 -> The directory to check
$2 -> The amount of space to check for
##

isSpaceAvailable() {

456 Appendix C

if [$# -lt 2] ; then
printERROR “Insufficient Arguments.”
return 1

fi

if [! -d “$1”] ; then
printERROR “$1 is not a directory.”
return 1

fi

if [`getSpaceFree “$1”` -gt “$2”] ; then
return 0

fi

return 1
}

4. One possible solution is
##
Name: isSpaceAvailable
Desc: returns true (0) if space available
Args: $1 -> The directory to check
$2 -> The amount of space to check for
$3 -> The units for $2 (optional)
k for kilobytes
m for megabytes
g for gigabytes
##

isSpaceAvailable() {

if [$# -lt 2] ; then
printERROR “Insufficient Arguments.”
return 1

fi

if [! -d “$1”] ; then
printERROR “$1 is not a directory.”
return 1

fi

SPACE_MIN=”$2”

case “$3” in
[mM]|[mM][bB])

SPACE_MIN=`echo “$SPACE_MIN * 1024” | bc` ;;
[gG]|[gG][bB])

SPACE_MIN=`echo “$SPACE_MIN * 1024 * 1024” | bc` ;;
esac

Answers to Questions 457

C

if [`getSpaceFree “$1”` -gt “$SPACE_MIN”] ; then
return 0

fi

return 1
}

5. One possible solution is
##
Name: isUserRoot
Desc: returns true (0) if the users UID=0
Args: $1 -> a user name (optional)
##

isUserRoot() {
if [“`getUID $1`” -eq 0] ; then

return 0
fi
return 1

}

Hour 22
1. You can add a check similar to the following to the beginning of the init script:

CURUID=”`id | sed -e ‘s/(.*$//’ -e ‘s/^.*\=//’`”
if [“$CURUID” -ne 0] ; then

echo “Error: Only root (uid=0) can run this script.” 1>&2
exit 1

fi
unset CURUID

2. Use grep -i instead of grep.

3. They can be rewritten as functions and stored in a shell library that both scripts can
access.

4. You can change the lines
55 grep “$1” “$TMPF1” > “$TMPF2” 2> /dev/null
56 Failed $? “No matches found.”

to
55 sed -n “/^$1[^:]*:/p” “$TMPF1” > “$TMPF2” 2> /dev/null
56 test -s “$TMPF2” > /dev/null
57 Failed $? “No matches found.”

You can also change the line
79 grep -v “$LINE” “$TMPF1” > “$TMPF1.new” 2> /dev/null

to
sed -e “s/^$LINE$//” “$TMPF1” > “$TMPF1.new” 2> /dev/null

458 Appendix C

5. Add a signal handler. A simple one might be

trap ‘echo “Cleaning Up.” ; doCleanUp ; exit 2; ‘ 2 3 15

You should add this to the script before the line:

cp “$MYADDRESSBOOK” “$TMPF1” 2> /dev/null

Hour 23
1. A possible implementation is

getCharCount() {
case `getOSName` in

bsd|sunos|linux)
WCOPT=”-c” ;;

*)
WCOPT=”-m” ;;

esac

wc $WCOPT $@
}

Answers to Questions 459

C

APPENDIX D
Shell Function Library

This appendix contains the complete shell function library from Chapter 21,
“Problem Solving with Functions.” The library can be downloaded using the
following URL:

http://www.csua.berkeley.edu/~ranga/downloads/tysp2/libtysp2.sh

LISTING D.1 Listing of the Library libTYSP2.sh

Name: printError
Desc: prints an message to STDERR
Args: $@ -> message to print

printError () {
echo “ERROR: $@” 1>&2

}

Name: printWarning
Desc: prints an message to STDERR
Args: $@ -> message to print

printWarning () {
echo “WARNING: $@” 1>&2

}

LISTING D.1 Continued

Name: promptYESNO
Desc: Asks a yes/no question
Args: $1 -> The prompt
$2 -> The default answer (optional)
Globals: YESNO -> set to the users response y for yes, n for no

promptYESNO () {

YESNO=””

if [$# -lt 1] ; then
return 1

fi

_YNPROMPT=”$1 (y/n)? “
_YNDEFANS=””

case “$2” in
[yY]|[yY][eE][sS]) _YNDEFANS=”y” ;;
[nN]|[nN][oO]) _YNDEFANS=”n” ;;

esac

_YNPROMPT=”$_YNPROMPT${_YNDEFANS:+[$_YNDEFANS] }”

while :
do

printf “$_YNPROMPT”
read YESNO
case “${YESNO:-$_YNDEFANS}” in

[yY]|[yY][eE][sS])
YESNO=”y”
break
;;

[nN]|[nN][oO])
YESNO=”n”
break
;;

*) YESNO=”” ;;
esac

done

unset _YNPROMPT _YNDEFANS
export YESNO
return 0

}

Name: promptRESPONSE
Desc: Asks a question
Args: $1 -> The prompt

462 Appendix D

LISTING D.1 Continued

$2 -> The default answer (optional)
Globals: RESPONSE -> set to the users response

promptRESPONSE () {

RESPONSE=””

if [$# -lt 1] ; then
return 1

fi

_RDEFANS=”${2:+$2}”
_RPROMPT=”$1? ${_RDEFANS:+[$_RDEFANS] }”

while :
do

printf “$_RPROMPT”
read RESPONSE
RESPONSE=”${RESPONSE:-$_RDEFANS}”
if [-n “$RESPONSE”] ; then

break
fi
RESPONSE=””

done

unset _RDEFANS _RPROMPT
export RESPONSE
return 0

}

Name: getSpaceFree
Desc: Outputs the space avail for a directory
Args: $1 -> The directory to check

getSpaceFree () {
if [$# -ge 1] ; then

df -k “$1” 2> /dev/null | awk ‘NR != 1 { print $4; }’
return $?

fi
return 1

}

Name: getSpaceUsed
Desc: output the space used for a directory
Args: $1 -> The directory to check

getSpaceUsed () {
if [-d “$1”] ; then

du -sk “$1” | awk ‘{ print $1; }’

Shell Function Library 463

D

LISTING D.1 Continued

return $?
fi
return 1

}

Name: getPID
Desc: Outputs a list of process id matching $1
Args: $1 -> the command name to look for

getPID() {

if [$# -lt 1] ; then
return 1

fi

PSOPTS=”-ef”

/bin/ps $PSOPTS | grep “$1” | grep -v grep | awk ‘{ print $2; }’
}

Name: getUID
Desc: outputs a numeric user id
Args: $1 -> a user name (optional)

getUID() {
id $1 | sed -e ‘s/(.*$//’ -e ‘s/^uid=//’

}

Name: toLower
Desc: changes an input string to lower case
Args: $@ -> string to change

toLower() {
echo $@ | tr ‘[A-Z]’ ‘[a-z]’ ;

}

Name: toUpper
Desc: changes an input string to upper case
Args: $@ -> string to change

toUpper() {
echo $@ | tr ‘[a-z]’ ‘[A-Z]’

}

464 Appendix D

$ character, 10
; character, 12
: character, 24

shell command, 294-296
if statement, 295
while statement,

295-296
/ character, 53
character, comments, 30
- character, getopts com-

mand, 206
+ character, shell tracing,

333
: (colon), 420
;; command, case state-

ment, 175
. command, including

functions and variable
definitions in other files,
409

-ctime option, find com-
mand, 301

$ (dollar sign)
field operator, 269
newline character, 153
quoting with double

quotes, 151
" (double quote), quoting,

150
-exec action, find com-

mand, 303-304
-f option, tail command,

234
-i option, grep command,

236
-k option, sort command,

243
-l option, grep command,

238
[>] (less than sign), quot-

ing, 150
^M (carriage return)
removing from files,

415-416

Symbols

& (ampersand), back-
ground processes, 106

&& and compound opera-
tor, 273

-atime option, find com-
mand, 301

` (backquote), command
substitution, 143

\ (backslash)
echo command escape

sequences, 155-156
newline character, 154
quoting, 148-149
tr command, 239

#!/bin/sh, 404
{ } (braces), while state-

ment, 286
-c option, uniq command,

242

INDEX

-m option, uname com-
mand, 393

$ (meta-character), 252
* (meta-character), 252
. (meta-character), 252
\ (meta-character), 252
^ (meta-character), 252
-mtime option, find com-

mand, 301
-n option, 328

find command, 300
grep command, 237
sort command, 242-243

$n variable, 198
^ (negation operator), 254
! operator, 171

until loop, 187
>> operator, here docu-

ments, 80
!= operator, test command,

169
|| operator, 171, 408
&& operator, 171, 408
|| (or) compound operator,
273
% (percent sign), job
number prefixes, 109
. (period), 39, 420
-print action, find com-

mand, 303
-r option

sort command, 242-243
uname command, 393

-s option, tr command, 240
[<] (redirection sign), eval

command, 294
; (semicolon), 148

awk command, 269

! sign, find command, 303
' (single quote), filtering,

244
-size option, find com-

mand, 302
-type option, find com-

mand, 300
$USAGE variable, 202
-v option, 331

grep command, 236-237
$! variable, 198
$# variable, 198, 203
$$ variable, 198
$* variable, 198

compared to $@, 204
$0 variable, 198-199, 404

usage statements,
199-200

$? variable, 198
$@ variable, 198

compared to $*, 204
variable values, 124
* wildcard

basename command, 202
globbing, 136

* wildcard, globbing, 139
? wildcard, globbing, 138

common errors, 138-139
-x option, 332

A

a- option, 39
absolute pathnames, 56

find command, 299
abstraction, portability,

397-400
accounts, 14

actions (find command)
-exec, 303-304
-print, 303

adaptability, init script,
372-373

addperson script, 378-379
address books, 373-374

adding people, 377-380
deleting people, 380-385
interactive mode, 377
listing people in,

375-377
noninteractive mode, 377

ALARM signals, handler
function, 321

alias command, 217
aliases, 217, 420

C shells, 16
displaying pathnames

for, 296
functions, comparing,

217-218
unaliases, 218

ampersand (&), back-
ground processes, 106

anchoring, regular expres-
sions, 254-256

and-and operator (&&),
273

appending output to files,
78

arguments, 200
basename command, 201

emulating, 202
cd command, 59
considering one at a

time, 409
example, 201
forwarding to another

command, 410

466 -m option, uname command

functions, executing,
215-216

mkdir command, 63
passing to commands

with xargs command,
304

shell tracing, 335
troubleshooting, 203-205

arithmetic
bc command, 307
expr command, 306

arithmetic expressions,
425

arithmetic substitution,
144

common errors, 145-146
operators, 144-145
precedence, 145

array variables, 121-127,
427

arrays
accessing values,

127-128
indices, 126
notation, 126
support arrays, 427

assigning variables, awk,
276

assignment operators,
numeric expressions,
278-279

associating files with file
descriptors, 82-83

AT&T System V UNIX.
See System V UNIX

awk
invocation syntax, 250
operations, 250-251
versus sed, 250

awk command, 268-269
comparison operators,

271-272
compound expres-

sions, 273
next command,

273-274
field editing, 269-270
flow control, 283

do statement, 286
for statement,

286-288
if statement, 284-285
while statement, 285

formatting address book
with, 375

FS, 282
numeric variables, 277
pattern-specific actions,

270-271
STDIN as input, 274-275
variables, 276

numeric expressions,
276-283

B

background processes,
106-107

fg command, 110
input, requiring, 107-108
moving foreground

processes to, 108-110
preventing termination,

110
waiting for, 111

backquote (`), command
substitution, 143

backslash (\), 148-149
echo command escape

sequences, 155-156
newline character, 154

backslash character (\), tr
command, 239

basename command,
201-202, 412

bash (Bourne Again shell),
17, 25

exporting variables, 130
initialization, 25
online resources, 34

Bash shell
integer expressions, 425
support arrays, 427
wildcards, 430

bc command, 307-308
beeps, sounding a series

with sleep command, 297
BEGIN pattern, numeric

expressions, 279-280
Berkeley Software

Distribution (BSD), 390
bg, 420
bg command, 109
bit bucket, 405
block special files, 94
Bourne Again shell (bash),

17
arrays, 125
initialization, 25
online resources, 34
wildcards, 430

Bourne Again shell (bash) 467

Bourne-type shells, 14-15
braces { }, while state-

ment, 286
break command, 192-193,

420
nested loops, 194

BSD (Berkeley Software
Distribution), 390

BSD UNIX
abstraction, getPID func-

tion, 399-400
versus System V, 391

BSD Web site, 390
built-in shell commands,

293
built-in variables, 281-283

C

C shell
(:) character, 296
starting from Korn Shell,

116
-c option (wc command),

43
c-based shells tcsh, 16
C-type shells, 14-16
carriage returns, removing

from files, 415-416
case statement, 175-176,

420
common errors, 176-177
patterns, 177

case-sensitivity, options, 38
cat command, 41

-n option, 42

cd command, 420
arguments, 59
changing directories,

58-59
errors, 59
navigating directory

trees, 57
CDPATH variable, 428
changing directories, 58-59
character special files, 94
characters

counting in file contents,
45

matching, regular expres-
sions, 252-253

sets of, regular expres-
sions, 253-254

child directories, 54
child processes, 114-115

permissions, 116
subshells, 115-116

chmod command, 98
common errors, 101
octal method, 100-101
symbolic expression,

98-100
chown command, 101-102

groups, 102-103
restrictions, 102

closing file descriptors, 86
command interpreter, 13
command line, options,

200
command substitution,

143-144
commands, 22
(:) character, 294-296

if statement, 295
while statement,

295-296

(:) colon symbol, 420
(.) period, 420
accessing by shell,

#!/bin/sh, 404
alias, 217
aliases, 420
arguments

forwarding to another
command, 410

passing with xargs
command, 304

awk, 268-269
comparison operators,

271-274
field editing, 269-270
flow control, 283-288
pattern-specific

actions, 270-271
STDIN as input,

274-275
variables, 276-283

basename, 201, 412
emulating, 202

bc, 307-308
bg, 109, 420
break, 192-193, 420

nested loops, 194
case statement, 420
cd, 420
chmod, 98

common errors, 101
octal method,

100-101
symbolic expression,

98-100
chown, 101-102

groups, 102-103
restrictions, 102

468 Bourne-type shells

complex, 11
compound, 12
compound expressions,

424
continue statement, 420
copying files, 46

errors, 47
interactive mode (cp

command), 47
default behavior, 11
determining if shell can

find, 407-408
dirname, 412
do statement, 420
done statement, 420
echo, 420

conditional execution,
397

modifying with single
quote, 149

output, 72
esac statement, 420
eval, 294, 420
exec, 116-117, 421
executing in separate

shells, 408
exit, 223
exit n, 421
export, 130, 421
expr, 306-307
false, 421
fg, 110, 421
fi statement, 421
file, 90
file descriptors, 82
file tests, 423
find, 298-299, 413

-atime option, 301
-ctime option, 301
-exec action, 303-304

-mtime option, 301
-n option, 300
-print action, 303
-size option, 302
-type option, 300
combining options,

302
negating options, 303
starting directory,

299-300
for statement, 421
function statement, 421
getopts, 421
globbing, 136
grep, 234

line numbers, 237
listing filenames, 238
searching for words,

235-236
head, 232-233
hostname, 394
if statement, 160-161,

421
common errors,

161-163
integer statement, 421
integers tests, 424
jobs, 112, 421
kill, 114, 421

-l option, 314
signals, 315

let, 421
ls

character special files,
94

d- option, 90
file types, 90
l- option, 90

man, 31, 33
mv, renaming files, 414
nohup, 110
option case-sensitivity,

38
options, 200

grouping, 40
output. See output
overview, 10
passwd, SUID bit, 97
pausing with sleep com-

mand, 297
print, with awk, 269
printf, output, 75-77
prompt, 10
ps, 112-113, 366-368
pwd, 421
quoting

combining, 152
echo escape

sequences, 155-156
embedding spaces,

152-153
filenames with special

characters, 154-155
newline character,

153-154
wildcards, 155
word boundaries, 152

read, 81, 421
readonly, 128, 422
redirecting to /dev/null,

405-406
removing directories, 66
removing files, 49

errors, 50
renaming files, 48
return, 223, 422
rsh, 396

commands 469

sed, multiple, 262-264
select, 422
separators, 12
set, 327-328, 422
shift, 208, 422
simple, 9, 11
sleep, 297
sort, 241

sorting numbers,
242-243

STDERR, 406-407
string tests, 424
stty, 108

addperson script, 380
tail, 233-234

follow option, 234
test, 163, 422

compound expres-
sions, 171-174

empty strings,
166-167

file tests, 164-165
numerical compar-

isons, 170-171
string comparisons,

166-169
string equality,

167-168
string inequality, 169

tr, 239
character classes,

244-245
removing carriage

returns, 416
removing spaces,

240-241
trap, 317, 422

cleaning up temporary
files, 318-319

type, 296-297, 422
typeset, 220, 422
ulimit, 422
umask, 422
unalias, 218, 422
uname, 392-393

determining versions
with a function,
394-395

hardware type,
393-394

uniq, 241-242
unset, 129, 218, 422
until, 422
using operators condi-

tionally to execute, 408
viewing file contents,

41-43
combining options, 46
counting characters,

45
counting lines, 44
counting words, 45

wait, 111, 422
whence, 422
while, 422
while loops, 182
xargs, 304-305

comments, 30
common errors, chmod

command, 101
comparing aliases and

functions, 217-218
comparisons operators

(awk command), 271-272
compound expressions,

273
next command, 273-274

complex commands, 11
compound commands, 12
compound expressions

comparison operators,
273

test command, 171-174
test commands, 424

conditional execution
operators, 171

conditional executions,
portability, 396-397

conditional expressions,
423

conditional statements. See
flow control

continue command, 194
continue statement, 420
copying

directories, 63
directories (multiple), 64
files, cp command, 46-47

counter variables (for
statement), 287

counting
characters in viewed file

information, 45
lines in viewed file infor-

mation, 44
words in viewed file

information, 45
cp command, 46

-r option, 63-64
errors, 47
interactive mode, 47

cpio command, quoting
wildcards, 156-157

csh, stack, 224

470 commands

D

date command, 10
debug mode, variable sub-

stitution, 143
debugging

debugging mode, 327
invocation activated,

326-327
enabling, 326
execution tracing mode,

332
set command, 327-328
shell tracing, 332-333

debugging hooks,
337-339

logical bugs, 335-337
syntax bugs, 333-335

syntax, 328-331
verbose mode,

331-332
debugging hooks, shell

tracing, 337-339
default actions (signals),

315
defining variables, 122
deleting

directories, 66
files (rm command),

49-50
lines, sed, 259-260
persons from address

book, 381
delimiters, deleting from

input file, 239
delivering signals, 315
delperson script, 381-383
dev directory, device files,

94

device drivers, block spe-
cial files, 94

device files, 94
directories

(/), 53
BSD and System V

equivalents, 390-391
changing, 58-59
cleaning up files, 414
copying, 63
copying multiple, 64
creating, 62

common errors, 63
parents, 62

determining full path-
name, 412

disk space, 352
find command, -type

option, 300
greping every file in, 413
home, 24
info on (ls ld- com-

mand), 90
listing, 60
listing files in, 38
moving, 64
moving (multiple), 65
permissions, 96-97

changing, 98-101
removing, 66
run-levels, 362-363
trees, 53-54

filenames, 54
navigating, 57
pathnames, 55-57

directory stack
adding directories to,

225-226
listing, 224-225
manipulating (popd func-

tion), 226

dirname command, 412
dirs function, 224-225
disk space

file ownership, 102
find command, 304
function libraries,

351-354
removing temporary

files, 414
divide and conquer, 222
division operation (expr

command), 306
do statement, 182, 420

awk command, flow con-
trol, 286

documents, here docu-
ments, 80

dollar sign ($)
field operator, 269
newline character, 153
quoting with double

quotes, 151
variables, accessing val-

ues, 124
done statement, 420
double quotes, 150

E

e- option (ps command),
114

echo command, 420
conditional execution,

397
modifying with double

quotes, 150
modifying with single

quote, 149

echo command 471

output, 72
formatting, 73-75
punctuation marks, 73

passing arguments to, 305
echo_prompt function, 397
editors, stream (sed), 249,

257
elif statement, with else

statements, 160
else if statements, 284
else statement, with elif

statement, 160
embedding in output

formatting, 73-75
printf command,

76-77
punctuation marks, 73

END pattern, numeric
expressions, 279-280

environment variables, 129
exporting, 130

error messages
background processes,

107
output, 72

redirecting, 84-85
error messages (function

libraries), 344-345
errors. See also trou-

bleshooting
cd command, 59
cp command, 47
functions, 216-217
if statement, 161-163
ln command, symlinks,

94
ls command, 61
mkdir command, 63
mv command, 65
rm command, 50, 67

rmdir command, 66
variable substitution, 142

esac statement, 420
escape characters, format-

ting output with, 74-75
echo command, 73

escape sequence, 149
echo command, 155-156

etc/shadow file, 97
eval command, 294, 420
exclamation (!) (find com-

mand), 303
exec command, 116-117,

421
exec system call, 404
execution tracing mode,

332
exit command, 223, 421
export, 421
export command, 130
exporting

environment variables,
130

variables in ksh, bash,
and zsh, 130

expr command, 306-307
expressions

arithmetic, 425
compound, 171
conditional, 423
regular expressions,

249-252
anchoring, 254-256
examples, 252-257
matching characters,

252-253
meta-characters,

251-252, 256-257
sets of characters,

253-254
symbolic, 98

F

-F option, 38
false command, 421
fg command, 110, 421
fi statement, 421
field editing (awk com-

mand), 269-270
fields, 269
file command, 90
file descriptors, 82

associating files with,
82-83

closing, 86
redirecting, 85-86
STDERR, 82
STDIN, 82
STDOUT, 82

file handles. See file
descriptors, 82

file types, determining, 90
filename substitution. See

globbing
FILENAME variable, 281
filenames, 54

rules for expansion, 430
setting to lowercase, 415
special characters, 155

files
appending output to, 78
associating with descrip-

tors, 82-83
block special, 94
changing owners,

101-102
restrictions, 102

character special, 94
copying (cp command),

46-47

472 echo command

determining full path-
name, 412-413

device, 94
file command, 90
filtering

grep command,
234-238

head command,
232-233

tail command,
233-234

finding with find com-
mand, 299

greping every file in a
directory, 413

hidden, 39
links, 91-92
listing, 61

visible, 39
listing in directories, 38
listing lines, 235
locating, 413
manipulating with for

loop, 189-190
most recently accessed,

listing, 232
nohup.out, 111
ownership, 95
passwords stored, 97
permissions

changing, 98-101
viewing, 96

printing input lines with
awk, 268

read permissions, 96
regular, 90
removing (rm com-

mand), 49-50
removing carriage

returns, 415-416

removing temporary files
with matching names,
414

renaming, 414-415
mv command, 48

SGID permission, 97-98
shell initialization, 25
shell scripts, 29
special, 37
STDERR, 82
STDIN, 82
STDOUT, 82
SUID permission, 97-98
symbolic links, 92-93
symlinks, common

errors, 94
temporary, cleaning up,

318-319
test command, 164-165

compound expres-
sions, 171-174

empty strings,
166-167

numerical compar-
isons, 170-171

string comparisons,
166-169

string equality,
167-168

string inequality, 169
test commands, 423
viewing contents, 41

combining options, 46
counting characters,

45
counting lines, 44
counting words, 45
getting information

about, 43
numbering lines, 42

filtering text, 249
awk command, 268-269

comparison operators,
271-274

field editing, 269-270
flow control, 284-288
pattern-specific

actions, 270-271
STDIN as input,

274-275
variables, 276-283

filtering text files
grep command, 234

line numbers, 237
listing filenames, 238
searching for words,

235-236
head command, 232-233
tail command, 233-234

follow option, 234
find command, 298-299,

413
-atime option, 301
-ctime option, 301
-exec action, 303-304
-mtime option, 301
-n option, 300
-print action, 303
-size option, 302
-type option, 300
combining options, 302
negating options, 303
quoting wildcards,

156-157
starting directory,

299-300

find command 473

finding files, 413
flow control, 159

awk command, 283-285
flow control, 285-288

case statement, 175-176
common errors,

176-177
patterns, 177

if statement, 160-161
common errors,

161-163
test, 163

compound expres-
sions, 171-174

empty strings, 166-167
file tests, 164-165
numerical compar-

isons, 170-171
string comparisons,

166-169
string equality,

167-168
string inequality, 169

flow of the script, 159
for loops, 188

manipulating sets of
files, 189-190

for statement, 421
awk command, flow con-

trol, 286-288
foreground processes, 106

fg command, 110
moving to background,

108-110
forked child processes, 115
format specifications

(printf command), 76-77
formatting output

echo command, 73-75
printf command, 76-77

FreeBSD, 390
FS property (awk com-

mand), 282
function chaining, 216

recursion, 221-223
function libraries, 344

checking disk space,
351-354

error messages, 344-345
retrieving process ID

name, 354-355
retrieving user numeric

user ID, 355-356
user input, 345-351

function statement, 421
functions, 213-214

aliases, comparing,
217-218

data sharing, 223
debugging, set command,

328
debugging hooks, 337
determining UNIX ver-

sion, 395
dirs, 224-225
echo_prompt, 397
getopts, 380
getOSName, 395
getPID, 399-400
getSpaceFree, abstrac-

tion, 397-398
getUID, 356
including variables defin-

itions in other files, 409
init script, 368-372
invoking, 214-215, 217

arguments, 215-216
errors, 216-217
function chaining, 216

main code, 342
naming, 344
popd, 226

wrapper, 227-228
popd_helper, 226-227
pushd, 225-226
SetTimer, 322
undefined, 218

G

gawk command, 268
general input/output redi-

rection, 83-84
getopts command, 198,

205-210, 421
getopts function, 380
getOSName function, 395
getPID function, abstrac-

tion, 399-400
getSpaceFree function,

abstraction, 397-398
getUID function, 356
global scope, 218-220
global variables, 218-220
globally regular expression

print. See grep
globbing, 136

* wildcard, 136
? wildcard, 138

common errors,
138-139

matching sets of charac-
ters, 139-141

matching suffixes and
prefixes, 137-138

* wildcard, 139

474 finding files

GNU (gawk command),
268

grep command, 234
-l option, 238
-n option, 237
-v option, 236-237
address book, extracting

names, 375
greping a string in every

file, 413
line numbers, 237
listing filenames, 238
regular expressions,

quoting, 155
searching for words, 235

case independent,
235-236

STDIN, 236
grouping options, 40
groups, changing owners,

102-103

H

hard links, 91-92
hardware, determining,

393-394
head command, 232-233
help features, 31

UNIX system manuals,
33

help. See online help
here documents, 80, 429
hidden files, 39
hierarchies, directories, 53
home directories, 24, 57
HOME variable, 132, 428

hostname command, 394
HP-UX

/bin, /sbin directories,
391

abstraction, getSpaceFree
function, 397-398

remote system command,
396

wc command, counting
file characters, 45

I

i- option (cp command), 47
I/O (Input/Output), 428
I/O redirection, 429
IEEE, awk standard, 268
if statement, 160-161, 295,

421
awk command, flow con-

trol, 284-285
common errors, 161-163
script portability, 396
syntax checking, 329

IFS variable, 131, 428
ignoring signals, 319-320
index numbers, 125

arrays variables, access-
ing, 127

infinite loops
(:) character, 295
break command, 192-193

nested loops, 194
continue command, 194

init scripts, 361-366
adaptability, 372-373
functions, 368-372
platform variations, 363

initialization, System V
UNIX, 363

initialization scripts,
accessing current shell
name, 404

initializing shells, 24
Bourne Again (bash), 25
file contents, 26

setting MANPATH
variable, 27

setting PATH vari-
able, 27

Korn (ksh), 25
Z (zsh), 26

inner loops, 183
input, 79

background processes,
107-108

pipelines, 81-82
printing lines with awk,

268
reading, 81
redirecting, 79

general redirection,
83-84

here documents, 80
while loops, 185-187

xargs command, 304
Input/Output. See I/O
integer arithmetic, 306
integer statement, 421
integers, test commands,

424
interactive mode, address

book, 377

interactive mode, address book 475

interactive shells, 28
determining, 405
starting, 28

interpreter, 404
interrupt signals, 313
invisible files, 39
invocation activated

debugging modes,
326-327

invocation syntax
awk, 250
sed, 250

invoking functions,
214-215, 217

arguments, 215-216
errors, 216-217
function chaining, 216

J

job ID, 107
jobs (kill command), 114
jobs command, 112, 421

K

kernel, 22
accessing features with

system calls, 404
kill command, 114, 421

-l option, 314
signals, 315

Korn, ksh shells, 16-17, 25
Korn shell

integer expressions, 425
starting C Shell from,

116
support arrays, 427
wildcards, 430

ksh (Korn shell), 16, 25
exporting variables, 130
initialization, 25

L

-l option (wc command),
43

let command, 421
libraries, 342-344

checking disk space,
351-354

naming, 343-344
retrieving process ID

name, 354-355
retrieving user numeric

user ID, 355-356
user input, 345-351

line numbers (grep com-
mand), 237

lines (sed)
deleting, 259-260
printing, 258-259

links, 91
files, hard links, 91-92

Linux
compared to BSD and

System V, 391
gawk command, 268
wc command, counting

file characters, 45

listing
directories, 60
files, 61
visible files, 39

listing signals, 314
listings

addperson script, 378-379
delperson script, 381-383
function libraries, 461-464
showperson script,

375-376
sshd init script, 371-372

local scope, 218-220
local variables, 129, 218,

220
logging in, 23
logic, checking with shell

tracing, 335-337
logins, logging, 297
looping

controlling
break command,

192-194
continue command,

194
for, 188

manipulating sets of
files, 189-190

infinite loops, 192-193
continue command,

194
nested loops, 194

select, 190-192
changing prompt, 192

until, 187
while, 181-182

nesting, 183-184
until loop, 187-188
validating user input,

184-185

476 interactive shells

loops (while), input redi-
rection, 185-187

lowercase, setting file-
names to, 415

ls command
character special files, 94
d- option, 90
errors, 61
file types, determining,

90
l- option, 90
listing directories, 60
listing files, 61
listing visible files, 39
options

case-sensitivity, 38
grouping, 40

M

m- option (wc command),
43

mail command, quoting
with embedding spaces,
153

mail spools, listing oldest,
233

main loops, 183
man command, 31, 33
man pages, 31-32
manipulating directories,

62
copying, 63

multiple, 64
creating, 62
moving, 64
moving multiple, 65
removing, 66

MANPATH variable, 27
manuals (UNIX system),

33
matching

characters, regular
expressions, 252-253

meta-characters, 256-257
memory

commands, 22
kernel, 22
utilities, 22

messages
displaying on STDERR,

406
printing to STDOUT, 85

meta-characters, 135. See
also wildcards

double quotes, 150
quoting with backslash,

148-149
regular expressions

escaping, 256
matching, 256-257

single quotes, 149-150
meta-characters (regular

expressions), 251-252
mkdir command, 62

-p option, 62
common errors, 63

modulus function, 306
moving directories, 64
multiple sed commands,

262-264
mv command, 48

errors, 65
moving directories, 64
renaming files, 414

N

-n option (cat command),
42

name value pairs, 122
named pipes, 95
naming

files (mv command), 48
libraries, 343-344
variables, 122-123

negation operator (^), 254
nesting, 183

loops, breaking infinite
loops, 194

while loops, 183-184
NetBSD, 390
newline character, 153
newlines, converting to

spaces, 239
newsgroups, shell pro-

gramming resources, 34
next command, compari-

son operators, 273-274
nohup command, 110
nohup.out file, 111
noninteractive shells,

starting, 28
noninteractive mode,

address book, 377
noninteractive shells,

determining, 405
notation, strings sets, 251
numbers, sorting, 242

different columns, 243
numeric expressions, 276

awk command
assignment operators,

278-279
built-in variables,

281-283

numeric expressions 477

shell variables, 283
special patterns,

BEGIN, END,
279-280

numeric tests, 335

O

octal method (chmod com-
mand), 100-101

online help
man command, 31, 33
MANPATH variable, 27

OpenBSD, 390
operations

awk, 250-251
sed, 250-251

operators
(!), 171
(!=), test command, 169
(&&), 171, 408
(>>), here documents, 80
(||), 171, 408
arithmetic substitution,

144-145
comparison, 272
Korn/Bash integer

expressions, 425
negation (^), 254

OPTARG variable, 428
OPTIND variable, 428
option parsing, 205-206

getopts command,
206-210

options, 200
combining

find command, 302
when viewing file

contents, 46
compared to arguments,

200
debugging options, 326
grouping, 40
negating, find command,

303
ps command, 114
uname command, 392
wc command, 43

or-or operator (||), 273
outer loops, 183
output, 71

redirecting, 77
appending to files, 78
general redirection,

83-84
pipelines, 81-82
to files and screens,

78
redirecting to /dev/null,

405-406
STDERR, 72

redirecting, 84-85
STDOUT, 72

printing messages to,
85

redirecting, 84-85
to terminal, 72

echo command, 72-75
printf command,

75-77
owners, changing owners

files, 101-102
groups, 102-103

ownership, files, 95

P-Q

p- option (mkdir com-
mand), 62

errors, 63
parent directories, 54
parent processes, 114-115

permissions, 116
subshells, 115-116

passwd command, SUID
bit, 97

passwd file, login, 23
password files, process

permissions, 116
passwords

file stored in, 97
logging in, 23

PATH variable, 132, 428
setting, 27

pathnames, 54
absolute, 56
determining directory

full pathnames, 412
determining file full

pathnames, 412-413
displaying for a com-

mand, 296
displaying for files, 298
find command, 299
relative, 56-57
types, 55

pattern matching, 430
awk command, 270

if statement, 284
patterns (.*), 307. See also

regular expressions
percent sign (%), job

number prefixes, 109

478 numeric expressions

permissions
changing with chmod

command, 98
common errors, 101
octal method,

100-101
symbolic expression,

98-100
directory, 96-97
file ownership, 95
files, viewing, 96
octal expression values,

100
processes, 116
read, 96
SGID file permission,

97-98
SUID file permission,

97-98
world read, 99
world write, 100
write, 97

pid (process ID), 106
pipelines, 81-82

sed in, 263-264
pipes, named, 95
piping, most recently

accessed files, 233
plus (+) character, shell

tracing, 333
popd function, 226

wrapper, 227-228
popd_helper function,

226-227
portability

abstraction, 397-400
conditional execution,

396-397
determining versions with

a function, 394-395

hardware type, 393-394
improving, 396
uname command,

392-393
UNIX versions, 390

POSIX, awk, 268
pound sign (#), comments,

30
precedence, arithmetic

substitution, 145
prefixes, matching in glob-

bing, 136-137
print command, with awk,

269-270
printf command, 270

output, 75
formatting, 76-77

printing
lines, sed, 258-259
messages, to STDOUT,

85
processes

background, 106-107
fg command, 110
moving foreground

processes to,
108-110

preventing termina-
tion, 110

waiting for, 111
child, 114-115

permissions, 116
subshells, 115-116

exec command, 116-117
foreground, 106
function libraries

ID names, retrieving,
354-355

user numeric user ID,
retrieving, 355-356

job numbers, assigning,
110

jobs command, 112
kill command, 114
limit, 106
parent, 114-115

permissions, 116
subshells, 115-116

ps command, 112-113
starting, 105
suspending, 108

profile file, shell initializa-
tion, 27

profiles, shell specific
startup with $0 variable,
404

programmer activated
modes, 327

programs
executing with SGID bit,

97
shells, 13, 23

Bourne Again, 17
Bourne-type, 15
C-type, 16
Korn, 16-17
prompt, 14
types of, 14
Z, 18

signals, 316
utilities, 22

prompts, 10
background processes,

107
changing with select

loop, 192
echo command, 397
shell, 14

prompts 479

ps command, 112-113,
366-368

PS1 variable, 428
PS2 variable, 428
public directory, disk

space, 352
punctuation marks,

embedding in output, 73
pushd function, 225-226
pwd command, 421
PWD variable, 131, 428

quoting
combining quoting, 152
echo escape sequences,

155-156
embedding spaces,

152-153
filenames with special

characters, 154-155
newline character,

153-154
wildcards, 155

cpio and find com-
mands, 156-157

with backslash, 148-149
with double quotes, 150
with less than sign, 150
with single quotes,

149-150
word boundaries, 152

quoting values, 123

R

-r option (cp command),
63-64

rmdir command, 67

RANDOM variable, 131,
428

read command, 81, 421
read permissions, 96
read-only variables, 128
reading input, 81
readonly command, 128,

422
recursion, 221-223
redirecting

file descriptors, 85-86
input, 79

general redirection,
83-84

here documents, 80
while loops, 185-187

output, 77
appending to files, 78
general redirection,

83-84
pipelines, 81-82
STDOUT, 84-85
to files and screens, 78

redirection signs (eval
command), 294

regex. See regular expres-
sions

regular expression wild-
cards, 431

regular expressions,
249-252

(.*), 307
anchoring, 254-256
examples, 252-257
matching characters,

252-253
meta-characters, 251-252

escaping, 256
matching, 256-257

quoting, 155
sets of characters,

253-254

regular files, 90
relative pathnames, 56-57

find command, 300
remainders, 306
remote commands, condi-

tional execution, 396
removing

directories, 66
files (rm command),

49-50
renaming files, 414-415

mv command, 48
REPLY variable, 131, 428
RESPONSE variable, 295,

349-351
return codes, 223
return command, 223, 422
rm command, 49

errors, 50, 67
rmdir command

-r option, 67
error, 66
removing directories, 66
syntax, 66

root accounts, 14
root directories, 53
rsh command, 396
run-level S, 362
run-levels, 361

directories, 362-363

S

scalar variables, 121
scale (bc command), 308
scope, 218-219

global scope, 218-220
local scope, 218-220

480 ps command

scripts
$0 shell variable, 199
comments, 30
globbing, 136
init, 361-363

adaptability, 372-373
functions, 368-372
platform variations,

363
init, 364-366
operation failures, 204
option parsing, 205-206

getopts command,
206-210

variable substitution, 142
while loop, 181-182

nesting, 183-184
until loop, 187-188
validating user input,

184-185
searching files with wild-

cards, 140
SECONDS variable, 131,

428
sed

in pipelines, 263-264
invocation syntax, 250
operations, 250-251
versus awk, 250

sed (stream editor), 249,
257

actions, 257
deleting lines, 259-260
printing lines, 258-259
substitutions, 260-262
syntax, 257
troubleshooting, 261

sed command
multiple, 262-264
using shell variables in,

410-411

select command, 422
select loops, 190-192

changing prompt, 192
semicolon (;), 148

awk command, 269
if then statement, 161

separators (command), 12
set command, 327-328, 422

-x option, 332
Set Group ID. See SGID
Set User ID. See SUID
SetTimer function, 322
SGID file permission,

97-98
shadow file, 97
shell scripts, 29

comments, 30
debugging, 326-331

set command,
327-328

verbose mode,
331-332

making executable, 29
portability

abstraction, 397-400
conditional execution,

396-397
determining versions

with a function,
394-395

hardware type,
393-394

improving, 396
signals, 314
temporary files, cleaning

up, 317
UNIX versions, 392

shell tracing, 332-333
debugging, single func-

tions, 328
debugging hooks,

337-339
disabling, 328
logical bugs, 335-337
set command, 327
syntax bugs, 333-335

shell variables, 129, 131,
198, 428

shells, 13, 23
accessing name, 404
arrays, 125
awk command variables,

283
Bourn Again, 17
Bourne-type, 15
built-in variables, 427
C-type, 16
default, 24
executing commands in

separate shells, 408
find commands, 407-408
initialization, 24

Bourne Again shell
(bash), 25

Korn shell (ksh), 25
Z shell (zsh), 26

initializing
file contents, 26
setting MANPATH

variable, 27
setting PATH vari-

able, 27
interactive mode, 28
Korn, 16-17
login, 23
making scripts exe-

cutable, 29

shells 481

non-interactive mode,
starting, 28

prompt, 14
subshells, 115
types of, 14
uninitialized, 24
using operators condi-

tionally to execute, 408
using variables in sed

command, 410-411
variables, listed, 428
Z (zsh), 18

shift command, 208, 422
SHLVL variable, 131, 428
showperson script,

375-376
SIGALARM signals, 320

example timer script, 323
setting timer, 322
unsetting timer, 322

SIGHUP signals, 315
SIGINT signals, 316
SIGKILL signals, 316
signals, 313-314

ALARM, handler func-
tion, 321

cleaning up temporary
files, 318-319

dealing with, 316
default actions, 315
delivering, 315
ignoring, 319

during critical opera-
tions, 320

kill command, 315
list of, 314
listing, 314
multiple handlers, 318
setting actions, 317

SIGALARM, 320
example timer script,

323
setting timer, 322
unsetting timer, 322

SIGHUP, 315
SIGINT, 316
SIGKILL, 316
SIGQUIT, 316
SIGTERM, 315

SIGQUIT signals, 316
SIGTERM signals, 315
simple commands, 9, 11
single quotes ('), 149-150

filtering, 244
sleep command, 297
Solaris

uname command, 393
wc command, counting

characters, 45
sort command, 241

-k option, 243
-n option, 243
-r option, 243
sorting numbers, 242

different columns,
243

spaces
converting tabs/newlines

to, 239
removing with tr com-

mand, 240-241
special characters

backslash (\), 148
filenames, accessing by

quoting, 154-155

special files, 37
special variables, 198

$0, 198-199
usage statements,

199-200
stacks, 224

csh, 224
directory

adding directories to,
225-226

listing, 224-225
manipulating (popd

function), 226
standard error. See

STDERR
standard input. See

STDIN
standard output. See STD-

OUT
startup

system, 360
system scripts, 360

startup scripts, 360
statements

case, 175-176
common errors,

176-177
patterns, 177

if, 160-161, 295
common errors,

161-163
while, 295-296

STDERR (standard
error), 72, 82

command execution,
406-407

displaying messages on,
406

redirecting, 84-85

482 shells

STDIN (standard input),
82

grep command, 236
input for awk command,

274-275
xargs command), 304

STDOUT (standard out-
put), 72, 82

printing messages to, 85
redirecting, 84-85

stream editors (sed), 249,
257

actions, 257
deleting lines, 259-260
printing lines, 258-259
substitutions, 260-262
syntax, 257
troubleshooting, 261

string comparisons (test
command), 166

strings
sets of, notation, 251
test commands, 424

stty command, 108
addperson script, 380

subdirectories, 54
subshells, 115-116

while loop, 186-187
substitution variables, 426
substitutions (sed),

260-262
suffixes, matching in glob-

bing, 137
SUID, octal expression

values, 101
SUID file permission,

97-98
SunOS (uname command),

393

support arrays, 427
suspending processes, 108
symbolic expressions

(chmod command),
98-100

symbolic links. See sym-
link files

symlinks, 92-93
common errors, 94

syntax
checking with shell trac-

ing, 333-335
debugging, 328-331

verbose mode,
331-332

invocation, 250
rmdir command, 66

system startup, 360
system startup scripts, 360
System V (SysV), 390-391
System V UNIX, 361

initialization, 363
SysV (System V), 390-391

T

tabs, converting to spaces,
239

tail command, 233-234
-f option, 234
follow option, 234

tar files
arguments, 201
listing contents with $0

variable, 199

tcsh shell, 16
temporary files, cleaning

up, 317, 414
trap command, 318-319

terminal, output to, 72
echo command, 72-75
printf command, 75-77

test command, 163, 422
compound expressions,

171-174
empty strings, 166-167
file test options, 164
file tests, 164-165
numerical comparisons,

170-171
string comparisons,

166-169
string equality, 167-168
string inequality, 169

text, filtering, 249
awk command, 268-288

text files, filtering
grep command, 234-238
head command, 232-233
tail command, 233-234

then statement, trou-
bleshooting, 161

timers
ALARM signals, handler

function, 321
SIGALARM signals, 320

example timer script,
323

setting timer, 322
unsetting timer, 322

tr command, 239
-s option, 240
character classes,

244-245

tr command 483

removing carriage
returns, 416

removing spaces,
240-241

versions of, 240
tracing, 332-333

debugging hooks,
337-339

disabling, 328
logical bugs, 335-337
set command, 327
syntax bugs, 333-335

transliterating words, tr
command, 239

trap command, 317, 422
cleaning up temporary

files, 318-319
trees (directory), 54

filenames, 54
navigating

changing directories,
58-59

home directories, 57
pathnames, 55

absolute, 56
relative, 56-57

troubleshooting
address book, 377
arguments, 203-205
background processes,

107
sed, 261

type command, 296-297,
422

typeset command, 220, 422

U

UID variable, 131, 428
ulimit command, 422
umask command, 422
unalias command, 218,

422
unaliases, 218
uname command, 392-393

-m option, 393
-r option, 393
determining versions

with a function,
394-395

hardware type, 393-394
SunOS, 393

undefined functions, 218
uniq command, 241-242
UNIX

commands, 10
complex, 11
compound, 12
default behavior, 11
separators, 12
simple, 11

directories, 53
cd command, 57
changing, 58-59
copying, 63
copying multiple, 64
creating, 62
creating parents, 62
filenames, 54
listing, 60
manipulating, 62
moving, 64
moving multiple, 65
pathnames, 55-57
removing, 66
trees, 54

kernel, 22
man pages, 31

sections, 32
online resources, 34
shells, 13

Bourne Again, 17
Bourne-type shells,

15
C-type shells, 16
default, 24
Korn shells, 16-17
prompt, 14
types of, 14
Z (zsh), 18

system manuals, 33
unset command, 129, 218,

422
unsetting variables, 129
until command, 422
until loop, 187-188
usage statements, $0 vari-

able, 199-200
user IDs, retrieving, 355
user input

function libraries,
345-351

validating with while
loop, 184

user-defined variables, 426
usernames, 23
users. See also input

logging in, 23
logging logins with sleep

command, 297
process ID, 113
profiles, shell specific

startup with $0 vari-
able, 404

shells, interactive mode,
28

484 tr command

utilities, 22
uuencode, 206
uuencode command,

option parsing, 208

V

validating user input,
while loops, 184-185

validity (variables), 122
values

accessing (array vari-
ables), 127

quoting, 123
variables, 123

variable substitution, 135,
141

default values
assigning, 142
substituting, 141

option parsing, 208
variable errors, 142

variables
$!, 198
$#, 198
$$, 198
$*, 198
$0, 198-199, 404

usage statements,
199-200

$?, 198
$@, 198
$n, 198
$USAGE, 202
arguments, troubleshoot-

ing, 203-205
array, 121, 125-127, 427

arrays, 124
accessing values,

127-128
awk command, 276

numeric expressions,
276-283

built-in shell, 427
checking for values, 411
considering arguments

one at a time, 409
defining, 122
environment, 129

exporting, 130
exporting, 130
FILENAME, 281
global, 218-220
including functions and

definitions in other
files, 409

local, 129, 218
naming, 122-123
read-only, 128
RESPONSE, 295,

349-351
scalar, 121
sed command, using

shell variable values in,
410-411

shell, 129, 131, 428
special, 198
substitution, 426
unsetting, 129
user-defined, 426
validating user input, 185
validity, 122
values, 123

accessing, 123
YESNO, 345-349

verbose mode, 331-332
versions

awk command, 268
determining, 390
determining versions

with a function,
394-395

tr command, 240
uname command,

392-393
hardware type,

393-394
viewing

file contents, 41
combining options, 46
counting characters,

45
counting lines, 44
counting words, 45
getting information

about, 43
numbering lines, 42

file permissions, 96
visible files, listing, 39

W-Y

w- option (wc command),
43

wait command, 111, 422
wc command, 43
Web sites

BSD, 390
online help resources, 31
UNIX resources, 34

Web sites 485

whence command, 422
while command, 422
while loop, 181-182

nesting, 183-184
until loop, 187-188
validating user input,

184-185
while loops, input redirec-

tion, 185-187
while statement, 295-296

awk command, flow con-
trol, 285

who command, 10
default behavior, 11

wildcards, 430. See also
meta-characters

expr command, 307
find command, 300
globbing, 136

* wildcard, 136, 139
? wildcard, 138-139
matching sets of char-

acters, 139-141
quoting, 155

with cpio and find,
156-157

regular expression, 431
words

count occurrences,
241-242

counting, 238
counting in file contents,

45
transliterating, 239

world read permission, 99
world write permission,

100
wrapper scripts, forward-

ing arguments onto other
commands, 410

write permission, 97

xargs command, 304-305

YESNO variable, 345-349

Z

Z shell (zsh), 18
initialization, 26
online resources, 34

zero completion code, 294
zsh (Z shell), 18, 26

exporting variables, 130
initialization, 26
online resources, 34

486 whence command

	Team rebOOk

